JP2005226000A - Nitride phosphor, manufacturing method of nitride phosphor, white light emitting element and pigment - Google Patents

Nitride phosphor, manufacturing method of nitride phosphor, white light emitting element and pigment Download PDF

Info

Publication number
JP2005226000A
JP2005226000A JP2004036873A JP2004036873A JP2005226000A JP 2005226000 A JP2005226000 A JP 2005226000A JP 2004036873 A JP2004036873 A JP 2004036873A JP 2004036873 A JP2004036873 A JP 2004036873A JP 2005226000 A JP2005226000 A JP 2005226000A
Authority
JP
Japan
Prior art keywords
nitride
phosphor
light
nitride phosphor
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004036873A
Other languages
Japanese (ja)
Other versions
JP4165412B2 (en
Inventor
Yoshikazu Touno
義和 投野
Tadashi Endo
忠 遠藤
Fujio Amada
富士夫 天田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2004036873A priority Critical patent/JP4165412B2/en
Publication of JP2005226000A publication Critical patent/JP2005226000A/en
Application granted granted Critical
Publication of JP4165412B2 publication Critical patent/JP4165412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a red nitride phosphor having an emission peak wavelength in 600 nm or longer, especially 650-690 nm and having a high emission intensity, a manufacturing method of the nitride phosphor, and a pigment. <P>SOLUTION: The nitride phosphor has a chemical composition represented by general formula (1): Ca<SB>m-x</SB>Eu<SB>x</SB>Si<SB>9</SB>Al<SB>y</SB>N<SB>(12+2/3m+y)</SB>(1), wherein the following expressions hold: 0.5≤m≤5.0, 0.1<x/m≤1.0, and 0≤y≤3.0. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、600nm以上の長波長域(特に650〜690nm)に発光ピークを有し、かつ発光強度の高い赤色発光窒化物蛍光体、窒化物蛍光体の製造方法、白色発光素子及び顔料に関する。   The present invention relates to a red light emitting nitride phosphor having a light emission peak in a long wavelength region of 600 nm or more (especially 650 to 690 nm) and high emission intensity, a method for producing the nitride phosphor, a white light emitting element, and a pigment.

現在、赤色発光蛍光体として600nm以上の長波長域に発光ピークを有するものは、硫化物系のものが多く、酸化物系では、三波長型蛍光ランプに用いられているユーロピウム(Eu)付活酸化イットリウム蛍光体(Y23:Eu、YVO4:Eu)等がある。しかし、これら赤色蛍光体の発光ピーク波長は650nm以下であり、これ以上の波長で強い発光強度を示すものは殆どないとされている。 Currently, many red-emitting phosphors having an emission peak in a long wavelength region of 600 nm or more are sulfide-based, and oxides are activated by europium (Eu) used in three-wavelength fluorescent lamps. Examples thereof include yttrium oxide phosphors (Y 2 O 3 : Eu, YVO 4 : Eu). However, the emission peak wavelength of these red phosphors is 650 nm or less, and it is said that there are few that show strong emission intensity at wavelengths longer than this.

また、窒化物系の蛍光体は、紫外線〜青色の光を吸収して、比較的長波長の黄色〜橙色の蛍光色を示すものが多く、白色発光素子に適した蛍光体として注目されている。白色発光素子は、GaN系などの青色系の半導体発光素子(青色LED)の発光の一部をフォトルミネセンス蛍光体により波長変換し、青色LEDの光と波長変換された光(主として黄色系の光)との混色により、LEDの光と異なる発光色、特に白色系の光を発する発光素子である。このような発光素子は、小型で電力効率が高いため、信号灯、車載照明や液晶のバックライト、駅の行き先案内板等の表示板等、各種の光源として利用されている。青色LEDと組み合わせて白色発光素子に用いられるフォトルミネセンス蛍光体としては、現在、セリウム(Ce)で付活されたイットリウム・アルミニウム・ガーネット系蛍光体(以下「YAG系蛍光体」と言う。)が主流であるが、黄色〜橙色に発光する窒化物系蛍光体は、YAG系蛍光体に代わる白色発光素子用フォトルミネセンス蛍光体として期待されている。
一方、YAG系蛍光体が放射する光は、黄緑色〜黄色であり、白色発光素子の発光色がやや青白い白色になるので、簡単な照明には良いが、高い演色性が要求される照明用途や、カラー液晶ディスプレイ(LCD)のバックライトとして使用される場合、出力光が赤色成分不足となる。このため、発光色補正用、すなわち赤色成分を補うために、YAG系蛍光体に、前記窒化物系の蛍光体を併用することも提案されている。
In addition, many nitride-based phosphors absorb ultraviolet to blue light and exhibit a relatively long-wavelength yellow to orange fluorescent color, and are attracting attention as phosphors suitable for white light-emitting elements. . The white light emitting element converts a part of light emitted from a blue semiconductor light emitting element (blue LED) such as a GaN system with a photoluminescence phosphor, and converts the wavelength of the blue LED light into the wavelength converted light (mainly a yellow light emitting element). It is a light emitting element that emits a light emission color different from that of LED light, particularly white light, by mixing with light. Since such a light emitting element is small and has high power efficiency, it is used as various light sources such as a signal lamp, an in-vehicle illumination, a liquid crystal backlight, and a display board such as a station destination guide plate. As a photoluminescence phosphor used in a white light emitting element in combination with a blue LED, an yttrium / aluminum / garnet phosphor activated with cerium (Ce) (hereinafter referred to as “YAG phosphor”). However, nitride-based phosphors that emit yellow to orange light are expected as photoluminescent phosphors for white light-emitting elements that replace YAG-based phosphors.
On the other hand, the light emitted from the YAG phosphor is yellow-green to yellow, and the light emission color of the white light-emitting element is slightly bluish-white, which is good for simple lighting but requires high color rendering properties. In addition, when used as a backlight of a color liquid crystal display (LCD), the output light has a short red component. For this reason, it has also been proposed to use the nitride phosphor together with the YAG phosphor in order to correct the emission color, that is, to supplement the red component.

このような窒化物系赤色蛍光体としては、カルシウム(Ca)−α−サイアロン系の蛍光体(特許文献1参照)や、ニトリドシリケート、例えば、Ca2Si58、Sr2Si58、Ba2Si58、Ba2Si710、Ba2-xEuxSi58のタイプの蛍光体(特許文献2、3参照)が挙げられる。
特開2002−363554号公報 特表2003−515655号公報 特表2003−515665号公報
Examples of such nitride-based red phosphors include calcium (Ca) -α-sialon phosphors (see Patent Document 1) and nitridosilicates such as Ca 2 Si 5 N 8 and Sr 2 Si 5 N. 8 , Ba 2 Si 5 N 8 , Ba 2 Si 7 N 10 , and Ba 2−x Eu x Si 5 N 8 type phosphors (see Patent Documents 2 and 3).
JP 2002-363554 A Special table 2003-515655 gazette Special table 2003-515665 gazette

しかしながら、上記特許文献1に記載のCa−α−サイアロン系の蛍光体は、発光ピーク波長は殆どが500〜600nmであり、特許文献2、3に記載のニトリドシリケートにおいては、Ca系は600〜630nmであるが輝度が低く、特に発光ピーク波長が650nmより長波長である実用的な蛍光体は殆どない。
本発明は、上記事情に鑑みてなされたもので、600nm以上、特に650〜690nmに発光ピーク波長を有し、発光色が赤色である、発光強度の高い窒化物蛍光体、窒化物蛍光体の製造方法、白色発光素子及び顔料を提供することを目的としている。
However, the Ca-α-sialon-based phosphor described in Patent Document 1 has an emission peak wavelength of 500 to 600 nm, and in the nitridosilicate described in Patent Documents 2 and 3, the Ca-based phosphor is 600. Although it is ˜630 nm, the luminance is low, and there are few practical phosphors whose emission peak wavelength is particularly longer than 650 nm.
The present invention has been made in view of the above circumstances, and has a light emission peak wavelength of 600 nm or more, particularly 650 to 690 nm, and a light emission color of red. It aims at providing a manufacturing method, a white light emitting element, and a pigment.

