JP2006038439A - Waste fluid incineration method - Google Patents

Waste fluid incineration method Download PDF

Info

Publication number
JP2006038439A
JP2006038439A JP2004243010A JP2004243010A JP2006038439A JP 2006038439 A JP2006038439 A JP 2006038439A JP 2004243010 A JP2004243010 A JP 2004243010A JP 2004243010 A JP2004243010 A JP 2004243010A JP 2006038439 A JP2006038439 A JP 2006038439A
Authority
JP
Japan
Prior art keywords
waste liquid
furnace
rotary kiln
combustion
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004243010A
Other languages
Japanese (ja)
Other versions
JP4509695B2 (en
Inventor
Ryuichi Abe
隆一 阿部
Hiroyuki Morita
浩之 守田
Mikito Harada
幹人 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUKISHIMA NITTETSU CHEMICAL E
TSUKISHIMA NITTETSU CHEMICAL ENGINEERING Ltd
Toyota Chemical Engineering Co Ltd
Original Assignee
TSUKISHIMA NITTETSU CHEMICAL E
TSUKISHIMA NITTETSU CHEMICAL ENGINEERING Ltd
Toyota Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUKISHIMA NITTETSU CHEMICAL E, TSUKISHIMA NITTETSU CHEMICAL ENGINEERING Ltd, Toyota Chemical Engineering Co Ltd filed Critical TSUKISHIMA NITTETSU CHEMICAL E
Priority to JP2004243010A priority Critical patent/JP4509695B2/en
Publication of JP2006038439A publication Critical patent/JP2006038439A/en
Application granted granted Critical
Publication of JP4509695B2 publication Critical patent/JP4509695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an incineration method allowing incineration of a waste liquid, using a retention heat of a solid waste, without lowering incineration performance for the solid waste, without remaining unburnt carbon, CO or the like in combustion exhaust gas, and without generating a toxic product, when treating the waste liquid of a low calorific value in an incineration process for the solid waste. <P>SOLUTION: In this incineration disposal method for the waste liquid, an evaporation decomposition means for the waste liquid is constituted of a first treatment process capable of feeding the waste liquid into a rotary kiln maintained at 800°C or more under reductive atmosphere of a furnace inside to be atomization-incinerated, and a second treatment process capable of feeding the waste liquid into a kiln furnace end fixing hood 41 and a secondary combustion furnace 49 for burning inflammable exhaust gas from the first process to be atomization-incinerated, in the gasification rotary kiln 36 for combustion-gasifying partially the solid waste. The feed of the waste liquid is carried out by single or combination of a waste liquid injection port of a waste feed hopper 31, a waste liquid spray nozzle 52 of a furnace front fixing hood 37, a waste liquid spray nozzle 52 of the furnace end fixing hood 41, and a waste liquid spray nozzle 53 of a secondary combustion furnace wall. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、処理対象とする廃液の高温熱分解に必要な熱量を、一般廃棄物または産業廃棄物として排出される固形廃棄物の保有熱を活用し、前記固形廃棄物を燃焼する際に発生する熱エネルギーを利用して、当該廃液を高温熱分解する廃液焼却処理方法である。  The present invention generates the amount of heat necessary for high-temperature pyrolysis of the waste liquid to be treated by using the retained heat of solid waste discharged as general waste or industrial waste and burning the solid waste This is a waste liquid incineration method in which the waste liquid is thermally decomposed at a high temperature using thermal energy.

産業活動に伴って発生する廃液は、さらに廃酸、廃アルカリに分類され、これらは中和処理された後、凝集沈殿操作、活性汚泥処理、湿式酸化処理、脱水処理などの排水処理が一般的に行われている。しかし、廃液の性状により、前記の排水処理が不適の場合には、第2の選択枝として焼却処理が行われる。焼却処理の対象となるのは、例えば溶解塩類の濃度が高い廃液や、有機ハロゲン化合物を含む有害性の高い廃液、あるいは廃液の高温熱分解で発生させた塩化水素や弗化水素などの無機酸を回収する場合などである。このような廃液の焼却処理の場合には、焼却に際して廃液の保有熱量が自燃性を有していない程度に低いために、一般的には液体燃料やガス燃料を助燃料として使用して、廃液の燃焼に必要な熱量を確保している。  Waste liquids generated by industrial activities are further classified into waste acids and waste alkalis. These are neutralized and then generally treated with wastewater such as coagulation sedimentation, activated sludge treatment, wet oxidation treatment, and dehydration treatment. Has been done. However, if the wastewater treatment is inappropriate due to the properties of the waste liquid, incineration is performed as a second option. The incineration targets include, for example, waste liquids with high concentrations of dissolved salts, highly hazardous waste liquids containing organic halogen compounds, or inorganic acids such as hydrogen chloride and hydrogen fluoride generated by high-temperature thermal decomposition of waste liquids. For example. In the case of such waste liquid incineration treatment, since the amount of heat of the waste liquid at the time of incineration is so low that it does not have self-combustibility, in general, liquid fuel or gas fuel is used as auxiliary fuel. The amount of heat necessary for the combustion is secured.

また、廃液の焼却処理においては、廃液に含まれる灰分の含有量およびその性状により適用される焼却炉の形式が異なってくる。灰分の含有量が多いケースや灰分の融点が低いケースにおいては、廃液中の水分が蒸発した後にガス中に浮遊する灰分が焼却炉の炉壁に融着し、長期運転を阻害しないように竪型の焼却炉が採用される。逆に灰分のトラブルが問題とされない場合には、横型の焼却炉が採用される。しかし、いずれも多量の液体燃料またはガス燃料を用いるために、相当な用役費用が必要になる。従って固形廃棄物の焼却炉で廃液の焼却処理が同時にできるならば、助燃料が節約できるので、現在多くの固形廃棄物の焼却炉において、廃液の噴霧焼却が同時になされている(例えば非特許文献1、特許文献1)。  Further, in the incineration treatment of waste liquid, the type of incinerator to be applied differs depending on the content of ash contained in the waste liquid and its properties. In cases where the ash content is high or the melting point of the ash is low, the ash that floats in the gas after the water in the effluent evaporates is fused to the furnace wall of the incinerator to prevent long-term operation. A type incinerator is adopted. On the contrary, when the problem of ash is not a problem, a horizontal incinerator is adopted. However, since both use a large amount of liquid fuel or gas fuel, considerable service costs are required. Accordingly, if incineration of waste liquid can be performed simultaneously in a solid waste incinerator, auxiliary fuel can be saved. Therefore, in many incinerators of solid waste, spray incineration of waste liquid is simultaneously performed (for example, non-patent literature). 1, Patent Document 1).

しかし、この場合においても元来固形廃棄物を燃焼させる燃焼空間に、発熱量の殆ど期待できない廃液を吹込むことは、燃焼操作への悪影響が生ずることになる。すなわち、燃焼排ガス中への未燃分の残留や、低融点灰分が焼却炉の炉壁へ融着し稼動率を低下させることなどが問題であった。以上のことから従来の方法では、廃液の吹込み量には制約があるのは当然であり、換言するならば固形廃棄物の保有する熱量を有効に活用する割合の活用率が低いレベルに留まっていたといえる。  However, even in this case, injecting waste liquid, which hardly generates heat, into the combustion space where the solid waste is originally combusted, will adversely affect the combustion operation. That is, there are problems such as remaining unburned matter in the combustion exhaust gas and low melting point ash fused to the furnace wall of the incinerator to reduce the operation rate. From the above, in the conventional method, it is natural that the amount of waste liquid blown is limited, in other words, the utilization rate of the ratio of effectively utilizing the amount of heat held by solid waste remains at a low level. It can be said that it was.

’96廃棄物処理再資源化技術百選、印刷発行日 平成8年10月20日、p.72,91,106、発行(株)環境新聞社'96 Selection of Waste Processing and Recycling Technology, Print Issue Date October 20, 1996, p. 72, 91, 106, issued by Environmental Newspaper Co., Ltd. 特開平11−182825号公報JP 11-182825 A

固形廃棄物の保有熱を活用して、低発熱量の廃液を高温熱分解する廃液焼却処理設備には、以下のような機能が要求される。
1.固形廃棄物のみの保有熱により、極力多量の廃液を焼却処理できること。
2.固形廃棄物の発熱量の変動に対して助燃料の追加燃焼を制御することにより安定して廃液焼却処理を持続させること。
3.2次燃焼炉出口の排ガス中に、燃焼分解の中間生成物である未燃炭素や未燃COガスなどの有害物質を含む未燃分を残留させないこと。
4.廃液中に含まれる灰分が、2次燃焼炉の壁面やロータリキルン炉尻フードの壁面に融着して成長することで、灰分の排出障害により連続運転を阻害することがないこと。
The following functions are required for a waste liquid incineration treatment facility that uses the heat retained by solid waste to thermally decompose low-temperature waste liquid at high temperature.
1. A large amount of waste liquid can be incinerated with the heat of solid waste alone.
2. To maintain the waste liquid incineration process stably by controlling the additional combustion of auxiliary fuel against fluctuations in the calorific value of solid waste.
3. Do not leave unburned matter containing harmful substances such as unburned carbon and unburned CO gas, which are intermediate products of combustion decomposition, in the exhaust gas at the outlet of the secondary combustion furnace.
4). The ash contained in the waste liquid must be fused and grown on the wall of the secondary combustion furnace and the wall of the rotary kiln bottom hood so that continuous operation is not hindered due to ash discharge failures.

従来は、上記の制約の許容範囲内で、多くの固形廃棄物の焼却炉において、廃液の噴霧焼却処理が同時になされているが、前記のように元来燃焼空間に発熱量の殆ど期待できない廃液を吹込むことは、燃焼操作へ悪影響が生じることや、低融点灰分が焼却炉炉壁へ融着し稼動率を低下させることなどにより、従来の固形廃棄物の焼却炉における廃液の噴霧焼却量には限界があり、固形廃棄物の保有熱を十分活用できない状況であった。  Conventionally, in many solid waste incinerators within the allowable range of the above constraints, waste liquid spray incineration is performed at the same time. The amount of sprayed incineration of waste liquid in conventional solid waste incinerators due to adverse effects on the combustion operation and low melting point ash fused to the incinerator furnace wall and lowering the operation rate, etc. However, there was a limit, and the heat retained in solid waste could not be fully utilized.

上記の課題に、従来の焼却炉では十分応えられない理由などを以下に説明する。
従来型の焼却炉として、図1に流動床焼却炉を、図2にロータリキルン焼却炉を示す。
The reason why the conventional incinerator cannot sufficiently meet the above problems will be described below.
As a conventional incinerator, FIG. 1 shows a fluidized bed incinerator and FIG. 2 shows a rotary kiln incinerator.

