WO2018056447A1 - Phosphor, light-emitting device, illumination device, and image display device - Google Patents

Phosphor, light-emitting device, illumination device, and image display device Download PDF

Info

Publication number
WO2018056447A1
WO2018056447A1 PCT/JP2017/034593 JP2017034593W WO2018056447A1 WO 2018056447 A1 WO2018056447 A1 WO 2018056447A1 JP 2017034593 W JP2017034593 W JP 2017034593W WO 2018056447 A1 WO2018056447 A1 WO 2018056447A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
less
crystal
emitting device
Prior art date
Application number
PCT/JP2017/034593
Other languages
French (fr)
Japanese (ja)
Inventor
文孝 吉村
山根 久典
Original Assignee
三菱ケミカル株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, 国立大学法人東北大学 filed Critical 三菱ケミカル株式会社
Priority to JP2018540339A priority Critical patent/JP6985704B2/en
Priority to CN201780053292.7A priority patent/CN109699179B/en
Publication of WO2018056447A1 publication Critical patent/WO2018056447A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a phosphor, a light emitting device, a lighting device, and an image display device.
  • the LED used here is a white light emitting LED in which a phosphor is arranged on an LED chip that emits light of blue or near ultraviolet wavelength.
  • a LED using a nitride phosphor that emits red light using blue light from the blue LED chip as an excitation light and a phosphor that emits green light on a blue LED chip has recently been used. It has been.
  • green has a particularly high visual sensitivity to human eyes and contributes greatly to the overall brightness of the display.
  • phosphors that emit green light include phosphors represented by a composition formula of Sr 2.7 Si 13 Al 3 O 2 N 21 : Eu 0.3 (Patent Document 1), and Si 6-z Al z O. z N 8-z (0 ⁇ z ⁇ 4.2) phosphor represented by the composition of (Patent Document 2), comprising a sialon crystal in which Eu is solid-solved in crystal having a ⁇ -Si 3 N 4 crystal structure A phosphor (Patent Document 3) and the like are disclosed.
  • the present invention provides a novel phosphor that has a crystal structure different from that of conventional phosphors, has good light emission characteristics, and is effectively used in LED applications.
  • M m Al a O x Si b N d [2] (In the above formula [2], M represents an activation element, 0 ⁇ m ⁇ 0.04 a + b 3 0 ⁇ a ⁇ 0.08 3.6 ⁇ d ⁇ 4.2 x ⁇ a)
  • M element in the formula [1] or [2] is a sialon crystal in which Eu is dissolved in a crystal having a ⁇ -type Si 3 N 4 crystal structure. The phosphor described.
  • a light emitting device comprising the phosphor described above.
  • An illumination device comprising the light-emitting device according to [5] as a light source.
  • An image display device comprising the light-emitting device according to [5] as a light source.
  • the novel phosphor of the present invention has a crystal structure different from that of conventional phosphors and is excellent in light emission characteristics, so that it is effectively used for LED applications. Therefore, the light emitting device using the novel phosphor of the present invention is excellent in color rendering. Furthermore, the illumination device and the image display device including the light emitting device of the present invention are of high quality.
  • FIG. 3 is a diagram showing excitation / emission spectra of the phosphor obtained in Example 1.
  • the broken line represents the excitation spectrum, and the solid line represents the emission spectrum.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • each composition formula is delimited by a punctuation mark (,).
  • commas when a plurality of elements are listed separated by commas (,), one or two or more of the listed elements may be included in any combination and composition.
  • composition formula “(Ca, Sr, Ba) Al 2 O 4 : Eu” has “CaAl 2 O 4 : Eu”, “SrAl 2 O 4 : Eu”, and “BaAl 2 O 4 : Eu”. “Ca 1-x Sr x Al 2 O 4 : Eu”, “Sr 1-x Ba x Al 2 O 4 : Eu”, “Ca 1-x Ba x Al 2 O 4 : Eu”, “Ca 1-x-y Sr x Ba y Al 2 O 4: Eu " (. in the formula, 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ a x + y ⁇ 1) all the comprehensive It shall be shown in the formula, 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ a x + y ⁇ 1) all the comprehensive It shall be shown in
  • the present invention includes the phosphor according to the first embodiment, the light emitting device according to the second embodiment, the illumination device according to the third embodiment, and the image display device according to the fourth embodiment.
  • the phosphor according to the first embodiment of the present invention includes a crystal phase represented by the following formula [1].
  • M elements are europium (Eu), manganese (Mn), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium It represents one or more elements selected from the group consisting of (Er), thulium (Tm) and ytterbium (Yb).
  • M preferably contains at least Eu, and more preferably Eu.
  • a part of Eu may be substituted with at least one element selected from the group consisting of Ce, Pr, Sm, Tb, and Yb, and Ce is more preferable in terms of emission quantum efficiency. That is, M is more preferably Eu and / or Ce, and more preferably Eu.
  • the ratio of Eu with respect to the entire activation element is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more.
  • Al represents aluminum.
  • Al is another trivalent element that is chemically similar, for example, boron (B), gallium (Ga), indium (In), scandium (Sc), yttrium (Y), lanthanum (La), gadolinium (Gd ), Lutetium (Lu) or the like.
  • Si represents silicon. Si may be partially substituted with other chemically similar tetravalent elements such as germanium (Ge), tin (Sn), titanium (Ti), zirconium (Zr), and hafnium (Hf). Good.
  • N represents a nitrogen element. N may be partially substituted with other elements such as oxygen (O), halogen atoms (fluorine (F), chlorine (Cl), bromine (Br), iodine (I)) and the like.
  • oxygen O
  • halogen atoms fluorine (F)
  • chlorine Cl
  • bromine Br
  • iodine I
  • oxygen when oxygen is mixed as an impurity in the raw material metal, it may be introduced during a manufacturing process such as a pulverization process or a nitriding process, and is inevitably mixed in the phosphor of this embodiment. It is.
  • halogen atoms when included, it may be mixed as an impurity in the raw material metal or introduced during a manufacturing process such as a pulverization process or a nitriding process.
  • a phosphor May be included.
  • m represents the content of the activating element M, the range is usually 0 ⁇ m ⁇ 0.04, and the lower limit is preferably 0.0001, more preferably 0.0005, and still more preferably 0.00. 001, more preferably 0.005, and the upper limit thereof is preferably 0.02, more preferably 0.01, and particularly preferably 0.005.
  • a represents the content of Al, the range is usually 0 ⁇ a ⁇ 0.08, and the lower limit is preferably 0.0001, more preferably 0.001, and still more preferably 0.005.
  • the upper limit is preferably 0.06, more preferably 0.04.
  • b represents the content of Si element.
  • d represents the content of N, and the range thereof is generally 3.6 ⁇ d ⁇ 4.2, and the lower limit is preferably 3.8, more preferably 3.9, and particularly preferably 3.95.
  • the upper limit is preferably 4.1, more preferably 4.05.
  • Any content is in the above-described range, which is preferable in terms of good light emission characteristics of the obtained phosphor, particularly light emission luminance.
  • the crystal structure can be maintained by partially replacing Si—N in the crystal structure with Al—O.
  • Al is increased relative to Si, O can be introduced into the N site while maintaining the charge compensation relationship.
  • the phosphor of the present embodiment is characterized in that the composition contains no or very little oxygen.
  • the absence of oxygen contained in the composition means that oxygen is below the detection limit when the phosphor powder is subjected to elemental analysis using an EPMA or oxygen-nitrogen / hydrogen analyzer described later. It is synonymous with.
  • Al / Eu is preferably 0.05 or more, more preferably 0.10 or more, further preferably 0.2 or more, still more preferably 0.5 or more, and particularly preferably 1.0 or more.
  • Another aspect of the phosphor of the present embodiment includes a phosphor characterized by including a crystal phase represented by the following formula [2].
  • x represents the content of oxygen (O), and the range thereof is not particularly limited, but it is preferable that x ⁇ a. That is, it is preferable that the content of O is smaller than that of Al. As described above, this means that a phosphor with reduced oxygen can be obtained by introducing Al into the crystal structure in a form other than Al—O.
  • x is preferably 0.05 or less, more preferably 0.04 or less, further preferably 0.03 or less, still more preferably 0.01 or less, and particularly preferably an element using an EPMA or an oxygen-nitrogen / hydrogen analyzer.
  • x / a is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.6 or less, still more preferably 0.4 or less, particularly preferably 0.2 or less, and particularly preferably
  • x + d is preferably 3.6 or more, more preferably 3.7 or more, still more preferably 3.8 or more, still more preferably 3.9 or more, and particularly preferably 3.95 or more.
  • the crystal structure of the phosphor according to the present embodiment is preferably a crystal structure of a sialon crystal in which Eu is dissolved in a crystal having a ⁇ -type Si 3 N 4 crystal structure.
  • Si 3 N 4 crystal structure it is generally known that there are ⁇ -type and ⁇ -type, but the phosphor of this embodiment has a desired emission wavelength and half-value width due to being ⁇ -type. Since an emission peak is obtained, it is preferable.
  • the lattice constant of the phosphor of this embodiment varies depending on the type of elements constituting the crystal, but is in the following range.
  • the a-axis lattice constant (lattice constant La) is usually in the range of 7.600 ⁇ ⁇ La ⁇ 7.630 ⁇ , and the lower limit thereof is preferably 7.601 ⁇ , more preferably 7.602 ⁇ , and even more preferably 7.60 ⁇ .
  • the upper limit is preferably 603 ⁇ , and more preferably 7.615 ⁇ ⁇ .
  • the b-axis lattice constant (lattice constant Lb) is the same as the a-axis lattice constant.
  • the c-axis lattice constant (lattice constant Lc) is usually in the range of 2.90 ⁇ ⁇ Lc ⁇ 2.91 ⁇ , and the lower limit is preferably 2.903 ⁇ , more preferably 2.906 ⁇ , and the upper limit is It is preferably 2.909 mm, more preferably 2.908 mm, and even more preferably 2.907 mm.
  • the phosphor according to the present embodiment is stably generated, and the generation of the impurity phase is suppressed, so that the emission luminance of the obtained phosphor is good.
  • the unit cell volume calculated from the lattice constant (V) is preferably, 145.30A 3 or more, more preferably 145.35A 3 or more, more preferably 145.40A 3 or more, preferably 146.50A 3 or less, more preferably 146.30A 3 or less, further preferably 146.10A 3 or less. If the unit cell volume is too large or the unit cell volume is too small, the skeletal structure becomes unstable and impurities of another structure are produced as a by-product, which tends to cause a decrease in emission intensity and color purity.
  • the crystal system in the phosphor according to this embodiment is a hexagonal system.
  • the space group in the phosphor of the present embodiment is not particularly limited as long as the average structure statistically considered within a range that can be distinguished by single crystal X-ray diffraction shows a repetition period of the above length, but “International It is preferable to belong to No. 173 (P6 3 ) or No. 176 (P6 3 / m) based on “Tables for Crystallography (Third, Revised Edition), Volume A SPACE-GROUP SYMMETRY”.
  • the lattice constant and the space group can be obtained according to a conventional method. If it is a lattice constant, the results of X-ray diffraction and neutron diffraction can be obtained by Rietveld analysis, and if it is a space group, it can be obtained by electron beam diffraction.
  • the emission color of the phosphor of this embodiment is excited by light in the near ultraviolet region to the blue region having a wavelength of 300 nm to 500 nm by adjusting the chemical composition and the like, and is blue, blue green, green, yellow green, yellow, orange , Red, etc., and a desired emission color can be obtained.
  • the phosphor of this embodiment preferably has the following characteristics when an emission spectrum is measured when excited with light having a wavelength of 300 nm or more and 460 nm or less (in particular, a wavelength of 400 nm or 450 nm).
  • the phosphor of this embodiment has a peak wavelength in the above-described emission spectrum of usually 500 nm or more, preferably 510 nm or more, more preferably 520 nm or more. Moreover, it is 560 nm or less normally, Preferably it is 550 nm or less, More preferably, it is 545 nm or less. It is preferable for it to be in the above-mentioned range since the obtained phosphor exhibits a good green color.
  • the half-value width of the emission peak in the above-mentioned emission spectrum is usually 70 nm or less, preferably 60 nm or less, and usually 25 nm or more, preferably 30 nm or more. By being within the above range, it can be used for an image display device such as a liquid crystal display.
  • the half-value width of the emission peak is preferably 50 nm or less, more preferably 48 nm or less, further preferably 45 nm or less, and 43 nm or less. Is particularly preferred.
  • the peak ratio of the emission spectrum is as follows in addition to the above-described half-value width range. It is good to be in the range.
  • the value of P1 / P2 is usually 0.1 or more, preferably 0.3 or more, more preferably 0.5 or more, and further preferably It is 0.7 or more, more preferably 0.9 or more, particularly preferably 1.1 or more, and particularly preferably 1.3 or more, usually 3.0 or less, preferably 2.5 or less.
  • a GaN-based LED in order to excite the phosphor of this embodiment with light having a wavelength of 400 nm, for example, a GaN-based LED can be used.
  • the measurement of the emission spectrum of the phosphor of this embodiment and the calculation of the emission peak wavelength, peak relative intensity, and peak half width are, for example, a 150 W xenon lamp as an excitation light source and a multi-channel CCD detector as a spectrum measurement device. It can be performed using a fluorescence measuring apparatus (manufactured by JASCO Corporation) equipped with C7041 (manufactured by Hamamatsu Photonics).
  • the x value of the CIE chromaticity coordinate of the phosphor of this embodiment is usually 0.240 or more, preferably 0.250 or more, more preferably 0.260 or more, and usually 0.420 or less, preferably 0.400. In the following, it is more preferably 0.380 or less, further preferably 0.360 or less, and still more preferably 0.340 or less.
  • the y value of the CIE chromaticity coordinates of the phosphor of the present embodiment is usually 0.575 or more, preferably 0.580 or more, more preferably 0.620 or more, and further preferably 0.640 or more. It is 0.700 or less, preferably 0.690 or less.
  • the phosphor of this embodiment is also excellent in temperature characteristics. Specifically, the ratio of the emission peak intensity value in the emission spectrum at 150 ° C. to the emission peak intensity value in the emission spectrum at 25 ° C. when irradiated with light having a wavelength of 450 nm is usually 50%. Or more, preferably 60% or more, particularly preferably 70% or more. In addition, since the emission intensity of ordinary phosphors decreases with increasing temperature, it is unlikely that the ratio exceeds 100%, but it may exceed 100% for some reason. However, if it exceeds 100%, there is a tendency to cause a color shift due to a temperature change. Incidentally, when measuring the temperature characteristics, a conventional method may be followed, for example, a method described in JP-A-2008-138156.
  • the phosphor of this embodiment has an excitation peak in a wavelength range of usually 300 nm or more, preferably 320 nm or more, more preferably 400 nm or more, and usually 480 nm or less, preferably 470 nm or less, more preferably 460 nm or less. That is, it is excited by light in the near ultraviolet to blue region.
  • the raw materials, the phosphor production method, and the like for obtaining the phosphor of this embodiment are as follows.
  • the method for producing the phosphor of the present embodiment is not particularly limited.
  • the element M as an activator hereinafter referred to as “M source” and the element Al (hereinafter referred to as “Al source” as appropriate).
  • a raw material of elemental Si hereinafter referred to as “Si source” as appropriate
  • Si source A raw material of elemental Si (hereinafter referred to as “Si source” as appropriate) is mixed so as to have a stoichiometric ratio of the formula [1] (mixing step), and the resulting mixture is fired (firing step).
  • the raw material of the element Eu may be referred to as “Eu source”.
  • Phosphor raw materials that is, M source, Al source, and Si source
  • Phosphor raw materials include metals, alloys, imide compounds, and acids of each element of M element, Al element, and Si element.
  • Examples thereof include nitrides, nitrides, oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, carboxylates, and halides. From these compounds, the reactivity to the composite oxynitride and the low generation amount of NOx, SOx, etc. during firing may be selected as appropriate.
  • M source Of the M sources, specific examples of Eu sources include Eu 2 O 3 , Eu 2 (SO 4 ) 3 , Eu 2 (C 2 O 4 ) 3 ⁇ 10H 2 O, EuCl 2 , EuCl 3 , Eu (NO 3 ) 3 ⁇ 6H 2 O, EuN , EuNH and the like. Of these, Eu 2 O 3 , EuN and the like are preferable, and EuN is particularly preferable.
  • raw materials of other activating elements such as Sm source, Tm source, Yb source, etc., compounds in which Eu is replaced with Sm, Tm, Yb, etc. in the respective compounds listed as specific examples of Eu source Is mentioned.
  • Al source Specific examples of the Al source include AlN, Al 2 O 3 , Al (OH) 3 , AlOOH, Al (NO 3 ) 3 and the like. Among these, AlN and Al 2 O 3 are preferable, and AlN is particularly preferable. Moreover, as AlN, the thing with a small particle size from a reactive point and a high purity from the point of luminous efficiency is preferable.
  • the amount of oxygen contained in Al metal or AlN is usually 100 ppm or less, more preferably 50 ppm or less, and still more preferably 20 ppm or less.
  • Specific examples of other trivalent element materials include compounds in which Al is replaced with B, Ga, In, Sc, Y, La, Gd, Lu, etc. in each of the compounds listed as specific examples of the Al source. Can be mentioned.
  • the Al source may be single Al.
  • Si source Specific examples of the Si source include SiO 2 , ⁇ -type Si 3 N 4 , and ⁇ -type Si 3 N 4 , and ⁇ -type Si 3 N 4 and ⁇ -type Si 3 N 4 are preferable. It is also possible to use a compound as a SiO 2. Specific examples of such a compound include SiO 2 , H 4 SiO 4 , Si (OCOCH 3 ) 4 and the like. Further, ⁇ -type Si 3 N 4 is preferably one having a small particle diameter and high purity from the viewpoint of light emission efficiency from the viewpoint of reactivity. Furthermore, the thing with few content rates of the carbon element which is an impurity is preferable.
  • Si source having a lower oxygen content Si metal may be used, or Si 3 N 4 having a low oxygen content may be used.
  • the oxygen content in ⁇ -type Si 3 N 4 and ⁇ -type Si 3 N 4 is usually 100 ppm or less, preferably 80 ppm or less, more preferably 60 ppm or less, still more preferably 40 ppm or less, and particularly preferably 20 ppm or less. It is more preferable to use ⁇ -type Si 3 N 4 having a high oxygen content after performing heat treatment at 1.0 MPa or lower and 1600 ° C. or higher to obtain ⁇ -type Si 3 N 4 having a low oxygen content.
  • Specific examples of other raw materials for tetravalent elements include compounds in which Si is replaced by Ge, Ti, Zr, Hf, etc. in the respective compounds listed as specific examples of the Si source.
  • the Si source may be single Si.
  • each of the above-described M source, Al source, and Si source may be used alone or in combination of two or more in any combination and ratio.
  • the mixing method is not particularly limited, and may be either a dry mixing method or a wet mixing method.
  • the dry mixing method include a ball mill.
  • a solvent or dispersion medium such as water is added to the above-described phosphor raw material, mixed using a mortar and pestle, and in a solution or slurry state, spray drying, heat drying, Alternatively, it is a method of drying by natural drying or the like.
  • the obtained mixture is filled in a heat-resistant container such as a crucible or a tray made of a material having low reactivity with each phosphor raw material.
  • a heat-resistant container such as a crucible or a tray made of a material having low reactivity with each phosphor raw material.
  • the material of the heat-resistant container used at the time of firing is not particularly limited as long as the effects of the present embodiment are not impaired, and examples thereof include a crucible such as boron nitride.
  • the firing temperature varies depending on other conditions such as pressure, the firing can be usually performed in a temperature range of 1700 ° C. or higher and 2150 ° C. or lower.
  • the maximum temperature reached in the firing step is usually 1700 ° C. or higher, preferably 1750 ° C. or higher, and usually 2150 ° C. or lower, preferably 2100 ° C. or lower. If the calcination temperature is too high, nitrogen will fly and tend to produce defects in the host crystal and color, while if it is too low, the progress of the solid phase reaction will tend to be slow, making it difficult to obtain the target phase as the main phase. .
  • the firing is preferably performed at a maximum attained temperature of 1800 ° C. or higher, more preferably 1900 ° C. or higher, and particularly preferably 2000 ° C. or higher.
  • the highest temperature reached during firing is usually 1800 ° C. or higher, preferably 1900 ° C. or higher, and usually 2150 ° C. or lower, more preferably 2100 ° C. or lower.
  • the firing temperature is less than 1800 ° C., the solid phase reaction does not proceed, so that only the impurity phase or the unreacted phase appears, and it may be difficult to obtain the target phase as the main phase.
  • the heating rate in the firing step is usually 2 ° C./min or more, preferably 5 ° C./min or more, more preferably 10 ° C./min or more, and usually 30 ° C./min or less, preferably 25 ° C./min or less. It is. If the rate of temperature rise is below this range, the firing time may be long. In addition, if the rate of temperature rise exceeds this range, the firing device, container, etc. may be damaged.
  • the firing atmosphere in the firing step is arbitrary as long as the phosphor of this embodiment is obtained, but a nitrogen-containing atmosphere is preferable. Specific examples include a nitrogen atmosphere and a hydrogen-containing nitrogen atmosphere, and a nitrogen atmosphere is particularly preferable.
  • the oxygen content in the firing atmosphere is usually 10 ppm or less, preferably 5 ppm or less.
  • Calcination time varies depending on the temperature and pressure at the time of calcination, but is usually 10 minutes or more, preferably 30 minutes or more, and usually 72 hours or less, preferably 12 hours or less. If the firing time is too short, grain formation and grain growth cannot be promoted, so that a phosphor with good characteristics cannot be obtained. If the firing time is too long, volatilization of the constituent elements is promoted, so atomic deficiency As a result, defects may be induced in the crystal structure and a phosphor having good characteristics may not be obtained.
  • the firing conditions may be the same or different between the first firing and the second firing.
  • the phosphor of the present embodiment when manufacturing the phosphor of the present embodiment, during the firing step, for example, Li 3 N, Na 3 N, Mg 3 N 2 , Ca 3 N 2 , Sr 3 N 2 , Ba 3 N 2 and the like are fluxed. It is preferably used as (crystal growth aid).
  • constituent elements of the flux such as Li, Na, Mg, Ca, Sr, and Ba may be mixed into the phosphor.
  • the flux in this embodiment preferably has an effect of reducing the proportion of oxygen in the obtained phosphor in addition to the effect as the crystal growth aid.
  • a member that adsorbs the gas in order to trap a gas containing oxygen in a constituent element such as SiO generated during firing.
  • a member made of C (carbon) is good, and a C-made felt or C-cube is preferably arranged in the vicinity of the BN crucible.
  • the obtained fired product is pulverized, pulverized, and / or classified into a powder having a predetermined size.
  • D 50 is less than about 30 [mu] m.
  • Specific examples of the treatment include a method of subjecting the synthesized product to sieve classification with an opening of about 45 ⁇ m, and passing the powder that has passed through the sieve to the next step, or the synthesized product to a general method such as a ball mill, a vibration mill, or a jet mill.
  • pulverizing to a predetermined particle size using a grinder is mentioned. In the latter method, excessive pulverization not only generates fine particles that easily scatter light, but also generates crystal defects on the particle surface, which may cause a decrease in luminous efficiency.
  • the phosphor of this embodiment may be formed by a so-called alloy method in which a constituent metal element is alloyed in advance and nitrided.
  • the phosphor according to the first embodiment of the present invention can be used by mixing with a liquid medium.
  • a liquid medium when the phosphor according to the first embodiment of the present invention is used for a light emitting device or the like, it is preferable to use the phosphor in a form dispersed in a liquid medium.
  • What dispersed the fluorescent substance which concerns on 1st embodiment of this invention in the liquid medium as one embodiment of this invention is suitably with "the fluorescent substance containing composition which concerns on one embodiment of this invention", etc. Shall be called.
  • the phosphor according to the first embodiment of the present invention to be contained in the phosphor-containing composition of the present embodiment may be only one type, or two or more types may be used in combination in any combination and ratio. Also good.
  • the phosphor-containing composition of the present embodiment may contain a phosphor other than the phosphor according to the first embodiment of the present invention as long as the effects of the present embodiment are not significantly impaired.
  • the liquid medium used in the phosphor-containing composition of the present embodiment is not particularly limited as long as the performance of the phosphor is not impaired within the intended range.
  • any inorganic material and any material can be used as long as it exhibits liquid properties under the desired use conditions, suitably disperses the phosphor according to the first embodiment of the present invention, and does not cause an undesirable reaction.
  • An organic material can be used, and examples thereof include a silicone resin, an epoxy resin, and a polyimide silicone resin.
  • the phosphor and the liquid medium content in the phosphor-containing composition of the present embodiment are arbitrary as long as the effects of the present embodiment are not significantly impaired, but for the liquid medium, the phosphor-containing composition of the present embodiment.
  • the total amount is usually 50% by weight or more, preferably 75% by weight or more, and usually 99% by weight or less, preferably 95% by weight or less.
  • the fluorescent substance containing composition of this embodiment may contain other components other than a fluorescent substance and a liquid medium, unless the effect of this embodiment is impaired remarkably.
  • 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and a ratio.
  • a second embodiment of the present invention is a light-emitting device including a first light emitter (excitation light source) and a second light emitter that emits visible light when irradiated with light from the first light emitter.
  • the second luminous body contains the phosphor according to the first embodiment of the present invention.
  • any one of the phosphors according to the first embodiment of the present invention may be used alone, or two or more thereof may be used in any combination and ratio.
  • the phosphor according to the first embodiment of the present invention for example, a phosphor that emits green region fluorescence under irradiation of light from an excitation light source is used.
  • the green phosphor in the first embodiment of the present invention preferably has an emission peak in a wavelength range of 500 nm or more and 560 nm or less.
  • the excitation source one having an emission peak in a wavelength range of less than 420 nm may be used.
  • the phosphor according to the first embodiment of the present invention has a light emission peak in a wavelength range of 500 nm to 560 nm, and the first light emitter has a light emission peak in a wavelength range of 300 nm to 460 nm.
  • this embodiment is not limited thereto.
  • the light-emitting device of this embodiment can be set as follows, for example. That is, the first light emitter has a light emission peak in the wavelength range of 300 nm to 460 nm, and the first phosphor of the second light emitter has a light emission peak in the wavelength range of 500 nm to 560 nm.
  • An embodiment using (red phosphor) can be employed.
  • the following fluorescent substance is used suitably, for example.
  • the Mn-activated fluoride phosphor include K 2 (Si, Ti) F 6 : Mn, K 2 Si 1-x Na x Al x F 6 : Mn (0 ⁇ x ⁇ 1)
  • sulfide phosphors include (Sr, Ca) S: Eu (CAS phosphor), La 2 O 2 S: Eu (LOS phosphor)
  • the garnet phosphor include (Y, Lu, Gd, Tb) 3 Mg 2 AlSi 2 O 12 : Ce
  • nanoparticles include CdSe
  • Examples of the nitride or oxynitride phosphor include (Sr, Ca) AlSiN 3 : Eu (S / CASN phosphor), (CaAlSiN 3 ) 1-x ⁇ (SiO 2 N 2 ) x : Eu (CASON fluorescence).
  • the half-value width of the emission spectrum of the red phosphor in the above embodiment is usually 90 nm or less, preferably 70 nm or less, more preferably 50 nm or less, and still more preferably. Is 30 nm or less, usually 5 nm or more, more preferably 10 nm or more.
  • a phosphor having a light emission peak in the range of 550 to 580 nm may be used.
  • the following phosphors are preferably used as the yellow phosphor.
  • Examples of the garnet phosphor include (Y, Gd, Lu, Tb, La) 3 (Al, Ga) 5 O 12 : (Ce, Eu, Nd),
  • Examples of the orthosilicate include (Ba, Sr, Ca, Mg) 2 SiO 4 : (Eu, Ce)
  • Examples of (acid) nitride phosphors include (Ba, Ca, Mg) Si 2 O 2 N 2 : Eu (SION phosphor), (Li, Ca) 2 (Si, Al) 12 (O, N 16 : (Ce, Eu) ( ⁇ -sialon phosphor), (Ca, Sr) AlSi 4 (O, N) 7 : (Ce, Eu) (1147 phosphor), (La, Ca, Y) 3 ( Al, Si) 6 N 11 : Ce (LSN phosphor) Etc.
  • the phosphor is preferably a garnet phosphor, and most preferably a YAG phosphor represented by Y 3 Al
  • the green phosphor may include a phosphor other than the phosphor according to the first embodiment of the present invention.
  • the following phosphors are preferably used.
  • the garnet phosphor include (Y, Gd, Lu, Tb, La) 3 (Al, Ga) 5 O 12 : (Ce, Eu, Nd), Ca 3 (Sc, Mg) 2 Si 3 O 12. : (Ce, Eu) (CSMS phosphor),
  • the silicate phosphor include (Ba, Sr, Ca, Mg) 3 SiO 10 : (Eu, Ce), (Ba, Sr, Ca, Mg) 2 SiO 4 : (Ce, Eu) (BSS phosphor).
  • oxide phosphor for example, (Ca, Sr, Ba, Mg) (Sc, Zn) 2 O 4 : (Ce, Eu) (CASO phosphor)
  • oxide phosphor for example, (Ca, Sr, Ba, Mg) (Sc, Zn) 2 O 4 : (Ce, Eu) (CASO phosphor)
  • (acid) nitride phosphors include (Ba, Sr, Ca, Mg) Si 2 O 2 N 2 : (Eu, Ce), Si 6-z Al z O z N 8-z : (Eu, Ce) ( ⁇ -sialon phosphor) (0 ⁇ z ⁇ 1), (Ba, Sr, Ca, Mg, La) 3 (Si, Al) 6 O 12 N 2 : (Eu, Ce) (BSON phosphor)
  • Examples of the aluminate phosphor include (Ba, Sr, Ca, Mg) 2 Al 10 O 17 : (Eu, Mn) (
  • the light emitting device of this embodiment has a first light emitter (excitation light source) and uses at least the phosphor according to the first embodiment of the present invention as the second light emitter,
  • the configuration is not limited, and a known device configuration can be arbitrarily employed.
  • Examples of the device configuration and the light emitting device include those described in Japanese Patent Application Laid-Open No. 2007-291352.
  • examples of the form of the light emitting device include a shell type, a cup type, a chip on board, a remote phosphor, and the like.
  • the use of the light-emitting device according to the second embodiment of the present invention is not particularly limited and can be used in various fields where a normal light-emitting device is used, but has a wide color reproduction range and color rendering properties. In particular, it is particularly preferably used as a light source for illumination devices and image display devices.
  • a third embodiment of the present invention is an illumination device including the light emitting device according to the second embodiment of the present invention as a light source.
  • the light-emitting device according to the second embodiment of the present invention is applied to a lighting device, the light-emitting device as described above may be appropriately incorporated into a known lighting device.
  • a surface emitting illumination device in which a large number of light emitting devices are arranged on the bottom surface of the holding case can be used.
  • an image display device comprising the light emitting device according to the second embodiment of the present invention as a light source.
  • the specific configuration of the image display device is not limited, but it is preferably used with a color filter.
  • the image display device is a color image display device using color liquid crystal display elements
  • the light emitting device is used as a backlight, a light shutter using liquid crystal, and a color filter having red, green, and blue pixels; By combining these, an image display device can be formed.
  • Luminescent characteristics The sample was packed in a copper sample holder, and the excitation emission spectrum and emission spectrum were measured using a fluorescence spectrophotometer FP-6500 (manufactured by JASCO). During the measurement, the slit width of the light-receiving side spectroscope was set to 1 nm and the measurement was performed. The emission peak wavelength (hereinafter sometimes referred to as “peak wavelength”) and the half width of the emission peak were read from the obtained emission spectrum.
  • peak wavelength The emission peak wavelength (hereinafter sometimes referred to as “peak wavelength”) and the half width of the emission peak were read from the obtained emission spectrum.
  • phosphors were prepared as follows. The raw materials were weighed with an electronic balance so as to have the weights shown in Table 1 below, placed in an alumina mortar, and ground and mixed until uniform. Further, 1.00 g of Mg 3 N 2 (manufactured by Shellac Co.) was added as a flux to this mixed powder, and further pulverized and mixed. These operations were performed in a glove box filled with Ar gas.
  • Example 1 The result of SEM observation of the phosphor of Example 1 is shown in FIG.
  • the single crystal of Example 1 was selected from SEM observation, and elemental analysis (EPMA measurement) was performed in order to examine the constituent elements and their ratios.
  • Elements detected in EPMA were Eu, Al, Si, and N, and magnesium and oxygen were below the detection limit.
  • the atomic ratio of Eu: Al: Si was 0.016 (1): 0.048 (1): 2.95 (2). Numbers in parentheses represent standard deviation. It was confirmed that the mixing of oxygen during firing was almost zero.
  • Example 1 the single crystal structure analysis of Example 1 was implemented.
  • the unit cell volume of the phosphor of Example 1 was 146.454 3 .
  • the excitation / emission spectrum of the phosphor of Example 1 is shown in FIG.
  • the excitation spectrum is obtained by monitoring emission at 540 nm.
  • the emission spectrum is a measurement result when excited at 450 nm.
  • the phosphor of Example 1 showed an emission spectrum with an emission peak wavelength of 540 nm and a half width of 70 nm, and was confirmed to show green emission.
  • Examples 2 and 3 For the phosphors of Examples 2 and 3, single crystals of Examples 2 and 3 were selected from SEM observation, and EPMA composition analysis was performed. Elements detected in EPMA were Eu, Al, Si, and N as in Example 1, and magnesium and oxygen were below the detection limit. As a result of quantitative analysis, the atomic ratio of Eu: Al: Si was 0.008 (1): 0.039 (1): 2.96 (2) in Example 2, and was 0.8 in Example 3. 006 (1): 0.030 (1): 2.97 (2). Numbers in parentheses represent standard deviation. It was confirmed that the mixing of oxygen during firing was almost zero.
  • the phosphor of Example 4 was subjected to composition analysis by ICP and O / N analysis by an oxygen nitrogen hydrogen analyzer. As a result, oxygen was below the detection limit, and the atomic ratio of Eu: Al: Si was 0.003: 0.04: 2.96.
  • Table 2 shows the lattice constants and unit cell volumes of the phosphors of Examples 2 to 7 refined from the obtained powder X-ray diffraction pattern. In Examples 2 to 7, phosphors having a structure similar to that of Example 1 were obtained in a substantially single phase.
  • the phosphor obtained according to the first embodiment of the present invention can change the ratio of Eu: Al: Si in the crystal to change the a-axis from 7.604 to 7.6265 and the c-axis from 2.906 to vary from 2.908A, accordingly, the unit cell volume was also found to vary from 145.53A 3 to 146.454 ⁇ 3.
  • the emission spectra of the phosphors of Examples 2, 3, 5, and 7 when excited with light having a wavelength of 450 nm are shown in FIG.
  • Table 3 shows the emission peak wavelength, the half width, and the chromaticity read from the emission spectrum when excited with light having a wavelength of 450 nm for the phosphors of Examples 2 to 7.
  • the phosphor obtained by the first embodiment of the present invention changes the Eu: Al: Si ratio in the crystal to change the emission peak wavelength in the emission spectrum from 513 nm to 540 nm, and the half width from 40 nm. It became clear that it was possible to change to 76 nm. That is, light emission of blue green to yellow green can be obtained by using an arbitrary composition.
  • Example 8 A phosphor was prepared as follows using Eu 2 O 3 , Si 3 N 4 , AlN, and Al 2 O 3 as phosphor materials.
  • Si 3 N 4 ⁇ -type Si 3 N 4 (manufactured by Ube Industries, Ltd .: SN-E10) was heat-treated at 1950 ° C. for 12 hours in a nitrogen atmosphere at a pressure of 0.92 MPa to make all ⁇ -type Si 3 N 4 It was used.
  • the raw materials were weighed with an electronic balance so as to have the respective weights shown in Table 4 below, placed in an alumina mortar, and ground and mixed until uniform in the air.
  • magnesium nitride was not used.
  • Example 8 was all ⁇ -SiAlON single phase.
  • Example 8 The composition analysis by ICP of Example 8 and the O / N analysis by an oxygen nitrogen hydrogen analyzer were performed. As a result, oxygen was detected, and the atomic ratio of Eu: Al: Si: O: N was 0.003: 0.05: 2.95: 0.04: 3.91.
  • Table 5 shows the emission peak wavelength, half-value width, and chromaticity read from the emission spectrum when excited with light having a wavelength of 450 nm for the phosphors of Example 4 and Example 8. It has been clarified that by reducing oxygen in the crystal structure, the emission peak wavelength is shortened and the half width is narrowed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