上記課題を解決するため、本発明者等は鋭意研究を重ねた結果、600nm以上、特に650〜690nmに発光ピーク波長を有し、発光色が赤色である、発光強度の高い新規な窒化物蛍光体を見いだした。
すなわち、請求項1に記載の発明の窒化物蛍光体は、下記一般式(1)で表される化学組成を有することを特徴とする。
Cam-xEuxSi9Aly(12+2/3m+y)…(1)
(ただし、上記一般式(1)中、0.5≦m≦5.0、0.1<x/m≦1.0、0≦y≦3.0である。)
In order to solve the above-mentioned problems, the present inventors have conducted extensive research. As a result, the present inventors have a novel nitride fluorescent light having a light emission peak wavelength at 600 nm or more, particularly 650 to 690 nm, and a high emission intensity. I found my body.
That is, the nitride phosphor of the invention described in claim 1 has a chemical composition represented by the following general formula (1).
Ca mx Eu x Si 9 Al y N (12 + 2 / 3m + y) ... (1)
(However, in the general formula (1), 0.5 ≦ m ≦ 5.0, 0.1 <x / m ≦ 1.0, and 0 ≦ y ≦ 3.0.)

請求項2に記載の発明は、請求項1に記載の窒化物蛍光体において、
主結晶相が斜方晶系であることを特徴とする。
The invention according to claim 2 is the nitride phosphor according to claim 1,
The main crystal phase is orthorhombic.

請求項3に記載の発明は、請求項1又は2に記載の窒化物蛍光体を製造する方法であって、
窒化物を構成する珪素以外の金属元素の化合物と、窒化珪素とを、溶融した尿素及び/又は溶融した尿素誘導体に溶解又は分散させて窒化物前駆体を形成し、該窒化物前駆体を、不活性又は還元性の雰囲気中で加熱することにより窒化物蛍光体を生成することを特徴とする。
The invention according to claim 3 is a method for producing the nitride phosphor according to claim 1 or 2,
A compound of a metal element other than silicon constituting the nitride and silicon nitride are dissolved or dispersed in molten urea and / or a molten urea derivative to form a nitride precursor, and the nitride precursor is A nitride phosphor is produced by heating in an inert or reducing atmosphere.

請求項4に記載の発明の白色発光素子は、青色光を放射する半導体発光素子と、前記半導体発光素子からの光の一部を吸収して緑色〜黄色の波長領域の蛍光を発光する蛍光体と、請求項1又は2に記載の窒化物蛍光体とを備えていることを特徴とする。   The white light emitting device according to claim 4 is a semiconductor light emitting device that emits blue light, and a phosphor that emits fluorescence in the green to yellow wavelength region by absorbing part of the light from the semiconductor light emitting device. And the nitride phosphor according to claim 1 or 2.

請求項5に記載の発明の白色発光素子は、紫外線〜青紫色の領域の光を放射する半導体発光素子と、前記半導体発光素子からの光を吸収して青色の蛍光を発光する蛍光体、もしくは緑色の蛍光を発光する蛍光体の少なくとも一方と、請求項1又は2に記載の窒化物蛍光体とを備えていることを特徴とする。   The white light-emitting device according to claim 5 is a semiconductor light-emitting device that emits light in the ultraviolet to blue-violet region, and a phosphor that absorbs light from the semiconductor light-emitting device and emits blue fluorescence, or It comprises at least one of phosphors emitting green fluorescence and the nitride phosphor according to claim 1 or 2.

請求項6に記載の発明の顔料は、下記一般式(1)で表される化学組成を有することを特徴とする。
Cam-xEuxSi9Al(12+2/3m+y)…(1)
(ただし、上記一般式(1)中、0.5≦m≦5.0、0.1<x/m≦1.0、0≦y≦3.0である。)
The pigment of the invention described in claim 6 has a chemical composition represented by the following general formula (1).
Ca mx Eu x Si 9 Al y N (12 + 2 / 3m + y) ... (1)
(However, in the general formula (1), 0.5 ≦ m ≦ 5.0, 0.1 <x / m ≦ 1.0, and 0 ≦ y ≦ 3.0.)

本発明に係る窒化物蛍光体は、600nm以上、特に従来あまり実用的なものがなかった650〜690nmの長波長域に発光ピーク波長を有し、かつ、高い発光強度を示すものである。また、紫外線域から黄緑色光域までの広い波長領域の光、及び電子線や電場によっても励起されて発光する。したがって、通常の照明、各種の表示管や、白色LED等に使用する蛍光体として有用である。また、物体色が黄赤(橙赤)色〜赤色であるので、重金属を含まない顔料として様々な用途に適用可能となる。
さらに、本発明に係る窒化物蛍光体の製造方法によれば、各原料を溶融した尿素及び/又は溶融した尿素誘導体に溶解又は分散させることにより、均一組成の窒化物前駆体を形成することができる。そして、このような窒化物前駆体を不活性又は還元性の雰囲気中で加熱することにより、優れた特性で、粒子径の揃った結晶性の良好な窒化物蛍光体を得ることができる。さらに、原料の窒化、結晶成長を同一反応容器中で行うことができるため、簡単なプロセスで効率良く製造することができ、しかも常圧で比較的低温で製造できる。
The nitride phosphor according to the present invention has a light emission peak wavelength in a long wavelength region of 650 to 690 nm which is 600 nm or more, particularly not so practical, and exhibits high light emission intensity. Further, it emits light by being excited by light in a wide wavelength region from the ultraviolet region to the yellow-green light region, and also by an electron beam or an electric field. Therefore, it is useful as a phosphor used for ordinary illumination, various display tubes, white LEDs, and the like. Further, since the object color is yellow red (orange red) to red, it can be applied to various uses as a pigment not containing heavy metal.
Furthermore, according to the method for producing a nitride phosphor according to the present invention, a nitride precursor having a uniform composition can be formed by dissolving or dispersing each raw material in molten urea and / or a molten urea derivative. it can. Then, by heating such a nitride precursor in an inert or reducing atmosphere, a nitride phosphor having excellent characteristics and crystallinity with a uniform particle diameter can be obtained. Further, since nitriding and crystal growth of the raw material can be performed in the same reaction vessel, it can be efficiently produced by a simple process, and can be produced at normal pressure and at a relatively low temperature.

以下、本発明に係る窒化物蛍光体、用途としての白色発光素子や顔料、及び、窒化物蛍光体の製造方法について詳細に説明する。
(窒化物蛍光体)
本発明に係る窒化物蛍光体は、下記一般式(1)で表される化学組成を有している。
Cam-xEuxSi9Al(12+2/3m+y)…(1)
上記一般式(1)中、0.5≦m≦5.0、0.1<x/m≦1.0、0≦y≦3.0である。
Hereinafter, the nitride phosphor according to the present invention, a white light-emitting element or pigment as an application, and a method for producing the nitride phosphor will be described in detail.
(Nitride phosphor)
The nitride phosphor according to the present invention has a chemical composition represented by the following general formula (1).
Ca mx Eu x Si 9 Al y N (12 + 2 / 3m + y) ... (1)
In the general formula (1), 0.5 ≦ m ≦ 5.0, 0.1 <x / m ≦ 1.0, and 0 ≦ y ≦ 3.0.

