JP2013142135A - Fluorescent substance and light-emitting device - Google Patents

Fluorescent substance and light-emitting device Download PDF

Info

Publication number
JP2013142135A
JP2013142135A JP2012003787A JP2012003787A JP2013142135A JP 2013142135 A JP2013142135 A JP 2013142135A JP 2012003787 A JP2012003787 A JP 2012003787A JP 2012003787 A JP2012003787 A JP 2012003787A JP 2013142135 A JP2013142135 A JP 2013142135A
Authority
JP
Japan
Prior art keywords
phosphor
content
ppm
light
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012003787A
Other languages
Japanese (ja)
Other versions
JP6220112B2 (en
Inventor
Shintaro Watanabe
真太郎 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2012003787A priority Critical patent/JP6220112B2/en
Priority to PCT/JP2012/080544 priority patent/WO2013105346A1/en
Publication of JP2013142135A publication Critical patent/JP2013142135A/en
Application granted granted Critical
Publication of JP6220112B2 publication Critical patent/JP6220112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Abstract

PROBLEM TO BE SOLVED: To provide a fluorescent substance having higher light-emitting strength than conventional fluorescent substances, and to provide a high brightness light-emitting device using the fluorescent substance.SOLUTION: A nitride or oxynitride fluorescent substance includes a S content of ≤5 ppm and a P content of ≤30 ppm. The nitride or oxynitride fluorescent substance includes a β- sialon represented by general formula: SiAlON(0<z≤4.2) and containing Eu as the light-emitting center, an α- sialon represented by general formula: (MI)(Eu)(Si, Al)(O, N), and a fluorescent substance represented by general formula: (MII)(Si, Al)(N, O), wherein a part of the MII elements is replaced by an Eu element, and the main crystal phase has an identical crystal structure to CaAlSiN.

Description

本発明は、LEDなどの発光素子の光の波長を変換する蛍光体及びこの蛍光体を用いた発光装置に関するものである。さらに詳しくは、発光ピーク強度が高い窒化物又は酸窒化物蛍光体、並びに当該蛍光体の使用により優れた輝度を有する発光装置に関するものである。   The present invention relates to a phosphor that converts the wavelength of light of a light-emitting element such as an LED, and a light-emitting device using the phosphor. More specifically, the present invention relates to a nitride or oxynitride phosphor having a high emission peak intensity, and a light emitting device having superior luminance due to the use of the phosphor.

半導体発光素子と蛍光体とを組み合わせた発光装置は、低消費電力、小型、高輝度かつ広範囲な色再現性が期待される次世代の発光装置として注目され、活発に研究、開発が行われている。例えば、青色から紫色の短波長の可視光を発光する半導体発光素子と蛍光体とを組み合わせ、半導体発光素子の発光と蛍光体により波長変換された光との混色により白色光を得る白色LEDは現在広く流通している。その白色LEDの高出力化に伴い、蛍光体の耐熱性、耐久性に対する要求が益々高まり、温度上昇に伴う発光強度低下が小さく、耐久性に優れた蛍光体が求められている。このような蛍光体として、結晶構造が比較的安定しており、発光特性、熱安定性、化学的安定性が良好であるという理由から、窒化物もしくは酸窒化物を母体材料とし、遷移金属もしくは希土類金属で付活された窒化物又は酸窒化物蛍光体が広く用いられている。   Light-emitting devices combining semiconductor light-emitting elements and phosphors are attracting attention as next-generation light-emitting devices that are expected to have low power consumption, small size, high brightness, and wide color reproducibility, and are actively researched and developed. Yes. For example, there is currently a white LED that combines a semiconductor light-emitting element that emits blue to violet short-wavelength visible light and a phosphor, and obtains white light by mixing light emitted from the semiconductor light-emitting element and light that has been wavelength-converted by the phosphor. It is widely distributed. With the increase in output of the white LED, demands for the heat resistance and durability of the phosphor are increasing, and there is a demand for a phosphor excellent in durability with a small decrease in light emission intensity due to a temperature rise. As such a phosphor, the crystal structure is relatively stable, and the emission characteristics, thermal stability, and chemical stability are good, so that nitride or oxynitride is used as a base material, transition metal or Nitride or oxynitride phosphors activated by rare earth metals are widely used.

代表的な窒化物又は酸窒化物蛍光体として、βサイアロン、αサイアロン、CASN(すなわち、CaAlSiN)等がある。 Typical nitride or oxynitride phosphors include β sialon, α sialon, CASN (ie, CaAlSiN 3 ) and the like.

βサイアロンを母体材料とした蛍光体としては、β型Si結晶構造を持つ窒化物又は酸窒化物を母体結晶とし、金属元素M(ただし、Mは、Mn、Ce、Euから選ばれる1種又は2種以上の元素)を発光中心として添加した蛍光体があり、この蛍光体は、従来の希土類付活サイアロン蛍光体より緑色の輝度が高く、従来の酸化物蛍光体よりも耐久性に優れる(特許文献1)。 As a phosphor using β sialon as a base material, a nitride or oxynitride having a β-type Si 3 N 4 crystal structure is used as a base crystal, and metal element M (where M is selected from Mn, Ce, Eu) There is a phosphor added with one or more elements as an emission center. This phosphor has higher green luminance than a conventional rare earth activated sialon phosphor, and is more durable than a conventional oxide phosphor. (Patent Document 1).

αサイアロンを母体材料に用いた蛍光体としては、母体材料であるαサイアロンに固溶する金属の一部若しくは全てが、発光の中心となるランタニド金属Re1(Re1は、Ce、Pr、Eu、Tb、Yb、又はErの一種若しくは二種以上)又は二種類のランタニド金属Re1及び共付活剤としてのRe2(Re2はDy)で置換した結晶性の酸窒化物蛍光体が提案されており、この蛍光体は、従来の酸化物蛍光体と比較して励起スペクトルが長波長側にシフトしており、熱及び機械的性質、さらに化学的安定性に優れるとされている(特許文献2)。   As a phosphor using α sialon as a base material, a lanthanide metal Re1 (Re1 is Ce, Pr, Eu, Tb) in which a part or all of the metal that is solid-solved in α sialon, which is the base material, is the center of light emission. , Yb, or Er) or two kinds of lanthanide metals Re1 and Re2 as a coactivator (Re2 is Dy), and a crystalline oxynitride phosphor has been proposed. The phosphor has an excitation spectrum shifted to a longer wavelength side as compared with a conventional oxide phosphor, and is said to be excellent in thermal and mechanical properties and chemical stability (Patent Document 2).

CaAlSiN結晶と同一の結晶構造を有する無機化合物を母体結晶とするCASNについては、従来の希土類付活サイアロン蛍光体より長波長の橙色や赤色に発光し、また従来報告されている窒化物や酸窒化物を母体結晶とする赤色蛍光体よりも輝度が高いとされている(特許文献3)。 CASN, which uses an inorganic compound having the same crystal structure as that of the CaAlSiN 3 crystal as a base crystal, emits a longer wavelength orange or red light than conventional rare earth activated sialon phosphors, and conventionally reported nitrides and acids. It is said that the luminance is higher than that of a red phosphor having nitride as a base crystal (Patent Document 3).