図1の流動床焼却炉では、通常廃液が流動ベッド2の内部またはフリーボード7の空間に吹込まれる。流動ベッド2の内部では、固形廃棄物が熱分解温度域において分散板8から吹込まれた燃焼空気により、焼却されると同時に燃焼熱により急速に高温分解される。
これらの操作が狭い空間で高速に行われることが流動床焼却炉の特長であるが、流動ベッド内に吹込まれた廃液は、燃焼操作や熱分解操作にとって阻害要因となり、吹込み量は少量にとどまる。また、フリーボード7に吹込む際は、吹込み空間は十分な広い空間であるが、運転温度は最大1200℃以下であり、出口温度は850℃程度に安定制御する必要があるために、この前提で多量の廃液をフリーボード内に噴霧すると、噴霧された低温のガスの塊状部分が、不完全燃焼によりCO、チャ−、炭化水素などの未燃分を出口排ガス中に残留させる危険性が高くなる。
In the fluidized bed incinerator of FIG. 1, the normal waste liquid is blown into the fluidized bed 2 or the space of the free board 7. Inside the fluidized bed 2, the solid waste is incinerated by the combustion air blown from the dispersion plate 8 in the thermal decomposition temperature region, and at the same time, rapidly decomposed by the combustion heat.
The characteristics of fluidized bed incinerators are that these operations are performed at high speed in a small space, but the waste liquid blown into the fluidized bed becomes an impediment to the combustion operation and thermal decomposition operation, and the amount blown into is small. Stay. In addition, when blowing into the freeboard 7, the blowing space is a sufficiently wide space, but the operating temperature is 1200 ° C or less at the maximum, and the outlet temperature needs to be stably controlled to about 850 ° C. If a large amount of waste liquid is sprayed into the freeboard on the premise, there is a risk that the lump portion of the sprayed low temperature gas may leave unburned components such as CO, char, hydrocarbons, etc. in the outlet exhaust gas due to incomplete combustion. Get higher.

図2のロータリキルン焼却炉では、廃液は通常炉前固定フード10に設けられた廃液噴霧ノズル16からロータリキルン燃焼空間14に吹込むか、または2次燃焼炉燃焼空間15に廃液噴霧ノズル17により吹込まれる。前記の燃焼空間14および15は、燃焼空気が過剰に存在する酸化燃焼空間であり、発熱量の低い廃液を吹込む際は、燃焼空気の投入量を低めにし、廃液の焼却必要熱量を確保して2次燃焼炉の出口温度を850℃以上に維持している。しかし、ロータリキルンで廃液を焼却するために、ロータリキルン炉内の温度を上昇させると、ロータリキルン炉の壁に固形廃棄物に含まれる灰分が溶融軟化し融着成長する。このために稼動率が極端に低下する。また、ロータリキルン焼却炉の低温の運転では、廃液の焼却量が少量にとどまることになる。2次燃焼炉に廃液を吹込む場合は、前述した流動床焼却炉のフリーボードに廃液を吹込む場合と同様の理由で、2次燃焼炉の燃焼を阻害しやすい状況となる。  In the rotary kiln incinerator of FIG. 2, the waste liquid is blown into the rotary kiln combustion space 14 from the waste liquid spray nozzle 16 provided in the normal hood 10 fixed hood 10 or into the secondary combustion furnace combustion space 15 by the waste liquid spray nozzle 17. Infused. The combustion spaces 14 and 15 are oxidation combustion spaces in which combustion air exists excessively. When blowing waste liquid with a low calorific value, the amount of combustion air input is lowered to ensure the amount of heat required for incineration of the waste liquid. The outlet temperature of the secondary combustion furnace is maintained at 850 ° C. or higher. However, if the temperature in the rotary kiln is increased in order to incinerate the waste liquid in the rotary kiln, the ash contained in the solid waste melts and softens on the walls of the rotary kiln and grows by fusion. For this reason, an operation rate falls extremely. In addition, in the low temperature operation of the rotary kiln incinerator, the amount of waste liquid incinerated remains small. When the waste liquid is blown into the secondary combustion furnace, the combustion of the secondary combustion furnace is likely to be hindered for the same reason as when the waste liquid is blown into the freeboard of the fluidized bed incinerator described above.

また、図2におけるロータリキルン炉尻固定フード12に設けられた助燃バーナ20で、高温燃焼排ガスを生成させ、廃液の焼却量を増加させる方法も考えられるが、燃料の使用量が増加し、固形廃棄物の保有熱を有効に活用できていないことは前述の場合と同様である。以上のように従来技術は、廃液の焼却にとって制約が多く、廃液の多量処理には適していないものであった。  A method of generating high-temperature combustion exhaust gas and increasing the incineration amount of the waste liquid with the auxiliary combustion burner 20 provided in the rotary kiln bottom hood fixing hood 12 in FIG. 2 is also conceivable. The fact that the retained heat of waste cannot be used effectively is the same as described above. As described above, the prior art has many restrictions on incineration of waste liquid and is not suitable for large-scale treatment of waste liquid.

前述の廃液焼却処理設備に要求される機能を達成するために、請求項1の本発明は、
(1)固形廃棄物の部分燃焼ガス化を行うガス化ロータリキルンにおいて、炉内が還元雰囲気で、ロータリキルン出口において800℃以上に維持されたロータリキルン内で廃液を蒸発分解処理するために、廃液の第1供給手段として廃棄物投入ホッパ壁面に設けられた廃液注入口により、または廃液の第2供給手段として炉前固定フードに設けられた廃液噴霧ノズルにより、ロータリキルン炉内に廃液を供給して蒸発分解できる第1処理工程と、
(2)前記第1処理工程から発生する可燃性排ガスを燃焼させるロータリキルン炉尻固定フードの燃焼空間および2次燃焼炉の燃焼空間で廃液を蒸発分解するために、廃液の第3供給手段としてロータリキルン炉尻固定フードおよび/または2次燃焼炉炉壁に設けられた廃液噴霧ノズルにより、ロータリキルン炉尻固定フードおよび/または2次燃焼炉内に廃液を供給して噴霧焼却できる第2処理工程により廃液の蒸発分解手段が構成され、
廃液の供給が前記の第1供給手段、第2供給手段、第3供給手段のいずれかまたは複数の組合せによってなされることを特徴とする廃液焼却処理方法である。
In order to achieve the function required for the above-mentioned waste liquid incineration treatment facility, the present invention of claim 1
(1) In a gasification rotary kiln that performs partial combustion gasification of solid waste, in order to evaporate and decompose waste liquid in a rotary kiln maintained at 800 ° C. or higher at a rotary kiln outlet in a reducing atmosphere inside the furnace, Waste liquid is supplied into the rotary kiln furnace by the waste liquid inlet provided on the waste charging hopper wall surface as the first waste liquid supply means or by the waste liquid spray nozzle provided in the fixed hood in front of the furnace as the second waste liquid supply means. A first treatment step capable of evaporative decomposition,
(2) In order to evaporate and decompose the waste liquid in the combustion space of the rotary kiln bottom fixing hood and the combustion space of the secondary combustion furnace for burning the combustible exhaust gas generated from the first treatment step, as a third supply means of waste liquid A second process capable of spraying and incinerating waste liquid into the rotary kiln bottom hood and / or secondary combustion furnace by a waste liquid spray nozzle provided on the rotary kiln bottom hood and / or secondary combustion furnace wall. The process constitutes the evaporative decomposition means of the waste liquid,
The waste liquid incineration method is characterized in that the waste liquid is supplied by any one or a combination of the first supply means, the second supply means, and the third supply means.

上記の構成を有する本発明の廃液焼却処理方法によれば、まず第1処理工程において、固形廃棄物の一部を燃焼させるに必要な少量の燃焼空気をロータリキルン内に導入するか、あるいは固形廃棄物の発熱量が極端に低い場合など、部分燃焼ガス化により還元雰囲気を維持することが困難な場合には、燃焼空気比を0.5〜0.9に設定された助燃バーナの還元燃焼により、ロータリキルンの内部雰囲気が高温還元状態に維持される。この条件下において、ロータリキルン内に廃液の第1供給手段として廃棄物投入ホッパ壁面に設けられた廃液注入口により、または廃液の第2供給手段として炉前固定フードに設けられた廃液噴霧ノズルにより、廃液が供給され、ロータリキルンでの焼却処理が終了した後の出口排ガス温度は800℃以上を維持するようにする。  According to the waste liquid incineration processing method of the present invention having the above configuration, first, in the first processing step, a small amount of combustion air necessary for burning a part of the solid waste is introduced into the rotary kiln, or the solid When it is difficult to maintain a reducing atmosphere by partial combustion gasification, such as when the heat generation amount of waste is extremely low, reducing combustion of the auxiliary burner with the combustion air ratio set to 0.5 to 0.9 Thus, the internal atmosphere of the rotary kiln is maintained in a high temperature reduced state. Under this condition, a waste liquid injection port provided on the wall surface of the waste hopper as the first supply means of the waste liquid in the rotary kiln or a waste liquid spray nozzle provided in the fixed hood before the furnace as the second supply means of the waste liquid The outlet exhaust gas temperature after the waste liquid is supplied and the incineration process in the rotary kiln is finished is maintained at 800 ° C. or higher.

第1処理工程における廃液は、ロータリキルン内に吹込まれ焼却された後水分は蒸発し、可燃分はガス化し、灰分の一部は昇華ガスとして、一部は排ガス中へ遊離ダストとして浮遊し、他の一部はロータリキルンで発生する熱分解残渣に混入して、ロータリキルンから排出される。廃液由来の生成ガスと固形廃棄物由来の生成ガスが可燃混合ガスとして第2処理工程に導入される。  The waste liquid in the first treatment step is blown into the rotary kiln and incinerated, then the water evaporates, the combustible component is gasified, a part of the ash is sublimated gas, and a part is floated as free dust in the exhaust gas, The other part is mixed with the thermal decomposition residue generated in the rotary kiln and discharged from the rotary kiln. The product gas derived from the waste liquid and the product gas derived from the solid waste are introduced into the second treatment step as a combustible mixed gas.