上記一般式(1)中、mの範囲は、1.0≦m≦4.0が好ましい。
本発明では、発光中心となる付活剤Euのドープ量が多いのが特徴的であり、Euのドープ量増加により発光強度が高くなる。x/mの範囲は、0.2≦x/m≦0.9が好ましく、さらに好ましくは0.3≦x/m≦0.9である。特に、x/m=0.5近傍で発光強度が最大となるので最も好ましい。
さらにEuドープ量が増えても濃度消光による発光強度の低下があまりなく、CaをEuで100%置換しても蛍光体として使用することが可能である。
In the general formula (1), the range of m is preferably 1.0 ≦ m ≦ 4.0.
The present invention is characterized in that the activator Eu serving as the emission center has a large amount of doping, and the emission intensity increases as the Eu doping amount increases. The range of x / m is preferably 0.2 ≦ x / m ≦ 0.9, and more preferably 0.3 ≦ x / m ≦ 0.9. In particular, the light emission intensity is maximum near x / m = 0.5.
Further, even if the amount of Eu doping increases, the emission intensity due to concentration quenching does not decrease so much, and even if Ca is replaced by 100%, it can be used as a phosphor.

また、Euと(Ca+Eu)の割合であるx/mによって結晶構造が変化し、Euのドープ量が少ない場合には単斜晶系であるが、Euのドープ量が増加するにつれて斜方晶系の割合が増えて、x/m=0.5程度を境にしてほぼ斜方晶系のみとなる。
本発明に係る窒化物蛍光体は、その結晶相が斜方晶系の割合の多いものほど、発光波長が長く、強度も大きい傾向があり、したがって主結晶相が斜方晶系であるものが好ましい。特に、単斜晶系が検出されず斜方晶系のみであることが、発光強度を向上させることができる点で好ましい。
Further, the crystal structure changes depending on x / m which is the ratio of Eu and (Ca + Eu), and is monoclinic when the doping amount of Eu is small, but is orthorhombic with increasing Eu doping amount. And the ratio becomes approximately orthorhombic only with x / m = 0.5 as a boundary.
The nitride phosphor according to the present invention tends to have a longer emission wavelength and a higher intensity as the crystal phase has a higher orthorhombic proportion, and therefore the main crystal phase is orthorhombic. preferable. In particular, it is preferable that the monoclinic system is not detected and only the orthorhombic system is used because the emission intensity can be improved.

本発明の窒化物蛍光体においては、アルミニウム(Al)を含むことは必須ではないが、Alを添加することによって、Euのドープ量を増やしても構造が安定化すると考えられる。また、後述の実施例より、Alにより斜方晶系が生成し易くなることが推測でき、また、発光強度が高く、発光ピークもシャープになる傾向があるので、Alを含有することが望ましい。しかし、Alの添加量が多くなると逆に発光強度が低下してくるため、yは3.0以下とする必要がある。yの値は、好ましくは0<y≦2.0、最も好ましくは0.1≦y≦1.5の範囲である。   In the nitride phosphor of the present invention, it is not essential to contain aluminum (Al), but it is considered that the structure is stabilized by adding Al even when the doping amount of Eu is increased. Further, from the examples described later, it can be presumed that an orthorhombic system is likely to be formed by Al, and since the emission intensity is high and the emission peak tends to be sharp, it is desirable to contain Al. However, since the emission intensity decreases conversely as the Al content increases, y needs to be 3.0 or less. The value of y is preferably in the range of 0 <y ≦ 2.0, most preferably 0.1 ≦ y ≦ 1.5.

なお、本発明の窒化物蛍光体は、α−サイアロンやβ−サイアロンのような制御された量の酸素を含有する酸窒化物ではない。しかしながら、窒化物には一般的に酸素が不可避的に入ってしまうことが多い。本発明は、このような不可避的に入ってしまう少量の酸素を含む窒化物を排除するものではない。   The nitride phosphor of the present invention is not an oxynitride containing a controlled amount of oxygen such as α-sialon or β-sialon. However, in general, oxygen often inevitably enters nitrides. The present invention does not exclude such a nitride containing a small amount of oxygen that inevitably enters.

本発明の窒化物蛍光体には、発光強度や残光性、その他の蛍光特性を調整するために、希土類金属元素等の共付活剤として作用する元素、例えばセリウム(Ce)、テルビウム(Tb)、ジスプロジウム(Dy)、サマリウム(Sm)、プラセオジウム(Pr)、ネオジム(Nd)、エルビウム(Er)、ホルミウム(Ho)、ツリウム(Tm)、マンガン(Mn)などを適宜ドープしても良い。   The nitride phosphor of the present invention includes an element that acts as a coactivator such as a rare earth metal element, such as cerium (Ce), terbium (Tb), in order to adjust emission intensity, afterglow, and other fluorescence characteristics. ), Dysprodium (Dy), samarium (Sm), praseodymium (Pr), neodymium (Nd), erbium (Er), holmium (Ho), thulium (Tm), manganese (Mn), etc. may be appropriately doped. .

本発明に係る窒化物蛍光体は、紫外線〜黄緑色光領域の光、電子線、電場による励起により600nm以上、特に従来殆どなかった650nm〜690nmの範囲に発光ピーク波長を有する蛍光を発光する新規な長波長赤色発光蛍光体である。さらに、この窒化物蛍光体は、物体色が黄赤(橙赤)色〜赤色を呈し、発光強度が非常に高い。   The nitride phosphor according to the present invention emits fluorescence having an emission peak wavelength in the range of 600 nm or more, particularly 650 nm to 690 nm, which has hardly existed in the past, when excited by light in the ultraviolet to yellow-green light region, electron beam, or electric field. Long-wavelength red light emitting phosphor. Further, this nitride phosphor has a yellow-red (orange-red) color to a red color, and has a very high emission intensity.

このような窒化物蛍光体の用途としては、従来あまり実用的なものがなかった長波長赤色蛍光体として、ランプ等の照明用蛍光体として使用したり、冷陰極管、CRT、PDP、FED、無機EL等の表示管用赤色蛍光体として使用することができる。   Such nitride phosphors can be used as long-wavelength red phosphors, which have not been so practical in the past, as illumination phosphors such as lamps, cold cathode tubes, CRTs, PDPs, FEDs, It can be used as a red phosphor for display tubes such as inorganic EL.