これらの窒化物又は酸窒化物蛍光体について、発光特性を改善するための種々の試みもなされている。例えば、原料混合物を特定の圧力範囲の窒素中において特定の温度範囲で焼結し、次いで、得られた焼結体を平均粒径が特定の範囲となるまで粉砕する方法(特許文献4)、液相焼結することにより粗大化した単結晶粒子を得る方法(特許文献5)、あるいは、特定の組成領域範囲となるように制御する方法などが提案されている(特許文献6)。さらに、窒化物又は酸窒化物蛍光体におけるFeやMnといった金属元素の含有率を制限することや(特許文献7)、ハロゲンを包含させると共に酸素含有量を制限すること(特許文献8)などが提案されている。   Various attempts have been made to improve the light emission characteristics of these nitride or oxynitride phosphors. For example, a method in which the raw material mixture is sintered in a specific pressure range in a specific pressure range in a specific temperature range, and then the obtained sintered body is pulverized until the average particle size reaches a specific range (Patent Document 4). There have been proposed a method of obtaining coarse single crystal particles by liquid phase sintering (Patent Document 5), a method of controlling to a specific composition region range, etc. (Patent Document 6). Furthermore, limiting the content of metal elements such as Fe and Mn in the nitride or oxynitride phosphor (Patent Document 7), including halogen and limiting the oxygen content (Patent Document 8), etc. Proposed.

しかしながら、高輝度の発光装置を得るためには、蛍光体の発光特性をさらに改善することが依然として求められている。   However, in order to obtain a high-luminance light emitting device, it is still required to further improve the light emission characteristics of the phosphor.

特開2005−255895号公報JP 2005-255895 A 特開2002−363554号公報JP 2002-363554 A 特開2006−8721号公報JP 2006-8721 A 特開2005−8794号公報Japanese Patent Laying-Open No. 2005-8794 特開2006−152069号公報JP 2006-152069 A 国際公開第2006/101095号公報パンフレットInternational Publication No. 2006/101095 pamphlet 特開2008−120949号公報JP 2008-120949 A 特開2010−18771号公報JP 2010-188771 A

本発明は、前記課題に鑑みてなされたものであり、高い発光強度を有する蛍光体を提供すること、及び、かかる蛍光体を用いた高輝度の発光装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a phosphor having high emission intensity and to provide a high-luminance light-emitting device using such a phosphor.

本発明者は検討を重ねた結果、窒化物又は酸窒化物蛍光体において、従来までは注目されていなかった非金属であるS(イオウ元素)及びP(リン元素)の存在に注目し、これらの含有量を一定値以下に制御することにより、高発光強度の蛍光体を得ることができることを見出し、本発明を完成するに至った。これにより半導体発光素子、特に青色LED又は紫外LEDを光源としたときに、高発光強度の窒化物又は酸窒化物蛍光体、さらにこれらを用いた高効率の発光装置を提供することができる。   As a result of repeated studies, the present inventors have focused on the presence of non-metallic S (sulfur element) and P (phosphorus element), which have not been noticed so far, in nitride or oxynitride phosphors. It has been found that a phosphor having a high emission intensity can be obtained by controlling the content of the phosphor to a certain value or less, and the present invention has been completed. Thereby, when a semiconductor light emitting element, particularly, a blue LED or an ultraviolet LED is used as a light source, it is possible to provide a nitride or oxynitride phosphor having high emission intensity, and a highly efficient light emitting device using these.

すなわち、本発明は以下を要旨とするものである。
(1)Sの含有量が5ppm以下、Pの含有量が30ppm以下である窒化物又は酸窒化物蛍光体。
(2)付活元素が2価のEu又は3価のCeである(1)の蛍光体。
(3)一般式:Si6−zAl8−z(0<z≦4.2)で示され、発光中心としてEuを含有するβサイアロンである(1)の蛍光体。
(4)一般式:(MI)(Eu)(Si,Al)12(O,N)16(ただし、MIはLi、Mg、Ca、Sr、Ba、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる少なくともCaを含む1種以上の元素を示し、0<x≦3.0、0.005≦y≦0.4)で示されるαサイアロンである(1)の蛍光体。
(5)前記MIはCaである(4)の蛍光体。
(6)一般式:(MII)(Si,Al)(N,O)3±y(ただし、MII元素はLi、Mg、Ca、Sr及びBaから選ばれる一種以上のアルカリ金属元素又はアルカリ土類金属元素であり、0.8≦x≦1.2、0≦y≦0.2)で示され、MII元素の一部がEu元素で置換されている蛍光体であって、主結晶相がCaAlSiNと同一の結晶構造を有する(1)の蛍光体。
(7)前記MII元素がCa及びSrのいずれか一方又は双方の元素である(6)の蛍光体。
(8)一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換部とを備えた発光装置であって、前記波長変換部が前記(1)〜(7)のいずれかの蛍光体の単体又はこれらの混合体である発光装置。
That is, this invention makes the following a summary.
(1) A nitride or oxynitride phosphor having an S content of 5 ppm or less and a P content of 30 ppm or less.
(2) The phosphor according to (1), wherein the activating element is divalent Eu or trivalent Ce.
(3) The phosphor of (1), which is a β sialon represented by the general formula: Si 6-z Al z O z N 8-z (0 <z ≦ 4.2) and containing Eu as the emission center.
(4) General formula: (MI) x (Eu) y (Si, Al) 12 (O, N) 16 (where MI is Li, Mg, Ca, Sr, Ba, Y and lanthanide elements (La and Ce) 1) at least one element containing at least Ca selected from the group consisting of: (1) the fluorescence of (1) which is α sialon represented by 0 <x ≦ 3.0, 0.005 ≦ y ≦ 0.4) body.
(5) The phosphor according to (4), wherein MI is Ca.
(6) General formula: (MII) x (Si, Al) 2 (N, O) 3 ± y (where the MII element is one or more alkali metal elements or alkalis selected from Li, Mg, Ca, Sr and Ba) A phosphor which is an earth metal element and is represented by 0.8 ≦ x ≦ 1.2 and 0 ≦ y ≦ 0.2), wherein a part of the MII element is substituted with Eu element, The phosphor of (1) whose phase has the same crystal structure as CaAlSiN 3 .
(7) The phosphor according to (6), wherein the MII element is one or both of Ca and Sr.
(8) A light emitting device including a light emitting element that emits primary light, and a wavelength conversion unit that absorbs part of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light, The light emitting device in which the wavelength conversion unit is a single substance of the phosphors according to any one of (1) to (7) or a mixture thereof.

本発明によれば、高発光強度の窒化物又は酸窒化物蛍光体を提供することができ、さらに、当該蛍光体を使用することにより高輝度を実現できる発光装置を提供することができる。   According to the present invention, a nitride or oxynitride phosphor having high emission intensity can be provided, and further, a light emitting device capable of realizing high luminance by using the phosphor can be provided.