第2処理工程では、図3に示すロータリキルン炉尻固定フード41の燃焼空間51および/または2次燃焼炉49の燃焼空間48において、さらに廃液を噴霧ノズル52および/または53により噴霧して焼却処理を行うようにする。2次燃焼炉49では、ロータリキルン生成ガスの燃焼用燃焼空気の導入、もしくはロータリキルン熱分解残渣の焼却用に設置している余剰空気を含むストーカ焼却炉の焼却排ガスとの合流により、または必要に応じて助燃バーナ47、50を燃焼させることにより、800℃以上の高温燃焼雰囲気を形成させる。当該高温燃焼雰囲気は、ロータリキルン生成ガスの燃焼過程で昇温操作が行われる一方で、発熱量の低い廃液を吹込むことによる減温操作が同時に進行するために、発生ガスの燃焼を阻害しない操作条件で廃液を噴霧して焼却処理を行うようにする。
第1処理工程において生成された生成ガスは、800℃以上の高温で且つ十分な可燃性を有するために、第2処理工程においては、燃焼を阻害しない限度の廃液処理量まで、十分実効性のある程度に処理量を増量することができる。
In the second treatment step, waste liquid is further sprayed by the spray nozzles 52 and / or 53 in the combustion space 51 of the rotary kiln bottom hood 41 and / or the combustion space 48 of the secondary combustion furnace 49 shown in FIG. Do processing. In the secondary combustion furnace 49, it is necessary to introduce combustion air for combustion of the rotary kiln product gas, or to merge with the incineration exhaust gas of the stoker incinerator including surplus air installed for incineration of the rotary kiln pyrolysis residue In response to this, the auxiliary combustion burners 47 and 50 are burned to form a high-temperature combustion atmosphere of 800 ° C. or higher. In the high-temperature combustion atmosphere, while the temperature raising operation is performed in the combustion process of the rotary kiln product gas, the temperature lowering operation by blowing the waste liquid with a low calorific value proceeds at the same time, so that the combustion of the generated gas is not hindered. Incinerate by spraying waste liquid under operating conditions.
Since the product gas generated in the first treatment step has a high temperature of 800 ° C. or higher and sufficient flammability, the second treatment step is sufficiently effective up to a waste liquid treatment amount that does not inhibit combustion. The amount of processing can be increased to some extent.

第1処理工程と第2処理工程における廃液焼却量の配分については、第1処理工程がロータリキルンの回転円筒内の空間で廃液を噴霧するために、炉壁に付着した溶融塩類は熱分解残渣と共に排出され、炉壁で付着成長しないので、より多くの配分、もしくは廃液の発生量によつては全量を第1処理工程で処理することが望ましい。さらに、第1処理工程における廃液噴霧では、ガス化したガス中に存在する浮遊炭素を水性ガス反応により一酸化炭素および水素に改質する効果も期待できる。  Regarding the distribution of the waste liquid incineration amount in the first processing step and the second processing step, since the first processing step sprays the waste liquid in the space in the rotary cylinder of the rotary kiln, the molten salt adhering to the furnace wall is a pyrolysis residue. In other words, it is desirable to treat the entire amount in the first treatment step according to more distribution or the amount of waste liquid generated. Furthermore, in the waste liquid spraying in the first treatment step, an effect of reforming the floating carbon present in the gasified gas to carbon monoxide and hydrogen by a water gas reaction can be expected.

尚、ロータリキルン内に供給される廃液の性状が高粘度であることや、SS分の多いスラリー状である場合、もしくはその他の要因で、前記した廃液の第1供給手段から第3供給手段で供給することが不適当な場合は、予め受入れピットの中で固形廃棄物と混合し、その付着水として混入させ、固形廃棄物の投入と共に廃液をロータリキルンに供給できる。  The waste liquid supplied into the rotary kiln has a high viscosity, is in a slurry state with a large amount of SS, or other factors, so that the waste liquid is supplied from the first supply means to the third supply means. When it is inappropriate to supply, it can be mixed with solid waste in the receiving pit in advance and mixed as adhering water, and the waste liquid can be supplied to the rotary kiln as the solid waste is charged.

請求項2記載の廃液焼却処理方法は、廃液中の脱離灰分を中心とし、固形廃棄物由来の飛灰が付加されてなる炉壁付着クリンカを剥離除去するために、ロータリキルン炉尻固定フードの炉壁面は、おおむねロータリキルン水平中央線部から下方に位置する耐火物壁面の表面に、耐食耐熱金属製ライナが被覆され、クリンカの自重が前記金属製ライナとの付着力を超過したときに自然に剥離落下し、さらに前記ロータリキルンにおける熱分解残渣の焼却用に設置したストーカ炉によって炉外に搬出するクリンカ除去排出工程が設けられていることを特徴としている。  The waste liquid incineration treatment method according to claim 2 is a rotary kiln bottom hood fixing hood for peeling and removing a furnace wall-attached clinker to which fly ash derived from solid waste is added, centering on desorbed ash in the waste liquid. The furnace wall is generally covered with a refractory metal liner on the surface of the refractory wall located below the horizontal center line of the rotary kiln, and when the weight of the clinker exceeds the adhesion with the metal liner. A clinker removing and discharging step is provided which is naturally peeled and dropped, and further carried out of the furnace by a stalker furnace installed for incineration of thermal decomposition residue in the rotary kiln.

廃液中の灰分は、一般的に低融点物質を中心に構成され、ガス中には軟化ダストやガス体として存在する。これに固形廃棄物由来の飛灰が付加され、ロータリキルン、炉尻固定フードおよび2次燃焼炉の炉壁には、ダストが融着を起こし易く、且つ短期間で成長し易い。特にロータリキルン炉尻とストーカ炉の接続部は、壁面が傾斜絞り構造となり壁面の剥離性は小さく、一旦付着すると自然な剥落は望めずに、焼却炉を停止して、炉内作業によりクリンカを除去するしか方法がない。このため沈降ダストがおおむねロータリキルン水平中央線部から下方に位置する耐火物壁面の表面に堆積し、上部からの高温ガス輻射により軟化融着しても、自然に剥離するように、壁面を耐食耐熱金属でライニングし、剥離性を持たせる構造とする。  The ash content in the waste liquid is generally composed mainly of a low-melting-point substance, and exists in the gas as softened dust or a gas body. Solid fly-derived fly ash is added to this, and dust tends to be fused on the rotary kiln, the furnace bottom fixing hood, and the furnace wall of the secondary combustion furnace, and easily grows in a short period of time. In particular, the connection between the rotary kiln bottom and the stoker furnace has an inclined throttle structure on the wall surface, and the peelability of the wall surface is small.Once attached, natural flaking cannot be expected, the incinerator is stopped, and the clinker is removed by in-furnace work. There is only a way to remove it. For this reason, the sedimentation dust is generally deposited on the surface of the refractory wall located below the horizontal center line of the rotary kiln, and the wall is corrosion-resistant so that it will peel off naturally even when softened and fused by high-temperature gas radiation from the top. Lined with refractory metal to give peelability.

前述のようにガス中に浮遊するダストおよび壁面に付着堆積するダストは、大部分が軟化溶融していて付着成長し易い性状となっている。この堆積量が一定量になれば、除去作業のために焼却炉を停止せざるを得ず、焼却炉の稼動率を悪化させる。特にロータリキルンとストーカ炉を接続する炉殻部分の壁面の角度は理想的には垂直で、現実的には極力垂直に近く構成するものの、ロータリキルンの外径寸法とストーカ炉の火格子横幅寸法との関係上、下部に向かってかなりの絞り構造をとるケースが一般的であり、当該壁面にはダストが堆積し、ガス体からの輻射熱により、融着成長してくる。本発明は耐食耐熱金属製ライナを壁面に貼り付けることにより、一定量の堆積量になった時点で、その自重により壁面からダスト塊が自然に剥離し、焼却炉の休止を行うことなく連続運転が可能となる。  As described above, most of the dust floating in the gas and the dust deposited and deposited on the wall surface are softened and melted and tend to adhere and grow. If this deposition amount becomes a certain amount, the incinerator must be stopped for the removal operation, and the operating rate of the incinerator is deteriorated. In particular, the angle of the wall surface of the shell part connecting the rotary kiln and the stoker furnace is ideally vertical, but in reality it is almost as vertical as possible, but the outer diameter of the rotary kiln and the grate width of the stoker furnace In general, a case where a considerably narrowed structure is formed toward the lower part is common. Dust accumulates on the wall surface, and fusion growth occurs due to radiant heat from the gas body. The present invention attaches a corrosion-resistant and heat-resistant metal liner to the wall surface, and when a certain amount of deposit is reached, the dust lump is naturally separated from the wall surface by its own weight, and continuous operation is performed without stopping the incinerator. Is possible.

請求項3記載の廃液焼却処理方法は、ロータリキルンが、耐食耐熱金属製リフトピンが内挿され、ロータリキルン回転摺動部の炉内への漏洩空気がシール長1m当り200Nm/h以下に抑制されていることを特徴としている。According to a third aspect of the present invention, the rotary kiln has a corrosion-resistant and heat-resistant metal lift pin inserted therein, and the leakage air into the furnace of the rotary kiln rotating sliding portion is suppressed to 200 Nm 3 / h or less per 1 m of seal length. It is characterized by being.

熱分解に用いられるロータリキルンは、固形廃棄物を構成する個々の固体に対して均一に昇温、加熱を受けさせるために、投入された固形廃棄物を攪拌し、常に固体廃棄物層内部に滑り面を生じさせるように、耐食耐熱金属製リフトピン40a、40bが内挿され、該リフトピンによりロータリキルン内表面において固形廃棄物の滑りを防止し、ロータリキルンの回転に伴い、持ち上げられた固形廃棄物は層内面で滑って攪拌される。この攪拌装置には、例えば特開平10−267239号公報に開示されている装置などを用いることが望ましい。  The rotary kiln used for pyrolysis stirs the charged solid waste to constantly heat and heat the individual solids constituting the solid waste, and always keeps the solid waste inside the solid waste layer. Corrosion-resistant and heat-resistant metal lift pins 40a and 40b are inserted so as to generate a sliding surface, and the lift pins prevent the solid waste from slipping on the inner surface of the rotary kiln, and the solid waste lifted as the rotary kiln rotates. The object is slid and stirred on the inner surface of the layer. For this stirring device, for example, a device disclosed in JP-A-10-267239 is desirably used.

ロータリキルンの回転摺動部には微少の隙間を生じるが、ロータリキルンの運転内部圧力が負圧であるために外部から空気が炉内に漏れ込むことになる。この漏れ込み量が多量になれば、ロータリキルンの内部雰囲気を還元雰囲気に維持できないために、回転摺動部の漏れ込み空気はシール長1m当り200Nm/h以下に抑制することが必要である。
この回転摺動部のシール装置には、例えば特開2001−21046号公報に開示されている装置などを用いることが望ましい。
シール装置の単位長さ1m当りの漏れ込み空気量は、一般的に
Although a minute gap is formed in the rotary sliding part of the rotary kiln, since the operating internal pressure of the rotary kiln is negative, air leaks from the outside into the furnace. If the leakage amount becomes large, the internal atmosphere of the rotary kiln cannot be maintained in a reducing atmosphere, and therefore, the leakage air of the rotary sliding portion needs to be suppressed to 200 Nm 3 / h or less per 1 m of seal length. .
For example, a device disclosed in Japanese Patent Application Laid-Open No. 2001-21046 is preferably used as the sealing device for the rotary sliding portion.
The amount of air leaking per meter length of a sealing device is generally

式1Formula 1

Q=α×A×√(2×g×(−P)/γ)・・・・・・・・・・・・(1)
ここにα:流量係数
A:単位長さ当りの隙間面積 m/m
:ロータリキルン炉内圧力 kgf/m(mmHO、9.80665×Pa)
γ:空気の見掛け比重量 kgf/m(kg×g/m
上記式(1)から、隙間を簡易計測すれば容易に漏れ込み空気量を計測可能である。
Q = α × A × √ (2 × g × (−P i ) / γ) (1)
Where α: flow coefficient A: gap area per unit length m 2 / m
P i : Pressure inside the rotary kiln furnace kgf / m 2 (mmH 2 O, 9.80665 × Pa)
γ: apparent specific weight of air kgf / m 3 (kg × g / m 3 )
From the above equation (1), if the gap is simply measured, the amount of air leaking can be easily measured.