また、紫外線、及び紫色〜黄緑色の波長領域の可視光で励起され、これらの光をより長波長の光に変換することが可能なため、白色発光素子の作成に非常に有効である。
具体的には、青色LEDに、このLEDからの青色光の一部を吸収し、波長変換して緑色〜黄色に発光する第1の蛍光体と、第2の蛍光体として本発明の窒化物蛍光体とを組み合わせることにより、色バランスの優れた白色発光素子を得ることができる。
例えば、発光ピーク波長が400nm〜460nmであるGaN系やInGaN系などの青色LEDと、青色光により励起されて黄緑〜黄色に発光するYAG系蛍光体とを備えた白色発光素子に、発光色の赤色成分補色用として、本発明の窒化物蛍光体を添加することにより、演色性、色感度を向上させることができる。
また、青色LEDと、その青色光により緑色に発光する第1の蛍光体と、本発明の赤色発光窒化物蛍光体とを組み合わせることにより、青、緑、赤の光の三原色の混色による白色発光素子を得ることもできる。本発明の窒化物蛍光体は、紫外光〜黄緑色光の広い波長領域の光で励起可能であるため、青色LEDからの光だけでなく第1の蛍光体が放射する光によっても発光するので、効率が高い。
また、青色LEDの代わりに、例えばピーク波長が360nm〜400nmの紫外〜青紫色の領域の光を発光する半導体素子(紫外線LED)を用い、その発光を吸収して赤、緑、又は青の蛍光を発するフォトルミネセンス蛍光体を組み合わせて、これら三原色の混色により白色系の光を発する発光素子も知られているが、本発明の窒化物蛍光体はこのような白色発光素子の赤色成分として用いることもできる。
さらに、紫外線LEDや青色LED、又は青緑〜緑色に発光するLEDに組み合わせる蛍光体として、本発明の窒化物蛍光体を単独で用い、白色光や、紫、赤紫、ピンク、赤など様々な色の光を発する発光素子を得ることもできる。
Further, it is excited by ultraviolet light and visible light in a purple to yellow-green wavelength region, and these light can be converted into light having a longer wavelength, so that it is very effective for producing a white light emitting element.
Specifically, the blue LED absorbs a part of the blue light from the LED, converts the wavelength, emits green to yellow light, and the nitride of the present invention as the second phosphor. By combining with a phosphor, a white light emitting device with excellent color balance can be obtained.
For example, a white light emitting device including a GaN-based or InGaN-based blue LED having a light emission peak wavelength of 400 nm to 460 nm and a YAG phosphor that emits yellow-green to yellow light when excited by blue light is used. The color rendering property and color sensitivity can be improved by adding the nitride phosphor of the present invention for the red component complementary color.
In addition, by combining the blue LED, the first phosphor that emits green light with the blue light, and the red light emitting nitride phosphor of the present invention, white light emission by mixing three primary colors of blue, green, and red light. An element can also be obtained. Since the nitride phosphor of the present invention can be excited by light in a wide wavelength region from ultraviolet light to yellow-green light, it emits light not only from the light from the blue LED but also from light emitted by the first phosphor. High efficiency.
Further, instead of the blue LED, for example, a semiconductor element (ultraviolet LED) that emits light in an ultraviolet to blue-violet region having a peak wavelength of 360 to 400 nm is used, and the emitted light is absorbed to emit red, green, or blue fluorescence. A light emitting device that emits white light by mixing these three primary colors in combination with a photoluminescent phosphor that emits light is also known, but the nitride phosphor of the present invention is used as a red component of such a white light emitting device. You can also.
Furthermore, as a phosphor combined with an ultraviolet LED, a blue LED, or an LED emitting blue-green to green, the nitride phosphor of the present invention is used alone, and various light sources such as white light, purple, magenta, pink, and red are used. A light-emitting element that emits colored light can also be obtained.

さらに、本発明の窒化物蛍光体は、物体色が黄赤色〜赤色であるので、ベンガラ(酸化鉄)等、鉄や銅、マンガン、クロムなどの重金属を含有する顔料の代替材料として、塗料やインク等に適用できる。また、紫外線や可視光を励起源として深い赤色を発光する赤色顔料として、蛍光体の調色用や化粧品用に、また、紙幣や証券類等の偽造防止用インクの顔料として使用することも可能である。
さらには、紫外線、可視光吸収材料として、幅広い用途に使用することができる。
Furthermore, since the nitride phosphor of the present invention has an object color of yellow-red to red, as an alternative material for pigments containing heavy metals such as iron, copper, manganese, and chromium, such as bengara (iron oxide), paint and Applicable to ink and the like. It can also be used as a red pigment that emits deep red light using ultraviolet light and visible light as an excitation source, for phosphor toning and cosmetics, and as a pigment for anti-counterfeiting ink such as banknotes and securities. It is.
Furthermore, it can be used for a wide range of applications as an ultraviolet and visible light absorbing material.

(窒化物蛍光体の製造方法)
次に、本発明に係る窒化物蛍光体の製造方法について説明する。
本発明に係る窒化物蛍光体の製造方法は、公知の固相反応法、噴霧熱分解法、液相反応法、その他の方法を適用することができるが、以下に示す尿素−前駆体を用いた方法が、均一組成で、また、粒子径の揃った結晶性の良好な窒化物を得やすい点で最も好ましい。さらに、この方法は、原料の窒化や結晶成長を同一反応容器中で行うことができ、しかも常圧で比較的低温で製造できる点で好適である。
以下、本発明で好適に用いられる尿素−前駆体を用いた方法の一例について説明する。まず、尿素及び/又は尿素誘導体(以下、「尿素等」と称すこともある)をこれらの融点以上の温度まで加熱して溶融状態にする。ただし、加熱温度が高すぎると別の生成物が生ずる場合があるので、尿素等が溶解し、かつ、後述するCa化合物やEu化合物、Al化合物、窒化珪素を加えた後も溶融状態を所定時間保持することができる程度の温度とすることが好ましい。例えば、尿素を用いる場合、その融点は132℃であるので、それより若干高めの温度まで加熱すれば十分である。
(Nitride phosphor manufacturing method)
Next, a method for producing a nitride phosphor according to the present invention will be described.
As the method for producing a nitride phosphor according to the present invention, a known solid phase reaction method, spray pyrolysis method, liquid phase reaction method, and other methods can be applied, but the urea precursor shown below is used. The most preferable method is that it is easy to obtain a nitride having a uniform composition and a uniform crystal size and good crystallinity. Furthermore, this method is preferable in that the raw material can be nitrided and grown in the same reaction vessel, and can be produced at normal pressure and at a relatively low temperature.
Hereinafter, an example of the method using the urea precursor suitably used in the present invention will be described. First, urea and / or a urea derivative (hereinafter sometimes referred to as “urea or the like”) is heated to a temperature equal to or higher than these melting points to be in a molten state. However, if the heating temperature is too high, another product may be generated. Therefore, after the urea or the like is dissolved and the Ca compound, Eu compound, Al compound, or silicon nitride described later is added, the molten state is kept for a predetermined time. It is preferable that the temperature is such that it can be maintained. For example, when urea is used, its melting point is 132 ° C., so it is sufficient to heat it to a slightly higher temperature.

尿素誘導体としては、尿素中の窒素原子への各種有機基の置換体としての尿素化合物、あるいはカーバメイト化合物、尿素錯化合物、尿素付加体化合物等の各種のものを使用することができる。尿素等としては、入手のしやすさや取り扱いの容易さ等の点から尿素が好適なものとして用いられる。   As the urea derivative, various compounds such as urea compounds as carbamate compounds, urea complex compounds, and urea adduct compounds can be used as substitutes of various organic groups for nitrogen atoms in urea. As urea or the like, urea is preferably used from the viewpoints of availability, ease of handling, and the like.

次に、最終生成物の構成成分となる、Ca化合物、Eu化合物、Al化合物を溶融した尿素等に溶解し、さらに窒化珪素を分散させて窒化物前駆体を形成する。なお、Ca化合物およびAl化合物は生成する窒化物蛍光体に応じて加えれば良く、必ずしも必須ではない。また、共付活剤をドープする場合は、共付活剤として作用する金属元素の化合物を、所定量添加、溶解する。   Next, a Ca compound, an Eu compound, and an Al compound, which are constituents of the final product, are dissolved in molten urea or the like, and silicon nitride is dispersed to form a nitride precursor. The Ca compound and the Al compound may be added according to the nitride phosphor to be generated, and are not necessarily essential. When the coactivator is doped, a predetermined amount of a metal element compound that acts as a coactivator is added and dissolved.