以下、本発明を詳細に説明する。
本発明の蛍光体は、付活元素M、2価の金属元素M、3価の金属元素M、及び4価の金属元素Mを含むことができ、下記一般式[1]で表される窒化物又は酸窒化物蛍光体である必要がある。
[1]
Hereinafter, the present invention will be described in detail.
The phosphor of the present invention can include an activating element M 1 , a divalent metal element M 2 , a trivalent metal element M 3 , and a tetravalent metal element M 4, and is represented by the following general formula [1]. It must be the nitride or oxynitride phosphor represented.
M 1 a M 2 b M 3 c M 4 d N e O f [1]

付活元素Mとしては、窒化物又は酸窒化物蛍光体を構成する結晶母体に含有可能な各種の発光イオンを使用することができるが、Cr、Mn、Fe、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、及びYbよりなる群から選ばれる1種以上の元素を使用すると、発光特性の高い蛍光体を製造することが可能なので好ましい。発光中心となる元素Mの中でも、Eu又はCeは高い輝度が得られるため特に好ましい。 As the activator element M 1 , various light-emitting ions that can be contained in the crystal matrix constituting the nitride or oxynitride phosphor can be used, but Cr, Mn, Fe, Ce, Pr, Nd, Sm can be used. , Eu, Tb, Dy, Ho, Er, Tm, and Yb are preferably used because one or more elements selected from the group consisting of Yb can be used because a phosphor with high emission characteristics can be produced. Among the elements M 1 as an emission center also, Eu or Ce is particularly preferred because the resulting high brightness.

付活元素M以外の元素としては、2価の金属元素MがMg、Ca、Sr、Ba、及びZnよりなる群から選ばれる1種以上の元素、3価の金属元素MがAl、Ga、In、及びScよりなる群から選ばれる1種以上の元素、4価の金属元素MがSi、Ge、Sn、Ti、Zr、及びHfよりなる群から選ばれる1種以上の元素であることが、発光特性の高い蛍光体を得ることができるので好ましい。 As an element other than the activation element M 1 , the divalent metal element M 2 is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and the trivalent metal element M 3 is Al. One or more elements selected from the group consisting of Ga, In, and Sc, and one or more elements selected from the group consisting of Si, Ge, Sn, Ti, Zr, and Hf, and the tetravalent metal element M 4 It is preferable that a phosphor with high emission characteristics can be obtained.

このような窒化物又は酸窒化物蛍光体の中でも、特に、2価のEuで付活されたβサイアロン蛍光体、2価のEuで付活されたαサイアロン蛍光体、主結晶相がCaAlSiNと同一の結晶構造を有する2価のEuで付活されたCASN蛍光体が特に好ましい。 Among such nitride or oxynitride phosphors, in particular, β sialon phosphors activated with divalent Eu, α sialon phosphors activated with divalent Eu, and the main crystal phase is CaAlSiN 3 A CASN phosphor activated with divalent Eu having the same crystal structure as is particularly preferred.

Eu付活βサイアロン蛍光体は、一般式:Si6−ZAl8−Zで示されるβサイアロンをホスト結晶とするものであり、発光中心としてEu2+が固溶されたものである。このβサイアロン蛍光体は、一般式:Si6−zAl8−z:Eu(0<z≦4.2)と表記される。 The Eu-activated β sialon phosphor has a β sialon represented by the general formula: Si 6-Z Al Z O Z N 8-Z as a host crystal, and Eu 2+ is dissolved as a light emission center. is there. This β sialon phosphor is represented by the general formula: Si 6−z Al z O z N 8−z : Eu (0 <z ≦ 4.2).

Eu付活αサイアロン蛍光体は、一般式:(MI)(Eu)(Si,Al)12(O,N)16(但し、MI元素はLi、Mg、Ca、Sr、Ba、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる少なくともCaを含む1種以上の元素を示し、0<x≦3.0、0.005≦y≦0.4)で示される。MI元素としては、色度調整の面で有利なCaが好ましい。 The Eu-activated α sialon phosphor has a general formula: (MI) x (Eu) y (Si, Al) 12 (O, N) 16 (where the MI element is Li, Mg, Ca, Sr, Ba, Y and One or more elements including at least Ca selected from the group consisting of lanthanide elements (excluding La and Ce) are represented by 0 <x ≦ 3.0 and 0.005 ≦ y ≦ 0.4. As the MI element, Ca which is advantageous in terms of chromaticity adjustment is preferable.

主結晶相がCaAlSiNと同一の結晶構造を有するEu付活蛍光体は、一般式:(MII)(Si,Al)(N,O)3±y(ただし、MII元素はLi、Mg、Ca、Sr及びBaから選ばれる一種以上のアルカリ金属元素又はアルカリ土類金属元素であり、0.8≦x≦1.2、0≦y≦0.2)で示され、MII元素の一部がEu元素で置換されている蛍光体である。MII元素としては、色度調整の面で有利なCa及びSrの少なくとも一方又は双方の元素が好ましい。 The Eu-activated phosphor whose main crystal phase has the same crystal structure as CaAlSiN 3 has the general formula: (MII) x (Si, Al) 2 (N, O) 3 ± y (where the MII element is Li, Mg) One or more alkali metal elements or alkaline earth metal elements selected from Ca, Sr and Ba, 0.8 ≦ x ≦ 1.2, 0 ≦ y ≦ 0.2), and one of the MII elements It is a phosphor whose part is substituted with Eu element. The MII element is preferably at least one or both of Ca and Sr, which are advantageous in terms of chromaticity adjustment.

一般式[1]で表される他の窒化物又は酸窒化物蛍光体の例としては、次のものがある。
CaSi:Eu、SrSi:Eu、(Sr0.5Ca0.5Sr:Eu、CaSi0.17.9:Eu、SrSi0.17.9:Eu、(Sr0.5Ca0.5Sr0.17.9:Eu、BaSi:Eu、SrSi:Eu、CaSi:Eu、SrAlSiON13:Eu、SrAlSi1321:Eu、CaSi:Eu、SrSi:Eu、CaAlSi:Eu、CaAlSi:Ce、SrAlSi:Eu、SrAlSi:Ce、Ce付活βサイアロン蛍光体、Ce付活αサイアロン蛍光体、及び、主結晶相がCaAlSiNと同一の結晶構造を有するCe付活蛍光体。
Examples of other nitride or oxynitride phosphors represented by the general formula [1] include the following.
Ca 2 Si 5 N 8 : Eu, Sr 2 Si 5 N 8 : Eu, (Sr 0.5 Ca 0.5 ) 2 Sr 5 N 8 : Eu, Ca 2 Si 5 O 0.1 N 7.9 : Eu , Sr 2 Si 5 O 0.1 N 7.9: Eu, (Sr 0.5 Ca 0.5) 2 Sr 5 O 0.1 N 7.9: Eu, BaSi 2 O 2 N 2: Eu, SrSi 2 O 2 N 2 : Eu, CaSi 2 O 2 N 2 : Eu, Sr 2 Al 3 Si 7 ON 13 : Eu, Sr 3 Al 3 Si 13 O 2 N 21 : Eu, Ca 3 Si 2 N 2 O 4 : Eu, Sr 3 Si 2 N 2 O 4 : Eu, CaAlSi 4 N 7 : Eu, CaAlSi 4 N 7 : Ce, SrAlSi 4 N 7 : Eu, SrAlSi 4 N 7 : Ce, Ce-activated β-sialon phosphor, Ce Activated α sialon phosphor, and , Ce-activated phosphor main crystal phase having the same crystal structure as CaAlSiN 3.

本発明は、上記一般式[1]で表される窒化物又は酸窒化物蛍光体におけるS及びPの許容存在量を規定したことを主な特徴とするものである。従来から窒化物、酸窒化物蛍光体の高発光強度化を実現するために様々な検討が行われ、例えば、特許文献7および8に記載されるように、金属類や酸素が発光特性に与える影響の検討は行われているが、非金属元素が発光特性に与える影響についてはほとんど検討されたことがない。本発明者は、無数に存在し得る非金属元素の中から、予想外にも、S及びPが窒化物又は酸窒化物蛍光体において発光強度を低下させてしまうことを初めて見出し、発光強度に優れた蛍光体を製造する新たな条件を提供する本発明を完成するに至った。   The main feature of the present invention is that the allowable amount of S and P in the nitride or oxynitride phosphor represented by the general formula [1] is defined. Conventionally, various studies have been made to achieve high emission intensity of nitride and oxynitride phosphors. For example, as described in Patent Documents 7 and 8, metals and oxygen give emission characteristics. Although the influence has been studied, the influence of nonmetallic elements on the light emission characteristics has hardly been studied. The present inventor has discovered for the first time that S and P will decrease the emission intensity in a nitride or oxynitride phosphor from among a myriad of non-metallic elements that can be present, and the emission intensity will be reduced. The present invention has been completed which provides new conditions for producing excellent phosphors.

本発明の窒化物又は酸窒化物蛍光体におけるS含有量は5ppm以下であり、好ましくは3ppm以下である。蛍光体中のS含有量が5ppmを超えると発光強度の低下が大きくなる傾向がある。各蛍光体中におけるSの含有量は、例えば燃焼イオンクロマトグラフ法を用いて分析を行うことにより算出することができる。蛍光体のS含有量は、原料粉末に含まれるS含有量を反映するため、S含有量の少ない原料を用いることによって制御することが可能である。また、本発明の窒化物又は酸窒化物蛍光体におけるP含有量は30ppm以下であり、好ましくは20ppm以下である。蛍光体中のP含有量が30ppmを超えると発光強度の低下が大きくなる傾向がある。各蛍光体中におけるPの含有量は、例えば質量分析計を備えたICP発光分析装置を用いて微量分析を行うことにより算出することができる。蛍光体のP含有量は、原料粉末に含まれるP含有量を反映するため、P含有量の少ない原料を用いることによって制御することが可能である。   The S content in the nitride or oxynitride phosphor of the present invention is 5 ppm or less, preferably 3 ppm or less. If the S content in the phosphor exceeds 5 ppm, the emission intensity tends to decrease significantly. The content of S in each phosphor can be calculated by performing analysis using, for example, combustion ion chromatography. Since the S content of the phosphor reflects the S content contained in the raw material powder, it can be controlled by using a raw material with a low S content. Further, the P content in the nitride or oxynitride phosphor of the present invention is 30 ppm or less, preferably 20 ppm or less. When the P content in the phosphor exceeds 30 ppm, the emission intensity tends to decrease greatly. The P content in each phosphor can be calculated, for example, by performing a microanalysis using an ICP emission analyzer equipped with a mass spectrometer. Since the P content of the phosphor reflects the P content contained in the raw material powder, it can be controlled by using a raw material with a low P content.

本発明は、前記各蛍光体を用いた発光装置にも関する。すなわち、本発明に係る発光装置は、一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長以上の長さの波長を有する二次光を発する波長変換部とを備え、当該波長変換部に上述した窒化物又は酸窒化物蛍光体の少なくともいずれかを含む。当該発光装置に用いられる窒化物又は酸窒化物蛍光体はCu含有量が一定値以下であり発光強度が高いため、発光装置の輝度を向上させることが可能である。   The present invention also relates to a light emitting device using each of the phosphors. That is, a light-emitting device according to the present invention includes a light-emitting element that emits primary light, and a wavelength conversion unit that absorbs part of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light. And the wavelength converter includes at least one of the above-described nitride or oxynitride phosphor. Since the nitride or oxynitride phosphor used in the light-emitting device has a Cu content of a certain value or less and high light emission intensity, the luminance of the light-emitting device can be improved.

以下、実施例及び比較例を挙げて本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

(実施例1)
実施例1の蛍光体として、βサイアロンを用いて説明する。
合成後のβサイアロン(Si6−zAl8−z)のz値が0.2となるように、窒化ケイ素粉末、窒化アルミニウム粉末、酸化アルミニウム粉末を配合し、更にこれらに対して外割で0.8質量%の酸化ユーロピウム粉末を配合し、原料混合物を得た。この原料混合物に対して、ナイロン製ポットと窒化ケイ素製のボールを用い、乾式ボールミルによる混合を行った。ボールミル混合後、目開き150μmの篩を全通させて凝集物を取り除き、原料混合粉末を得た。この原料混合粉末を、燃焼−イオンクロマトグラフ装置(Dionex社製、ICS−1500)及びICP発光分光分析装置(株式会社リガク製、CIROS−120)を使用して分析したところ、S含有量は3ppm、P含有量は17ppmであった。
Example 1
The phosphor of Example 1 will be described using β sialon.
Silicon nitride powder, aluminum nitride powder, and aluminum oxide powder are blended so that the z value of the synthesized β sialon (Si 6-z Al z O z N 8-z ) is 0.2, Then, 0.8% by mass of europium oxide powder was blended as an outer portion to obtain a raw material mixture. This raw material mixture was mixed by a dry ball mill using a nylon pot and silicon nitride balls. After mixing with the ball mill, a sieve having an opening of 150 μm was passed through to remove aggregates to obtain a raw material mixed powder. When this raw material mixed powder was analyzed using a combustion-ion chromatograph (Dionex, ICS-1500) and an ICP emission spectrophotometer (Rigaku, CIROS-120), the S content was 3 ppm. The P content was 17 ppm.

原料混合粉末を蓋付き円筒窒化ホウ素製容器に充填し、カーボンヒーターの電気炉で0.8MPaの加圧窒素雰囲気中、2000℃で10時間の加熱処理を行った。   The raw material mixed powder was filled in a cylindrical boron nitride container with a lid, and was subjected to heat treatment at 2000 ° C. for 10 hours in a pressurized nitrogen atmosphere of 0.8 MPa in an electric furnace of a carbon heater.

得られた合成物を乳鉢で軽く解砕し、目開き150μmの篩を全通させ、蛍光体粉末を得た。CuKα線を用いた粉末X線回折測定により、結晶相を調べたところ、結晶相はβサイアロン単相であった。   The obtained composite was lightly crushed with a mortar, and passed through a sieve having an opening of 150 μm to obtain phosphor powder. When the crystal phase was examined by powder X-ray diffraction measurement using CuKα rays, the crystal phase was a β sialon single phase.

この蛍光体粉末を、燃焼−イオンクロマトグラフ分析及びICP発光分析したところ、S含有量が1ppm、P含有量が12ppmであり、Eu0.15Si5.8Al0.20.27.8で表されるβサイアロンであった。 When this phosphor powder was subjected to combustion-ion chromatography analysis and ICP emission analysis, the S content was 1 ppm, the P content was 12 ppm, and Eu 0.15 Si 5.8 Al 0.2 O 0.2 N. It was β sialon represented by 7.8 .

(実施例2)
原料としてS含有量が9ppm、P含有量が35ppmの原料混合粉末を用いた以外は実施例1と同様に製造したところ、S含有量が3ppm、P含有量が25ppmであり、Eu0.15Si5.8Al0.20.27.8で表されるβサイアロンを得た。
(Example 2)
Production was carried out in the same manner as in Example 1 except that a raw material mixed powder having an S content of 9 ppm and a P content of 35 ppm was used as a raw material. The S content was 3 ppm, the P content was 25 ppm, and Eu 0.15 Β sialon represented by Si 5.8 Al 0.2 O 0.2 N 7.8 was obtained.

(比較例1)
原料としてS含有量が22ppm、P含有量が50ppmの原料混合粉末を用いた以外は実施例1と同様に製造したところ、S含有量が10ppm、P含有量が35ppmであり、Eu0.15Si5.8Al0.20.27.8で表されるβサイアロンを得た。
(Comparative Example 1)
Production was carried out in the same manner as in Example 1 except that a raw material mixed powder having an S content of 22 ppm and a P content of 50 ppm was used as a raw material. The S content was 10 ppm, the P content was 35 ppm, and Eu 0.15 Β sialon represented by Si 5.8 Al 0.2 O 0.2 N 7.8 was obtained.

(実施例3)
実施例3の蛍光体としてαサイアロンを用いて説明する。
窒化ケイ素粉末を71.6質量%、窒化アルミニウム粉末を質量25.8%、酸化ユーロピウム粉末を2.6質量%とし、これらをエタノール溶媒中において、窒化ケイ素質ポットとボールによる湿式混合を1時間行い、得られたスラリーを吸引濾過し、溶媒を除去し、乾燥し、予混合粉末を得た。
(Example 3)
Description will be made using α sialon as the phosphor of Example 3.
The silicon nitride powder was 71.6% by mass, the aluminum nitride powder was 25.8% by mass, the europium oxide powder was 2.6% by mass, and these were wet mixed in an ethanol solvent with a silicon nitride pot and balls for 1 hour. The resulting slurry was suction filtered to remove the solvent and dried to obtain a premixed powder.

次に、この予混合粉末を窒素雰囲気下のグローブボックス内に入れ、窒化カルシウム粉末と乳鉢混合し、目開き250μmの篩を通過させて原料混合粉末を得た。混合比は予混合粉末:窒化カルシウム粉末=87.1:12.9質量比とした。この原料混合粉末を分析したところ、S含有量は4ppm、P含有量は18ppmであった。   Next, this premixed powder was put in a glove box under a nitrogen atmosphere, mixed with calcium nitride powder and a mortar, and passed through a sieve having an opening of 250 μm to obtain a raw material mixed powder. The mixing ratio was premixed powder: calcium nitride powder = 87.1: 12.9 mass ratio. When this raw material mixed powder was analyzed, the S content was 4 ppm and the P content was 18 ppm.

前記原料混合粉末を窒化ホウ素質の坩堝に充填し、カーボンヒーターの電気炉で大気圧窒素雰囲気中、1750℃で16時間の加熱処理を行った。尚、原料混合粉末に含まれる窒化カルシウムは、空気中で容易に加水分解しやすいので、原料混合粉末を充填した坩堝はグローブボックスから取り出した後、速やかに電気炉にセットし、直ちに真空排気し、窒化カルシウムの反応を防いだ。   The raw material mixed powder was filled in a boron nitride crucible and subjected to heat treatment at 1750 ° C. for 16 hours in an atmospheric nitrogen atmosphere in an electric furnace of a carbon heater. Since calcium nitride contained in the raw material mixed powder is easily hydrolyzed in the air, the crucible filled with the raw material mixed powder is taken out of the glove box and immediately set in an electric furnace and immediately evacuated. Prevented the reaction of calcium nitride.

得られた合成物を乳鉢で軽く解砕し、目開き150μmの篩を全通させ、蛍光体粉末を得た。CuKα線を用いた粉末X線回折測定により、結晶相を調べたところ、存在する結晶相はαサイアロン単相であった。   The obtained composite was lightly crushed with a mortar, and passed through a sieve having an opening of 150 μm to obtain phosphor powder. When the crystal phase was examined by powder X-ray diffraction measurement using CuKα ray, the existing crystal phase was α sialon single phase.

この蛍光体粉末を分析したところ、S含有量が1ppm、P含有量が11ppmであり、Ca1.7Eu0.1Si8.5Al3.50.115.9で表されるαサイアロンであった。 When this phosphor powder was analyzed, the S content was 1 ppm, the P content was 11 ppm, and it was expressed as Ca 1.7 Eu 0.1 Si 8.5 Al 3.5 O 0.1 N 15.9. It was α sialon.

(実施例4)
原料としてS含有量が11ppm、P含有量が38ppmの原料混合粉末を用いた以外は実施例3と同様に製造したところ、S含有量が4ppm、P含有量が27ppmであり、Ca1.7Eu0.1Si8.5Al3.50.115.9で表されるαサイアロンを得た。
Example 4
Production was carried out in the same manner as in Example 3 except that a raw material mixed powder having an S content of 11 ppm and a P content of 38 ppm was used as a raw material. The S content was 4 ppm, the P content was 27 ppm, and Ca 1.7 Α sialon represented by Eu 0.1 Si 8.5 Al 3.5 O 0.1 N 15.9 was obtained.

(比較例2)
S含有量が19ppm、P含有量が50ppmの原料混合粉末を用いた以外は実施例3と同様に製造したところ、S含有量が8ppm、P含有量が37ppmであり、Ca1.7Eu0.1Si8.5Al3.50.115.9で表されるαサイアロンを得た。
(Comparative Example 2)
When manufactured in the same manner as in Example 3 except that the raw material mixed powder having an S content of 19 ppm and a P content of 50 ppm was used, the S content was 8 ppm, the P content was 37 ppm, and Ca 1.7 Eu 0 .Alpha . Sialon represented by .1 Si 8.5 Al 3.5 O 0.1 N 15.9 was obtained.

(実施例5)
実施例5の蛍光体として一般式:(MII)(Si,Al)(N,O)3±yで示され、MII元素の一部がEu元素で置換され主結晶相がCaAlSiNと同一の結晶構造を有する蛍光体を用いて説明する。
窒化ケイ素粉末を33.8質量%、窒化アルミニウム粉末を29.7質量%、窒化カルシウム粉末を35.5質量%、窒化ユーロピウム粉末を1.0質量%とし、メノウ乳棒と乳鉢で30分間混合を行なった後に、得られた混合物を、目開き500μmの篩を全通させて凝集物を取り除き、原料混合粉末を得た。粉末の秤量、混合、成形の各工程は全て、水分1ppm以下、酸素1ppm以下の窒素雰囲気を保持することができるグローブボックス中で操作を行った。原料混合粉末の分析を行ったところ、S含有量が4ppm、P含有量が24ppmであった。
(Example 5)
The phosphor of Example 5 is represented by the general formula: (MII) x (Si, Al) 2 (N, O) 3 ± y , and a part of the MII element is substituted with Eu element, and the main crystal phase is CaAlSiN 3 Description will be made using phosphors having the same crystal structure.
33.8% by mass of silicon nitride powder, 29.7% by mass of aluminum nitride powder, 35.5% by mass of calcium nitride powder, 1.0% by mass of europium nitride powder, and mixed for 30 minutes with an agate pestle and mortar After performing, the obtained mixture was passed through a sieve having an opening of 500 μm to remove aggregates to obtain a raw material mixed powder. All the steps of weighing, mixing, and forming the powder were performed in a glove box capable of maintaining a nitrogen atmosphere with a moisture content of 1 ppm or less and oxygen of 1 ppm or less. When the raw material mixed powder was analyzed, the S content was 4 ppm and the P content was 24 ppm.

この原料混合粉末を窒化ホウ素製の坩堝に充填し、カーボンヒーターの電気炉で大気圧窒素雰囲気中、1800℃で2時間の加熱処理を行った。   This raw material mixed powder was filled into a crucible made of boron nitride, and was heat-treated at 1800 ° C. for 2 hours in an atmospheric atmosphere of nitrogen with an electric furnace of a carbon heater.

得られた合成物を乳鉢で軽く解砕し、目開き100μmの篩を全通させ、蛍光体粉末を得た。CuKα線を用いた粉末X線回折測定により、結晶相を調べたところ、主結晶相がCaAlSiNと同一の結晶構造を有していた。 The obtained composite was lightly crushed with a mortar, and passed through a sieve having an opening of 100 μm to obtain a phosphor powder. When the crystal phase was examined by powder X-ray diffraction measurement using CuKα rays, the main crystal phase had the same crystal structure as CaAlSiN 3 .

この蛍光体粉末を分析したところ、S含有量が2ppm、P含有量が15ppmであり、Ca1.0Eu0.01Si1.0Al1.02.80.2で表される蛍光体であった。このように原料粉末中にOが存在していなくても、空気中の酸素によりNの一部がOで置換される場合がある。この場合でも、置換されていないものと変わらない発光特性を示すため、Nの一部がOで置換されたものも本発明の範囲に含む。 When this phosphor powder was analyzed, the S content was 2 ppm, the P content was 15 ppm, and it was expressed as Ca 1.0 Eu 0.01 Si 1.0 Al 1.0 N 2.8 O 0.2. Phosphor. Thus, even if O is not present in the raw material powder, part of N may be replaced with O by oxygen in the air. Even in this case, in order to show the same light emission characteristics as those not substituted, those in which a part of N is substituted with O are also included in the scope of the present invention.

(実施例6)
原料としてS含有量が8ppm、P含有量が40ppmの原料混合粉末を用いた以外は実施例5と同様に製造したところ、S含有量が4ppm、P含有量が26ppmであり、Ca1.0Eu0.01Si1.0Al1.02.80.2で表される蛍光体を得た。
(Example 6)
Production was carried out in the same manner as in Example 5 except that a raw material mixed powder having an S content of 8 ppm and a P content of 40 ppm was used as a raw material. The S content was 4 ppm, the P content was 26 ppm, and Ca 1.0 A phosphor represented by Eu 0.01 Si 1.0 Al 1.0 N 2.8 O 0.2 was obtained.

(比較例3)
原料としてS含有量が18ppm、P含有量が52ppmの原料混合粉末を用いた以外は実施例5と同様に製造したところ、S含有量が8ppm、P含有量が38ppmであり、Ca1.0Eu0.01Si1.0Al1.02.80.2で表される蛍光体を得た。
(Comparative Example 3)
Production was carried out in the same manner as in Example 5 except that a raw material mixed powder having an S content of 18 ppm and a P content of 52 ppm was used as a raw material. The S content was 8 ppm, the P content was 38 ppm, and Ca 1.0 A phosphor represented by Eu 0.01 Si 1.0 Al 1.0 N 2.8 O 0.2 was obtained.

(実施例7)
窒化ケイ素粉末を26.6質量%、窒化アルミニウム粉末を23.3質量%、窒化カルシウム粉末を5.6質量%、窒化ストロンチウム粉末を43.7質量%、窒化ユーロピウム粉末を0.8質量%とし、メノウ乳棒と乳鉢で30分間混合を行なった後に、得られた混合物を、目開き500μmの篩を全通させて凝集物を取り除き、原料混合粉末を得た。なお、粉末の秤量、混合、成形の各工程は全て、水分1ppm以下、酸素1ppm以下の窒素雰囲気を保持することができるグローブボックス中で操作を行った。原料混合粉末の分析を行ったところ、S含有量が4ppm、P含有量が25ppmであった。
この原料混合粉末を窒化ホウ素製の坩堝に充填し、カーボンヒーターの電気炉で大気圧窒素雰囲気中、1800℃で2時間の加熱処理を行った。
得られた合成物を乳鉢で軽く解砕し、目開き100μmの篩を全通させ、蛍光体粉末を得た。CuKα線を用いた粉末X線回折測定により、結晶相を調べたところ、主結晶相がCaAlSiNと同一の結晶構造を有していた。
この蛍光体粉末を分析したところ、この粉末はS含有量が1ppm、P含有量が16ppmであり、Sr0.8Ca0.2Eu0.01Si1.0Al1.02.80.2で表される蛍光体であった。
(Example 7)
26.6% by mass of silicon nitride powder, 23.3% by mass of aluminum nitride powder, 5.6% by mass of calcium nitride powder, 43.7% by mass of strontium nitride powder, and 0.8% by mass of europium nitride powder After mixing with an agate pestle and a mortar for 30 minutes, the obtained mixture was passed through a sieve having an opening of 500 μm to remove aggregates to obtain a raw material mixed powder. The powder weighing, mixing and molding steps were all performed in a glove box capable of maintaining a nitrogen atmosphere with a moisture content of 1 ppm or less and oxygen of 1 ppm or less. When the raw material mixed powder was analyzed, the S content was 4 ppm and the P content was 25 ppm.
This raw material mixed powder was filled into a crucible made of boron nitride, and was heat-treated at 1800 ° C. for 2 hours in an atmospheric atmosphere of nitrogen with an electric furnace of a carbon heater.
The obtained composite was lightly crushed with a mortar, and passed through a sieve having an opening of 100 μm to obtain a phosphor powder. When the crystal phase was examined by powder X-ray diffraction measurement using CuKα rays, the main crystal phase had the same crystal structure as CaAlSiN 3 .
When this phosphor powder was analyzed, this powder had an S content of 1 ppm and a P content of 16 ppm, and Sr 0.8 Ca 0.2 Eu 0.01 Si 1.0 Al 1.0 N 2.8. was phosphor represented by O 0.2.

(実施例8)
原料としてS含有量が10ppm、P含有量が39ppmの原料混合粉末を用いた以外は実施例7と同様に製造したところ、S含有量が4ppm、P含有量が26ppmであり、Sr0.8Ca0.2Eu0.01Si1.0Al1.02.80.2で表される蛍光体を得た。
(Example 8)
Production was performed in the same manner as in Example 7 except that a raw material mixed powder having an S content of 10 ppm and a P content of 39 ppm was used as a raw material. The S content was 4 ppm, the P content was 26 ppm, and Sr 0.8 A phosphor represented by Ca 0.2 Eu 0.01 Si 1.0 Al 1.0 N 2.8 O 0.2 was obtained.

(比較例4)
原料としてS含有量が19ppm、P含有量が50ppmの原料混合粉末を用いた以外は実施例7と同様に製造したところ、S含有量が7ppm、P含有量が35ppmであり、Sr0.8Ca0.2Eu0.01Si1.0Al1.02.80.2で表される蛍光体を得た。
(Comparative Example 4)
Production was carried out in the same manner as in Example 7 except that a raw material mixed powder having an S content of 19 ppm and a P content of 50 ppm was used as a raw material. The S content was 7 ppm, the P content was 35 ppm, and Sr 0.8 A phosphor represented by Ca 0.2 Eu 0.01 Si 1.0 Al 1.0 N 2.8 O 0.2 was obtained.

実施例1乃至8、比較例1乃至4で得られた蛍光体について、分光蛍光光度計(日立ハイテクノロジーズ社製、「F4500」)を用いて発光ピーク強度を測定した結果を表1に示す。測定においては、励起光として波長455nmの青色光を用いた。
発光強度は、対応する蛍光体種毎に相対強度(%)で表した。すなわち、実施例1、比較例1の値は実施例2の発光ピーク強度を100%としたときの相対強度、実施例3、比較例2の値は実施例4の発光ピーク強度を100%としたときの相対強度、実施例5、比較例3の値は実施例6の発光ピーク強度を100%としたときの相対強度、実施例7、比較例4の値は実施例8の発光ピーク強度を100%としたときの相対強度である。
Table 1 shows the results of measuring the emission peak intensity of the phosphors obtained in Examples 1 to 8 and Comparative Examples 1 to 4 using a spectrofluorometer (manufactured by Hitachi High-Technologies Corporation, “F4500”). In the measurement, blue light having a wavelength of 455 nm was used as excitation light.
The emission intensity was expressed as a relative intensity (%) for each corresponding phosphor type. That is, the values of Example 1 and Comparative Example 1 are the relative intensity when the emission peak intensity of Example 2 is 100%, and the values of Example 3 and Comparative Example 2 are the emission peak intensity of Example 4 being 100%. Relative intensities, values in Example 5 and Comparative Example 3 are relative intensities when the emission peak intensity of Example 6 is 100%, and values in Example 7 and Comparative Example 4 are emission peak intensities in Example 8. Is the relative strength when 100 is 100%.

表1に示されるように、いずれの窒化物又は酸窒化物蛍光体においても、S含有量を5ppm以下、特に3ppm以下に制御し、かつ、P含有量を30ppm以下、特に20ppm以下に制御することにより、高い発光ピーク強度を示すことが確認された。   As shown in Table 1, in any nitride or oxynitride phosphor, the S content is controlled to 5 ppm or less, particularly 3 ppm or less, and the P content is controlled to 30 ppm or less, particularly 20 ppm or less. Thus, it was confirmed that a high emission peak intensity was exhibited.

(実施例:実施例1乃至8の蛍光体を用いた発光装置)
発光素子として、440nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、実施例1乃至8の蛍光体の単体や複合体を用いた。これらの蛍光体を所定のシリコーン樹脂中に分散して波長変換部を形成し、発光装置を作製した。得られた発光装置は、いずれも高輝度なものであった。
(Example: Light-emitting device using the phosphors of Examples 1 to 8)
As the light-emitting element, a gallium nitride (GaN) -based semiconductor having a peak wavelength at 440 nm was used. A single substance or a composite of the phosphors of Examples 1 to 8 was used for the wavelength converter. These phosphors were dispersed in a predetermined silicone resin to form a wavelength conversion part, and a light emitting device was manufactured. All of the obtained light emitting devices had high luminance.

本発明に係る蛍光体は、LEDの蛍光体として適用できる。本発明に係る蛍光体を用いた発光装置は、照明装置、液晶パネルのバックライト、画像表示用プロジェクター及び信号表示装置の光源に適用することができる。   The phosphor according to the present invention can be applied as an LED phosphor. The light emitting device using the phosphor according to the present invention can be applied to an illumination device, a backlight of a liquid crystal panel, a projector for image display, and a light source of a signal display device.

Claims (8)

Sの含有量が5ppm以下、Pの含有量が30ppm以下である窒化物又は酸窒化物蛍光体。 A nitride or oxynitride phosphor having an S content of 5 ppm or less and a P content of 30 ppm or less. 付活元素が2価のEu又は3価のCeである請求項1記載の蛍光体。 The phosphor according to claim 1, wherein the activator element is divalent Eu or trivalent Ce. 一般式:Si6−zAl8−z(0<z≦4.2)で示され、発光中心としてEuを含有するβサイアロンである請求項1記載の蛍光体。 2. The phosphor according to claim 1, which is a β sialon represented by a general formula: Si 6−z Al z O z N 8−z (0 <z ≦ 4.2) and containing Eu as an emission center. 一般式:(MI)(Eu)(Si,Al)12(O,N)16(ただし、MIはLi、Mg、Ca、Sr、Ba、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる少なくともCaを含む1種以上の元素を示し、0<x≦3.0、0.005≦y≦0.4)で示されるαサイアロンである請求項1記載の蛍光体。 General formula: (MI) x (Eu) y (Si, Al) 12 (O, N) 16 (where MI is Li, Mg, Ca, Sr, Ba, Y and lanthanide elements (excluding La and Ce)) 2. The phosphor according to claim 1, wherein the phosphor is α sialon represented by 0 <x ≦ 3.0, 0.005 ≦ y ≦ 0.4), which represents at least one element selected from the group consisting of Ca. 前記MIはCaである請求項4記載の蛍光体。 The phosphor according to claim 4, wherein said MI is Ca. 一般式:(MII)(Si,Al)(N,O)3±y(ただし、MII元素はLi、Mg、Ca、Sr及びBaから選ばれる一種以上のアルカリ金属元素又はアルカリ土類金属元素であり、0.8≦x≦1.2、0≦y≦0.2)で示され、MII元素の一部がEu元素で置換されている蛍光体であって、主結晶相がCaAlSiNと同一の結晶構造を有する請求項1記載の蛍光体。 General formula: (MII) x (Si, Al) 2 (N, O) 3 ± y (where the MII element is one or more alkali metal elements or alkaline earth metals selected from Li, Mg, Ca, Sr and Ba) An element, 0.8 ≦ x ≦ 1.2, 0 ≦ y ≦ 0.2), a phosphor in which a part of the MII element is substituted with Eu element, and the main crystal phase is CaAlSiN The phosphor according to claim 1, which has the same crystal structure as 3 . 前記MII元素がCa及びSrのいずれか一方又は双方の元素である請求項6記載の蛍光体。 The phosphor according to claim 6, wherein the MII element is one or both of Ca and Sr. 一次光を発する発光素子と、前記一次光の一部を吸収して一次光の波長よりも長い波長を有する二次光を発する波長変換部とを備えた発光装置であって、前記波長変換部が請求項1乃至7のいずれかの蛍光体の単体又はこれらの混合体である発光装置。 A light emitting device comprising: a light emitting element that emits primary light; and a wavelength conversion unit that absorbs a part of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light, the wavelength conversion unit A light-emitting device, wherein the phosphor according to claim 1 is a single substance or a mixture thereof.
JP2012003787A 2012-01-12 2012-01-12 Phosphor and light emitting device Active JP6220112B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012003787A JP6220112B2 (en) 2012-01-12 2012-01-12 Phosphor and light emitting device
PCT/JP2012/080544 WO2013105346A1 (en) 2012-01-12 2012-11-27 Fluorescent body and light emission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003787A JP6220112B2 (en) 2012-01-12 2012-01-12 Phosphor and light emitting device

Publications (2)

Publication Number Publication Date
JP2013142135A true JP2013142135A (en) 2013-07-22
JP6220112B2 JP6220112B2 (en) 2017-10-25

Family

ID=48781310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003787A Active JP6220112B2 (en) 2012-01-12 2012-01-12 Phosphor and light emitting device

Country Status (2)

Country Link
JP (1) JP6220112B2 (en)
WO (1) WO2013105346A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098814A1 (en) * 2013-12-26 2015-07-02 電気化学工業株式会社 Phosphor and light emitting device
WO2018056447A1 (en) * 2016-09-26 2018-03-29 三菱ケミカル株式会社 Phosphor, light-emitting device, illumination device, and image display device
US9969933B2 (en) 2014-08-07 2018-05-15 Mitsubishi Chemical Corporation Phosphor, light-emitting device, image display device, and illumination device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155383B2 (en) 2014-02-26 2017-06-28 デンカ株式会社 Phosphor, light emitting element and light emitting device
JP6155382B2 (en) 2014-02-26 2017-06-28 デンカ株式会社 Phosphor, light emitting element and light emitting device
KR20230062846A (en) * 2020-09-10 2023-05-09 덴카 주식회사 Europium-activated β-type sialon phosphor and light-emitting device
CN113388400B (en) * 2021-06-03 2023-06-30 西安鸿宇光电技术有限公司 Yellow-green power-induced luminescent material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239985A (en) * 2004-02-27 2005-09-08 Dowa Mining Co Ltd Phosphor, light source and led
JP2007112650A (en) * 2005-10-19 2007-05-10 Denki Kagaku Kogyo Kk Alpha-type sialon, phosphor consisting of alpha-type sialon, and lighting equipment using it
JP2007145919A (en) * 2005-11-25 2007-06-14 Denki Kagaku Kogyo Kk Method for producing sialon phosphor and lighting utensil using phosphor obtained thereby
JP2007332324A (en) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kk Sialon phosphor, method for producing the same, and light-emitting element by using the same
JP2010241995A (en) * 2009-04-08 2010-10-28 Denki Kagaku Kogyo Kk beta-TYPE SIALON PHOSPHOR, METHOD FOR PRODUCING THE SAME AND APPLICATION OF THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239985A (en) * 2004-02-27 2005-09-08 Dowa Mining Co Ltd Phosphor, light source and led
JP2007112650A (en) * 2005-10-19 2007-05-10 Denki Kagaku Kogyo Kk Alpha-type sialon, phosphor consisting of alpha-type sialon, and lighting equipment using it
JP2007145919A (en) * 2005-11-25 2007-06-14 Denki Kagaku Kogyo Kk Method for producing sialon phosphor and lighting utensil using phosphor obtained thereby
JP2007332324A (en) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kk Sialon phosphor, method for producing the same, and light-emitting element by using the same
JP2010241995A (en) * 2009-04-08 2010-10-28 Denki Kagaku Kogyo Kk beta-TYPE SIALON PHOSPHOR, METHOD FOR PRODUCING THE SAME AND APPLICATION OF THE SAME

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098814A1 (en) * 2013-12-26 2015-07-02 電気化学工業株式会社 Phosphor and light emitting device
KR20160102447A (en) * 2013-12-26 2016-08-30 덴카 주식회사 Phosphor and light emitting device
JPWO2015098814A1 (en) * 2013-12-26 2017-03-23 デンカ株式会社 Phosphor and light emitting device
KR102295679B1 (en) 2013-12-26 2021-08-30 덴카 주식회사 Phosphor and light emitting device
US9969933B2 (en) 2014-08-07 2018-05-15 Mitsubishi Chemical Corporation Phosphor, light-emitting device, image display device, and illumination device
WO2018056447A1 (en) * 2016-09-26 2018-03-29 三菱ケミカル株式会社 Phosphor, light-emitting device, illumination device, and image display device
CN109699179A (en) * 2016-09-26 2019-04-30 三菱化学株式会社 Fluorophor, light emitting device, lighting device and image display device
JPWO2018056447A1 (en) * 2016-09-26 2019-07-04 三菱ケミカル株式会社 Phosphor, light emitting device, lighting device and image display device
CN109699179B (en) * 2016-09-26 2022-03-29 三菱化学株式会社 Phosphor, light-emitting device, illumination device, and image display device

Also Published As

Publication number Publication date
WO2013105346A1 (en) 2013-07-18
JP6220112B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP5354588B2 (en) A method for producing a β-sialon phosphor.
JP5367218B2 (en) Method for manufacturing phosphor and method for manufacturing light emitting device
US8053970B2 (en) Light emitting device and illumination device
JP5025474B2 (en) β-type sialon phosphor
JP4565141B2 (en) Phosphors and light emitting devices
JP6220112B2 (en) Phosphor and light emitting device
EP1710291A2 (en) Light-emitting device and illumination apparatus
WO2013105345A1 (en) Fluorescent body and light emission device
JP6167913B2 (en) Phosphor and light emitting device using the same
JP6102763B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP2012052127A (en) Phosphor, method for producing the same, and light-emitting device
WO2006126567A1 (en) Phosphor and use thereof
JP2006008721A (en) Phosphor and luminous equipment using phosphor
JP2007326914A (en) Oxynitride phosphor and light emitting device
TWI808946B (en) Phosphor, light emitting device, lighting device and image display device
JP4165412B2 (en) Nitride phosphor, method for producing nitride phosphor, white light emitting device and pigment
JP4364189B2 (en) α-type sialon, phosphor comprising α-type sialon, and lighting apparatus using the same
JPWO2012036016A1 (en) Phosphor and light emitting device
KR101243774B1 (en) Oxynitride phospor
JP2009138070A (en) Phosphor, method for producing the same, and light-emitting device using phosphor
JP2013144794A (en) Oxynitride-based phosphor and light-emitting device using the same
KR101593286B1 (en) Fluorophore and light-emitting device
JP6288343B2 (en) Phosphor and light emitting device using the same
JP5702569B2 (en) Phosphor manufacturing method and light emitting device
JP2017206599A (en) Phosphor, light emitting device, illumination device and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160415

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160525

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170929

R150 Certificate of patent or registration of utility model

Ref document number: 6220112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250