A phosphor characterized by including a crystal phase represented by formula [2]. [2]: MmAlaOxSibNd (In formula [2], M represents an activating element, 0 < m ≤ 0.04, a + b = 3, 0 < a ≤ 0.08, 3.6 ≤ d ≤ 4.2, and x < a)

Description

蛍光体、発光装置、照明装置及び画像表示装置Phosphor, light emitting device, lighting device, and image display device
 本発明は、蛍光体、発光装置、照明装置、及び画像表示装置に関する。 The present invention relates to a phosphor, a light emitting device, a lighting device, and an image display device.
 近年、省エネルギーの流れを受け、LEDを用いた照明やバックライトの需要が増加している。ここで用いられるLEDは、青または近紫外波長の光を発するLEDチップ上に、蛍光体を配置した白色発光LEDである。
 このようなタイプの白色発光LEDとしては、青色LEDチップ上に、青色LEDチップからの青色光を励起光として赤色に発光する窒化物蛍光体と緑色に発光する蛍光体を用いたものが近年用いられている。
 特に、ディスプレイ用途においては、これら青色、緑色及び赤色の3色の中で、緑色は人間の眼に対する視感度が特に高く、ディスプレイの全体の明るさに大きく寄与するため、他の2色に比べて、とりわけ重要であり、発光特性にすぐれた緑色蛍光体の開発が所望されている。
 緑色に発光する蛍光体として、例えば、Sr2.7Si13Al21:Eu0.3の組成式で表される蛍光体(特許文献1)や、Si6-zAl8-z(0<z<4.2)の組成物で表される蛍光体(特許文献2)、β型Si結晶構造を持つ結晶にEuが固溶したサイアロン結晶を含む蛍光体(特許文献3)などが開示されている。
In recent years, with the trend of energy saving, the demand for lighting and backlights using LEDs is increasing. The LED used here is a white light emitting LED in which a phosphor is arranged on an LED chip that emits light of blue or near ultraviolet wavelength.
As such a type of white light emitting LED, a LED using a nitride phosphor that emits red light using blue light from the blue LED chip as an excitation light and a phosphor that emits green light on a blue LED chip has recently been used. It has been.
Especially in display applications, among these three colors of blue, green and red, green has a particularly high visual sensitivity to human eyes and contributes greatly to the overall brightness of the display. Therefore, development of a green phosphor that is particularly important and excellent in light emission characteristics is desired.
Examples of phosphors that emit green light include phosphors represented by a composition formula of Sr 2.7 Si 13 Al 3 O 2 N 21 : Eu 0.3 (Patent Document 1), and Si 6-z Al z O. z N 8-z (0 < z <4.2) phosphor represented by the composition of (Patent Document 2), comprising a sialon crystal in which Eu is solid-solved in crystal having a β-Si 3 N 4 crystal structure A phosphor (Patent Document 3) and the like are disclosed.
国際公開第2012/124480号公報International Publication No. 2012/124480 特開2005-255895号公報JP 2005-255895 A 国際公開第2006/101095号公報International Publication No. 2006/101095
 上記したように様々な蛍光体が開発されているが、発光特性が優れた蛍光体が求められている。
 本発明は、上記課題に鑑みて、従来の蛍光体とは異なる結晶構造を有し、発光特性が良好でLED用途で有効に用いられる新規な蛍光体を提供する。
Various phosphors have been developed as described above, but phosphors having excellent light emission characteristics are demanded.
In view of the above problems, the present invention provides a novel phosphor that has a crystal structure different from that of conventional phosphors, has good light emission characteristics, and is effectively used in LED applications.
 本発明者等は上記課題に鑑み、蛍光体の新規探索を鋭意検討したところ、LED用途に有効に用いられる、従来の蛍光体とは異なる新規な蛍光体に想到し本発明に到達した。
 本発明は、以下の通りである。
〔1〕
 下記式[2]で表される結晶相を含むことを特徴とする、蛍光体。
 MAlSi [2]
(上記式[2]中、
 Mは、付活元素を表し、
  0<m≦0.04
  a+b=3
  0<a≦0.08
  3.6≦d≦4.2
  x<a)
〔2〕
 下記式[1]で表される結晶相を含むことを特徴とする、蛍光体。
 MAlSi [1]
(上記式[1]中、
 Mは、付活元素を表し、
  0<m≦0.04
  a+b=3
  0<a≦0.08
  3.6≦d≦4.2)
〔3〕
 前記式[1]または[2]におけるM元素がEuであり、β型Si結晶構造を有する結晶にEuが固溶したサイアロン結晶の結晶構造である、〔1〕または〔2〕に記載の蛍光体。
〔4〕
 300nm以上、460nm以下の波長を有する励起光を照射することにより、500nm以上、560nm以下の範囲に発光ピーク波長を有することを特徴とする、〔1〕~〔3〕のいずれかに記載の蛍光体。
〔5〕
 第1の発光体と、該第1の発光体からの光の照射によって可視光を発する第2の発光体とを備え、該第2の発光体が〔1〕~〔4〕のいずれかに記載の蛍光体を含むことを特徴とする発光装置。
〔6〕
 〔5〕に記載の発光装置を光源として備えることを特徴とする照明装置。
〔7〕
 〔5〕に記載の発光装置を光源として備えることを特徴とする画像表示装置。
In view of the above-mentioned problems, the present inventors diligently studied new phosphors. As a result, they arrived at the present invention by conceiving a new phosphor that is effectively used for LED applications and different from conventional phosphors.
The present invention is as follows.
[1]
A phosphor comprising a crystal phase represented by the following formula [2].
M m Al a O x Si b N d [2]
(In the above formula [2],
M represents an activation element,
0 <m ≦ 0.04
a + b = 3
0 <a ≦ 0.08
3.6 ≦ d ≦ 4.2
x <a)
[2]
A phosphor comprising a crystal phase represented by the following formula [1].
M m Al a Si b N d [1]
(In the above formula [1],
M represents an activation element,
0 <m ≦ 0.04
a + b = 3
0 <a ≦ 0.08
3.6 ≦ d ≦ 4.2)
[3]
In [1] or [2], the M element in the formula [1] or [2] is a sialon crystal in which Eu is dissolved in a crystal having a β-type Si 3 N 4 crystal structure. The phosphor described.
[4]
The fluorescence according to any one of [1] to [3], which has an emission peak wavelength in a range of 500 nm to 560 nm by irradiating excitation light having a wavelength of 300 nm to 460 nm. body.
[5]
A first illuminant and a second illuminant that emits visible light when irradiated with light from the first illuminant, wherein the second illuminant is any one of [1] to [4] A light emitting device comprising the phosphor described above.
[6]
An illumination device comprising the light-emitting device according to [5] as a light source.
[7]
An image display device comprising the light-emitting device according to [5] as a light source.
 本発明の新規蛍光体は、従来の蛍光体とは異なる結晶構造を有し、発光特性に優れるためLED用途に有効に用いられる。
 その為、本発明の新規蛍光体を用いた発光装置は、演色性に優れる。更に、本発明の発光装置を含む、照明装置及び画像表示装置は、高品質である。
The novel phosphor of the present invention has a crystal structure different from that of conventional phosphors and is excellent in light emission characteristics, so that it is effectively used for LED applications.
Therefore, the light emitting device using the novel phosphor of the present invention is excellent in color rendering. Furthermore, the illumination device and the image display device including the light emitting device of the present invention are of high quality.
実施例1で得られた蛍光体の走査型電子顕微鏡による画像である(図面代用写真)。It is an image by the scanning electron microscope of the fluorescent substance obtained in Example 1 (drawing substitute photograph). 実施例1で得られた蛍光体の励起・発光スペクトルを示す図である。破線は、励起スペクトルを表し、実線は、発光スペクトルを表す。FIG. 3 is a diagram showing excitation / emission spectra of the phosphor obtained in Example 1. The broken line represents the excitation spectrum, and the solid line represents the emission spectrum. 実施例3、4、5、7で得られた蛍光体の粉末X線回折(XRD)パターンを示す図である。It is a figure which shows the powder X-ray-diffraction (XRD) pattern of the fluorescent substance obtained in Example 3, 4, 5, 7. 実施例2、3、5、7で得られた蛍光体の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the fluorescent substance obtained in Example 2, 3, 5, 7. 実施例4、8で得られた蛍光体の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the fluorescent substance obtained in Example 4, 8.
 以下、本発明について実施形態や例示物を示して説明するが、本発明は以下の実施形態や例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、本明細書中の蛍光体の組成式において、各組成式の区切りは読点(、)で区切って表わす。また、カンマ(,)で区切って複数の元素を列記する場合には、列記された元素のうち一種又は二種以上を任意の組み合わせ及び組成で含有していてもよいことを示している。例えば、「(Ca,Sr,Ba)Al:Eu」という組成式は、「CaAl:Eu」と、「SrAl:Eu」と、「BaAl:Eu」と、「Ca1-xSrAl:Eu」と、「Sr1-xBaAl:Eu」と、「Ca1-xBaAl:Eu」と、「Ca1-x-ySrBaAl:Eu」(但し、式中、0<x<1、0<y<1、0<x+y<1である。)とを全て包括的に示しているものとする。
Hereinafter, the present invention will be described with reference to embodiments and examples. However, the present invention is not limited to the following embodiments and examples, and may be arbitrarily modified without departing from the gist of the present invention. Can be implemented.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. Further, in the phosphor composition formula in this specification, each composition formula is delimited by a punctuation mark (,). In addition, when a plurality of elements are listed separated by commas (,), one or two or more of the listed elements may be included in any combination and composition. For example, the composition formula “(Ca, Sr, Ba) Al 2 O 4 : Eu” has “CaAl 2 O 4 : Eu”, “SrAl 2 O 4 : Eu”, and “BaAl 2 O 4 : Eu”. “Ca 1-x Sr x Al 2 O 4 : Eu”, “Sr 1-x Ba x Al 2 O 4 : Eu”, “Ca 1-x Ba x Al 2 O 4 : Eu”, "Ca 1-x-y Sr x Ba y Al 2 O 4: Eu " (. in the formula, 0 <x <1,0 <y <1,0 < a x + y <1) all the comprehensive It shall be shown in
 本発明は、第一の実施態様である蛍光体、第二の実施態様である発光装置、第三の実施態様である照明装置、第四の実施態様である画像表示装置を含む。 The present invention includes the phosphor according to the first embodiment, the light emitting device according to the second embodiment, the illumination device according to the third embodiment, and the image display device according to the fourth embodiment.
[蛍光体]
 本発明の第一の実施態様に係る蛍光体は、下記式[1]で表される結晶相を含む。
 MAlSi [1]
(上記式[1]中、
 Mは、付活元素を表し、
  0<m≦0.04
  a+b=3
  0<a≦0.08
  3.6≦d≦4.2)
[Phosphor]
The phosphor according to the first embodiment of the present invention includes a crystal phase represented by the following formula [1].
M m Al a Si b N d [1]
(In the above formula [1],
M represents an activation element,
0 <m ≦ 0.04
a + b = 3
0 <a ≦ 0.08
3.6 ≦ d ≦ 4.2)
 M元素は、ユーロピウム(Eu)、マンガン(Mn)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)及びイッテルビウム(Yb)からなる群から選ばれる1種以上の元素を表す。Mは、少なくともEuを含むことが好ましく、Euであることがより好ましい。 M elements are europium (Eu), manganese (Mn), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium It represents one or more elements selected from the group consisting of (Er), thulium (Tm) and ytterbium (Yb). M preferably contains at least Eu, and more preferably Eu.
 さらに、Euは、その一部がCe、Pr、Sm、Tb及びYbよりなる群から選ばれる少なくとも1種の元素で置換されていてもよく、発光量子効率の点でCeがより好ましい。
 つまり、Mは、Eu及び/又はCeであることが更に好ましく、より好ましくはEuである。
Further, a part of Eu may be substituted with at least one element selected from the group consisting of Ce, Pr, Sm, Tb, and Yb, and Ce is more preferable in terms of emission quantum efficiency.
That is, M is more preferably Eu and / or Ce, and more preferably Eu.
 付活元素全体に対するEuの割合は、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が特に好ましい。
 Alは、アルミニウムを表す。Alは、化学的に類似するその他の3価の元素、例えば、ホウ素(B)、ガリウム(Ga)、インジウム(In)、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、ガドリニウム(Gd)、ルテチウム(Lu)などで一部置換されていてもよい。
The ratio of Eu with respect to the entire activation element is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more.
Al represents aluminum. Al is another trivalent element that is chemically similar, for example, boron (B), gallium (Ga), indium (In), scandium (Sc), yttrium (Y), lanthanum (La), gadolinium (Gd ), Lutetium (Lu) or the like.
 Siは、ケイ素を表す。Siは、化学的に類似するその他の4価の元素、例えば、ゲルマニウム(Ge)、スズ(Sn)、チタニウム(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)などで一部置換されていてもよい。 Si represents silicon. Si may be partially substituted with other chemically similar tetravalent elements such as germanium (Ge), tin (Sn), titanium (Ti), zirconium (Zr), and hafnium (Hf). Good.
 式[1]中、Nは、窒素元素を表す。Nは、一部その他の元素、例えば、酸素(O)、ハロゲン原子(フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I))等で置換されていてもよい。 In the formula [1], N represents a nitrogen element. N may be partially substituted with other elements such as oxygen (O), halogen atoms (fluorine (F), chlorine (Cl), bromine (Br), iodine (I)) and the like.
 尚、酸素は、原料金属中の不純物として混入する場合、粉砕工程、窒化工程などの製造プロセス時に導入される場合などが考えられ、本実施態様の蛍光体においては不可避的に混入してしまうものである。
 また、ハロゲン原子が含まれる場合、原料金属中の不純物としての混入や、粉砕工程、窒化工程などの製造プロセス時に導入される場合などが考えられ、特に、フラックスとしてハロゲン化物を用いる場合、蛍光体中に含まれてしまう場合がある。
 mは、付活元素Mの含有量を表し、その範囲は、通常0<m≦0.04であり、下限値は、好ましくは0.0001、より好ましくは0.0005、さらに好ましくは0.001、さらに好ましくは、0.005、またその上限値は、好ましくは0.02、更に好ましくは0.01、特に好ましくは0.005である。
In addition, when oxygen is mixed as an impurity in the raw material metal, it may be introduced during a manufacturing process such as a pulverization process or a nitriding process, and is inevitably mixed in the phosphor of this embodiment. It is.
In addition, when halogen atoms are included, it may be mixed as an impurity in the raw material metal or introduced during a manufacturing process such as a pulverization process or a nitriding process. In particular, when a halide is used as a flux, a phosphor May be included.
m represents the content of the activating element M, the range is usually 0 <m ≦ 0.04, and the lower limit is preferably 0.0001, more preferably 0.0005, and still more preferably 0.00. 001, more preferably 0.005, and the upper limit thereof is preferably 0.02, more preferably 0.01, and particularly preferably 0.005.
 aは、Alの含有量を表し、その範囲は、通常0<a≦0.08であり、下限値は、好ましくは0.0001、より好ましくは0.001、さらに好ましくは0.005であり、また上限値は、好ましくは0.06、より好ましくは0.04である。
 bは、Si元素の含有量を表す。
 aとbの相互の関係は、
 a+b=3
 を満たす。
 dは、Nの含有量を表し、その範囲は、通常3.6≦d≦4.2であり、下限値は、好ましくは3.8、より好ましくは3.9、特に好ましくは3.95、また上限値は、好ましくは4.1、より好ましくは4.05である。
a represents the content of Al, the range is usually 0 <a ≦ 0.08, and the lower limit is preferably 0.0001, more preferably 0.001, and still more preferably 0.005. The upper limit is preferably 0.06, more preferably 0.04.
b represents the content of Si element.
The relationship between a and b is
a + b = 3
Meet.
d represents the content of N, and the range thereof is generally 3.6 ≦ d ≦ 4.2, and the lower limit is preferably 3.8, more preferably 3.9, and particularly preferably 3.95. The upper limit is preferably 4.1, more preferably 4.05.
 いずれの含有量も、上記した範囲であると、得られる蛍光体の発光特性、特に発光輝度が良好である点で好ましい。 Any content is in the above-described range, which is preferable in terms of good light emission characteristics of the obtained phosphor, particularly light emission luminance.
 本実施態様の蛍光体は、酸素が混入される場合であっても、結晶構造内のSi-Nが、Al-Oに一部置換されることによって、その結晶構造を維持することができる。Siに対してAlを多くする場合、電荷補償の関係を保ちNサイトにOを入れることができる。 In the phosphor of this embodiment, even when oxygen is mixed, the crystal structure can be maintained by partially replacing Si—N in the crystal structure with Al—O. When Al is increased relative to Si, O can be introduced into the N site while maintaining the charge compensation relationship.
 一方で、本実施態様の蛍光体は、組成に含まれる酸素がない、もしくは極めて少ないことを特徴とする。なお、本明細書において、組成中に含まれる酸素がないことは、蛍光体の粉体を、後述するEPMAや酸素窒素水素分析装置にて元素分析した際に、酸素が検出限界以下であることと同義である。本実施態様の蛍光体がAlよりも酸素の含有量が少ない場合に、どのように電荷バランスを補償しているのか定かではないが、一部のAlはEuと対になって置換されたり、欠陥を導入したりすることによって、局所的にバランスを保っている可能性が考えられる。
 この場合、Al/Euは0.05以上が好ましく、0.10以上がより好ましく、0.2以上がさらに好ましく、0.5以上がよりさらに好ましく、1.0以上が特に好ましい。
On the other hand, the phosphor of the present embodiment is characterized in that the composition contains no or very little oxygen. In this specification, the absence of oxygen contained in the composition means that oxygen is below the detection limit when the phosphor powder is subjected to elemental analysis using an EPMA or oxygen-nitrogen / hydrogen analyzer described later. It is synonymous with. Although it is not certain how the charge balance is compensated when the phosphor of this embodiment has a lower oxygen content than Al, some Al is paired with Eu and substituted, It may be possible to maintain a local balance by introducing defects.
In this case, Al / Eu is preferably 0.05 or more, more preferably 0.10 or more, further preferably 0.2 or more, still more preferably 0.5 or more, and particularly preferably 1.0 or more.
 本実施態様の蛍光体の別の態様として、下記式[2]で表される結晶相を含むことを特徴とする、蛍光体が挙げられる。
 MAlSi [2]
(上記式[2]中、
 Mは、付活元素を表し、
  0<m≦0.04
  a+b=3
  0<a≦0.08
  3.6≦d≦4.2
  x<a)
Another aspect of the phosphor of the present embodiment includes a phosphor characterized by including a crystal phase represented by the following formula [2].
M m Al a O x Si b N d [2]