窒化物を構成する珪素以外の金属元素の化合物、すなわちCa化合物、Eu化合物、Al化合物、共付活剤元素の化合物としては、溶融尿素等に溶解されるものであれば特に限定されるものではないが、例えば塩化物、硝酸塩などが挙げられる。また、窒化珪素としては、結晶質のものでも非晶質のものでも、適宜用いることができる。例えば、反応性の点では非晶質の窒化珪素の方が好ましいと考えられるが、入手が容易であること、取り扱いがし易いこと、及び収率の点からは結晶質の窒化珪素が有利である。   A compound of a metal element other than silicon constituting the nitride, that is, a Ca compound, Eu compound, Al compound, or a coactivator element compound is not particularly limited as long as it is dissolved in molten urea or the like. For example, chlorides, nitrates and the like can be mentioned. As silicon nitride, either crystalline or amorphous silicon can be used as appropriate. For example, amorphous silicon nitride is considered preferable in terms of reactivity, but crystalline silicon nitride is advantageous in terms of easy availability, easy handling, and yield. is there.

このようにして得られた窒化物前駆体を、例えば放冷し乾燥させて固体状にする。この固体状のものを、必要に応じて機械的に粉砕し、加熱炉を用いて加熱し、窒化物を生成する。加熱炉としては、バッチ炉、ベルト炉、管状炉、ロータリーキルン等、公知のものを使用することができる。
ただし、加熱は不活性雰囲気又は還元性雰囲気のもとで行う必要がある。
また、不活性雰囲気あるいは還元性雰囲気中、一段の加熱(焼成)で目的の生成物を形成しても良いし、複数段に分けて加熱(焼成)することにより目的とする窒化物を得ても良い。例えば、2段階で加熱すれば、1段階の加熱では得られない特性を有する生成物を得ることができる。加熱温度、加熱時間等の諸条件は目的とする生成物の種類及び要求されている特性に応じて適宜設定すれば良いが、例えば、1段加熱の場合には、1200〜1700℃の範囲内の温度で0.5〜12時間の範囲から条件を設定すれば良い。また、2段加熱の場合には、第2段目の加熱温度を第1段目の加熱温度よりも高く設定することが望ましく、例えば、第1段目の加熱を、約300〜900℃、好ましくは約400〜800℃の範囲内の温度で0.5〜4時間行い、第2段目の加熱を、約1200〜1650℃、好ましくは1350〜1600℃の範囲内の温度で約0.5〜12時間行うことが望ましい。複数段の加熱は、より均一な組成の生成物を再現性良く得ることができる点で有利である。
The nitride precursor thus obtained is allowed to cool, for example, and dried to form a solid. This solid material is mechanically pulverized as necessary, and heated using a heating furnace to produce a nitride. As a heating furnace, well-known things, such as a batch furnace, a belt furnace, a tubular furnace, a rotary kiln, can be used.
However, it is necessary to perform heating under an inert atmosphere or a reducing atmosphere.
Further, the target product may be formed by one-step heating (firing) in an inert atmosphere or a reducing atmosphere, or the target nitride is obtained by heating (firing) in multiple stages. Also good. For example, if heating is performed in two stages, a product having characteristics that cannot be obtained by heating in one stage can be obtained. Various conditions such as the heating temperature and the heating time may be appropriately set according to the type of the desired product and the required characteristics. The conditions may be set from the range of 0.5 to 12 hours at a temperature of. In the case of two-stage heating, it is desirable to set the second stage heating temperature higher than the first stage heating temperature. For example, the first stage heating is performed at about 300 to 900 ° C., Preferably, it is carried out at a temperature in the range of about 400-800 ° C for 0.5-4 hours, and the second stage heating is carried out at a temperature in the range of about 1200-1650 ° C, preferably 1350-1600 ° C for about 0.000. It is desirable to perform for 5 to 12 hours. Multi-stage heating is advantageous in that a product with a more uniform composition can be obtained with good reproducibility.

また、その他の加熱手段として、機械的に粉砕した前駆体粉末を、望ましくは粒度調整した後、気相中に分散させた状態で加熱することにより、微細かつ粒子径の揃った結晶性の高い窒化物粉末を得ることができる。   Further, as other heating means, the finely powdered precursor powder having a uniform and fine particle diameter is obtained by heating the precursor powder that has been mechanically pulverized, preferably after adjusting the particle size and then dispersing in the gas phase. A nitride powder can be obtained.

さらに、他の加熱手段として、噴霧熱分解法を利用しても良い。この噴霧熱分解法は、液体状の前駆体を超音波式、二流体ノズル方式等の噴霧器や他の霧化手段を用いて、微細な液滴とし、これを不活性雰囲気又は還元性雰囲気条件下で加熱し、前駆体を分解、反応させて、微細かつ粒径の揃った窒化物粉末を得ることができる。
また、上述の製造例においては、溶融状態にした尿素等に各化合物等を溶解又は分散させる方法を述べたが、予め尿素等と化合物等とを混合してから加熱して尿素等を溶融しても構わない。
Furthermore, a spray pyrolysis method may be used as another heating means. In this spray pyrolysis method, the liquid precursor is made into fine droplets using an atomizer such as an ultrasonic type or a two-fluid nozzle type or other atomizing means, and this is subjected to an inert atmosphere or a reducing atmosphere condition. Under heating, the precursor can be decomposed and reacted to obtain fine and uniform nitride powder.
In the above production example, the method of dissolving or dispersing each compound etc. in the molten urea etc. has been described, but the urea etc. and the compound etc. are mixed in advance and then heated to melt the urea etc. It doesn't matter.

以下、実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれに限定されるものではない。
下記の方法にしたがって、試料1〜25を作製した後、各試料1〜25について以下に示す測定を行い評価した。
[試料7の作製]
尿素を134℃で溶融し、溶融尿素を得た。この溶融尿素36g中に、EuCl3・6H2O2.09g、AlCl3・6H2O0.345g及びCaCl20.63gを添加し、溶解させ、更に、Si34粉末2g(宇部興産製SN−E10)を添加、攪拌し、均一に分散させた。これを攪拌しながら空冷して、元素のモル比がCa:Eu:Si:Al=2:2:9:0.5の固体の窒化物前駆体を生成した。得られた前駆体を、蓋付きカーボンボートに載置し、4%のH2を含むN2雰囲気中800℃で2時間、焼成を行った後粉砕した。これを、Mo板で挟みこみ、4%のH2/N2雰囲気中1500℃で2時間、加熱を行い、窒化物蛍光体を作製した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, the embodiment of this invention is not limited to this.
Samples 1 to 25 were prepared according to the following method, and then the following measurements were performed for each sample 1 to 25 for evaluation.
[Preparation of Sample 7]
Urea was melted at 134 ° C. to obtain molten urea. In 36 g of this molten urea, 2.09 g of EuCl 3 .6H 2 O, 0.345 g of AlCl 3 .6H 2 O and 0.63 g of CaCl 2 are added and dissolved, and further 2 g of Si 3 N 4 powder (SN manufactured by Ube Industries) -E10) was added, stirred and dispersed uniformly. This was air-cooled while stirring to produce a solid nitride precursor having an element molar ratio of Ca: Eu: Si: Al = 2: 2: 9: 0.5. The obtained precursor was placed on a carbon boat with a lid, fired in an N 2 atmosphere containing 4% H 2 at 800 ° C. for 2 hours, and then pulverized. This was sandwiched between Mo plates and heated in a 4% H 2 / N 2 atmosphere at 1500 ° C. for 2 hours to produce a nitride phosphor.