請求項4記載の廃液焼却処理方法は、還元雰囲気が、固形廃棄物の部分燃焼ガス化により、または部分燃焼ガス化により還元雰囲気を維持することが困難な場合は、ロータリキルン炉前固定フードに取付けられた助燃バーナの燃焼空気比を0.5〜0.9の範囲で還元燃焼することにより必要熱量を追加せしめ、ロータリキルン炉尻部の排ガス温度が少なくとも800℃以上を維持すること、および発生ガスの低位発熱量が少なくとも300kcal/Nm以上で且つ水素ガス濃度が6%以上を維持すること、および/またはロータリキルン発生ガスおよびチャ−の燃焼熱を利用して2次燃焼炉内で廃液を噴霧焼却した後の排ガス温度が、空気比が1.0の理論燃焼時において、少なくとも1200℃以上であることを特徴としている。In the waste liquid incineration treatment method according to claim 4, when it is difficult to maintain the reducing atmosphere by partial combustion gasification of solid waste or by partial combustion gasification, the reducing kiln is fixed to the rotary kiln furnace fixed hood. The required amount of heat is added by reducing and burning the combustion air ratio of the attached auxiliary combustion burner in the range of 0.5 to 0.9, and the exhaust gas temperature at the bottom of the rotary kiln is maintained at least 800 ° C., and In the secondary combustion furnace, the lower heating value of the generated gas is at least 300 kcal / Nm 3 and the hydrogen gas concentration is maintained at 6% or more, and / or the combustion heat of the rotary kiln generated gas and char is used. The exhaust gas temperature after spray incineration of the waste liquid is characterized by being at least 1200 ° C. or higher during theoretical combustion with an air ratio of 1.0.

一般的に炭化水素が主成分である可燃ガスと支燃ガスと不活性ガスとの混合ガスの燃焼持続性は、可燃ガスの全量が酸化反応し尽くされたときの排ガス温度が少なくとも1250〜1300℃以上であれば燃焼は持続する。本発明は燃焼が持続する前提条件の範囲内でロータリキルンの発生ガスの性状と排ガス温度を規定することによって、間接的に廃液焼却量の上限を規定することにより、ロータリキルン発生ガスの燃焼過程での廃液焼却が燃焼持続性の障害にならないようにしている。  In general, the combustion sustainability of a mixed gas of a combustible gas, a support gas, and an inert gas mainly composed of hydrocarbons is such that the exhaust gas temperature is at least 1250 to 1300 when the entire amount of the combustible gas is exhausted. Combustion continues at temperatures above ℃. The present invention indirectly defines the upper limit of the amount of waste liquid incineration by defining the properties of the generated gas and the exhaust gas temperature of the rotary kiln within the range of preconditions that combustion continues, and thereby the combustion process of the rotary kiln generated gas Waste liquid incineration is not an obstacle to sustaining combustion.

この際水素ガスは、その危険度(=燃焼上下限界差/燃焼下限界)が17.7と高く、前記に規定した1250℃を相当下回っても十分燃焼持続性がある。従って、ロータリキルン発生ガス中に極力高濃度で存在することが望ましいものではあるが、運転制御による実現可能性から6%以上とし、水素ガス共存下において2次燃焼炉内で廃液を噴霧焼却した後の排ガス温度が、空気比が1.0の理論燃焼時において、少なくとも1200℃以上であると規定した。  At this time, hydrogen gas has a high risk level (= combustion upper / lower limit difference / combustion lower limit) of 17.7, and has sufficient combustion sustainability even if it is considerably below 1250 ° C. defined above. Therefore, although it is desirable that it exists in the rotary kiln generating gas as high as possible, it is set to 6% or more from the feasibility by operation control, and the waste liquid is spray incinerated in the secondary combustion furnace in the presence of hydrogen gas. The exhaust gas temperature afterwards was defined to be at least 1200 ° C. or higher during theoretical combustion with an air ratio of 1.0.

ここに水素ガスは、以下の水性ガス反応を主体の反応生成物として生成する。  Here, the hydrogen gas is generated as a reaction product mainly composed of the following water gas reaction.

式2Formula 2

C+HO⇔CO+H・・・・・・・・・・・・・・・・(2)C + H 2 O⇔CO + H 2 (2)

式3Formula 3

O+CO⇔CO+H・・・・・・・・・・・・・・(3)
廃棄物中の炭素、水素および酸素の供給量、ロータリキルンへの燃焼空気の供給量とロータリキルン内の水蒸気分圧により、発生ガスの低位発熱量および水素濃度は容易に推定可能である。図3に示す本発明の設備構成の場合は、発生ガス組成を検出する場所の特定が困難であるため、一般的に経験値から発生ガス性状を推定できる。
すなわち、炭化水素転換率の指定(廃棄物種によって変化する経験値で例えば15%)、主成分炭化水素の指定(一般的にCH、Cで、その生成比率は例えば2容量部:1容量部)、および以上の指定により物質バランス上計算される遊離炭素量の前記式(2)による水性ガス反応比率の指定(経験値で例えば70%)、以上から推定される発生ガス組成が式(3)のシフト反応により平衡状態になったとして最終的に発生ガス組成を推定できる。
H 2 O + CO⇔CO 2 + H 2 (3)
The lower calorific value and hydrogen concentration of the generated gas can be easily estimated from the supply amount of carbon, hydrogen and oxygen in the waste, the supply amount of combustion air to the rotary kiln and the partial pressure of water vapor in the rotary kiln. In the case of the equipment configuration of the present invention shown in FIG. 3, it is difficult to specify the location where the generated gas composition is detected, and thus the generated gas property can be generally estimated from the experience value.
That is, designation of hydrocarbon conversion rate (experience value that varies depending on the waste type, for example, 15%), designation of main component hydrocarbon (generally CH 4 , C 2 H 4 , the production ratio thereof is, for example, 2 parts by volume: 1 volume part), and designation of the water gas reaction ratio by the above formula (2) of the amount of free carbon calculated in the material balance by the above designation (experience value, for example, 70%), the generated gas composition estimated from the above Assuming that the equilibrium state has been reached by the shift reaction of formula (3), the generated gas composition can be estimated finally.

請求項5記載の廃液焼却処理方法は、ロータリキルンが、ロータリキルン炉尻の端面43のうち、上部半円部がロータリキルン炉尻固定フード炉壁面42aから後退し、下部の半円部が炉壁面42bから突出せしめるように、炉尻固定フード炉壁がロータリキルン水平中央線部近傍で段違いの形状に構成されることにより、2次炉上部の壁面から溶融流下する低温度で軟化している灰分や空間に飛散する灰分の堆積により、ロータリキルン炉尻端面43が汚染されないようにすることを特徴としている。  In the waste liquid incineration processing method according to claim 5, the rotary kiln has an upper semicircular part of the rotary kiln bottom end face 43 that is retreated from the rotary kiln bottom fixed hood furnace wall surface 42 a, and a lower semicircular part is the furnace Since the furnace bottom fixed hood furnace wall is formed in a stepped shape in the vicinity of the rotary kiln horizontal center line so as to protrude from the wall surface 42b, it is softened at a low temperature that flows down from the wall surface of the upper part of the secondary furnace. The rotary kiln bottom end face 43 is prevented from being contaminated by the accumulation of ash or ash that scatters in the space.

ロータリキルン炉尻の空間において、ロータリキルン発生ガスとストーカ炉燃焼排ガスが合流し、ストーカ炉燃焼排ガス中の残留酸素により燃焼が開始され、燃焼過程のガス体の温度は1000℃〜1300℃となる。従って、ガス中に浮遊するダスト、および壁面に付着堆積するダストは大部分が軟化溶融して、もしもロータリキルン炉尻が炉尻固定フードの壁面と同一面を構成するか、または突出する場合には、ロータリキルン炉尻にダストが融着し易くなり、ついにはロータリキルンの回転動作が不可能になって、停止を余儀なくされることになる。このため、2次燃焼炉空間の上部からロータリキルン炉尻端面を鳥瞰したときに、ロータリキルン炉尻固定フード壁面から後退した構成とすることで、上部から溶融ダストの流下があっても直接にロータリキルンの炉尻端面を汚染しないようにした。  In the space of the rotary kiln bottom, the rotary kiln generated gas and the stoker furnace combustion exhaust gas merge, combustion is started by residual oxygen in the stoker furnace combustion exhaust gas, and the temperature of the gas body in the combustion process becomes 1000 ° C. to 1300 ° C. . Therefore, most of the dust floating in the gas and the dust adhering and depositing on the wall is softened and melted, and if the rotary kiln furnace bottom forms the same plane as the wall of the furnace bottom fixed hood or protrudes The dust easily adheres to the bottom of the rotary kiln, and eventually the rotary operation of the rotary kiln becomes impossible, and it must be stopped. For this reason, when the rotary kiln bottom end surface is viewed from the top of the secondary combustion furnace space, it is configured to recede from the wall surface of the rotary kiln bottom bottom fixing hood so that even if molten dust flows down from the top, The end face of the furnace bottom of the rotary kiln was not contaminated.

発明の効果The invention's effect

請求項1記載の廃液焼却処理方法により、未燃炭素や未燃微量ガス成分を排ガス中に残留させず、ダイオキシン類やダイオキシン類縁化合物等有害物質を排ガス中に残留させることなく、しかも固形廃棄物の保有熱を廃液の蒸発分解熱に最大限活用することができ、従来多量に使用していた燃料を節約することができる。  The waste liquid incineration method according to claim 1 does not cause unburned carbon or unburned trace gas components to remain in the exhaust gas, and does not cause harmful substances such as dioxins or dioxin-related compounds to remain in the exhaust gas. Can be utilized to the maximum extent for the evaporative decomposition heat of the waste liquid, and fuel that has been used in large amounts can be saved.

請求項2記載の廃液焼却処理方法により、下部に向かって絞り構造をとっている炉殻の壁面に堆積するダストが一定量の堆積量になった時点で、ロータリキルン炉尻固定フード炉壁面に被覆されている耐食耐熱金属製ライナ表面の付着力が耐火物の付着力に比べてはるかに小さいために、その自重により容易に壁面からダスト塊が自然に剥離し、焼却炉の休止を行うことなく、連続した運転が可能となる。  According to the waste liquid incineration processing method of claim 2, when a certain amount of dust accumulates on the wall surface of the furnace shell having a squeezed structure toward the lower portion, the rotary kiln furnace bottom fixed hood furnace wall surface Because the adhesion of the coated corrosion-resistant and heat-resistant metal liner surface is much smaller than that of refractory, the dust mass will easily peel off from the wall by its own weight, and the incinerator should be stopped. And continuous operation is possible.

請求項3記載の廃液焼却処理方法では、ロータリキルンに内挿された耐食耐熱金属製リフトピン40a、40bにより、固形廃棄物は均一に加熱を受け、未反応固体の処理を迅速に行うことができ、ロータリキルン回転摺動部の炉内への漏洩空気がシール長1m当り200Nm/h以下に抑制できるシール装置38、39の適用により炉内雰囲気を還元雰囲気に保つことができる。In the waste liquid incineration processing method according to claim 3, the solid waste is uniformly heated by the corrosion-resistant and heat-resistant metal lift pins 40a and 40b inserted in the rotary kiln, so that the unreacted solid can be processed quickly. The atmosphere in the furnace can be maintained in a reducing atmosphere by applying the sealing devices 38 and 39 that can suppress the leakage air into the furnace of the rotary kiln rotary sliding part to 200 Nm 3 / h or less per 1 m of the seal length.

請求項4記載の廃液焼却処理方法により、発熱量の低い廃液を、ロータリキルン、2次燃焼炉、ロータリキルン炉尻固定フードにおいて噴霧し焼却処理したときでも、本発明によりガス燃料としての十分な品位を保った発生ガスを発生させることができ、引続き炉尻固定フードや2次燃焼炉での発生ガスの安定した燃焼を持続させることができる。廃液の焼却量は、固形廃棄物の保有熱量が少ないケースを除いて、有価な助燃料を使用することなく、固形廃棄物の余裕熱を活用して、最大量の廃液を焼却処理することが可能である。  Even when a waste liquid with a low calorific value is sprayed and incinerated in a rotary kiln, a secondary combustion furnace, and a rotary kiln bottom fixing hood by the waste liquid incineration processing method according to claim 4, the present invention is sufficient as a gas fuel. It is possible to generate the generated gas that maintains its quality, and it is possible to continue the stable combustion of the generated gas in the furnace bottom fixed hood and the secondary combustion furnace. The incineration amount of waste liquid can be used to incinerate the maximum amount of waste liquid by using the surplus heat of solid waste without using valuable auxiliary fuel, except in cases where the amount of heat held by solid waste is small. Is possible.

請求項5記載の廃液焼却処理方法により、ロータリキルン炉尻が炉尻固定フードの壁面から後退しているために、ロータリキルン炉尻にダストが融着しにくく、また上部から溶融ダストの流下があった場合においても、直接的に炉尻端面を汚染しないために、ロータリキルンの回転動作が連続して安定であり、焼却炉の稼動率を向上させる。  According to the waste liquid incineration processing method according to claim 5, since the rotary kiln bottom is retracted from the wall surface of the furnace bottom fixing hood, it is difficult for the dust to be fused to the rotary kiln bottom, and the molten dust flows down from the top. Even in such a case, since the end face of the furnace bottom is not directly contaminated, the rotary operation of the rotary kiln is continuously stable and the operating rate of the incinerator is improved.

図1は、従来の流動床焼却炉の説明図である。また、図2は、従来のロータリキルン焼却炉の説明図である。
図3は、本発明の実施形態を表すロータリキルン、ストーカ炉および2次燃焼炉の設備に関する説明図である。図4は、ロータリキルン回転部のシール構造、およびリフトピン攪拌機の構造図である。図5は、図3中に示すA−A線の断面図である。図6は、耐食耐熱金属製ライナの取付け構造図である。
FIG. 1 is an explanatory diagram of a conventional fluidized bed incinerator. Moreover, FIG. 2 is explanatory drawing of the conventional rotary kiln incinerator.
Drawing 3 is an explanatory view about equipment of a rotary kiln, a stoker furnace, and a secondary combustion furnace showing an embodiment of the present invention. FIG. 4 is a structural diagram of a seal structure of a rotary kiln rotating part and a lift pin stirrer. FIG. 5 is a cross-sectional view taken along line AA shown in FIG. FIG. 6 is an attachment structure diagram of a corrosion-resistant and heat-resistant metal liner.

図3、図4、図5および図6に基づいて、本発明を実施するための最良の形態を説明する。
固形廃棄物は一旦投入ホッパ31に受入れられ、切出しコンベア32によりロータリキルン36内に投入される。投入された固形廃棄物は、空燃比が0.2〜0.6程度の少量の燃焼空気により部分燃焼され、残りの可燃分は熱分解を受けて、熱分解ガスおよびチャーになる。廃液噴霧ノズル34bより吹込まれた廃液は、固形廃棄物の部分燃焼で発生した燃焼熱により加熱され、蒸発分解される。
The best mode for carrying out the present invention will be described with reference to FIGS. 3, 4, 5 and 6.
The solid waste is once received by the input hopper 31 and is input into the rotary kiln 36 by the cutting conveyor 32. The charged solid waste is partially combusted by a small amount of combustion air having an air-fuel ratio of about 0.2 to 0.6, and the remaining combustible matter undergoes thermal decomposition to become pyrolysis gas and char. The waste liquid blown from the waste liquid spray nozzle 34b is heated by the combustion heat generated by the partial combustion of the solid waste, and is evaporated and decomposed.

これらの混合ガスの雰囲気は、高温で且つ還元状態が維持される。尚、多量の空気の炉内への漏れ込みを防止できるように、漏れ込み量がシール長さ1m当り200Nm/h以下を維持できる高性能なキルンシール装置(炉前シール装置38、炉尻39シール装置)を具備している。The atmosphere of these mixed gases is maintained at a high temperature and in a reduced state. In order to prevent a large amount of air from leaking into the furnace, a high-performance kiln seal device (pre-furnace seal device 38, furnace bottom 39) capable of maintaining a leak amount of 200 Nm 3 / h or less per meter of seal length. Sealing device).

炉内に投入された固形廃棄物は、前記の高温炉内雰囲気ガスと十分な接触を短時間で図るために、炉内には複数列の攪拌装置40a、40bが設けられており、固形廃棄物はロータリキルンの回転と共に駆動する攪拌リフトピンにより十分攪拌される。この第1処理工程の出口温度は800℃以上に維持される。  The solid waste thrown into the furnace is provided with a plurality of stirrers 40a and 40b in the furnace in order to make sufficient contact with the high-temperature furnace atmosphere gas in a short time. The object is sufficiently agitated by an agitation lift pin driven with the rotation of the rotary kiln. The outlet temperature of this first treatment step is maintained at 800 ° C. or higher.

第1処理工程から排出される発生ガスは、第2処理工程の炉尻固定フード41に導入され、当該発生ガスに含まれる可燃ガスは、固定フード内でストーカ焼却炉45から上昇する排ガス中の酸素と接触して燃焼する。さらに2次燃焼炉49に上昇した混合ガスに、2次燃焼炉下部から1次燃焼空気、2次燃焼空気が吹込まれ燃焼が持続する。2次燃焼炉出口温度は、2次燃焼空気の調整により800℃以上の任意の温度に制御される.廃液は噴霧ノズル52、53によりロータリキルン炉尻固定フードおよび/または2次燃焼炉に吹き込まれ、およそ1000℃以上に保持される当該吹込み空間でロータリキルン発生ガスの燃焼過程において蒸発分解される。全ての燃焼排ガスは、2次燃焼炉の燃焼空間48内で法定滞留時間の2秒以上滞留した後、2次燃焼炉出口から完全燃焼排ガスとして排出される。  The generated gas discharged from the first treatment step is introduced into the furnace bottom fixed hood 41 of the second treatment step, and the combustible gas contained in the generated gas is contained in the exhaust gas rising from the stoker incinerator 45 within the fixed hood. Burns in contact with oxygen. Further, the primary combustion air and the secondary combustion air are blown into the mixed gas rising to the secondary combustion furnace 49 from the lower part of the secondary combustion furnace, and the combustion continues. The secondary combustion furnace outlet temperature is controlled to an arbitrary temperature of 800 ° C. or higher by adjusting the secondary combustion air. The waste liquid is blown into the rotary kiln bottom fixed hood and / or the secondary combustion furnace by the spray nozzles 52 and 53, and is evaporated and decomposed in the combustion process of the rotary kiln generated gas in the blowing space maintained at about 1000 ° C. or more. . All the combustion exhaust gas stays in the combustion space 48 of the secondary combustion furnace for 2 seconds or more of the legal residence time, and is discharged as complete combustion exhaust gas from the outlet of the secondary combustion furnace.

ロータリキルン内への廃液噴霧ノズル34b、ロータリキルン炉尻固定フード41への噴霧ノズル52、2次燃焼炉49への噴霧ノズル53から吹込まれた廃液中の灰分は、大部分はガス中に浮遊し、また一部はガス中に蒸発する。ガス中に浮遊した灰分は、高温雰囲気の中で軟化溶融し、ロータリキルン炉尻固定フードおよび2次燃焼炉の壁面に融着する。融着したダストは、高温ガスの輻射熱により大部分は溶融流下するが、ロータリキルンの炉尻端面43がその上半円部において固定フード壁面42aに比べて後退しているために、溶融流下した軟化ダストが直接にロータリキルン炉尻端面を汚染することがない。  Most of the ash in the waste liquid blown from the waste liquid spray nozzle 34b into the rotary kiln, the spray nozzle 52 to the rotary kiln bottom fixing hood 41, and the spray nozzle 53 to the secondary combustion furnace 49 floats in the gas. And part of it evaporates into the gas. The ash floating in the gas is softened and melted in a high-temperature atmosphere and fused to the rotary kiln bottom hood and the wall of the secondary combustion furnace. Most of the fused dust flows down due to the radiant heat of the high-temperature gas. However, the furnace bottom end surface 43 of the rotary kiln is retreated relative to the fixed hood wall surface 42a in the upper semicircular portion, so that it flows down. Softening dust does not directly contaminate the rotary kiln bottom end face.

尚、廃液の第2供給手段である廃液噴霧ノズル34bからのロータリキルン内への吹き込み、および廃液の第3供給手段である廃液噴霧ノズル52および53からのロータリキルン炉尻固定フードおよび2次燃焼炉への吹込みによれば、吹込まれた廃液中の灰分は、廃液の蒸発と共に空間に分散し、さらに壁面に付着し、付着した灰分の軟化物が固形廃棄物由来の煤塵と共に融着成長する危険性が高まる。この傾向が顕著になる場合には、廃液の第1供給手段である廃液注入口34aからロータリキルンへの投入前の固形廃棄物中に注入し、固形廃棄物を湿潤させる形態でロータリキルンへ廃液を供給する。  In addition, the waste liquid spray nozzle 34b, which is the second supply means of the waste liquid, is blown into the rotary kiln, and the rotary kiln bottom fixed hood and the secondary combustion are supplied from the waste liquid spray nozzles 52, 53, which are the third supply means of the waste liquid. According to the blowing into the furnace, the ash content in the waste liquid blown out is dispersed in the space as the liquid waste evaporates, and further adheres to the wall surface, and the softened product of the attached ash is fused and grown together with solid waste-derived soot and dust. The risk of doing it increases. When this tendency becomes prominent, the waste liquid is injected into the solid waste before being charged into the rotary kiln from the waste liquid inlet 34a which is the first supply means of the waste liquid, and the waste liquid is put into the rotary kiln in a form in which the solid waste is wetted. Supply.

第1処理工程および第2処理工程で発生したダストは、固定フード下部からクリンカ除去排出工程を経て炉外に排出される。すなわち、廃液を噴霧・蒸発して燃焼する空間51、48から、壁面を溶融流下した灰分およびガス中から下部壁面に沈下堆積したダストは、クリンカとなって下部壁面で堆積成長するが、壁面を耐食耐熱金属のライナ54で被覆した炉殻構造により、ある程度の堆積の後、自然に自重により剥離した後、ストーカ焼却炉の火格子44上に落下し、火格子の駆動により炉外に排出される。  The dust generated in the first processing step and the second processing step is discharged from the bottom of the fixed hood to the outside of the furnace through the clinker removal / discharge step. That is, from the spaces 51 and 48 where the waste liquid is sprayed / evaporated and combusted, the ash that melted and flowed down the wall and the dust that settled on the lower wall from the gas become clinker and accumulates on the lower wall. Due to the furnace shell structure covered with a corrosion-resistant and heat-resistant metal liner 54, after a certain amount of deposition, it naturally peels off due to its own weight, then falls onto the grate 44 of the stoker incinerator and is discharged outside the furnace by driving the grate. The

この場合図5から明らかなようにロータリキルンとストーカ炉を接続する炉殻の壁面は、傾斜構造をとることが、ロータリキルンおよびストーカ炉の寸法関係からして一般的である。この傾斜構造は、ダストの堆積成長を助長するために極力垂直に近く計画することが望ましい。しかし、図3、図5の配置では、ストーカ炉の火格子44の平面寸法を必要以上に大きくすることが必要であり、このことは熱分解残渣が火格子上を覆えない範囲が広くなり、上部からの高温ガス輻射により、火格子の寿命を毀損することにもつながる。この観点から図3、図5に示すストーカ炉の流れ方向を90度回転配置すれば、火格子面積を適正に維持したまま、固定フードとストーカ炉を接続する炉殻の壁面を垂直に計画することが容易になる。  In this case, as is apparent from FIG. 5, it is common from the dimensional relationship between the rotary kiln and the stoker furnace that the wall surface of the furnace shell connecting the rotary kiln and the stoker furnace has an inclined structure. It is desirable to design this inclined structure as close to vertical as possible in order to promote the accumulation growth of dust. However, in the arrangement of FIGS. 3 and 5, it is necessary to make the planar dimensions of the grate 44 of the stoker furnace larger than necessary, which increases the range in which the pyrolysis residue cannot cover the grate, High-temperature gas radiation from the top will also damage the grate life. From this point of view, if the flow direction of the stalker furnace shown in FIGS. 3 and 5 is rotated 90 degrees, the wall surface of the furnace shell connecting the fixed hood and the stalker furnace is planned vertically while maintaining the grate area appropriately. It becomes easy.

次に、ロータリキルン内を還元雰囲気に維持し、固形廃棄物の保有熱をロータリキルンで高効率に熱分解し尽くす手段として、本発明を実施するための最良の形態を図4により説明する。
ロータリキルン炉前シール装置38については、ローラチェーン61に押さえ板A65を固定し、当該押さえ板Aを貫通して取付けられた押さえボルトにより可撓性を有するジョイントシール材を、シール部摺動座64に押さえ板B63を介して押しつける。必要に応じシール部摺動座64には潤滑油を給脂する。ジョイントシール材は一端部がロータリキルン炉前固定フードに固定され、他の端部がローラチェーン押さえ板に固定されている。ローラチェーンは、ロータリキルン胴体に巻きつけられ、キルンの回転に対して同調動作をとらないようにローラチェーン1周の合わせ部において、回転を拘束すると共に全てのローラがロータリキルンの胴体に接触するように詰縛する。
Next, the best mode for carrying out the present invention will be described with reference to FIG. 4 as a means for maintaining the inside of the rotary kiln in a reducing atmosphere and thermally decomposing the solid waste in the rotary kiln with high efficiency.
For the rotary kiln pre-sealing seal device 38, a pressing plate A65 is fixed to the roller chain 61, and a flexible joint sealing material is attached by a pressing bolt attached through the pressing plate A so as to seal the sliding portion. 64 is pressed through the pressing plate B63. Lubricating oil is supplied to the seal portion sliding seat 64 as necessary. One end of the joint seal material is fixed to the rotary kiln front fixed hood, and the other end is fixed to the roller chain pressing plate. The roller chain is wound around the rotary kiln body, and the rotation is restrained and all the rollers are in contact with the rotary kiln body so that the rotation of the roller chain is not synchronized with the rotation of the kiln. To clog up.

また、炉内に投入された固体廃棄物はキルン胴体に周方向およそ1mの間隔で取付けられた攪拌リフトピンの複数列で均−に攪拌され、固体廃棄物は短時間で均一に炉内の高温ガスからの輻射熱を受け、迅速に熱分解が進むことになる。攪拌装置の列は、攪拌リフトピンの配置が、逆螺旋配列であれば固形廃棄物の前進動作が阻害され、炉内における滞留時間を長くする効果が発現するので好ましい。  In addition, the solid waste thrown into the furnace is uniformly stirred by a plurality of rows of stirring lift pins attached to the kiln body at intervals of about 1 m in the circumferential direction, and the solid waste is uniformly heated in the furnace in a short time. In response to the radiation heat from the gas, thermal decomposition proceeds rapidly. If the arrangement of the agitation lift pins is a reverse spiral arrangement, the agitation device row is preferable because the forward movement of the solid waste is hindered and the effect of increasing the residence time in the furnace appears.

図3と同じ構成の固形廃棄物の焼却処理設備を使用して、表1の2種類の廃プラスチック含有固体を対象にして実証運転を行った。  Using the solid waste incineration facility having the same configuration as in FIG. 3, the demonstration operation was performed for the two types of waste plastic-containing solids in Table 1.

Figure 2006038439
Figure 2006038439

実機運転結果を表2に示すが、2次燃焼炉出口排ガス中に残留する未反応ガスとしてCOを調査した結果不検出であり、良好な処理性能を確認した。  Although the actual machine operation results are shown in Table 2, it was not detected as a result of investigating CO as an unreacted gas remaining in the exhaust gas at the outlet of the secondary combustion furnace, and good processing performance was confirmed.

Figure 2006038439
Figure 2006038439
Figure 2006038439
Figure 2006038439

本発明は固形廃棄物の保有熱を有効活用する1手段の提供方法であり、従来は発熱量が低く自燃性のない廃液を焼却処理する場合には、重油などの化石燃料を大量に使用していた。一方で固形廃棄物の保有熱を重油の代替として用いる場合は、固形廃棄物の完全燃焼限界の制約から廃液の焼却量には限界があった。本発明は固形廃棄物のガス化生成ガスの燃焼過程において廃液を噴霧焼却できる条件を見出したものであり、本発明によれば重油などの化石燃料の大幅な節減が期待できる。固形廃棄物の保有熱の回収としては、これまでは廃熱ボイラを設置して、蒸気タービン発電を行うサーマルリサイクルが主体であったが、廃液の焼却ニーズが存在する需要家においては、効率の悪い発電よりも、化石燃料を節約できる本発明の方式の方が、より高効率に実質的なサーマルリサイクルを達成することができる。
本発明によれば、利用し難い固形廃棄物の保有熱を簡便に廃液焼却に利用できるため、化石燃料の大幅な節約を図ることができることから、産業上の利用用途は広く裨益するところが大きなものである。
The present invention is a method for providing a means for effectively utilizing the heat retained in solid waste. Conventionally, a large amount of fossil fuel such as heavy oil is used when incinerating waste liquid with low calorific value and non-combustibility. It was. On the other hand, when the retained heat of solid waste is used as an alternative to heavy oil, the amount of incineration of waste liquid is limited due to the limitation of the complete combustion limit of solid waste. In the present invention, the conditions under which the waste liquid can be spray-incinerated in the combustion process of the gasification product gas of solid waste have been found, and according to the present invention, significant savings in fossil fuels such as heavy oil can be expected. In the past, recovery of retained heat from solid waste has been mainly focused on thermal recycling using a waste heat boiler and steam turbine power generation. The method of the present invention, which can save fossil fuels, can achieve substantial thermal recycling with higher efficiency than bad power generation.
According to the present invention, the retained heat of solid waste that is difficult to use can be easily used for waste liquid incineration, so that significant savings in fossil fuel can be achieved. It is.

従来の流動床焼却炉の説明図である。It is explanatory drawing of the conventional fluidized bed incinerator. 従来のロータリキルン焼却炉の説明図である。It is explanatory drawing of the conventional rotary kiln incinerator. 本発明の実施形態を表すロータリキルン、ストーカ炉および2次燃焼炉の設備に関する説明図である。It is explanatory drawing regarding the installation of the rotary kiln, the stoker furnace, and the secondary combustion furnace showing embodiment of this invention. ロータリキルン回転部のシール構造、およびリフトピン攪拌機の構造図である。It is a structure of the seal structure of a rotary kiln rotation part, and a lift pin stirrer. 図3中に示すA−A線の断面図である。It is sectional drawing of the AA line shown in FIG. 図5中に示すa部の詳細であり、耐食耐熱金属製ライナの取付け構造図である。FIG. 6 is a detailed view of the part a shown in FIG.

符号の説明Explanation of symbols

図1FIG.

1 固形廃棄物投入ホッパ
1a 固形廃棄物切出しコンベア
2 流動ベッド
3 ウインドボックス
4 残渣排出管
5 廃液吹込みノズル
6 廃液噴霧ノズル
7 フリーボード
8 分散板
21 流動床炉出囗温度計
DESCRIPTION OF SYMBOLS 1 Solid waste input hopper 1a Solid waste cutting conveyor 2 Fluid bed 3 Wind box 4 Residue discharge pipe 5 Waste liquid injection nozzle 6 Waste liquid spray nozzle 7 Free board 8 Dispersion plate 21 Fluidized bed furnace discharge thermometer

図2FIG.

9 固形廃棄物投入ホッパ
9a 固形廃棄物切出しコンベア
10 炉前固定フード
11 ロータリキルン
12 炉尻固定フード
13 2次燃焼炉
14 ロータリキルン燃焼空間
15 2次燃焼炉燃焼空間
16 ロータリキルン廃液噴霧ノズル
17 2次燃焼炉廃液噴霧ノズル
18 残渣排出シュート
19 2次燃焼炉出口温度計
20 助燃バーナ
9 Solid waste charging hopper 9a Solid waste cutting conveyor 10 Furnace front fixed hood 11 Rotary kiln 12 Furnace bottom fixed hood 13 Secondary combustion furnace 14 Rotary kiln combustion space 15 Secondary combustion furnace combustion space 16 Rotary kiln waste liquid spray nozzle 17 2 Secondary combustion furnace waste spray nozzle 18 Residue discharge chute 19 Secondary combustion furnace outlet thermometer 20 Auxiliary burner

図3FIG.

31 固形廃棄物投入ホッパ
32 固形廃棄物切出しコンベア
33 ロータリキルン助燃バーナ
34a 投入ホッパ廃液注入口
34b ロータリキルン廃液噴霧ノズル
35 ロータリキルン燃焼空間
36 ロータリキルン
37 炉前固定フード
38 炉前シール装置
39 炉尻シール装置
40a 1列目廃棄物攪拌装置
40b 2列目廃棄物攪拌装置
41 炉尻固定フード
42a ロータリキルン炉尻上半円部の炉尻固定フード側壁面
42b ロータリキルン炉尻下半円部の炉尻固定フード側壁面
43 ロータリキルン炉尻端面
44 火格子
45 ストーカ炉
46 焼却灰排出コンベア
47 炉尻固定フード助燃バーナ
48 2次燃焼炉燃焼空間
49 2次燃焼炉
50 ストーカ炉助燃バーナ
51 炉尻固定フード燃焼空間
52 炉尻固定フード噴霧ノズル
53 2次燃焼炉噴霧ノズル
54 耐食耐熱ライナ
55 ライナ取付ボルト
56 2次燃焼炉出口温度計
31 Solid waste charging hopper 32 Solid waste cutting conveyor 33 Rotary kiln auxiliary burner 34a Input hopper waste liquid injection port 34b Rotary kiln waste liquid spray nozzle 35 Rotary kiln combustion space 36 Rotary kiln 37 Pre-furnace fixed hood 38 Furnace sealing device 39 Furnace bottom Sealing device 40a First row waste agitating device 40b Second row waste agitating device 41 Furnace bottom fixing hood 42a Furnace bottom fixing hood side wall surface 42b of rotary kiln bottom upper half circle Rotary kiln bottom half bottom furnace Bottom hood side wall 43 Rotary kiln furnace bottom end face 44 Grate 45 Stoker furnace 46 Incineration ash discharge conveyor 47 Furnace bottom fixed hood combustion burner 48 Secondary combustion furnace combustion space 49 Secondary combustion furnace 50 Stoker furnace auxiliary burner 51 Furnace bottom fixation Hood combustion space 52 Furnace bottom fixed hood spray nozzle 53 Secondary combustion furnace spray Zur 54 corrosion resistant liner 55 liner mounting bolts 56 secondary combustion furnace outlet thermometer

図4FIG.

34b ロータリキルン廃液噴霧ノズル
35 ロータリキルン燃焼空間
38 炉前シール装置
40a 1列目廃棄物攪拌装置
40b 2列目廃棄物攪拌装置
60 ジョイントシート
61 ローラチェーン
62 押さえボルト
63 押さえ板B
64 シール部摺動座
65 押さえ板A
34b Rotary kiln waste liquid spray nozzle 35 Rotary kiln combustion space 38 Pre-furnace seal device 40a First row waste agitator 40b Second row waste agitator 60 Joint sheet 61 Roller chain 62 Retaining bolt 63 Retaining plate B
64 Sealing part sliding seat 65 Holding plate A

図5FIG.

42a ロータリキルン炉尻上半円部の炉尻固定フード側壁面
42b ロータリキルン炉尻下半円部の炉尻固定フード側壁面
43 ロータリキルン炉尻端面
44 火格子
46 焼却灰排出コンベア
52 炉尻固定フード噴霧ノズル
53 2次燃焼炉噴霧ノズル
55 ライナ取付ボルト
42a Furnace bottom fixing hood side wall surface 42b of rotary kiln top bottom semicircle section Furnace bottom fixing hood side wall surface 43 of rotary kiln bottom bottom semicircular section 43 Rotary kiln bottom bottom end face 44 Grate 46 Incinerated ash discharge conveyor 52 Hood spray nozzle 53 Secondary combustion furnace spray nozzle 55 Liner mounting bolt

図6FIG.

54 耐熱耐食ライナ
55 ライナ取付ボルト
54 Heat and corrosion resistant liner 55 Liner mounting bolt

Claims (5)

固形廃棄物の部分燃焼ガス化を行うガス化ロータリキルンにおいて、炉内が還元雰囲気で、ロータリキルン出口において800℃以上の高温に維持されたロータリキルン内で廃液を蒸発分解処理するために、廃液の第1供給手段として廃棄物投入ホッパ壁面に設けられた廃液注入口により、または廃液の第2供給手段として炉前固定フードに設けられた廃液噴霧ノズルにより、ロータリキルン炉内へ廃液を供給して蒸発分解できる第1処理工程と、前記第1処理工程から発生する可燃性排ガスを燃焼させるロータリキルン炉尻固定フードの燃焼空間および2次燃焼炉の燃焼空間で廃液を蒸発分解するために、廃液の第3供給手段としてロータリキルン炉尻固定フードおよび/または2次燃焼炉炉壁に設けられた廃液噴霧ノズルにより、ロータリキルン炉尻固定フードおよび/または2次燃焼炉内に廃液を供給して噴霧焼却できる第2処理工程により廃液の蒸発分解手段が構成され、廃液の供給が前記の第1供給手段、第2供給手段、第3供給手段のいずれかまたは複数の組合せによってなされることを特徴とする廃液焼却処理方法。  In a gasification rotary kiln that performs partial combustion gasification of solid waste, the waste liquid is subjected to evaporative decomposition treatment in a rotary kiln maintained at a high temperature of 800 ° C. or higher at the rotary kiln outlet in a reducing atmosphere. The waste liquid is supplied into the rotary kiln by the waste liquid inlet provided on the wall surface of the waste charging hopper as the first supply means, or by the waste liquid spray nozzle provided in the fixed hood in front of the furnace as the second supply means of the waste liquid. In order to evaporate and decompose the waste liquid in the combustion space of the rotary kiln furnace bottom fixed hood and the combustion space of the secondary combustion furnace for burning the combustible exhaust gas generated from the first processing step and the combustion space of the secondary combustion furnace. As a third supply means of waste liquid, a rotary kiln bottom hood fixing hood and / or a waste liquid spray nozzle provided on the secondary combustion furnace furnace wall, the rotor The second liquid treatment step in which the waste liquid can be supplied to the kiln furnace bottom fixed hood and / or the secondary combustion furnace and spray incineration constitutes the evaporative decomposition means of the waste liquid, and the supply of the waste liquid is the first supply means and the second supply. The waste liquid incineration processing method is performed by any one or a combination of means and third supply means. 廃液中の脱離灰分を中心にし、固形廃棄物に由来する飛灰が付加されてなる炉壁付着クリンカを剥離除去するために、ロータリキルン炉尻固定フードの炉壁面は、おおむねロータリキルン水平中央線部から下方に位置する耐火物壁面の表面に耐食耐熱金属製ライナが被覆され、クリンカの自重が前記金属製ライナとの付着力を超過したときに自然に剥離落下し、さらに前記ロータリキルンにおける熱分解残渣の焼却用に設置したストーカ炉によって炉外に搬出するクリンカ除去排出工程が設けられていることを特徴とする請求項1記載の廃液焼却処理方法。  The furnace wall surface of the rotary kiln furnace bottom fixing hood is generally the horizontal center of the rotary kiln in order to peel and remove the clinker attached to the furnace wall, which is mainly composed of desorbed ash in the waste liquid and to which fly ash derived from solid waste is added. The surface of the wall of the refractory located below the line portion is covered with a corrosion-resistant and heat-resistant metal liner, and when the weight of the clinker exceeds the adhesion with the metal liner, it naturally peels and falls, and further in the rotary kiln The waste liquid incineration method according to claim 1, further comprising a clinker removal and discharge step for carrying out of the furnace by a stalker furnace installed for incineration of the pyrolysis residue. ロータリキルンが、耐食耐熱金属製リフトピンが内挿され、ロータリキルン回転摺動部の炉内への漏洩空気がシール長1m当り200Nm/h以下に抑制されていることを特徴とする請求項1または2記載の廃液焼却処理方法。2. The rotary kiln is provided with a corrosion-resistant and heat-resistant metal lift pin, and leakage air into the furnace of the rotary kiln rotary sliding portion is suppressed to 200 Nm 3 / h or less per 1 m of seal length. Or the waste liquid incineration processing method of 2. 炉内の還元雰囲気が、固形廃棄物の部分燃焼ガス化により、または部分燃焼ガス化により還元雰囲気を維持することが困難な場合には、キルン炉前固定フードに取付けられた助燃バーナの燃焼空気比を0.5〜0.9の範囲で還元燃焼することにより必要熱量を追加せしめ、ロータリキルン炉尻部の排ガス温度が少なくとも800℃以上であること、および発生ガスの低位発熱量が少なくとも300kcal/Nm以上で且つ水素ガス濃度が6%以上を維持すること、および/またはロータリキルン発生ガスおよびチャーの燃焼熱を利用して2次燃焼炉内で廃液を噴霧焼却した後の排ガス温度が、空気比が1.0の理論燃焼時において、少なくとも1200℃以上であることを特徴とする請求項1〜3のいずれかに記載の廃液焼却処理方法。If the reducing atmosphere in the furnace is difficult to maintain due to partial combustion gasification of solid waste or partial combustion gasification, the combustion air of the auxiliary burner attached to the fixed hood in front of the kiln furnace The required amount of heat is added by reducing combustion in the range of 0.5 to 0.9, the exhaust gas temperature at the rotary kiln bottom is at least 800 ° C., and the lower heating value of the generated gas is at least 300 kcal / Nm 3 or more and the hydrogen gas concentration is maintained at 6% or more, and / or the exhaust gas temperature after incineration of the waste liquid in the secondary combustion furnace using the combustion heat of the rotary kiln generation gas and char is The waste liquid incineration method according to any one of claims 1 to 3, wherein the theoretical combustion is at least 1200 ° C or higher during theoretical combustion with an air ratio of 1.0. . ロータリキルンが、ロータリキルン炉尻の端面のうち、上部半円部がロータリキルン炉尻固定フード炉壁面から後退し、下部半円部が炉壁面から突出せしめるよう、炉尻固定フード炉壁がおおむねロータリキルン水平中央線部で段違いにて構成されることにより、2次炉上部の壁面から溶融流下する灰分によりロータリキルン炉尻端面が汚染されないようにすることを特徴とする請求項1〜3のいずれかに記載の廃液焼却処理方法。  Of the end face of the rotary kiln furnace bottom, the rotary kiln has the furnace semi-fixed hood furnace wall approximately so that the upper semicircle moves backward from the rotary kiln furnace bottom fixed hood furnace wall and the lower semicircle projects from the furnace wall. The rotary kiln bottom end face is prevented from being contaminated by the ash that melts and flows from the wall surface of the upper part of the secondary furnace by being configured in steps at the horizontal center line of the rotary kiln. The waste liquid incineration processing method according to any one of the above.
JP2004243010A 2004-07-28 2004-07-28 Waste liquid incineration treatment method Active JP4509695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243010A JP4509695B2 (en) 2004-07-28 2004-07-28 Waste liquid incineration treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004243010A JP4509695B2 (en) 2004-07-28 2004-07-28 Waste liquid incineration treatment method

Publications (2)

Publication Number Publication Date
JP2006038439A true JP2006038439A (en) 2006-02-09
JP4509695B2 JP4509695B2 (en) 2010-07-21

Family

ID=35903608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243010A Active JP4509695B2 (en) 2004-07-28 2004-07-28 Waste liquid incineration treatment method

Country Status (1)

Country Link
JP (1) JP4509695B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298227A (en) * 2006-04-28 2007-11-15 Sumitomo Heavy Ind Ltd Rotary kiln furnace
JP2011237046A (en) * 2010-04-30 2011-11-24 Kinsei Sangyo:Kk Waste liquid treating apparatus and waste liquid treating method
JP2013088102A (en) * 2011-10-21 2013-05-13 Jfe Engineering Corp Fluorine-containing waste treatment method, and fluorine-containing waste treatment apparatus
JP2014037956A (en) * 2012-07-20 2014-02-27 Ebara Environmental Plant Co Ltd Waste processing method and waste incinerator
JP2015148397A (en) * 2014-02-07 2015-08-20 Jx日鉱日石金属株式会社 Precious metal scrap processing method and its processing device
CN107091478A (en) * 2017-05-23 2017-08-25 中国恩菲工程技术有限公司 Incinerator apptss
CN108726614A (en) * 2018-05-31 2018-11-02 平原中德泰兴环保科技装备有限公司 A kind of industrial waste treatment process and its device
CN110553274A (en) * 2019-09-26 2019-12-10 上海博士高环保科技有限公司 Energy-saving heat accumulating type secondary combustion chamber for hazardous waste incineration
CN112682796A (en) * 2020-12-24 2021-04-20 中广核研究院有限公司 Harmless treatment system and method for wastes
CN113124412A (en) * 2021-04-20 2021-07-16 山东京博石油化工有限公司 Combined treatment method for industrial wastewater and waste organic liquid
CN113757694A (en) * 2021-08-09 2021-12-07 江苏金牛环保工程设备有限公司 High-salt organic waste liquid secondary heating incineration system and use method thereof
WO2022190284A1 (en) * 2021-03-10 2022-09-15 太平洋セメント株式会社 Combustible waste treatment method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292331B (en) * 2013-04-28 2015-07-08 中国华能集团清洁能源技术研究院有限公司 Processing system and processing method for residual liquid of carbon dioxide collecting system
CN106524178A (en) * 2016-11-22 2017-03-22 山东济宁阳光环保动力工程设计院有限公司 Solid waste incineration cyclone furnace and incineration process for liquid slag of solid waste incineration cyclone furnace
CN107504503A (en) * 2017-10-20 2017-12-22 河南红东方化工股份有限公司 A kind of innoxious burning handling process of high-concentration waste liquid
CN108800147B (en) * 2018-06-28 2020-09-04 杭州国泰环保科技股份有限公司 Low nitrogen oxide burning process and device thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162862A (en) * 1978-06-13 1979-12-24 Mitsui Shipbuilding Eng Waste mixing combustion furnace
JPS61285313A (en) * 1985-06-12 1986-12-16 Isobe Tekko Kk Rotary kiln for treating waste
JPH0236727U (en) * 1988-08-26 1990-03-09
JPH02154910A (en) * 1988-07-29 1990-06-14 W & E Umwelttechnik Ag Method and device for incinerating special waste
JPH10122529A (en) * 1996-10-16 1998-05-15 Hitachi Zosen Corp Rotary melting furnace equipment
JPH10141638A (en) * 1996-11-08 1998-05-29 Nikko Kinzoku Kk Incinerator for industrial waste and blowing nozzle employed for the same
JPH10267239A (en) * 1997-03-28 1998-10-09 Nippon Steel Corp Waste incineration equipment
JPH111725A (en) * 1997-06-10 1999-01-06 Sumitomo Heavy Ind Ltd Treating equipment of waste material and the like produced in iron-making plant
JPH11182825A (en) * 1997-12-22 1999-07-06 Nippon Mining & Metals Co Ltd Swinging kiln type incinerator for industrial waste
JPH11270821A (en) * 1998-03-24 1999-10-05 Nippon Steel Corp Combustion method in waste gasificating combustion furnace
JP2001021046A (en) * 1999-07-08 2001-01-26 Nittetu Chemical Engineering Ltd Air seal device for rotor
JP2001516435A (en) * 1997-03-19 2001-09-25 アンサルド ボルント アクティーゼルスカブ Industrial and domestic waste and sludge incineration methods
JP2004018808A (en) * 2002-06-20 2004-01-22 Jfe Soldec Corp Equipment for carbonizing waste
JP2004060922A (en) * 2002-07-25 2004-02-26 Ishikawajima Harima Heavy Ind Co Ltd Sealing device for rotary kiln

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162862A (en) * 1978-06-13 1979-12-24 Mitsui Shipbuilding Eng Waste mixing combustion furnace
JPS61285313A (en) * 1985-06-12 1986-12-16 Isobe Tekko Kk Rotary kiln for treating waste
JPH02154910A (en) * 1988-07-29 1990-06-14 W & E Umwelttechnik Ag Method and device for incinerating special waste
JPH0236727U (en) * 1988-08-26 1990-03-09
JPH10122529A (en) * 1996-10-16 1998-05-15 Hitachi Zosen Corp Rotary melting furnace equipment
JPH10141638A (en) * 1996-11-08 1998-05-29 Nikko Kinzoku Kk Incinerator for industrial waste and blowing nozzle employed for the same
JP2001516435A (en) * 1997-03-19 2001-09-25 アンサルド ボルント アクティーゼルスカブ Industrial and domestic waste and sludge incineration methods
JPH10267239A (en) * 1997-03-28 1998-10-09 Nippon Steel Corp Waste incineration equipment
JPH111725A (en) * 1997-06-10 1999-01-06 Sumitomo Heavy Ind Ltd Treating equipment of waste material and the like produced in iron-making plant
JPH11182825A (en) * 1997-12-22 1999-07-06 Nippon Mining & Metals Co Ltd Swinging kiln type incinerator for industrial waste
JPH11270821A (en) * 1998-03-24 1999-10-05 Nippon Steel Corp Combustion method in waste gasificating combustion furnace
JP2001021046A (en) * 1999-07-08 2001-01-26 Nittetu Chemical Engineering Ltd Air seal device for rotor
JP2004018808A (en) * 2002-06-20 2004-01-22 Jfe Soldec Corp Equipment for carbonizing waste
JP2004060922A (en) * 2002-07-25 2004-02-26 Ishikawajima Harima Heavy Ind Co Ltd Sealing device for rotary kiln

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298227A (en) * 2006-04-28 2007-11-15 Sumitomo Heavy Ind Ltd Rotary kiln furnace
JP2011237046A (en) * 2010-04-30 2011-11-24 Kinsei Sangyo:Kk Waste liquid treating apparatus and waste liquid treating method
JP2013088102A (en) * 2011-10-21 2013-05-13 Jfe Engineering Corp Fluorine-containing waste treatment method, and fluorine-containing waste treatment apparatus
JP2014037956A (en) * 2012-07-20 2014-02-27 Ebara Environmental Plant Co Ltd Waste processing method and waste incinerator
JP2015148397A (en) * 2014-02-07 2015-08-20 Jx日鉱日石金属株式会社 Precious metal scrap processing method and its processing device
CN107091478A (en) * 2017-05-23 2017-08-25 中国恩菲工程技术有限公司 Incinerator apptss
CN108726614A (en) * 2018-05-31 2018-11-02 平原中德泰兴环保科技装备有限公司 A kind of industrial waste treatment process and its device
CN110553274A (en) * 2019-09-26 2019-12-10 上海博士高环保科技有限公司 Energy-saving heat accumulating type secondary combustion chamber for hazardous waste incineration
CN112682796A (en) * 2020-12-24 2021-04-20 中广核研究院有限公司 Harmless treatment system and method for wastes
CN112682796B (en) * 2020-12-24 2023-07-07 中广核研究院有限公司 Harmless treatment system and method for waste
WO2022190284A1 (en) * 2021-03-10 2022-09-15 太平洋セメント株式会社 Combustible waste treatment method
CN113124412A (en) * 2021-04-20 2021-07-16 山东京博石油化工有限公司 Combined treatment method for industrial wastewater and waste organic liquid
CN113757694A (en) * 2021-08-09 2021-12-07 江苏金牛环保工程设备有限公司 High-salt organic waste liquid secondary heating incineration system and use method thereof

Also Published As

Publication number Publication date
JP4509695B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4509695B2 (en) Waste liquid incineration treatment method
JP5890440B2 (en) Waste treatment method and apparatus
US7658155B2 (en) Waste treatment process and apparatus
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
SK288020B6 (en) Reactor and method for gasifying and/or melting materials
CN105636914A (en) Waste sludge incinerator using pyrolysis and gasification, and relative process
TWI468626B (en) A method of air for combustion of a vertical incinerator, and a vertical waste incinerator
JP4452273B2 (en) Combustible raw material supply device, combustible raw material gasifier, and combustible raw material gasification method
CN113266834A (en) Organic industrial waste salt treatment method, melting bed and treatment system
JP2002372216A (en) Gasifying melting furnace for waste
KR20130052174A (en) All fluidize bed that phlogiston device and produce steam resource
JP5162285B2 (en) Gasification melting method and gasification melting apparatus
JP2011089672A (en) Waste melting treatment method
JPH11270821A (en) Combustion method in waste gasificating combustion furnace
JP2007271206A (en) Operation control method of gasification melting system, and system
CN115493153A (en) Solid hazardous waste treatment system and process
JP2002039516A (en) Method of melting waste treatment residue and melting appliance
JP2006010199A (en) Melting treatment method of waste
JP2000167508A (en) Apparatus for carbonizing/pyrolyzing waste
JPH10306910A (en) Fluidized bed pyrolysis furnace and treating device for matter to be burnt

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4509695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250