(In the above formula [2],
M represents an activation element,
0 <m ≦ 0.04
a + b = 3
0 <a ≦ 0.08
3.6 ≦ d ≦ 4.2
x <a)
 式中、M元素、Al、Si、Nおよびm、a、b、dの値については式[1]と同様に考えられる。
 xは、酸素(O)の含有量を表し、その範囲は特に限定されないが、x<aであることが好ましい。つまり、AlよりもOの含有量が少ないことが好ましい。これは、上述の通り、Al-Oでない形態でAlが結晶構造中に導入されることにより、酸素が低減された蛍光体を得ることができることを意味する。xは0.05以下であることが好ましく、より好ましくは0.04以下、さらに好ましくは0.03以下、さらに好ましくは0.01以下、特に好ましくはEPMAや酸素窒素水素分析装置を用いた元素分析によってOが検出限界以下であって、組成式中に含まれないこと(すなわち、x=0)である。したがって、xは好ましくは0以上であり、x=0の場合とは上記式[1]に相当する。
 x/aは1.0以下であることが好ましく、より好ましくは0.8以下、さらに好ましくは0.6以下、よりさらに好ましくは0.4以下、特に好ましくは0.2以下、格段に好ましくは上記同様に、EPMAや酸素窒素水素分析装置を用いた元素分析によって酸素が検出限界以下であって、組成式中に含まれない(すなわち、x=0であることによりx/a=0)ことである。
 また、AlよりもOの含有量が少ないことによって生じ得る欠陥の導入が多すぎるとキラーサイトとなり発光特性を低下させることがある。そのため、x+dは好ましくは3.6以上、より好ましくは3.7以上、さらに好ましくは3.8以上、よりさらに好ましくは3.9以上、特に好ましくは3.95以上である。
In the formula, the values of M element, Al, Si, N, and m, a, b, and d are considered in the same manner as in formula [1].
x represents the content of oxygen (O), and the range thereof is not particularly limited, but it is preferable that x <a. That is, it is preferable that the content of O is smaller than that of Al. As described above, this means that a phosphor with reduced oxygen can be obtained by introducing Al into the crystal structure in a form other than Al—O. x is preferably 0.05 or less, more preferably 0.04 or less, further preferably 0.03 or less, still more preferably 0.01 or less, and particularly preferably an element using an EPMA or an oxygen-nitrogen / hydrogen analyzer. According to the analysis, O is below the detection limit and is not included in the composition formula (that is, x = 0). Therefore, x is preferably 0 or more, and the case of x = 0 corresponds to the above equation [1].
x / a is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.6 or less, still more preferably 0.4 or less, particularly preferably 0.2 or less, and particularly preferably As described above, oxygen is below the detection limit by elemental analysis using EPMA or an oxygen-nitrogen-hydrogen analyzer, and is not included in the composition formula (ie, x / a = 0 because x = 0) That is.
In addition, if there are too many defects that can be generated due to a smaller amount of O than Al, a killer site may be formed and the light emission characteristics may be deteriorated. Therefore, x + d is preferably 3.6 or more, more preferably 3.7 or more, still more preferably 3.8 or more, still more preferably 3.9 or more, and particularly preferably 3.95 or more.
{蛍光体の物性について}
[結晶構造]
 本実施態様の蛍光体の結晶構造は、β型Si結晶構造を有する結晶にEuが固溶したサイアロン結晶の結晶構造であることが好ましい。Si結晶構造としては、一般にα型とβ型があることが知られているが、本実施態様の蛍光体においては、β型であることにより、所望の発光波長と半値幅を有する発光ピークが得られるため好ましい。
{Physical properties of phosphor}
[Crystal structure]
The crystal structure of the phosphor according to the present embodiment is preferably a crystal structure of a sialon crystal in which Eu is dissolved in a crystal having a β-type Si 3 N 4 crystal structure. As the Si 3 N 4 crystal structure, it is generally known that there are α-type and β-type, but the phosphor of this embodiment has a desired emission wavelength and half-value width due to being β-type. Since an emission peak is obtained, it is preferable.
[格子定数]
 本実施態様の蛍光体の格子定数は、結晶を構成する元素の種類により変化するが、下記の範囲である。
 a軸の格子定数(格子定数La)は、通常7.600Å≦La≦7.630Åの範囲であり、その下限値は、好ましくは7.601Å、より好ましくは7.602Å、更に好ましくは7.603Å、また上限値は、好ましくは7.620Å、より好ましくは7.615Åである。
 尚、b軸の格子定数(格子定数Lb)は、a軸の格子定数と同じである。
 c軸の格子定数(格子定数Lc)は、通常2.90Å≦Lc≦2.91Åの範囲であり、その下限値は、好ましくは2.903Å、より好ましくは2.906Å、また上限値は、好ましくは2.909Å、より好ましくは2.908Å、さらに好ましくは2.907Åである。
[Lattice constant]
The lattice constant of the phosphor of this embodiment varies depending on the type of elements constituting the crystal, but is in the following range.
The a-axis lattice constant (lattice constant La) is usually in the range of 7.600 Å ≦ La ≦ 7.630 、, and the lower limit thereof is preferably 7.601 Å, more preferably 7.602 Å, and even more preferably 7.60 Å. The upper limit is preferably 603 Å, and more preferably 7.615 よ り.
The b-axis lattice constant (lattice constant Lb) is the same as the a-axis lattice constant.
The c-axis lattice constant (lattice constant Lc) is usually in the range of 2.90Å ≦ Lc ≦ 2.91Å, and the lower limit is preferably 2.903Å, more preferably 2.906Å, and the upper limit is It is preferably 2.909 mm, more preferably 2.908 mm, and even more preferably 2.907 mm.
 尚、いずれの場合も上記範囲内であると、本実施態様に係る蛍光体が安定的に生成されて、不純物相の生成が抑制される為、得られる蛍光体の発光輝度が良好である。 In any case, if the value is within the above range, the phosphor according to the present embodiment is stably generated, and the generation of the impurity phase is suppressed, so that the emission luminance of the obtained phosphor is good.
[単位格子体積]
 本実施態様の蛍光体における、格子定数から算出される単位格子体積(V)は、好ましくは、145.30Å以上、より好ましくは145.35Å以上、更に好ましくは145.40Å以上、また、好ましくは146.50Å以下、より好ましくは146.30Å以下、更に好ましくは146.10Å以下である。
 単位格子体積が大きすぎる、もしくは単位格子体積が小さすぎると骨格構造が不安定化して別の構造の不純物が副生するようになり、発光強度の低下や色純度の低下を招く傾向がある。
[Unit cell volume]
In the phosphor of the present embodiment, the unit cell volume calculated from the lattice constant (V) is preferably, 145.30A 3 or more, more preferably 145.35A 3 or more, more preferably 145.40A 3 or more, preferably 146.50A 3 or less, more preferably 146.30A 3 or less, further preferably 146.10A 3 or less.
If the unit cell volume is too large or the unit cell volume is too small, the skeletal structure becomes unstable and impurities of another structure are produced as a by-product, which tends to cause a decrease in emission intensity and color purity.
[空間群]
 本実施態様に係る蛍光体における結晶系は、六方晶系(Hexagonal)である。
 本実施態様の蛍光体における空間群は、単結晶X線回折にて区別しうる範囲において統計的に考えた平均構造が上記の長さの繰り返し周期を示していれば特に限定されないが、「International Tables for Crystallography(Third,revised edition),Volume A SPACE-GROUP SYMMETRY」に基づく173番(P6)、もしくは176番(P6/m)に属するものであることが好ましい。
 ここで、格子定数及び空間群は常法に従って求めることできる。格子定数であれば、X線回折及び中性子線回折の結果をリートベルト(Rietveld)解析して求めることができ、空間群であれば、電子線回折により求めることができる。
[Space group]
The crystal system in the phosphor according to this embodiment is a hexagonal system.
The space group in the phosphor of the present embodiment is not particularly limited as long as the average structure statistically considered within a range that can be distinguished by single crystal X-ray diffraction shows a repetition period of the above length, but “International It is preferable to belong to No. 173 (P6 3 ) or No. 176 (P6 3 / m) based on “Tables for Crystallography (Third, Revised Edition), Volume A SPACE-GROUP SYMMETRY”.
Here, the lattice constant and the space group can be obtained according to a conventional method. If it is a lattice constant, the results of X-ray diffraction and neutron diffraction can be obtained by Rietveld analysis, and if it is a space group, it can be obtained by electron beam diffraction.
[発光色]
 本実施態様の蛍光体の発光色は、化学組成等を調整することにより、波長300nm~500nmといった近紫外領域~青色領域の光で励起され、青色、青緑色、緑色、黄緑色、黄色、橙色、赤色等、所望の発光色とすることができる。
[Luminescent color]
The emission color of the phosphor of this embodiment is excited by light in the near ultraviolet region to the blue region having a wavelength of 300 nm to 500 nm by adjusting the chemical composition and the like, and is blue, blue green, green, yellow green, yellow, orange , Red, etc., and a desired emission color can be obtained.
[発光スペクトル]
 本実施態様の蛍光体は、300nm以上、460nm以下の波長(特に、波長400nmもしくは450nm)の光で励起した場合における発光スペクトルを測定した場合に、以下の特性を有することが好ましい。
 本実施態様の蛍光体は、上述の発光スペクトルにおけるピーク波長が、通常500nm以上、好ましくは510nm以上、より好ましくは520nm以上である。また、通常560nm以下、好ましくは550nm以下、より好ましくは545nm以下である。
 上記範囲内であると、得られる蛍光体において、良好な緑色を呈するため、好ましい。
[Emission spectrum]
The phosphor of this embodiment preferably has the following characteristics when an emission spectrum is measured when excited with light having a wavelength of 300 nm or more and 460 nm or less (in particular, a wavelength of 400 nm or 450 nm).
The phosphor of this embodiment has a peak wavelength in the above-described emission spectrum of usually 500 nm or more, preferably 510 nm or more, more preferably 520 nm or more. Moreover, it is 560 nm or less normally, Preferably it is 550 nm or less, More preferably, it is 545 nm or less.
It is preferable for it to be in the above-mentioned range since the obtained phosphor exhibits a good green color.
[発光スペクトルの半値幅]
 本実施態様の蛍光体は、上述の発光スペクトルにおける発光ピークの半値幅が、通常70nm以下、好ましくは60nm以下、また通常25nm以上、好ましくは30nm以上である。
 上記範囲内とすることで、液晶ディスプレイなどの画像表示装置に使用することが可能となる。
 より色純度を低下させずに画像表示装置の色再現範囲を広くするために使用する場合は、発光ピークの半値幅は50nm以下が好ましく、48nm以下がより好ましく、45nm以下がさらに好ましく、43nm以下が特に好ましい。
[Half width of emission spectrum]
In the phosphor of this embodiment, the half-value width of the emission peak in the above-mentioned emission spectrum is usually 70 nm or less, preferably 60 nm or less, and usually 25 nm or more, preferably 30 nm or more.
By being within the above range, it can be used for an image display device such as a liquid crystal display.
When used for widening the color reproduction range of the image display device without further reducing the color purity, the half-value width of the emission peak is preferably 50 nm or less, more preferably 48 nm or less, further preferably 45 nm or less, and 43 nm or less. Is particularly preferred.
[発光スペクトルにおける強度比]
 上述の画像表示装置において色純度を低下させず、色再現範囲を広くするために本実施態様の蛍光体を使用する場合は、上述の半値幅の範囲に加えて、発光スペクトルのピーク比が下記の範囲であるとよい。
 発光スペクトルにおける512nmの強度をP1、525nmの強度をP2としたとき、P1/P2の値は通常0.1以上であり、好ましくは0.3以上、より好ましくは0.5以上、さらに好ましくは0.7以上、よりさらに好ましくは0.9以上、特に好ましくは1.1以上、格段に好ましくは1.3以上であり、通常3.0以下、好ましくは2.5以下である。
[Intensity ratio in emission spectrum]
In the case of using the phosphor of the present embodiment in order to widen the color reproduction range without reducing the color purity in the image display device described above, the peak ratio of the emission spectrum is as follows in addition to the above-described half-value width range. It is good to be in the range.
When the intensity of 512 nm in the emission spectrum is P1, and the intensity of 525 nm is P2, the value of P1 / P2 is usually 0.1 or more, preferably 0.3 or more, more preferably 0.5 or more, and further preferably It is 0.7 or more, more preferably 0.9 or more, particularly preferably 1.1 or more, and particularly preferably 1.3 or more, usually 3.0 or less, preferably 2.5 or less.
 なお、本実施態様の蛍光体を波長400nmの光で励起するには、例えば、GaN系LEDを用いることができる。また、本実施態様の蛍光体の発光スペクトルの測定、並びにその発光ピーク波長、ピーク相対強度及びピーク半値幅の算出は、例えば、励起光源として150Wキセノンランプを、スペクトル測定装置としてマルチチャンネルCCD検出器C7041(浜松フォトニクス社製)を備える蛍光測定装置(日本分光社製)を用いて行うことができる。 In addition, in order to excite the phosphor of this embodiment with light having a wavelength of 400 nm, for example, a GaN-based LED can be used. The measurement of the emission spectrum of the phosphor of this embodiment and the calculation of the emission peak wavelength, peak relative intensity, and peak half width are, for example, a 150 W xenon lamp as an excitation light source and a multi-channel CCD detector as a spectrum measurement device. It can be performed using a fluorescence measuring apparatus (manufactured by JASCO Corporation) equipped with C7041 (manufactured by Hamamatsu Photonics).
[CIE色度座標]
 本実施態様の蛍光体のCIE色度座標のx値は、通常0.240以上、好ましくは0.250以上、より好ましくは0.260以上であり、通常0.420以下、好ましくは0.400以下、より好ましくは0.380以下、さらに好ましくは0.360以下、よりさらに好ましくは0.340以下である。また、本実施態様の蛍光体のCIE色度座標のy値は、通常0.575以上、好ましくは0.580以上、より好ましくは0.620以上、さらに好ましくは0.640以上であり、通常0.700以下、好ましくは0.690以下である。
 CIE色度座標が上記の範囲にあることで、液晶ディスプレイなどの画像表示装置に使用する場合には色純度を低下させずに画像表示装置の色再現範囲を広くすることができる。
[CIE chromaticity coordinates]
The x value of the CIE chromaticity coordinate of the phosphor of this embodiment is usually 0.240 or more, preferably 0.250 or more, more preferably 0.260 or more, and usually 0.420 or less, preferably 0.400. In the following, it is more preferably 0.380 or less, further preferably 0.360 or less, and still more preferably 0.340 or less. Further, the y value of the CIE chromaticity coordinates of the phosphor of the present embodiment is usually 0.575 or more, preferably 0.580 or more, more preferably 0.620 or more, and further preferably 0.640 or more. It is 0.700 or less, preferably 0.690 or less.
When the CIE chromaticity coordinates are in the above range, the color reproduction range of the image display device can be widened without reducing the color purity when used in an image display device such as a liquid crystal display.
[温度特性(発光強度維持率)]
 本実施態様の蛍光体は、温度特性にも優れる。具体的には、450nmの波長の光を照射した場合の、25℃での発光スペクトル図中の発光ピーク強度値に対する150℃での発光スペクトル図中の発光ピーク強度値の割合が、通常50%以上であり、好ましくは60%以上、特に好ましくは70%以上である。
 また、通常の蛍光体は温度上昇と共に発光強度が低下するので、該割合が100%を超えることは考えられにくいが、何らかの理由により100%を超えることがあってもよい。ただし100%を超えるようであれば、温度変化により色ずれを起こす傾向がある。
 尚、上記温度特性を測定する場合は、常法に従えばよく、例えば、特開2008-138156号公報に記載の方法などが挙げられる。
[Temperature characteristics (light emission intensity retention rate)]
The phosphor of this embodiment is also excellent in temperature characteristics. Specifically, the ratio of the emission peak intensity value in the emission spectrum at 150 ° C. to the emission peak intensity value in the emission spectrum at 25 ° C. when irradiated with light having a wavelength of 450 nm is usually 50%. Or more, preferably 60% or more, particularly preferably 70% or more.
In addition, since the emission intensity of ordinary phosphors decreases with increasing temperature, it is unlikely that the ratio exceeds 100%, but it may exceed 100% for some reason. However, if it exceeds 100%, there is a tendency to cause a color shift due to a temperature change.
Incidentally, when measuring the temperature characteristics, a conventional method may be followed, for example, a method described in JP-A-2008-138156.
[励起波長]
 本実施態様の蛍光体は、通常300nm以上、好ましくは320nm以上、より好ましくは400nm以上、また、通常480nm以下、好ましくは470nm以下、より好ましくは460nm以下の波長範囲に励起ピークを有する。即ち、近紫外から青色領域の光で励起される。
[Excitation wavelength]
The phosphor of this embodiment has an excitation peak in a wavelength range of usually 300 nm or more, preferably 320 nm or more, more preferably 400 nm or more, and usually 480 nm or less, preferably 470 nm or less, more preferably 460 nm or less. That is, it is excited by light in the near ultraviolet to blue region.
<蛍光体の製造方法>
 本実施態様の蛍光体を得るための、原料、蛍光体製造法等については以下の通りである。
 本実施態様の蛍光体の製造方法は特に制限されないが、例えば、付活元素である元素Mの原料(以下適宜「M源」という。)、元素Alの原料(以下適宜「Al源」という。)、元素Siの原料(以下適宜「Si源」という。)を式[1]の化学量論比となるように混合し(混合工程)、得られた混合物を焼成する(焼成工程)ことにより製造することができる。
 また、以下では例えば、元素Euの原料を「Eu源」などということがある。
<Method for producing phosphor>
The raw materials, the phosphor production method, and the like for obtaining the phosphor of this embodiment are as follows.
The method for producing the phosphor of the present embodiment is not particularly limited. For example, the element M as an activator (hereinafter referred to as “M source”) and the element Al (hereinafter referred to as “Al source” as appropriate). ), A raw material of elemental Si (hereinafter referred to as “Si source” as appropriate) is mixed so as to have a stoichiometric ratio of the formula [1] (mixing step), and the resulting mixture is fired (firing step). Can be manufactured.
In the following, for example, the raw material of the element Eu may be referred to as “Eu source”.
[蛍光体原料]
 本実施態様の蛍光体の製造に使用される蛍光体原料(即ち、M源、Al源及びSi源)としては、M元素、Al元素及びSi元素の各元素の金属、合金、イミド化合物、酸窒化物、窒化物、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン化物等が挙げられる。これらの化合物の中から、複合酸窒化物への反応性や、焼成時におけるNOx、SOx等の発生量の低さ等を考慮して、適宜選択すればよい。