[試料1〜6、8〜25の作製]
上記試料7の作製において原料のモル比を適宜変えて、試料7と同様の方法で試料1〜6、8〜25を得た。各試料1〜25の化学組成を表1に示す。
なお、試料1〜11は、上記一般式(1)中、m=4、y=0.5に固定しており、試料12〜16はm=4、x=2に固定、試料17〜18はm=4、y=1.5に固定、試料19〜23はm=3、y=0.5に固定、試料24〜25はx=m/2、y=0.5に固定し、その他の各パラメータをそれぞれ変化させている。なお、試料1〜3及び19は、本発明外のものである。
[Preparation of Samples 1-6, 8-25]
Samples 1 to 6 and 8 to 25 were obtained in the same manner as Sample 7 by appropriately changing the molar ratio of the raw materials in the preparation of Sample 7. Table 1 shows the chemical composition of each sample 1-25.
Samples 1 to 11 are fixed at m = 4 and y = 0.5 in the above general formula (1), samples 12 to 16 are fixed at m = 4 and x = 2, and samples 17 to 18 are fixed. Is fixed at m = 4, y = 1.5, samples 19-23 are fixed at m = 3, y = 0.5, samples 24-25 are fixed at x = m / 2, y = 0.5, Each other parameter is changed. Samples 1 to 3 and 19 are outside the present invention.

《X線回折パターン》
上記得られた蛍光体粉末(試料1〜25)について、(株)リガク製粉末X線回折計を用い、Cu−Kα線をX線源としてX線回折パターンを測定した。図1〜図4にその代表的なものを示す。図1は試料2、図2は試料6、図3は試料7、図4は試料21のX線回折パターンを示している。図3及び図4は同様のX線回折パターンであり、斜方晶系のみの結晶構造を有していることがわかる。また、図2は単斜晶系よりも斜方晶系の多い結晶構造を有しており、図1は斜方晶系よりも単斜晶系の多い結晶構造を有していることを確認できた。また、その他の各試料についても同様にX線回折パターンから結晶構造の確認を行い、その結果を表1に示した。
<< X-ray diffraction pattern >>
About the obtained phosphor powder (samples 1 to 25), an X-ray diffraction pattern was measured using Cu-Kα ray as an X-ray source using a powder X-ray diffractometer manufactured by Rigaku Corporation. A representative one is shown in FIGS. 1 shows the X-ray diffraction pattern of Sample 2, FIG. 2 shows Sample 6, FIG. 3 shows Sample 7, and FIG. 3 and 4 are similar X-ray diffraction patterns, and it can be seen that the crystal structure has only an orthorhombic system. Also, FIG. 2 has a crystal structure with more orthorhombic system than monoclinic system, and FIG. 1 confirms that it has a crystal structure with more monoclinic system than orthorhombic system. did it. For other samples, the crystal structure was confirmed from the X-ray diffraction pattern, and the results are shown in Table 1.

《蛍光特性》
各試料1〜25について、日本分光(株)製分光蛍光光度計(FP−6600型)を用いて400nmの単色光を励起光源とし、470nmから900nmの範囲で蛍光スペクトルを測定した。各試料1〜25の発光ピーク波長と発光強度についての測定結果(測定値)を表1に示す。表1中の発光強度は、試料7の発光ピーク波長677nmにおける発光強度を100としたときの相対強度である。図5〜図6に代表的なスペクトル図を示す。図5は試料2、6、7、図6は試料21、24、25の蛍光スペクトルである。また、これらの試料についてそれぞれの発光ピーク波長における励起スペクトルを、250nmから620nmの範囲で測定し、図7〜図8に示す。図7は試料2、6、7の励起スペクトル、図8は試料21、24、25の励起スペクトルである。
なお、励起スペクトルの補正にはローダミンBを、蛍光スペクトルの補正にはキセノンランプとタングステンランプを用いた。
<Fluorescence characteristics>
With respect to each sample 1 to 25, a fluorescence spectrum was measured in the range of 470 nm to 900 nm using a spectrofluorometer (FP-6600 type) manufactured by JASCO Corporation, using 400 nm monochromatic light as an excitation light source. Table 1 shows the measurement results (measurement values) for the emission peak wavelength and emission intensity of each sample 1-25. The emission intensity in Table 1 is the relative intensity when the emission intensity of the sample 7 at the emission peak wavelength of 677 nm is 100. 5 to 6 show typical spectrum diagrams. FIG. 5 shows fluorescence spectra of samples 2, 6, and 7, and FIG. 6 shows fluorescence spectra of samples 21, 24, and 25. Moreover, the excitation spectrum in each emission peak wavelength about these samples was measured in the range of 250 nm to 620 nm, and is shown in FIGS. 7 shows the excitation spectra of Samples 2, 6, and 7. FIG. 8 shows the excitation spectra of Samples 21, 24, and 25.
Rhodamine B was used for correcting the excitation spectrum, and a xenon lamp and a tungsten lamp were used for correcting the fluorescence spectrum.

Figure 2005226000
表1の結果から明らかなように、上記一般式(1)で表される窒化物蛍光体において、Euと(Ca+Eu)の割合であるx/mの範囲が0.1<x/m≦1.0である試料4〜18、20〜25は、650nm〜682nmに発光ピークが見られ、発光強度も大きかった。一方、上記範囲外である試料1〜3、19は、611nm〜615nmに発光ピークが見られるが、強度が非常に弱いものであった。
Figure 2005226000
As is clear from the results in Table 1, in the nitride phosphor represented by the general formula (1), the range of x / m, which is the ratio of Eu and (Ca + Eu), is 0.1 <x / m ≦ 1. Samples 4 to 18 and 20 to 25 having an emission peak of 0.0 showed an emission peak at 650 nm to 682 nm, and the emission intensity was also high. On the other hand, Samples 1 to 3 and 19 outside the above range showed emission peaks at 611 nm to 615 nm, but were very weak in intensity.

また、x/m=0.2付近、及び0.3付近で発光ピーク波長が大きく長波長にシフトすることから、Euのドープ量によって発光ピーク波長をコントロールできることがわかる。さらに、試料7、12〜16、21、24、25に示すように、x/m=0.5のとき発光強度が高く、非常に優れた蛍光体であることがわかる。なお、例えば、試料8〜11に示すように、x/mを0.5より大きくしてEuドープ量を増やすにつれて、発光強度が低下する傾向があったが、これは濃度消光が生じたものと推測できる。   Further, since the emission peak wavelength is greatly shifted to a long wavelength around x / m = 0.2 and around 0.3, it can be seen that the emission peak wavelength can be controlled by the amount of Eu doped. Furthermore, as shown in Samples 7, 12 to 16, 21, 24, 25, it can be seen that when x / m = 0.5, the emission intensity is high and the phosphor is very excellent. For example, as shown in Samples 8 to 11, the emission intensity tended to decrease as x / m was increased from 0.5 to increase the amount of Eu doping, but this was caused by concentration quenching. Can be guessed.

さらに、x/mの値を0≦x/m≦1.0で変化させた場合において、試料1〜3に示す0≦x/m≦0.1の場合には、主結晶相が単斜晶系であるが、Euのドープ量を増加(x/mを増大)させるにつれて、斜方晶系の割合が増え、x/m=0.5(試料7)を境にして斜方晶系のみが検出されるようになる。これと、発光特性の関係から、主結晶相が斜方晶系であれば、長波長域に発光ピークを有し、発光強度の高い蛍光体が得られることがわかる。   Further, when the value of x / m is changed as 0 ≦ x / m ≦ 1.0, and when 0 ≦ x / m ≦ 0.1 shown in Samples 1 to 3, the main crystal phase is monoclinic. Although it is a crystal system, the proportion of orthorhombic system increases with increasing Eu doping amount (increasing x / m), and orthorhombic system with x / m = 0.5 (sample 7) as a boundary. Only will be detected. From this and the relationship between the emission characteristics, it can be seen that if the main crystal phase is orthorhombic, a phosphor having an emission peak in the long wavelength region and having a high emission intensity can be obtained.

また、試料12に示すようにAlの組成比をy=0とした場合、651nmに発光ピークを有し、発光強度が51であった。このことから、Alを特に添加しなくとも実用上問題ないレベルであるが、試料13〜16に示すように、0<y≦3.0の範囲で添加することにより、発光波長が長波長側にシフトし発光強度も高くなることから、Alの添加により有利な効果を得られることがわかる。   Further, as shown in Sample 12, when the composition ratio of Al was y = 0, the emission peak was at 651 nm and the emission intensity was 51. Therefore, even if Al is not particularly added, it is at a level that does not cause a problem in practice. However, as shown in Samples 13 to 16, by adding in the range of 0 <y ≦ 3.0, the emission wavelength is longer. Since the emission intensity is also increased, it can be seen that an advantageous effect can be obtained by adding Al.

なお、試料7、21、24、25については、励起光として460nmの単色光を用いたときの発光特性も調べた。試料7は676nmに発光ピークを有していた。また、試料7、21、24、25はそれぞれ674nm、681nm、676nmに発光ピークを有しており、発光強度は、試料7の発光ピーク波長における強度を100としたときの相対強度で、それぞれ102、65、86であった。   For Samples 7, 21, 24, and 25, the emission characteristics when 460 nm monochromatic light was used as the excitation light were also examined. Sample 7 had an emission peak at 676 nm. Samples 7, 21, 24, and 25 have emission peaks at 674 nm, 681 nm, and 676 nm, respectively. The emission intensity is relative intensity when the intensity at the emission peak wavelength of sample 7 is 100, and is 102. 65, 86.

《外観》
得られた蛍光体粉末(試料1〜25)の外観を観察し、その物体色を表1に示す。
試料1〜3、19に示すように、Euの量が少ないもの程、赤みの少ない黄色で、Euを添加しない試料1は灰色であった。Euの量を多くする程、赤みを帯びることが確認できた。
"appearance"
The appearance of the obtained phosphor powder (samples 1 to 25) was observed, and the object colors are shown in Table 1.
As shown in Samples 1 to 3, 19, the smaller the amount of Eu, the less reddish yellow, and Sample 1 to which no Eu was added was gray. It was confirmed that the redness was increased as the amount of Eu was increased.

試料2のX線回折パターンである。2 is an X-ray diffraction pattern of Sample 2. 試料6のX線回折パターンである。2 is an X-ray diffraction pattern of Sample 6. 試料7のX線回折パターンである。3 is an X-ray diffraction pattern of Sample 7. 試料21のX線回折パターンである。2 is an X-ray diffraction pattern of a sample 21. FIG. 試料2、6、7の蛍光スペクトルである。It is a fluorescence spectrum of Samples 2, 6, and 7. 試料21、24、25の蛍光スペクトルである。It is a fluorescence spectrum of samples 21, 24, and 25. 試料2、6、7の励起スペクトルである。It is an excitation spectrum of Samples 2, 6, and 7. 試料21、24、25の励起スペクトルである。It is an excitation spectrum of samples 21, 24, and 25.

Claims (6)

下記一般式(1)で表される化学組成を有する窒化物蛍光体。
Cam-xEuxSi9Aly(12+2/3m+y)…(1)
(ただし、上記一般式(1)中、0.5≦m≦5.0、0.1<x/m≦1.0、0≦y≦3.0である。)
A nitride phosphor having a chemical composition represented by the following general formula (1).
Ca mx Eu x Si 9 Al y N (12 + 2 / 3m + y) ... (1)
(However, in the general formula (1), 0.5 ≦ m ≦ 5.0, 0.1 <x / m ≦ 1.0, and 0 ≦ y ≦ 3.0.)
請求項1に記載の窒化物蛍光体において、
主結晶相が斜方晶系であることを特徴とする窒化物蛍光体。
The nitride phosphor according to claim 1, wherein
A nitride phosphor characterized in that the main crystal phase is orthorhombic.
請求項1又は2に記載の窒化物蛍光体を製造する方法であって、
窒化物を構成する珪素以外の金属元素の化合物と、窒化珪素とを、溶融した尿素及び/又は溶融した尿素誘導体に溶解又は分散させて窒化物前駆体を形成し、該窒化物前駆体を、不活性又は還元性の雰囲気中で加熱することにより窒化物蛍光体を生成することを特徴とする窒化物蛍光体の製造方法。
A method for producing the nitride phosphor according to claim 1, comprising:
A compound of a metal element other than silicon constituting the nitride and silicon nitride are dissolved or dispersed in molten urea and / or a molten urea derivative to form a nitride precursor, and the nitride precursor is A method for producing a nitride phosphor, comprising producing a nitride phosphor by heating in an inert or reducing atmosphere.
青色光を放射する半導体発光素子と、前記半導体発光素子からの光の一部を吸収して緑色〜黄色の波長領域の蛍光を発光する蛍光体と、請求項1又は2に記載の窒化物蛍光体とを備えていることを特徴とする白色発光素子。   3. A semiconductor light emitting device that emits blue light, a phosphor that absorbs part of light from the semiconductor light emitting device and emits fluorescence in a green to yellow wavelength region, and the nitride fluorescence according to claim 1. A white light emitting element comprising: a body. 紫外線〜青紫色の領域の光を放射する半導体発光素子と、前記半導体発光素子からの光を吸収して青色の蛍光を発光する蛍光体、もしくは緑色の蛍光を発光する蛍光体の少なくとも一方と、請求項1又は2に記載の窒化物蛍光体とを備えていることを特徴とする白色発光素子。   A semiconductor light emitting device that emits light in the ultraviolet to blue-violet region, and at least one of a phosphor that emits blue fluorescence by absorbing light from the semiconductor light emitting device, or a phosphor that emits green fluorescence, A white light-emitting element comprising the nitride phosphor according to claim 1. 下記一般式(1)で表される化学組成を有する顔料。
Cam-xEuxSi9Aly(12+2/3m+y)…(1)
(ただし、上記一般式(1)中、0.5≦m≦5.0、0.1<x/m≦1.0、0≦y≦3.0である。)
A pigment having a chemical composition represented by the following general formula (1).
Ca mx Eu x Si 9 Al y N (12 + 2 / 3m + y) ... (1)
(However, in the general formula (1), 0.5 ≦ m ≦ 5.0, 0.1 <x / m ≦ 1.0, and 0 ≦ y ≦ 3.0.)
JP2004036873A 2004-02-13 2004-02-13 Nitride phosphor, method for producing nitride phosphor, white light emitting device and pigment Expired - Fee Related JP4165412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036873A JP4165412B2 (en) 2004-02-13 2004-02-13 Nitride phosphor, method for producing nitride phosphor, white light emitting device and pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036873A JP4165412B2 (en) 2004-02-13 2004-02-13 Nitride phosphor, method for producing nitride phosphor, white light emitting device and pigment

Publications (2)

Publication Number Publication Date
JP2005226000A true JP2005226000A (en) 2005-08-25
JP4165412B2 JP4165412B2 (en) 2008-10-15

Family

ID=35000965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036873A Expired - Fee Related JP4165412B2 (en) 2004-02-13 2004-02-13 Nitride phosphor, method for producing nitride phosphor, white light emitting device and pigment

Country Status (1)