[Phosphor material]
Phosphor raw materials (that is, M source, Al source, and Si source) used for manufacturing the phosphor of this embodiment include metals, alloys, imide compounds, and acids of each element of M element, Al element, and Si element. Examples thereof include nitrides, nitrides, oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, carboxylates, and halides. From these compounds, the reactivity to the composite oxynitride and the low generation amount of NOx, SOx, etc. during firing may be selected as appropriate.
(M源)
 M源のうち、Eu源の具体例としては、Eu、Eu(SO、Eu(C・10HO、EuCl、EuCl、Eu(NO・6HO、EuN、EuNH等が挙げられる。中でもEu、EuN等が好ましく、特に好ましくはEuNである。
 また、Sm源、Tm源、Yb源等のその他の付活元素の原料の具体例としては、Eu源の具体例として挙げた各化合物において、EuをそれぞれSm、Tm、Yb等に置き換えた化合物が挙げられる。
(M source)
Of the M sources, specific examples of Eu sources include Eu 2 O 3 , Eu 2 (SO 4 ) 3 , Eu 2 (C 2 O 4 ) 3 · 10H 2 O, EuCl 2 , EuCl 3 , Eu (NO 3 ) 3 · 6H 2 O, EuN , EuNH and the like. Of these, Eu 2 O 3 , EuN and the like are preferable, and EuN is particularly preferable.
In addition, as specific examples of raw materials of other activating elements such as Sm source, Tm source, Yb source, etc., compounds in which Eu is replaced with Sm, Tm, Yb, etc. in the respective compounds listed as specific examples of Eu source Is mentioned.
(Al源)
 Al源の具体例としては、AlN、Al、Al(OH)、AlOOH、Al(NO等が挙げられる。中でも、AlN、Alが好ましく、AlNが特に好ましい。また、AlNとして、反応性の点から、粒径が小さく、発光効率の点から純度の高いものが好ましい。
 Alメタル、もしくはAlNに含有される酸素の量は通常100ppm以下、より好ましくは50ppm以下、さらに好ましくは20ppm以下である。
 その他の3価の元素の原料の具体例としては、上記Al源の具体例として挙げた各化合物において、AlをB、Ga、In、Sc、Y、La、Gd、Lu等に置き換えた化合物が挙げられる。なお、Al源は、単体のAlを用いてもよい。
(Al source)
Specific examples of the Al source include AlN, Al 2 O 3 , Al (OH) 3 , AlOOH, Al (NO 3 ) 3 and the like. Among these, AlN and Al 2 O 3 are preferable, and AlN is particularly preferable. Moreover, as AlN, the thing with a small particle size from a reactive point and a high purity from the point of luminous efficiency is preferable.
The amount of oxygen contained in Al metal or AlN is usually 100 ppm or less, more preferably 50 ppm or less, and still more preferably 20 ppm or less.
Specific examples of other trivalent element materials include compounds in which Al is replaced with B, Ga, In, Sc, Y, La, Gd, Lu, etc. in each of the compounds listed as specific examples of the Al source. Can be mentioned. The Al source may be single Al.
(Si源)
 Si源の具体例としては、SiO、α型Si、β型Siが挙げられ、α型Si、β型Siが好ましい。また、SiOとなる化合物を用いることもできる。このような化合物としては、具体的には、SiO、HSiO、Si(OCOCH等が挙げられる。また、α型Siとして反応性の点から、粒径が小さく、発光効率の点から純度の高いものが好ましい。さらに、不純物である炭素元素の含有割合が少ないものの方が好ましい。
 生成物内への酸素の含有を低減させるためには、より酸素含有量の少ないSi源を用いることがよい。Siメタルを使用してもよく、酸素含有量の少ないSi用いることでもよい。α型Si、β型Siにおける酸素含有量は通常100ppm以下、好ましくは80ppm以下、より好ましくは60ppm以下、さらに好ましくは40ppm以下、特に好ましくは20ppm以下である。酸素含有量の多いα型Siを1.0MPa以下、1600℃以上で熱処理を実施して、酸素含有量の少ないβ型Siとしてから使用することがより好ましい。
 その他の4価の元素の原料の具体例としては、上記Si源の具体例として挙げた各化合物において、SiをそれぞれGe、Ti、Zr、Hf等に置き換えた化合物が挙げられる。なお、Si源は、単体のSiを用いてもよい。
(Si source)
Specific examples of the Si source include SiO 2 , α-type Si 3 N 4 , and β-type Si 3 N 4 , and α-type Si 3 N 4 and β-type Si 3 N 4 are preferable. It is also possible to use a compound as a SiO 2. Specific examples of such a compound include SiO 2 , H 4 SiO 4 , Si (OCOCH 3 ) 4 and the like. Further, α-type Si 3 N 4 is preferably one having a small particle diameter and high purity from the viewpoint of light emission efficiency from the viewpoint of reactivity. Furthermore, the thing with few content rates of the carbon element which is an impurity is preferable.
In order to reduce the oxygen content in the product, it is preferable to use a Si source having a lower oxygen content. Si metal may be used, or Si 3 N 4 having a low oxygen content may be used. The oxygen content in α-type Si 3 N 4 and β-type Si 3 N 4 is usually 100 ppm or less, preferably 80 ppm or less, more preferably 60 ppm or less, still more preferably 40 ppm or less, and particularly preferably 20 ppm or less. It is more preferable to use α-type Si 3 N 4 having a high oxygen content after performing heat treatment at 1.0 MPa or lower and 1600 ° C. or higher to obtain β-type Si 3 N 4 having a low oxygen content.
Specific examples of other raw materials for tetravalent elements include compounds in which Si is replaced by Ge, Ti, Zr, Hf, etc. in the respective compounds listed as specific examples of the Si source. The Si source may be single Si.
 なお、上述したM源、Al源及びSi源は、それぞれ、一種のみを用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, each of the above-described M source, Al source, and Si source may be used alone or in combination of two or more in any combination and ratio.
[混合工程]
 目的組成が得られるように蛍光体原料を秤量し、ボールミル等を用いて十分混合したのち、ルツボに充填し、所定温度、雰囲気下で焼成し、焼成物を粉砕、洗浄することにより、本実施態様の蛍光体を得ることができる。
[Mixing process]
Weigh the phosphor materials so that the desired composition is obtained, mix them well using a ball mill, etc., fill them in a crucible, fire them under a predetermined temperature and atmosphere, and pulverize and wash the fired product. The phosphor of the aspect can be obtained.
 上記混合手法としては、特に限定はされず、乾式混合法や湿式混合法のいずれであってもよい。
 乾式混合法としては、例えば、ボールミルなどが挙げられる。
 湿式混合法としては、例えば、前述の蛍光体原料に水等の溶媒又は分散媒を加え、乳鉢と乳棒、を用いて混合し、溶液又はスラリーの状態とした上で、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥させる方法である。
The mixing method is not particularly limited, and may be either a dry mixing method or a wet mixing method.
Examples of the dry mixing method include a ball mill.
As the wet mixing method, for example, a solvent or dispersion medium such as water is added to the above-described phosphor raw material, mixed using a mortar and pestle, and in a solution or slurry state, spray drying, heat drying, Alternatively, it is a method of drying by natural drying or the like.
[焼成工程]
 得られた混合物を、各蛍光体原料と反応性の低い材料からなるルツボ又はトレイ等の耐熱容器中に充填する。このような焼成時に用いる耐熱容器の材質としては、本実施態様の効果を損なわない限り特に制限はないが、例えば、窒化ホウ素などの坩堝が挙げられる。
[Baking process]
The obtained mixture is filled in a heat-resistant container such as a crucible or a tray made of a material having low reactivity with each phosphor raw material. The material of the heat-resistant container used at the time of firing is not particularly limited as long as the effects of the present embodiment are not impaired, and examples thereof include a crucible such as boron nitride.
 焼成温度は、圧力など、その他の条件によっても異なるが、通常1700℃以上、2150℃以下の温度範囲で焼成を行なうことができる。焼成工程における最高到達温度としては、通常1700℃以上、好ましくは1750℃以上、また、通常2150℃以下、好ましくは2100℃以下である。
 焼成温度が高すぎると窒素が飛んで母体結晶に欠陥を生成し着色する傾向にあり、低すぎると固相反応の進行が遅くなる傾向にあり、目的相を主相として得にくくなる場合がある。
 より結晶構造中に混入する酸素を低減させる場合は、1800℃以上、より好ましくは1900℃以上、特に好ましくは2000℃以上の最高到達温度で焼成するのがよい。
Although the firing temperature varies depending on other conditions such as pressure, the firing can be usually performed in a temperature range of 1700 ° C. or higher and 2150 ° C. or lower. The maximum temperature reached in the firing step is usually 1700 ° C. or higher, preferably 1750 ° C. or higher, and usually 2150 ° C. or lower, preferably 2100 ° C. or lower.
If the calcination temperature is too high, nitrogen will fly and tend to produce defects in the host crystal and color, while if it is too low, the progress of the solid phase reaction will tend to be slow, making it difficult to obtain the target phase as the main phase. .
In the case where oxygen mixed in the crystal structure is further reduced, the firing is preferably performed at a maximum attained temperature of 1800 ° C. or higher, more preferably 1900 ° C. or higher, and particularly preferably 2000 ° C. or higher.
 焼成温度等によっても異なるが、通常0.2MPa以上、好ましくは0.4MPa以上であり、また、通常200MPa以下、好ましくは190MPa以下である。 Although it varies depending on the firing temperature or the like, it is usually 0.2 MPa or more, preferably 0.4 MPa or more, and is usually 200 MPa or less, preferably 190 MPa or less.
 焼成工程における圧力が10MPa以下で焼成する場合は焼成時の最高到達温度は、通常1800℃以上、好ましくは1900℃以上、また、通常2150℃以下、より好ましくは2100℃以下である。
 上記の温度で焼成することにより、酸素含有量の少ない結晶相を得ることが可能となる。焼成温度が1800℃未満であると固相反応が進まないため不純物相もしくは未反応相のみが出現し、目的相を主相として得にくくなる場合がある。
When firing at a pressure of 10 MPa or less in the firing step, the highest temperature reached during firing is usually 1800 ° C. or higher, preferably 1900 ° C. or higher, and usually 2150 ° C. or lower, more preferably 2100 ° C. or lower.
By baking at the above temperature, a crystal phase with a low oxygen content can be obtained. When the firing temperature is less than 1800 ° C., the solid phase reaction does not proceed, so that only the impurity phase or the unreacted phase appears, and it may be difficult to obtain the target phase as the main phase.
 また、ごくわずかに目的の結晶相が得られたとしても、結晶内では発光中心となる元素、特にEu元素の拡散がされず量子効率を低下させる可能性がある。また、焼成温度が高すぎると目的の蛍光体結晶を構成する元素が揮発しやすくなり、格子欠陥を形成、もしくは分解し別の相が不純物として生じてしまう可能性が高い。 In addition, even if a very small target crystal phase is obtained, there is a possibility that the element that becomes the luminescence center, particularly the Eu element, is not diffused in the crystal and the quantum efficiency is lowered. If the firing temperature is too high, the elements constituting the target phosphor crystal are likely to volatilize, and there is a high possibility that another phase will be formed as an impurity by forming or decomposing lattice defects.
 焼成工程における昇温速度は、通常2℃/分以上、好ましくは5℃/分以上、より好ましくは10℃/分以上であり、また、通常30℃/分以下、好ましくは25℃/分以下である。昇温速度がこの範囲を下回ると、焼成時間が長くなる可能性がある。また、昇温速度がこの範囲を上回ると、焼成装置、容器等が破損する場合がある。 The heating rate in the firing step is usually 2 ° C./min or more, preferably 5 ° C./min or more, more preferably 10 ° C./min or more, and usually 30 ° C./min or less, preferably 25 ° C./min or less. It is. If the rate of temperature rise is below this range, the firing time may be long. In addition, if the rate of temperature rise exceeds this range, the firing device, container, etc. may be damaged.
 焼成工程における焼成雰囲気は、本実施態様の蛍光体が得られる限り任意であるが、窒素含有雰囲気とすることが好ましい。具体的には、窒素雰囲気、水素含有窒素雰囲気等が挙げられ、中でも窒素雰囲気が好ましい。なお、焼成雰囲気の酸素含有量は、通常10ppm以下、好ましくは5ppm以下にするとよい。 The firing atmosphere in the firing step is arbitrary as long as the phosphor of this embodiment is obtained, but a nitrogen-containing atmosphere is preferable. Specific examples include a nitrogen atmosphere and a hydrogen-containing nitrogen atmosphere, and a nitrogen atmosphere is particularly preferable. The oxygen content in the firing atmosphere is usually 10 ppm or less, preferably 5 ppm or less.
 焼成時間は、焼成時の温度や圧力等によっても異なるが、通常10分間以上、好ましくは30分間以上、また、通常72時間以下、好ましくは12時間以下である。焼成時間が短すぎると粒生成と粒成長を促すことができないため、特性のよい蛍光体を得ることができず、焼成時間が長すぎると構成している元素の揮発が促されるため、原子欠損により結晶構造内に欠陥が誘発され特性のよい蛍光体を得ることができない場合がある。 Calcination time varies depending on the temperature and pressure at the time of calcination, but is usually 10 minutes or more, preferably 30 minutes or more, and usually 72 hours or less, preferably 12 hours or less. If the firing time is too short, grain formation and grain growth cannot be promoted, so that a phosphor with good characteristics cannot be obtained. If the firing time is too long, volatilization of the constituent elements is promoted, so atomic deficiency As a result, defects may be induced in the crystal structure and a phosphor having good characteristics may not be obtained.
 なお、焼成工程は、必要に応じて、複数回繰り返し行なってもよい。その際は、一回目の焼成と、二回目の焼成とで、焼成条件を同一にしてもよいし、異なるものにしてもよい。 In addition, you may repeat a baking process in multiple times as needed. In that case, the firing conditions may be the same or different between the first firing and the second firing.
 蛍光体生成時に原子が均一に拡散し、内部量子効率の高い蛍光体を焼成する場合や数μmの大きな粒子を得る場合は、繰り返し焼成が有効となる。 When the phosphor is uniformly diffused when the phosphor is produced and the phosphor having a high internal quantum efficiency is fired or when obtaining a large particle of several μm, repeated firing is effective.
 また、本実施態様の蛍光体を製造する場合、上記焼成工程時に、例えば、LiN、NaN、Mg、Ca、Sr、Baなどをフラックス(結晶成長補助剤)として用いることが好ましい。
 尚、フラックスを用いて蛍光体を製造した場合、Li、Na、Mg、Ca、Sr、Baなどのフラックスの構成元素が、蛍光体に混入する場合がある。
 本実施態様におけるフラックスは上記の結晶成長補助剤としての効果に加えて、得られる蛍光体中の酸素の割合を減少させる効果があることが好ましい。結晶を成長させる効果に加えて、蛍光体中の酸素の割合を減らすことで、発光スペクトルの半値幅の狭い蛍光体を製造することが可能となる。
 尚、得られる蛍光体中の酸素の割合を減らすために、添加する物質として、Si金属、Al金属などを用いてもよい。
Moreover, when manufacturing the phosphor of the present embodiment, during the firing step, for example, Li 3 N, Na 3 N, Mg 3 N 2 , Ca 3 N 2 , Sr 3 N 2 , Ba 3 N 2 and the like are fluxed. It is preferably used as (crystal growth aid).
When a phosphor is manufactured using a flux, constituent elements of the flux such as Li, Na, Mg, Ca, Sr, and Ba may be mixed into the phosphor.
The flux in this embodiment preferably has an effect of reducing the proportion of oxygen in the obtained phosphor in addition to the effect as the crystal growth aid. In addition to the effect of growing crystals, it is possible to produce a phosphor with a narrow half-width of the emission spectrum by reducing the proportion of oxygen in the phosphor.
In order to reduce the proportion of oxygen in the obtained phosphor, Si metal, Al metal, or the like may be used as a substance to be added.
 さらに、結晶相内の酸素の割合を低下させるため、焼成時に発生するSiO等の構成元素に酸素を含むガスをトラップする目的で、当該ガスを吸着するような部材を使用することがよい。特に、C(カーボン)で構成される部材がよく、C製のフェルトやCキューブをBNルツボの近辺に配置するとよい。 Furthermore, in order to reduce the proportion of oxygen in the crystal phase, it is preferable to use a member that adsorbs the gas in order to trap a gas containing oxygen in a constituent element such as SiO generated during firing. In particular, a member made of C (carbon) is good, and a C-made felt or C-cube is preferably arranged in the vicinity of the BN crucible.
[後処理工程]
 得られた焼成物を解砕、粉砕及び/又は分級操作を組み合わせて所定のサイズの粉末にする。ここでは、D50が約30μm以下になるように処理するとよい。
 具体的な処理の例としては、合成物を目開き45μm程度の篩分級処理し、篩を通過した粉末を次工程に回す方法、或いは合成物をボールミルや振動ミル、ジェットミル等の一般的な粉砕機を使用して所定の粒度に粉砕する方法が挙げられる。後者の方法において、過度の粉砕は、光を散乱しやすい微粒子を生成するだけでなく、粒子表面に結晶欠陥を生成し、発光効率の低下を引き起こす可能性がある。
[Post-processing process]
The obtained fired product is pulverized, pulverized, and / or classified into a powder having a predetermined size. Here, it is preferable to process as D 50 is less than about 30 [mu] m.
Specific examples of the treatment include a method of subjecting the synthesized product to sieve classification with an opening of about 45 μm, and passing the powder that has passed through the sieve to the next step, or the synthesized product to a general method such as a ball mill, a vibration mill, or a jet mill. The method of grind | pulverizing to a predetermined particle size using a grinder is mentioned. In the latter method, excessive pulverization not only generates fine particles that easily scatter light, but also generates crystal defects on the particle surface, which may cause a decrease in luminous efficiency.
 また、必要に応じて、蛍光体(焼成物)を洗浄する工程を設けてもよい。洗浄工程後は、蛍光体を付着水分がなくなるまで乾燥させて、使用に供する。さらに、必要に応じて、凝集をほぐすために分散・分級処理を行ってもよい。
 尚、本実施態様の蛍光体は、あらかじめ構成金属元素を合金化して、それを窒化して形成する、所謂、合金法で形成してもよい。
Moreover, you may provide the process of wash | cleaning fluorescent substance (baked material) as needed. After the cleaning step, the phosphor is dried until it has no adhering moisture and is used. Further, if necessary, dispersion / classification treatment may be performed to loosen the aggregation.
Note that the phosphor of this embodiment may be formed by a so-called alloy method in which a constituent metal element is alloyed in advance and nitrided.
{蛍光体含有組成物}
 本発明の第一の実施態様に係る蛍光体は、液体媒体と混合して用いることもできる。特に、本発明の第一の実施態様に係る蛍光体を発光装置等の用途に使用する場合には、これを液体媒体中に分散させた形態で用いることが好ましい。本発明の第一の実施態様に係る蛍光体を液体媒体中に分散させたものを、本発明の一実施態様として、適宜、「本発明の一実施態様に係る蛍光体含有組成物」などと呼ぶものとする。
{Phosphor-containing composition}
The phosphor according to the first embodiment of the present invention can be used by mixing with a liquid medium. In particular, when the phosphor according to the first embodiment of the present invention is used for a light emitting device or the like, it is preferable to use the phosphor in a form dispersed in a liquid medium. What dispersed the fluorescent substance which concerns on 1st embodiment of this invention in the liquid medium as one embodiment of this invention is suitably with "the fluorescent substance containing composition which concerns on one embodiment of this invention", etc. Shall be called.
[蛍光体]
 本実施態様の蛍光体含有組成物に含有させる本発明の第一の実施態様に係る蛍光体の種類に制限は無く、上述したものから任意に選択することができる。また、本実施態様の蛍光体含有組成物に含有させる本発明の第一の実施態様に係る蛍光体は、1種のみであってもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。更に、本実施態様の蛍光体含有組成物には、本実施態様の効果を著しく損なわない限り、本発明の第一の実施態様に係る蛍光体以外の蛍光体を含有させてもよい。
[Phosphor]
There is no restriction | limiting in the kind of fluorescent substance which concerns on the 1st embodiment of this invention contained in the fluorescent substance containing composition of this embodiment, It can select arbitrarily from what was mentioned above. Further, the phosphor according to the first embodiment of the present invention to be contained in the phosphor-containing composition of the present embodiment may be only one type, or two or more types may be used in combination in any combination and ratio. Also good. Furthermore, the phosphor-containing composition of the present embodiment may contain a phosphor other than the phosphor according to the first embodiment of the present invention as long as the effects of the present embodiment are not significantly impaired.
[液体媒体]
 本実施態様の蛍光体含有組成物に使用される液体媒体としては、該蛍光体の性能を目的の範囲で損なわない限りにおいて特に限定されない。例えば、所望の使用条件下において液状の性質を示し、本発明の第一の実施態様に係る蛍光体を好適に分散させるとともに、好ましくない反応を生じないものであれば、任意の無機系材料及び/又は有機系材料が使用でき、例えば、シリコーン樹脂、エポキシ樹脂、ポリイミドシリコーン樹脂などが挙げられる。
[Liquid medium]
The liquid medium used in the phosphor-containing composition of the present embodiment is not particularly limited as long as the performance of the phosphor is not impaired within the intended range. For example, any inorganic material and any material can be used as long as it exhibits liquid properties under the desired use conditions, suitably disperses the phosphor according to the first embodiment of the present invention, and does not cause an undesirable reaction. An organic material can be used, and examples thereof include a silicone resin, an epoxy resin, and a polyimide silicone resin.
[液体媒体及び蛍光体の含有率]
 本実施態様の蛍光体含有組成物中の蛍光体及び液体媒体の含有率は、本実施態様の効果を著しく損なわない限り任意であるが、液体媒体については、本実施態様の蛍光体含有組成物全体に対して、通常50重量%以上、好ましくは75重量%以上であり、通常99重量%以下、好ましくは95重量%以下である。
[Content of liquid medium and phosphor]
The phosphor and the liquid medium content in the phosphor-containing composition of the present embodiment are arbitrary as long as the effects of the present embodiment are not significantly impaired, but for the liquid medium, the phosphor-containing composition of the present embodiment. The total amount is usually 50% by weight or more, preferably 75% by weight or more, and usually 99% by weight or less, preferably 95% by weight or less.
[その他の成分]
 なお、本実施態様の蛍光体含有組成物には、本実施態様の効果を著しく損なわない限り、蛍光体及び液体媒体以外に、その他の成分を含有させてもよい。また、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[Other ingredients]
In addition, you may make the fluorescent substance containing composition of this embodiment contain other components other than a fluorescent substance and a liquid medium, unless the effect of this embodiment is impaired remarkably. Moreover, only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and a ratio.
{発光装置}
 本発明の第二の実施態様は、第1の発光体(励起光源)と、当該第1の発光体からの光の照射によって可視光を発する第2の発光体とを含む発光装置であって、該第2の発光体は本発明の第一の実施態様に係る蛍光体を含有する。ここで、本発明の第一の実施態様に係る蛍光体は、何れか1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
{Light emitting device}
A second embodiment of the present invention is a light-emitting device including a first light emitter (excitation light source) and a second light emitter that emits visible light when irradiated with light from the first light emitter. The second luminous body contains the phosphor according to the first embodiment of the present invention. Here, any one of the phosphors according to the first embodiment of the present invention may be used alone, or two or more thereof may be used in any combination and ratio.
 本発明の第一の実施態様に係る蛍光体としては、例えば、励起光源からの光の照射下において、緑色領域の蛍光を発する蛍光体を使用する。具体的には、発光装置を構成する場合、本発明の第一の実施態様における緑色蛍光体としては、500nm以上560nm以下の波長範囲に発光ピークを有するものが好ましい。 As the phosphor according to the first embodiment of the present invention, for example, a phosphor that emits green region fluorescence under irradiation of light from an excitation light source is used. Specifically, when constituting a light emitting device, the green phosphor in the first embodiment of the present invention preferably has an emission peak in a wavelength range of 500 nm or more and 560 nm or less.
 尚、励起源については、420nm未満の波長範囲に発光ピークを有するものを用いてもよい。
 以下、本発明の第一の実施態様に係る蛍光体が、500nm以上560nm以下の波長範囲に発光ピークを有し、且つ第一の発光体が300nm以上460nm以下の波長範囲に発光ピークを有するものを用いる場合の発光装置の態様について記載するが、本実施態様はこれらに限定されるものではない。
As the excitation source, one having an emission peak in a wavelength range of less than 420 nm may be used.
Hereinafter, the phosphor according to the first embodiment of the present invention has a light emission peak in a wavelength range of 500 nm to 560 nm, and the first light emitter has a light emission peak in a wavelength range of 300 nm to 460 nm. Although the aspect of the light-emitting device when using is described, this embodiment is not limited thereto.
 上記の場合、本実施態様の発光装置は、例えば、次の態様とすることができる。
 即ち、第1の発光体として、300nm以上460nm以下の波長範囲に発光ピークを有するものを用い、第2の発光体の第1の蛍光体として、500nm以上560nm以下の波長範囲に発光ピークを有する少なくとも1種の蛍光体(本発明の第一の実施態様に係る蛍光体)を用い、第2の発光体の第2の蛍光体として、580nm以上680nm以下の波長範囲に発光ピークを有する蛍光体(赤色蛍光体)を用いる態様とすることができる。
In the above case, the light-emitting device of this embodiment can be set as follows, for example.
That is, the first light emitter has a light emission peak in the wavelength range of 300 nm to 460 nm, and the first phosphor of the second light emitter has a light emission peak in the wavelength range of 500 nm to 560 nm. A phosphor having an emission peak in the wavelength range of 580 nm to 680 nm as the second phosphor of the second phosphor using at least one phosphor (the phosphor according to the first embodiment of the present invention). An embodiment using (red phosphor) can be employed.
(赤色蛍光体)
 上記の態様における赤色蛍光体としては、例えば、下記の蛍光体が好適に用いられる。
 Mn付活フッ化物蛍光体としては、例えば、K(Si,Ti)F:Mn、KSi1-xNaAl:Mn(0<x<1)、
 硫化物蛍光体としては、例えば、(Sr,Ca)S:Eu(CAS蛍光体)、LaS:Eu(LOS蛍光体)、
 ガーネット系蛍光体としては、例えば、(Y,Lu,Gd,Tb)MgAlSi12:Ce、
 ナノ粒子としては、例えば、CdSe、
 窒化物または酸窒化物蛍光体としては、例えば、(Sr,Ca)AlSiN:Eu(S/CASN蛍光体)、(CaAlSiN1-x・(SiO:Eu(CASON蛍光体)、(La,Ca)(Al,Si)11:Eu(LSN蛍光体)、(Ca,Sr,Ba)Si(N,O):Eu(258蛍光体)、(Sr,Ca)Al1+xSi4-x7-x:Eu(1147蛍光体)、M(Si,Al)12(O,N)16:Eu(Mは、Ca、Srなど)(α‐サイアロン蛍光体)、Li(Sr,Ba)Al:Eu(上記のxは、いずれも0<x<1)
などが挙げられる。
 中でも、色再現範囲の広い画像表示装置として用いる場合、上記態様における赤色蛍光体の発光スペクトルの半値幅は通常90nm以下であり、好ましくは70nm以下であり、より好ましくは50nm以下であり、さらに好ましくは30nm以下であり、通常、5nm以上、より好ましくは10nm以上である。上記蛍光体のなかでも、Mn付活フッ化物蛍光体、SrLiAl:Eu蛍光体を用いることが好ましい。
(Red phosphor)
As a red fluorescent substance in said aspect, the following fluorescent substance is used suitably, for example.
Examples of the Mn-activated fluoride phosphor include K 2 (Si, Ti) F 6 : Mn, K 2 Si 1-x Na x Al x F 6 : Mn (0 <x <1),
Examples of sulfide phosphors include (Sr, Ca) S: Eu (CAS phosphor), La 2 O 2 S: Eu (LOS phosphor),
Examples of the garnet phosphor include (Y, Lu, Gd, Tb) 3 Mg 2 AlSi 2 O 12 : Ce,
Examples of nanoparticles include CdSe,
Examples of the nitride or oxynitride phosphor include (Sr, Ca) AlSiN 3 : Eu (S / CASN phosphor), (CaAlSiN 3 ) 1-x · (SiO 2 N 2 ) x : Eu (CASON fluorescence). Body), (La, Ca) 3 (Al, Si) 6 N 11 : Eu (LSN phosphor), (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu (258 phosphor), ( Sr, Ca) Al 1 + x Si 4-x O x N 7-x : Eu (1147 phosphor), M x (Si, Al) 12 (O, N) 16 : Eu (M is Ca, Sr, etc.) ( α-sialon phosphor), Li (Sr, Ba) Al 3 N 4 : Eu (where x is 0 <x <1)
Etc.
In particular, when used as an image display device having a wide color reproduction range, the half-value width of the emission spectrum of the red phosphor in the above embodiment is usually 90 nm or less, preferably 70 nm or less, more preferably 50 nm or less, and still more preferably. Is 30 nm or less, usually 5 nm or more, more preferably 10 nm or more. Among the above phosphors, it is preferable to use a Mn-activated fluoride phosphor or a SrLiAl 3 N 4 : Eu phosphor.
(黄色蛍光体)
 上記の態様において、必要に応じて、550~580nmの範囲に発光ピークを有する蛍光体(黄色蛍光体)を用いてもよい。
 黄色蛍光体としては、例えば、下記の蛍光体が好適に用いられる。
 ガーネット系蛍光体としては、例えば、(Y,Gd,Lu,Tb,La)(Al,Ga)12:(Ce,Eu,Nd)、
 オルソシリケートとしては、例えば、(Ba,Sr,Ca,Mg)SiO:(Eu,Ce)、
 (酸)窒化物蛍光体としては、例えば、(Ba,Ca,Mg)Si:Eu(SION系蛍光体)、(Li,Ca)(Si,Al)12(O,N)16:(Ce,Eu)(α‐サイアロン蛍光体)、(Ca,Sr)AlSi(O,N):(Ce,Eu)(1147蛍光体)、(La,Ca,Y)(Al,Si)11:Ce(LSN蛍光体)
などが挙げられる。
 尚、上記蛍光体においては、ガーネット系蛍光体が好ましく、中でも、YAl12:Ceで表されるYAG系蛍光体が最も好ましい。
(Yellow phosphor)
In the above embodiment, if necessary, a phosphor having a light emission peak in the range of 550 to 580 nm (yellow phosphor) may be used.
For example, the following phosphors are preferably used as the yellow phosphor.
Examples of the garnet phosphor include (Y, Gd, Lu, Tb, La) 3 (Al, Ga) 5 O 12 : (Ce, Eu, Nd),
Examples of the orthosilicate include (Ba, Sr, Ca, Mg) 2 SiO 4 : (Eu, Ce),
Examples of (acid) nitride phosphors include (Ba, Ca, Mg) Si 2 O 2 N 2 : Eu (SION phosphor), (Li, Ca) 2 (Si, Al) 12 (O, N 16 : (Ce, Eu) (α-sialon phosphor), (Ca, Sr) AlSi 4 (O, N) 7 : (Ce, Eu) (1147 phosphor), (La, Ca, Y) 3 ( Al, Si) 6 N 11 : Ce (LSN phosphor)
Etc.
The phosphor is preferably a garnet phosphor, and most preferably a YAG phosphor represented by Y 3 Al 5 O 12 : Ce.
(緑色蛍光体)
 上記の態様において緑色蛍光体としては、本発明の第一の実施態様に係る蛍光体以外の蛍光体を含んでいてもよく、例えば、下記の蛍光体が好適に用いられる。
 ガーネット系蛍光体としては、例えば、(Y,Gd,Lu,Tb,La)(Al,Ga)12:(Ce,Eu,Nd)、Ca(Sc,Mg)Si12:(Ce,Eu)(CSMS蛍光体)、
 シリケート系蛍光体としては、例えば、(Ba,Sr,Ca,Mg)SiO10:(Eu,Ce)、(Ba,Sr,Ca,Mg)SiO:(Ce,Eu)(BSS蛍光体)、
 酸化物蛍光体としては、例えば、(Ca,Sr,Ba,Mg)(Sc,Zn):(Ce,Eu)(CASO蛍光体)、
 (酸)窒化物蛍光体としては、例えば、(Ba,Sr,Ca,Mg)Si:(Eu,Ce)、Si6-zAl8-z:(Eu,Ce)(β‐サイアロン蛍光体)(0<z≦1)、(Ba,Sr,Ca,Mg,La)(Si,Al)12:(Eu,Ce)(BSON蛍光体)、
 アルミネート蛍光体としては、例えば、(Ba,Sr,Ca,Mg)Al1017:(Eu,Mn)(GBAM系蛍光体)などが挙げられる。
(Green phosphor)
In the above aspect, the green phosphor may include a phosphor other than the phosphor according to the first embodiment of the present invention. For example, the following phosphors are preferably used.
Examples of the garnet phosphor include (Y, Gd, Lu, Tb, La) 3 (Al, Ga) 5 O 12 : (Ce, Eu, Nd), Ca 3 (Sc, Mg) 2 Si 3 O 12. : (Ce, Eu) (CSMS phosphor),
Examples of the silicate phosphor include (Ba, Sr, Ca, Mg) 3 SiO 10 : (Eu, Ce), (Ba, Sr, Ca, Mg) 2 SiO 4 : (Ce, Eu) (BSS phosphor). ),
As the oxide phosphor, for example, (Ca, Sr, Ba, Mg) (Sc, Zn) 2 O 4 : (Ce, Eu) (CASO phosphor),
Examples of (acid) nitride phosphors include (Ba, Sr, Ca, Mg) Si 2 O 2 N 2 : (Eu, Ce), Si 6-z Al z O z N 8-z : (Eu, Ce) (β-sialon phosphor) (0 <z ≦ 1), (Ba, Sr, Ca, Mg, La) 3 (Si, Al) 6 O 12 N 2 : (Eu, Ce) (BSON phosphor) ,
Examples of the aluminate phosphor include (Ba, Sr, Ca, Mg) 2 Al 10 O 17 : (Eu, Mn) (GBAM phosphor).
[発光装置の構成]
 本実施態様の発光装置は、第1の発光体(励起光源)を有し、且つ、第2の発光体として少なくとも本発明の第一の実施態様に係る蛍光体を使用している他は、その構成は制限されず、公知の装置構成を任意にとることが可能である。
 装置構成及び発光装置の実施形態としては、例えば、特開2007-291352号公報に記載のものが挙げられる。
 その他、発光装置の形態としては、砲弾型、カップ型、チップオンボード、リモートフォスファー等が挙げられる。
[Configuration of light emitting device]
The light emitting device of this embodiment has a first light emitter (excitation light source) and uses at least the phosphor according to the first embodiment of the present invention as the second light emitter, The configuration is not limited, and a known device configuration can be arbitrarily employed.
Examples of the device configuration and the light emitting device include those described in Japanese Patent Application Laid-Open No. 2007-291352.
In addition, examples of the form of the light emitting device include a shell type, a cup type, a chip on board, a remote phosphor, and the like.
{発光装置の用途}
 本発明の第二の実施態様に係る発光装置の用途は特に制限されず、通常の発光装置が用いられる各種の分野に使用することが可能であるが、色再現範囲が広く、且つ、演色性も高いことから、中でも照明装置や画像表示装置の光源として、とりわけ好適に用いられる。
{Use of light emitting device}
The use of the light-emitting device according to the second embodiment of the present invention is not particularly limited and can be used in various fields where a normal light-emitting device is used, but has a wide color reproduction range and color rendering properties. In particular, it is particularly preferably used as a light source for illumination devices and image display devices.
[照明装置]
 本発明の第三の実施態様は、本発明の第二の実施態様に係る発光装置を光源として備えることを特徴とする照明装置である。
 本発明の第二の実施態様に係る発光装置を照明装置に適用する場合には、前述のような発光装置を公知の照明装置に適宜組み込んで用いればよい。例えば、保持ケースの底面に多数の発光装置を並べた面発光照明装置等を挙げることができる。
[Lighting device]
A third embodiment of the present invention is an illumination device including the light emitting device according to the second embodiment of the present invention as a light source.
When the light-emitting device according to the second embodiment of the present invention is applied to a lighting device, the light-emitting device as described above may be appropriately incorporated into a known lighting device. For example, a surface emitting illumination device in which a large number of light emitting devices are arranged on the bottom surface of the holding case can be used.
[画像表示装置]
 本発明の第四の実施態様は、本発明の第二の実施態様に係る発光装置を光源として備えることを特徴とする画像表示装置である。
 本発明の第二の実施態様に係る発光装置を画像表示装置の光源として用いる場合には、その画像表示装置の具体的構成に制限は無いが、カラーフィルターとともに用いることが好ましい。例えば、画像表示装置として、カラー液晶表示素子を利用したカラー画像表示装置とする場合は、上記発光装置をバックライトとし、液晶を利用した光シャッターと赤、緑、青の画素を有するカラーフィルターとを組み合わせることにより画像表示装置を形成することができる。
[Image display device]
According to a fourth embodiment of the present invention, there is provided an image display device comprising the light emitting device according to the second embodiment of the present invention as a light source.
When the light emitting device according to the second embodiment of the present invention is used as a light source of an image display device, the specific configuration of the image display device is not limited, but it is preferably used with a color filter. For example, when the image display device is a color image display device using color liquid crystal display elements, the light emitting device is used as a backlight, a light shutter using liquid crystal, and a color filter having red, green, and blue pixels; By combining these, an image display device can be formed.
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を逸脱しない限り、下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples without departing from the gist thereof.
<測定方法>
[発光特性]
 試料を銅製試料ホルダーに詰め、蛍光分光光度計FP-6500(JASCO社製)を用いて励起発光スペクトルと発光スペクトルを測定した。なお、測定時には、受光側分光器のスリット幅を1nmに設定して測定を行った。また、発光ピーク波長(以下、「ピーク波長」と称することがある。)と発光ピークの半値幅は、得られた発光スペクトルから読み取った。
<Measurement method>
[Luminescent characteristics]
The sample was packed in a copper sample holder, and the excitation emission spectrum and emission spectrum were measured using a fluorescence spectrophotometer FP-6500 (manufactured by JASCO). During the measurement, the slit width of the light-receiving side spectroscope was set to 1 nm and the measurement was performed. The emission peak wavelength (hereinafter sometimes referred to as “peak wavelength”) and the half width of the emission peak were read from the obtained emission spectrum.
[色度座標]
 x、y表色系(CIE 1931表色系)の色度座標は、上述の方法で得られた発光スペクトルの460nm~800nmの波長領域のデータから、JIS Z8724に準じた方法で、JIS Z8701で規定されるXYZ表色系における色度座標CIExとCIEyとして算出した。
[Chromaticity coordinates]
The chromaticity coordinates of the x, y color system (CIE 1931 color system) are obtained from the data in the wavelength region of 460 nm to 800 nm of the emission spectrum obtained by the above method, according to JIS Z8724. The chromaticity coordinates CIEx and CIEy in the prescribed XYZ color system were calculated.
[EPMAによる元素分析]
 本発明の第一の実施態様で得られた蛍光体の元素を調べるために下記の元素分析を実施した。走査型電子顕微鏡(SEM)による観察にて結晶を数個選び出したのち、電子プローブマイクロアナライザー(波長分散型X線分析装置:EPMA)JXA-8200(JEOL社製)を用いて各元素の分析を実施した。なお、本装置における酸素の検出限界値は100ppmである。
[Elemental analysis by EPMA]
In order to examine the elements of the phosphor obtained in the first embodiment of the present invention, the following elemental analysis was performed. After selecting several crystals by observation with a scanning electron microscope (SEM), each element is analyzed using an electron probe microanalyzer (wavelength dispersive X-ray analyzer: EPMA) JXA-8200 (manufactured by JEOL). Carried out. In addition, the detection limit value of oxygen in this apparatus is 100 ppm.
[ICPによる元素分析]
 Si、Al、Eu、Mgの定量は、EPMA元素分析の他、下記のICP元素分析で代替してもよい。
 試料をアルカリ溶融後、酸を添加して溶解し、得られた試料溶液を適宜希釈して、誘導結合プラズマ発光分析装置iCAP7600 Duo(Thermo Fisher Scientific社製)で定量した。測定条件は以下の通りである。
 RFパワー:1200W
 ネブライザイーガス流量:0.60L/min
 クーラントガス流量:12L/min
 補助ガス:1.0L/min
[Elemental analysis by ICP]
The quantitative determination of Si, Al, Eu, and Mg may be replaced by the following ICP elemental analysis in addition to the EPMA elemental analysis.
The sample was melted with an alkali, dissolved by adding an acid, the obtained sample solution was appropriately diluted, and quantified with an inductively coupled plasma emission spectrometer iCAP7600 Duo (manufactured by Thermo Fisher Scientific). The measurement conditions are as follows.
RF power: 1200W
Nebulizer egas flow rate: 0.60 L / min
Coolant gas flow rate: 12L / min
Auxiliary gas: 1.0 L / min
[O,N定量]
 酸素窒素水素分析装置(LECO社製 TCH600)にて不活性ガス雰囲気下インパルス炉加熱抽出-NIR(O)検出法/TCD(N)検出法で定量した。なお、本装置における酸素の検出限界値は0.2重量%であり、実施例および比較例においては、約0.1gのサンプルを測定した。
[O, N quantification]
Quantification was performed with an oxygen-nitrogen-hydrogen analyzer (TCH600, manufactured by LECO) under an inert gas atmosphere using an impulse furnace heating extraction-NIR (O) detection method / TCD (N) detection method. The detection limit value of oxygen in this apparatus is 0.2% by weight, and about 0.1 g of sample was measured in the examples and comparative examples.
[粉末X線回折測定]
 粉末X線回折は、粉末X線回折装置D2 PHASER(BRUKER社製)にて精密測定した。測定条件は以下の通りである。
  CuKα管球使用
  X線出力=30KV,10mA
  走査範囲 2θ=5°~65°
  読み込み幅=0.025°
[Powder X-ray diffraction measurement]
Powder X-ray diffraction was precisely measured with a powder X-ray diffractometer D2 PHASER (manufactured by BRUKER). The measurement conditions are as follows.
Using CuKα tube X-ray output = 30 KV, 10 mA
Scanning range 2θ = 5 ° ~ 65 °
Reading width = 0.025 °
[格子定数精密化]
 格子定数は、各実施例の粉末X線回折測定データより、空間群が(P6/m)(Intarnational Tables for Crystallography,No.176)に分類される結晶構造に起因したピークを抽出し、データ処理用ソフトTOPAS 4(Bruker社製)を用いて精密化することにより求めた。
[Lattice constant refinement]
For the lattice constant, from the powder X-ray diffraction measurement data of each example, a peak due to a crystal structure in which the space group is classified as (P6 3 / m) (International Tables for Crystallography, No. 176) is extracted. It was determined by refining using the processing software TOPAS 4 (manufactured by Bruker).
{蛍光体の製造}
[実施例1~7]
 蛍光体原料として、EuN、Si、AlNを用いて、次のとおり蛍光体を調製した。
 上記原料を、下記表1に示す各重量となるように電子天秤で秤量し、アルミナ乳鉢に入れ、均一になるまで粉砕及び混合した。さらに、この混合粉にフラックスとしてMg(セラック社製)を1.00g加えて、さらに粉砕、混合を実施した。これらの操作は、Arガスで満たしたグローブボックス中で行った。
{Manufacture of phosphor}
[Examples 1 to 7]
Using EuN, Si 3 N 4 , and AlN as phosphor materials, phosphors were prepared as follows.
The raw materials were weighed with an electronic balance so as to have the weights shown in Table 1 below, placed in an alumina mortar, and ground and mixed until uniform. Further, 1.00 g of Mg 3 N 2 (manufactured by Shellac Co.) was added as a flux to this mixed powder, and further pulverized and mixed. These operations were performed in a glove box filled with Ar gas.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた原料混合粉末から約0.5gを秤量し、窒化ホウ素製坩堝にそのまま充填した。この坩堝を、真空加圧焼成炉(島津メクテム社製)内に置いた。次いで、8×10-3Pa以下まで減圧した後、室温から800℃まで昇温速度20℃/分で真空加熱した。800℃に達したところで、その温度で維持して炉内圧力が0.85MPaになるまで窒素ガスを5分間導入した。窒素ガスの導入後、炉内圧力を0.85MPaに保持しながら、さらに、1600℃まで昇温し、1時間保持した。さらに、1950℃まで加熱し、1950℃に達したところで4時間維持した。焼成後1200℃まで冷却し、次いで放冷した。その後、生成物を解砕し、実施例3~7の蛍光体を得た。尚、実施例1~2については、生成物を解砕後、緑色結晶を選びだして、実施例1~2の蛍光体を得た。 About 0.5 g of the obtained raw material mixed powder was weighed and filled into a boron nitride crucible as it was. This crucible was placed in a vacuum pressure firing furnace (manufactured by Shimadzu Mectem Co.). Next, the pressure was reduced to 8 × 10 −3 Pa or less, and then vacuum heating was performed from room temperature to 800 ° C. at a temperature rising rate of 20 ° C./min. When the temperature reached 800 ° C., nitrogen gas was introduced for 5 minutes while maintaining that temperature until the pressure in the furnace reached 0.85 MPa. After the introduction of nitrogen gas, the temperature in the furnace was further maintained at 0.85 MPa, and the temperature was further increased to 1600 ° C. and maintained for 1 hour. Furthermore, it heated to 1950 degreeC, and when it reached 1950 degreeC, it maintained for 4 hours. After firing, it was cooled to 1200 ° C. and then allowed to cool. Thereafter, the product was crushed to obtain phosphors of Examples 3 to 7. For Examples 1 and 2, after pulverizing the product, green crystals were selected to obtain phosphors of Examples 1 and 2.
 実施例1の蛍光体について、SEM観察をした結果を図1に示す。また、SEM観察より実施例1の単結晶を選び出し、構成する元素とその比率を調べるため元素分析(EPMA測定)を実施した。EPMAにおいて検出された元素はEu、Al、Si、Nであり、マグネシウムと酸素は検出限界以下であった。定量分析の結果、Eu:Al:Siの原子比は、0.016(1):0.048(1):2.95(2)であった。括弧内の数字は標準偏差を表す。焼成時における酸素の混入はほぼゼロであることが確認された。 The result of SEM observation of the phosphor of Example 1 is shown in FIG. In addition, the single crystal of Example 1 was selected from SEM observation, and elemental analysis (EPMA measurement) was performed in order to examine the constituent elements and their ratios. Elements detected in EPMA were Eu, Al, Si, and N, and magnesium and oxygen were below the detection limit. As a result of quantitative analysis, the atomic ratio of Eu: Al: Si was 0.016 (1): 0.048 (1): 2.95 (2). Numbers in parentheses represent standard deviation. It was confirmed that the mixing of oxygen during firing was almost zero.
 次に、実施例1の単結晶構造解析を実施した。単結晶X線回折により得られた基本反射から考えた結果、実施例1の蛍光体の結晶系は、六方晶系であり、格子定数は、a=7.6265(4)Å、b=7.6265(4)Å、c=2.9075(2)Å、α=90°、β=90°、γ=120°と指数づけされた。また、実施例1の蛍光体の単位格子体積は146.454Åであった。 Next, the single crystal structure analysis of Example 1 was implemented. As a result of the basic reflection obtained by single crystal X-ray diffraction, the crystal system of the phosphor of Example 1 is a hexagonal system, and the lattice constants are a = 7.6265 (4) Å, b = 7. .6265 (4) Å, c = 2.9075 (2) Å, α = 90 °, β = 90 °, γ = 120 °. Further, the unit cell volume of the phosphor of Example 1 was 146.454 3 .
 また、実施例1の蛍光体の励起・発光スペクトルを図2に示した。励起スペクトルは、540nmの発光をモニターしたものである。また、発光スペクトルは450nmで励起したときの測定結果である。実施例1の蛍光体は、発光ピーク波長540nm、半値幅70nmの発光スペクトルを示し、緑色の発光を示すことが確認できた。 The excitation / emission spectrum of the phosphor of Example 1 is shown in FIG. The excitation spectrum is obtained by monitoring emission at 540 nm. The emission spectrum is a measurement result when excited at 450 nm. The phosphor of Example 1 showed an emission spectrum with an emission peak wavelength of 540 nm and a half width of 70 nm, and was confirmed to show green emission.
 実施例2、3の蛍光体について、SEM観察より実施例2、3の単結晶を選び出し、EPMA組成分析を実施した。EPMAにおいて検出された元素は実施例1と同様にEu、Al、Si、Nでマグネシウムと酸素は検出限界以下であった。また、定量分析の結果、Eu:Al:Siの原子比は、実施例2では0.008(1):0.039(1):2.96(2)であり、実施例3では0.006(1):0.030(1):2.97(2)であった。括弧内の数字は標準偏差を表す。焼成時における酸素の混入はほぼゼロであることが確認された。 For the phosphors of Examples 2 and 3, single crystals of Examples 2 and 3 were selected from SEM observation, and EPMA composition analysis was performed. Elements detected in EPMA were Eu, Al, Si, and N as in Example 1, and magnesium and oxygen were below the detection limit. As a result of quantitative analysis, the atomic ratio of Eu: Al: Si was 0.008 (1): 0.039 (1): 2.96 (2) in Example 2, and was 0.8 in Example 3. 006 (1): 0.030 (1): 2.97 (2). Numbers in parentheses represent standard deviation. It was confirmed that the mixing of oxygen during firing was almost zero.
 実施例4の蛍光体について、ICPによる組成分析と酸素窒素水素分析装置によるO/N分析を実施した。その結果、酸素は検出限界以下であり、Eu:Al:Siの原子比は、0.003:0.04:2.96であった。
 実施例3、4、5、7の蛍光体の粉末X線回折パターンを図3に示す。また、得られた粉末X線回折パターンより精密化した実施例2~7の蛍光体の格子定数、ならびに単位格子体積を表2に示す。実施例2~7において、実施例1と同様の構造を有する蛍光体がほぼ単相で得られた。
The phosphor of Example 4 was subjected to composition analysis by ICP and O / N analysis by an oxygen nitrogen hydrogen analyzer. As a result, oxygen was below the detection limit, and the atomic ratio of Eu: Al: Si was 0.003: 0.04: 2.96.
The powder X-ray diffraction patterns of the phosphors of Examples 3, 4, 5, and 7 are shown in FIG. Table 2 shows the lattice constants and unit cell volumes of the phosphors of Examples 2 to 7 refined from the obtained powder X-ray diffraction pattern. In Examples 2 to 7, phosphors having a structure similar to that of Example 1 were obtained in a substantially single phase.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の第一の実施態様によって得られる蛍光体は、結晶内のEu:Al:Siの割合を変化させることで、a軸が7.604Åから7.6265Åまで、c軸が2.906Åから2.908Åまで変化し、それに伴い、単位格子体積も145.53Åから146.454Åまで変化することが分かった。
 実施例2、3、5、7の蛍光体について、波長450nmの光で励起したときの発光スペクトルを図4に示す。また、実施例2~7の蛍光体について、波長450nmの光で励起したときの発光スペクトルから読み取った発光ピーク波長、半値幅、および、色度を表3に示す。
The phosphor obtained according to the first embodiment of the present invention can change the ratio of Eu: Al: Si in the crystal to change the a-axis from 7.604 to 7.6265 and the c-axis from 2.906 to vary from 2.908A, accordingly, the unit cell volume was also found to vary from 145.53A 3 to 146.454Å 3.
The emission spectra of the phosphors of Examples 2, 3, 5, and 7 when excited with light having a wavelength of 450 nm are shown in FIG. In addition, Table 3 shows the emission peak wavelength, the half width, and the chromaticity read from the emission spectrum when excited with light having a wavelength of 450 nm for the phosphors of Examples 2 to 7.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の第一の実施態様によって得られる蛍光体は、結晶内のEu:Al:Siの割合を変化させることで、発光スペクトルにおける発光ピーク波長を513nmから540nmまで、また、半値幅を40nmから76nmまで変化させることが可能であることが明らかとなった。すなわち、任意の組成にすることで、青緑色から黄緑色の発光を得ることができる。 The phosphor obtained by the first embodiment of the present invention changes the Eu: Al: Si ratio in the crystal to change the emission peak wavelength in the emission spectrum from 513 nm to 540 nm, and the half width from 40 nm. It became clear that it was possible to change to 76 nm. That is, light emission of blue green to yellow green can be obtained by using an arbitrary composition.
[実施例8]
 蛍光体原料として、Eu、Si、AlN、Alを用いて、次のとおり蛍光体を調製した。
 Siとしてα型Si(宇部興産製:SN-E10)を圧力0.92MPaの窒素雰囲気下において1950℃、12時間の熱処理を実施し、すべてβ型にしたSiを使用した。
 上記原料を、下記表4に示す各重量となるように電子天秤で秤量し、アルミナ乳鉢に入れ、大気中で均一になるまで粉砕及び混合した。実施例8では窒化マグネシウムは用いなかった。
 得られた原料混合粉末から約2.0gを秤量し、窒化ホウ素製坩堝にそのまま充填した。この坩堝を、真空加圧焼成炉(島津メクテム社製)内に置いた。次いで、8×10-3Pa以下まで減圧した後、室温から800℃まで昇温速度20℃/分で真空加熱した。800℃に達したところで、その温度で維持して炉内圧力が0.85MPaになるまで窒素ガスを5分間導入した。窒素ガスの導入後、炉内圧力を0.85MPaに保持しながら、さらに、1600℃まで昇温し、1時間保持した。さらに、2000℃まで加熱し、2000℃に達したところで4時間維持した。焼成後1200℃まで冷却し、次いで放冷した。その後、生成物を解砕し、実施例8の蛍光体を得た。
 実施例8はすべてβ‐SiAlON単相であった。
[Example 8]
A phosphor was prepared as follows using Eu 2 O 3 , Si 3 N 4 , AlN, and Al 2 O 3 as phosphor materials.
As Si 3 N 4 , α-type Si 3 N 4 (manufactured by Ube Industries, Ltd .: SN-E10) was heat-treated at 1950 ° C. for 12 hours in a nitrogen atmosphere at a pressure of 0.92 MPa to make all β-type Si 3 N 4 It was used.
The raw materials were weighed with an electronic balance so as to have the respective weights shown in Table 4 below, placed in an alumina mortar, and ground and mixed until uniform in the air. In Example 8, magnesium nitride was not used.
About 2.0 g of the obtained raw material mixed powder was weighed and filled in a boron nitride crucible as it was. This crucible was placed in a vacuum pressure firing furnace (manufactured by Shimadzu Mectem Co.). Next, the pressure was reduced to 8 × 10 −3 Pa or less, and then vacuum heating was performed from room temperature to 800 ° C. at a temperature rising rate of 20 ° C./min. When the temperature reached 800 ° C., nitrogen gas was introduced for 5 minutes while maintaining that temperature until the pressure in the furnace reached 0.85 MPa. After the introduction of nitrogen gas, the temperature in the furnace was further maintained at 0.85 MPa, and the temperature was further increased to 1600 ° C. and maintained for 1 hour. Furthermore, it heated to 2000 degreeC, and when it reached 2000 degreeC, it maintained for 4 hours. After firing, it was cooled to 1200 ° C. and then allowed to cool. Thereafter, the product was crushed to obtain the phosphor of Example 8.
Example 8 was all β-SiAlON single phase.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例8のICPによる組成分析と酸素窒素水素分析装置によるO/N分析を実施した。その結果、酸素が検出され、Eu:Al:Si:О:Nの原子比は、0.003:0.05:2.95:0.04:3.91であった。
 実施例4、実施例8の蛍光体について、波長450nmの光で励起したときの発光スペクトルを図5に示す。また、実施例4と実施例8の蛍光体について、波長450nmの光で励起したときの発光スペクトルから読み取った発光ピーク波長、半値幅、および、色度を表5に示す。
 結晶構造中の酸素を減少させることにより、発光ピーク波長が短波長化し、半値幅も狭くなることが明らかとなった。
The composition analysis by ICP of Example 8 and the O / N analysis by an oxygen nitrogen hydrogen analyzer were performed. As a result, oxygen was detected, and the atomic ratio of Eu: Al: Si: O: N was 0.003: 0.05: 2.95: 0.04: 3.91.
The emission spectra of the phosphors of Example 4 and Example 8 when excited with light having a wavelength of 450 nm are shown in FIG. Table 5 shows the emission peak wavelength, half-value width, and chromaticity read from the emission spectrum when excited with light having a wavelength of 450 nm for the phosphors of Example 4 and Example 8.
It has been clarified that by reducing oxygen in the crystal structure, the emission peak wavelength is shortened and the half width is narrowed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (7)

  1.  下記式[2]で表される結晶相を含むことを特徴とする、蛍光体。
     MAlSi [2]
    (上記式[2]中、
     Mは、付活元素を表し、
      0<m≦0.04
      a+b=3
      0<a≦0.08
      3.6≦d≦4.2
      x<a)
    A phosphor comprising a crystal phase represented by the following formula [2].
    M m Al a O x Si b N d [2]
    (In the above formula [2],
    M represents an activation element,
    0 <m ≦ 0.04
    a + b = 3
    0 <a ≦ 0.08
    3.6 ≦ d ≦ 4.2
    x <a)
  2.  下記式[1]で表される結晶相を含むことを特徴とする、蛍光体。
     MAlSi [1]
    (上記式[1]中、
     Mは、付活元素を表し、
      0<m≦0.04
      a+b=3
      0<a≦0.08
      3.6≦d≦4.2)
    A phosphor comprising a crystal phase represented by the following formula [1].
    M m Al a Si b N d [1]
    (In the above formula [1],
    M represents an activation element,
    0 <m ≦ 0.04
    a + b = 3
    0 <a ≦ 0.08
    3.6 ≦ d ≦ 4.2)
  3.  前記式[1]または[2]におけるM元素がEuであり、β型Si結晶構造を有する結晶にEuが固溶したサイアロン結晶の結晶構造である、請求項1または2に記載の蛍光体。 The M element in the formula [1] or [2] is Eu, and is a crystal structure of a sialon crystal in which Eu is dissolved in a crystal having a β-type Si 3 N 4 crystal structure. Phosphor.
  4.  300nm以上、460nm以下の波長を有する励起光を照射することにより、500nm以上、560nm以下の範囲に発光ピーク波長を有することを特徴とする、請求項1~3のいずれか1項に記載の蛍光体。 The fluorescence according to any one of claims 1 to 3, which has an emission peak wavelength in a range of 500 nm to 560 nm by irradiating excitation light having a wavelength of 300 nm to 460 nm. body.
  5.  第1の発光体と、該第1の発光体からの光の照射によって可視光を発する第2の発光体とを備え、該第2の発光体が請求項1~4のいずれか1項に記載の蛍光体を含むことを特徴とする発光装置。 A first light emitter and a second light emitter that emits visible light when irradiated with light from the first light emitter, the second light emitter according to any one of claims 1 to 4. A light emitting device comprising the phosphor described above.
  6.  請求項5に記載の発光装置を光源として備えることを特徴とする照明装置。 An illumination device comprising the light-emitting device according to claim 5 as a light source.
  7.  請求項5に記載の発光装置を光源として備えることを特徴とする画像表示装置。 An image display device comprising the light emitting device according to claim 5 as a light source.
PCT/JP2017/034593 2016-09-26 2017-09-25 Phosphor, light-emitting device, illumination device, and image display device WO2018056447A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018540339A JP6985704B2 (en) 2016-09-26 2017-09-25 Fluorescent material, light emitting device, lighting device and image display device
CN201780053292.7A CN109699179B (en) 2016-09-26 2017-09-25 Phosphor, light-emitting device, illumination device, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016187524 2016-09-26
JP2016-187524 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018056447A1 true WO2018056447A1 (en) 2018-03-29

Family

ID=61690564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034593 WO2018056447A1 (en) 2016-09-26 2017-09-25 Phosphor, light-emitting device, illumination device, and image display device

Country Status (4)

Country Link
JP (1) JP6985704B2 (en)
CN (1) CN109699179B (en)
TW (1) TWI808946B (en)
WO (1) WO2018056447A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153157A1 (en) * 2022-02-08 2023-08-17 デンカ株式会社 EUROPIUM-ACTIVATED β SIALON PHOSPHOR
WO2023171504A1 (en) * 2022-03-07 2023-09-14 デンカ株式会社 EU ACTIVATED β-TYPE SIALON FLUORESCENT PARTICLES, β-TYPE SIALON FLUORESCENT POWDER, AND LIGHT-EMITTING DEVICE
WO2024203864A1 (en) * 2023-03-28 2024-10-03 デンカ株式会社 METHOD FOR PRODUCING α-SIALON PHOSPHOR AND METHOD FOR PRODUCING LIGHT EMITTING DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230101891A (en) * 2020-11-13 2023-07-06 덴카 주식회사 Phosphor powder, light emitting device, image display device and lighting device
KR102599818B1 (en) 2022-01-20 2023-11-08 미쯔비시 케미컬 주식회사 Phosphor, light-emitting device, illumination device, image display device, and indicator lamp for vehicle
KR102599819B1 (en) 2022-01-20 2023-11-08 미쯔비시 케미컬 주식회사 Phosphor, light-emitting device, illumination device, image display device, and indicator lamp for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255895A (en) * 2004-03-12 2005-09-22 National Institute For Materials Science Phosphor and its manufacturing method
WO2006101095A1 (en) * 2005-03-22 2006-09-28 National Institute For Materials Science Phosphor and process for producing the same
WO2007066733A1 (en) * 2005-12-08 2007-06-14 National Institute For Materials Science Phosphor, process for producing the same, and luminescent device
JP2009010315A (en) * 2007-05-30 2009-01-15 Sharp Corp Method of manufacturing phosphor, light-emitting device and image display apparatus
JP2013142135A (en) * 2012-01-12 2013-07-22 Denki Kagaku Kogyo Kk Fluorescent substance and light-emitting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613856B (en) * 2009-07-16 2011-04-27 中国科学院上海硅酸盐研究所 Al-doped alpha-phase silicon nitride (alpha-Si3N4)-based material and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255895A (en) * 2004-03-12 2005-09-22 National Institute For Materials Science Phosphor and its manufacturing method
WO2006101095A1 (en) * 2005-03-22 2006-09-28 National Institute For Materials Science Phosphor and process for producing the same
WO2007066733A1 (en) * 2005-12-08 2007-06-14 National Institute For Materials Science Phosphor, process for producing the same, and luminescent device
JP2009010315A (en) * 2007-05-30 2009-01-15 Sharp Corp Method of manufacturing phosphor, light-emitting device and image display apparatus
JP2013142135A (en) * 2012-01-12 2013-07-22 Denki Kagaku Kogyo Kk Fluorescent substance and light-emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153157A1 (en) * 2022-02-08 2023-08-17 デンカ株式会社 EUROPIUM-ACTIVATED β SIALON PHOSPHOR
WO2023171504A1 (en) * 2022-03-07 2023-09-14 デンカ株式会社 EU ACTIVATED β-TYPE SIALON FLUORESCENT PARTICLES, β-TYPE SIALON FLUORESCENT POWDER, AND LIGHT-EMITTING DEVICE
WO2024203864A1 (en) * 2023-03-28 2024-10-03 デンカ株式会社 METHOD FOR PRODUCING α-SIALON PHOSPHOR AND METHOD FOR PRODUCING LIGHT EMITTING DEVICE

Also Published As

Publication number Publication date
TWI808946B (en) 2023-07-21
CN109699179A (en) 2019-04-30
CN109699179B (en) 2022-03-29
TW201817853A (en) 2018-05-16
JP6985704B2 (en) 2021-12-22
JPWO2018056447A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2018056447A1 (en) Phosphor, light-emitting device, illumination device, and image display device
WO2015002139A1 (en) Phosphor and light emitting device
JP6782427B2 (en) Fluorescent material, light emitting device, lighting device and image display device
CN106574181B (en) Phosphor, light emitting device, image display device, and illumination device
JP2023107773A (en) Phosphor, light emitting device, image display device and illumination device
WO2016076380A1 (en) Phosphor, light-emitting device, illumination device, and image display device
JP7155507B2 (en) Phosphor, light emitting device, lighting device and image display device
JP2017190434A (en) Fluophor, light-emitting device, luminaire and image display device
JP6372368B2 (en) Phosphor, light emitting device, lighting device, and image display device
JP2016088970A (en) Phosphor, light emitting device, illumination device and image display device
JP2016079213A (en) Phosphor, light emitting device, illumination device and image display device
JP2016124929A (en) Phosphor, light emitting device, illumination device and image display device
JP2016056246A (en) Phosphor, light emitting device, illumination device and image display device
JP2016191011A (en) Phosphor, light emitting device, lighting device and image display device
JP2016124928A (en) Phosphor, light emitting device, illumination device and image display device
JP7310977B2 (en) Phosphor, light emitting device, lighting device and image display device
JP2016094533A (en) Phosphor, light emitting device, illumination device and image display device
JP7144002B2 (en) Phosphor, phosphor composition using the same, and light-emitting device, lighting device, and image display device using the same
JP2017206599A (en) Phosphor, light emitting device, illumination device and image display device
JP2017088791A (en) Phosphor, light emitting device, illumination device and image display device
JP2016199675A (en) Phosphor, light emitting device, illumination device and image display device
JP2017043728A (en) Phosphor, light emitting device, illumination device and image display device
JP2017014370A (en) Phosphor, light emitting device, illumination device and image display device
JP2023057391A (en) Phosphor
JP2016056329A (en) Phosphor, light emitting device, illumination device and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853214

Country of ref document: EP

Kind code of ref document: A1