Country Link
JP (1) JP4165412B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091960A (en) * 2005-09-30 2007-04-12 Nitto Denko Corp Resin composition for sealing optical semiconductor element and optical semiconductor device obtained by using the same
US7262439B2 (en) 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
JP2009545660A (en) * 2006-08-04 2009-12-24 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Nitridosilicate species phosphor and light source having the phosphor
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
US8274215B2 (en) 2008-12-15 2012-09-25 Intematix Corporation Nitride-based, red-emitting phosphors
CN103013506A (en) * 2012-12-10 2013-04-03 彩虹集团公司 Nitride fluorescent powder material and preparation method thereof
US8581488B2 (en) 2009-08-26 2013-11-12 Mitsubishi Chemical Corporation White light-emitting semiconductor devices
US8597545B1 (en) 2012-07-18 2013-12-03 Intematix Corporation Red-emitting nitride-based calcium-stabilized phosphors
CN103525410A (en) * 2013-10-11 2014-01-22 电子科技大学 Method for preparing rare earth doped aluminum nitride based blue fluorescent powder
US8663502B2 (en) 2011-12-30 2014-03-04 Intematix Corporation Red-emitting nitride-based phosphors
US8951441B2 (en) 2011-12-30 2015-02-10 Intematix Corporation Nitride phosphors with interstitial cations for charge balance
WO2016063965A1 (en) * 2014-10-23 2016-04-28 三菱化学株式会社 Phosphor, light-emitting device, lighting device, and image display device
JP2016523998A (en) * 2013-05-16 2016-08-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Phosphor production method, phosphor and optoelectronic device
KR102121266B1 (en) * 2019-07-26 2020-06-26 주식회사 올릭스 High-color-rendering white light-emitting device containing near-infrared light component

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
JP2007091960A (en) * 2005-09-30 2007-04-12 Nitto Denko Corp Resin composition for sealing optical semiconductor element and optical semiconductor device obtained by using the same
US7262439B2 (en) 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
JP2009545660A (en) * 2006-08-04 2009-12-24 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Nitridosilicate species phosphor and light source having the phosphor
KR101530639B1 (en) * 2006-08-04 2015-06-22 오스람 게엠베하 Luminescent substance of the class of nitride silicates and light source having such a luminescent substance
US8951440B2 (en) 2008-05-19 2015-02-10 Intematix Corporation Nitride-based red-emitting phosphors in RGB (red-green-blue) lighting systems
US8274215B2 (en) 2008-12-15 2012-09-25 Intematix Corporation Nitride-based, red-emitting phosphors
US8829778B2 (en) 2009-08-26 2014-09-09 Mitsubishi Chemical Corporation White light-emitting semiconductor devices
US8581488B2 (en) 2009-08-26 2013-11-12 Mitsubishi Chemical Corporation White light-emitting semiconductor devices
US8951441B2 (en) 2011-12-30 2015-02-10 Intematix Corporation Nitride phosphors with interstitial cations for charge balance
US8663502B2 (en) 2011-12-30 2014-03-04 Intematix Corporation Red-emitting nitride-based phosphors
US9695357B2 (en) 2011-12-30 2017-07-04 Intematix Corporation Nitride phosphors with interstitial cations for charge balance
US9422472B2 (en) 2011-12-30 2016-08-23 Intematix Corporation Red-emitting nitride-based phosphors
US10174246B2 (en) 2012-07-18 2019-01-08 Intematix Corporation Red-emitting nitride-based calcium-stabilized phosphors
US8597545B1 (en) 2012-07-18 2013-12-03 Intematix Corporation Red-emitting nitride-based calcium-stabilized phosphors
US9260659B2 (en) 2012-07-18 2016-02-16 Intematix Corporation Red-emitting nitride-based calcium-stablized phosphors
CN103013506A (en) * 2012-12-10 2013-04-03 彩虹集团公司 Nitride fluorescent powder material and preparation method thereof
US10174245B2 (en) 2013-05-16 2019-01-08 Osram Opto Semiconductor Gmbh Method for producing a luminescent material, luminescent material and optoelectronic component
JP2016523998A (en) * 2013-05-16 2016-08-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Phosphor production method, phosphor and optoelectronic device
CN103525410B (en) * 2013-10-11 2015-06-24 电子科技大学 Method for preparing rare earth doped aluminum nitride based blue fluorescent powder
CN103525410A (en) * 2013-10-11 2014-01-22 电子科技大学 Method for preparing rare earth doped aluminum nitride based blue fluorescent powder
CN106795429A (en) * 2014-10-23 2017-05-31 三菱化学株式会社 Fluorophor, light-emitting device, lighting device and image display device
JPWO2016063965A1 (en) * 2014-10-23 2017-09-07 三菱ケミカル株式会社 Phosphor, light emitting device, lighting device, and image display device
US10011768B2 (en) 2014-10-23 2018-07-03 Mitsubishi Chemical Corporation Phosphor, light-emitting device, illumination device and image display device
WO2016063965A1 (en) * 2014-10-23 2016-04-28 三菱化学株式会社 Phosphor, light-emitting device, lighting device, and image display device
TWI673343B (en) * 2014-10-23 2019-10-01 日商三菱化學股份有限公司 Phosphor, light emitting device, illumination device and image display device
CN106795429B (en) * 2014-10-23 2020-06-12 三菱化学株式会社 Phosphor, light emitting device, illumination device, and image display device
KR102121266B1 (en) * 2019-07-26 2020-06-26 주식회사 올릭스 High-color-rendering white light-emitting device containing near-infrared light component

Also Published As

Publication number Publication date
JP4165412B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP3763719B2 (en) Phosphors based on oxynitride glass
JP4834827B2 (en) Oxynitride phosphor
US8158026B2 (en) Method for preparing B-Sialon phosphor
US8153023B2 (en) Phosphor, method for production thereof, and light-emitting apparatus
JP4799549B2 (en) White light emitting diode
KR20170124614A (en) SILICON NITRIDE POWDER FOR SILICONITRIDE PHOSPHOR, CaAlSiN3 PHOSPHOR USING SAME, Sr2Si5N8 PHOSPHOR USING SAME, (Sr, Ca)AlSiN3 PHOSPHOR USING SAME, La3Si6N11 PHOSPHOR USING SAME, AND METHODS FOR PRODUCING THE PHOSPHORS
JP2008127547A (en) Phosphor, method for producing the same, and light emitting device
JP2002363554A (en) Acid nitride phosphor activated with rare earth element
WO2006121083A1 (en) β-TYPE SIALON FLUORESCENT SUBSTANCE
JP4165412B2 (en) Nitride phosphor, method for producing nitride phosphor, white light emitting device and pigment
JP2006282872A (en) Nitride phosphor or oxynitride phosphor and manufacturing method for the same, and light-emitting device using the same
JP4356563B2 (en) Oxynitride phosphor, method for producing oxynitride phosphor, and white light emitting device
WO2018056447A1 (en) Phosphor, light-emitting device, illumination device, and image display device
JP2005008793A (en) Oxynitride phosphor
JP2018002870A (en) β TYPE SIALON PHOSPHOR AND METHOD FOR PRODUCING THE SAME AND LIGHT EMITTING DEVICE USING THE SAME
JP2006137902A (en) Nitride phosphor, process for producing nitride phosphor and white light-emitting element
JP2007137946A (en) Phosphor, light emitting device using the same, image display device and illumination device
JP2011052099A (en) Method for producing nitride phosphor
JP4356539B2 (en) Nitride phosphor, method for producing the same, white light emitting device and pigment
CN106978166B (en) Red phosphor and light-emitting device
JP2010047774A (en) Phosphor and method for producing the same and light source
JP4942062B2 (en) Method for producing oxynitride
US9777215B2 (en) Oxynitride phosphor powder
US8585929B2 (en) Phosphor and method for preparing the same
Kohale et al. Combustion Synthesis of BaCaP 2 0 7: Eu 2+ Pyrophosphate Blue Phosphor For Solid State Lighting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140808

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees