JP2005223446A - Filter - Google Patents

Filter Download PDF

Info

Publication number
JP2005223446A
JP2005223446A JP2004027188A JP2004027188A JP2005223446A JP 2005223446 A JP2005223446 A JP 2005223446A JP 2004027188 A JP2004027188 A JP 2004027188A JP 2004027188 A JP2004027188 A JP 2004027188A JP 2005223446 A JP2005223446 A JP 2005223446A
Authority
JP
Japan
Prior art keywords
filter
dielectric substrate
superconductor
characteristic impedance
coplanar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004027188A
Other languages
Japanese (ja)
Other versions
JP4167187B2 (en
Inventor
Kei Sato
圭 佐藤
Shoichi Narahashi
祥一 楢橋
Tetsuo Hirota
哲夫 廣田
Yasushi Yamao
泰 山尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2004027188A priority Critical patent/JP4167187B2/en
Priority to US11/046,885 priority patent/US7183874B2/en
Priority to EP05002143A priority patent/EP1564834B1/en
Priority to DE602005014576T priority patent/DE602005014576D1/en
Priority to ES05002143T priority patent/ES2325924T3/en
Priority to CNB2005100091251A priority patent/CN100385730C/en
Priority to KR1020050009785A priority patent/KR100673316B1/en
Publication of JP2005223446A publication Critical patent/JP2005223446A/en
Application granted granted Critical
Publication of JP4167187B2 publication Critical patent/JP4167187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45BWALKING STICKS; UMBRELLAS; LADIES' OR LIKE FANS
    • A45B25/00Details of umbrellas
    • A45B25/22Devices for increasing the resistance of umbrellas to wind
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45BWALKING STICKS; UMBRELLAS; LADIES' OR LIKE FANS
    • A45B25/00Details of umbrellas
    • A45B25/18Covers; Means for fastening same
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/2013Coplanar line filters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter capable of maintaining low insertion loss characteristics of a stored filter with a very simple structure in which the inner wall of a casing is composed of a superconductor. <P>SOLUTION: A coplanar filter is provided with a dielectric substrate 1, a plurality of resonators 5a, 5b, 5c, and 5d which are composed of a center conductor 2 formed on the same surface of the dielectric substrate 1 and ground conductors 3a, 3b formed in parallel on both sides of the center conductor 2, and input/output terminal parts 4a, 4b. The inner wall of the casing 10 of the coplanar filter is composed of the superconductor 100. The casing 10 of the coplanar filter is composed by sticking a superconductor film-forming substrate, in which the film of a high-temperature superconductor such as a lanthanum system, an yttrium system, a bismuth system, and a thallium system is formed on a substrate made of an metal oxide material such as MgO, SrTiO<SB>3</SB>, LaGaO<SB>3</SB>, and LaAlO<SB>3</SB>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、フィルタに関し、特に、移動通信、衛星通信、固定マイクロ波通信その他の通信技術分野において信号の送受信に利用されるフィルタに関する。   The present invention relates to a filter, and more particularly to a filter used for transmitting and receiving signals in mobile communication, satellite communication, fixed microwave communication, and other communication technology fields.

近年、マイクロ波通信の送受信に適用されるフィルタとして、導体を超伝導体としたフィルタが提案されており、フィルタ構造も、空洞共振器型構造、マイクロストリップ線路構造、或いはコプレーナ線路構造の平板回路型その他、多岐に亘る構造が採用されている。
コプレーナ線路の概念を図10を参照して説明する。図10において、1は誘電体基板、2は中心導体、3aは第1地導体、3bは第2地導体を示す。中心導体2、第1地導体3aおよび第2地導体3bの3者は、誘電体基板1の共通の表面に互いに平行で共面状態に形成されて、誘導性結合部を構成するに際してビアホールを必要としないことを始めとして、その設計の自由度は大きい。
In recent years, a filter using a conductor as a superconductor has been proposed as a filter applied to transmission / reception of microwave communication, and the filter structure is also a cavity resonator type structure, a microstrip line structure, or a planar circuit of a coplanar line structure. Various types of structures are used, including molds.
The concept of the coplanar line will be described with reference to FIG. In FIG. 10, 1 is a dielectric substrate, 2 is a central conductor, 3a is a first ground conductor, and 3b is a second ground conductor. The central conductor 2, the first ground conductor 3a, and the second ground conductor 3b are formed on the common surface of the dielectric substrate 1 in a parallel and coplanar state, and when forming an inductive coupling portion, a via hole is formed. There is a great degree of freedom in design, starting with things that are not necessary.

図1を参照してコプレーナ線路を使用したフィルタの従来例を説明する(非特許文献1参照)。このコプレーナフィルタは、誘電体基板1上に1/4波長に相当する電気長を有する中心導体2と、その中心導体2の両側にそれぞれ問隔sをあけて形成された第1地導体3aおよび第2地導体3bと、第1入出力端子部4aの中心導体2および第1共振器5aの中心導体2に設けられたギャップg1 で構成された第1容量性結合部6aと、第2共振器5bの中心導体2および第3共振器5cの中心導体2の間に形成されたギャップg2 で構成された第2容量性結合部6bと、第4共振器5dの中心導体2と第2入出力端子部4bの中心導体2の間に形成されたギャップg3 で構成された第3容量性結合部6cと、第1共振器5aおよび第2共振器5bの接合部に設けられた中心導体2と第1地導体3a、第2地導体3b間を電気的に接続する短絡線路導体7aにより構成された第1誘導性結合部8aと、第3共振器5cおよび第4共振器5dの接合部に設けられた中心導体2と第1地導体3a、第2地導体3b間を電気的に接続する短絡線路導体7bにより構成された第2誘導性結合部8bと、より成る。なお、コプレ−ナ線路は、図10に示される中心導体2の中心導体幅wと、第1地導体3aと第2地導体3bとの間の地導体間隔d(w+2s)によって特性インピーダンスが決定される。 A conventional example of a filter using a coplanar line will be described with reference to FIG. 1 (see Non-Patent Document 1). The coplanar filter includes a center conductor 2 having an electrical length corresponding to a quarter wavelength on the dielectric substrate 1, and first ground conductors 3a formed on both sides of the center conductor 2 with a spacing s. a second ground 3b, a first capacitive coupling portion 6a composed of a gap g 1 provided at the center conductor 2 of the center conductor 2 and the first resonator 5a of the first input-output terminal portion 4a, the second a second capacitive coupling portion 6b which is composed of the resonators 5b central conductor 2 and the third resonator 5c gap g 2 formed between the center conductor 2 of a central conductor 2 of the fourth resonator 5d No. a third capacitive coupling portion 6c which is composed of two gaps g 3 formed between the center conductor 2 of the input and output terminal portion 4b, provided at the junction of the first resonator 5a and second resonator 5b The center conductor 2 is electrically connected between the first ground conductor 3a and the second ground conductor 3b. The first inductive coupling portion 8a configured by the tangential line conductor 7a, the central conductor 2, the first ground conductor 3a, and the second ground conductor 3b provided at the junction of the third resonator 5c and the fourth resonator 5d. And a second inductive coupling portion 8b configured by a short-circuit line conductor 7b that electrically connects the two. Note that the characteristic impedance of the coplanar line is determined by the center conductor width w of the center conductor 2 shown in FIG. 10 and the ground conductor interval d (w + 2s) between the first ground conductor 3a and the second ground conductor 3b. Is done.

更に、図1の誘電体基板1は図11に示す金属筐体10内に収容され、コプレーナフィルタから放射した電磁波エネルギーがこのフィルタに再度回収される構成を具備しいる。
H.Suzuki,Z.Ma,Y.Kobayashi,K.Satoh,S.Narahashi and T.Nojima,"a low-loss GHz bandpass filter using HTS quarter-wavelength coplanar waveguide resonators," IEICE Trans.Electoron.,vol.E-85-c,No.3,pp.714-719,March 2002.
Further, the dielectric substrate 1 of FIG. 1 is accommodated in a metal casing 10 shown in FIG. 11, and has a configuration in which electromagnetic wave energy radiated from the coplanar filter is recovered again by this filter.
H. Suzuki, Z. Ma, Y. Kobayashi, K. Satoh, S. Narahashi and T. Nojima, "a low-loss GHz bandpass filter using HTS quarter-wavelength coplanar waveguide resonators," IEICE Trans. Electoron., Vol. E-85-c, No.3, pp.714-719, March 2002.

以上の従来例においては、金属筐体10内に収容されたフィルタから放射した電磁波エネルギーは金属筐体10の内表面で殆ど反射され、放射された電磁波エネルギーの大部分はフィルタにより回収されるものの、その一部は金属筐体10の内側の金属に誘導電流として流れ、放射損失となる問題があった。特に、共振器5a〜5dの特性インピーダンスが入出力端子部4a、4bの特性インピーダンスより大きいフィルタにおいては、放射される電磁波エネルギーの割合が大きいところから、損失が一層増大する問題があった。
この発明は、筐体内壁を超伝導体で構成するという極く簡易な構造で、収容されたフィルタの低挿入損失特性を維持するフィルタを提供することを目的としている。
In the above conventional example, the electromagnetic wave energy radiated from the filter accommodated in the metal casing 10 is almost reflected by the inner surface of the metal casing 10, and most of the radiated electromagnetic energy is recovered by the filter. A part of the current flows as an induced current in the metal inside the metal housing 10, resulting in a radiation loss. In particular, in the filter in which the characteristic impedance of the resonators 5a to 5d is larger than the characteristic impedance of the input / output terminal portions 4a and 4b, there is a problem that the loss further increases because the ratio of the radiated electromagnetic wave energy is large.
An object of the present invention is to provide a filter that maintains a low insertion loss characteristic of a housed filter with a very simple structure in which the inner wall of the casing is made of a superconductor.

請求項1:誘電体基板1と当該誘電体基板1の表面に形成される中心導体2および地導体3とにより構成した複数の共振器5a〜5dおよび入出力端子部4a、4bを有し、誘電体基板1を包含する筐体10を有するフィルタにおいて、筐体10内壁を超伝導体100で構成したフィルタを構成した。
そして、請求項2:誘電体基板1を具備し、当該誘電体基板1の同一の表面に形成された中心導体2およびこれの両側に平行に形成された地導体3a、3bにより構成された複数の共振器5a、5b、5c、5dおよび入出力端子部4a、4bを具備するコプレーナフィルタにおいて、筐体10内壁を超伝導体100で構成したコプレーナフィルタを構成した。
Claim 1: It has a plurality of resonators 5a to 5d and input / output terminal portions 4a and 4b constituted by the dielectric substrate 1, the central conductor 2 and the ground conductor 3 formed on the surface of the dielectric substrate 1, In the filter having the housing 10 including the dielectric substrate 1, a filter in which the inner wall of the housing 10 is composed of the superconductor 100 was configured.
A second aspect of the present invention includes a dielectric substrate 1, and a plurality of center conductors 2 formed on the same surface of the dielectric substrate 1 and ground conductors 3a and 3b formed in parallel on both sides thereof. In the coplanar filter including the resonators 5a, 5b, 5c, and 5d and the input / output terminal portions 4a and 4b, a coplanar filter in which the inner wall of the housing 10 is formed of the superconductor 100 is configured.

また、請求項3:請求項1および請求項2の内の何れかに記載されるフィルタにおいて、筐体10は、MgO、SrTiO3 、LaGaO3 、LaAlO3 の如き酸化金属材料の基板にランタン系、イットリウム系、ビスマス系、タリウム系の如き高温超伝導体を成膜した超伝導体成膜基板を内壁に貼り付たものより成るフィルタを構成した。
更に、請求項4:請求項1ないし請求項3の内の何れかに記載されるフィルタにおいて、共振器5a、5b、5c、5dの特性インピーダンスを入出力端子部4a、4bの特性インピーダンスよりも大きく構成したフィルタを構成した。
Further, in the filter according to any one of claims 1 and 2, the housing 10 is made of a lanthanum-based metal oxide material substrate such as MgO, SrTiO 3 , LaGaO 3 , or LaAlO 3. A filter comprising a superconductor film-forming substrate on which high-temperature superconductors such as yttrium-based, bismuth-based, and thallium-based films were attached to the inner wall was constructed.
Further, in the filter according to any one of claims 1 to 3, the characteristic impedance of the resonators 5a, 5b, 5c, and 5d is set to be higher than the characteristic impedance of the input / output terminal portions 4a and 4b. Configured a large filter.

ここで、請求項5:請求項4に記載されるフィルタにおいて、特性インピーダンスは、
0 =(η0 /4√εeff )×(K’(k)/K(k))であり、
ここで、εeff はコプレーナ型線路の実効比誘電率、
η0 は自由空間の波動インピーダンス、
K(k)は第1種完全楕円積分、
’は微分であり、
更に、εeff =1+((εr−1)/2)×(K’(k)/K(k))
×(K(k1)/K’(k1))
η0 =√(μ0 /ε0 )=120π
K(k)=∫0 1 dx/{(√(1−x2) }×(1−k22))
k=w/d
1 =sinh(πw/4h)/sinh(πd/4h)
と表され、特性インピーダンスZ0 は地導体間隔dに対する中心導体幅wの比k、および誘電体基板の誘電率εr 、と誘電体基板厚hで決定され、地導体間隔dに対する中心導体幅wの比kをパラメータとして、特性インピーダンスZ0 を増大した、フィルタを構成した。
Here, in the filter described in claim 5: claim 4, the characteristic impedance is:
Z 0 = (η 0 / 4√ε eff ) × (K ′ (k) / K (k))
Where ε eff is the effective dielectric constant of the coplanar line,
η 0 is the free space wave impedance,
K (k) is a complete elliptic integral of the first kind,
'Is the derivative,
Furthermore, ε eff = 1 + ((ε r −1) / 2) × (K ′ (k) / K (k))
× (K (k 1 ) / K ′ (k 1 ))
η 0 = √ (μ 0 / ε 0 ) = 120π
K (k) = ∫ 0 1 dx / {(√ (1-x 2 )} × (1-k 2 x 2 ))
k = w / d
k 1 = sinh (πw / 4h) / sinh (πd / 4h)
The characteristic impedance Z 0 is determined by the ratio k of the center conductor width w to the ground conductor interval d, the dielectric constant ε r of the dielectric substrate, and the dielectric substrate thickness h, and the center conductor width with respect to the ground conductor interval d A filter with a characteristic impedance Z 0 increased was constructed using the ratio k of w as a parameter.

この発明によれば、内壁を超伝導体で構成するという極く簡易な構造の筐体内に導体を超伝導体としたフィルタを収容することにより、収容されたフィルタの低挿入損失特性を維持するフィルタを提供することができる。そして、内壁を超伝導体で構成した低電力損失の筐体を用いることにより、フィルタおよび送受共用器の低損失化を実現することができる。また、これら低挿入損失のフィルタおよび送受共用器を用いることにより、通信装置の高周波送受信部において低挿入損失化、低雑音化を達成することができる。   According to the present invention, the low insertion loss characteristic of the accommodated filter is maintained by accommodating the filter using the conductor as the superconductor in the housing having a very simple structure in which the inner wall is composed of the superconductor. A filter can be provided. Further, by using a low power loss casing whose inner wall is made of a superconductor, it is possible to realize a reduction in loss of the filter and duplexer. Further, by using these low insertion loss filters and duplexers, it is possible to achieve low insertion loss and low noise in the high frequency transmission / reception unit of the communication device.

図1に示すコプレーナフィルタの回路基板を、内壁を超伝導体で構成した図2に示される金属筐体に収容した、コプレーナフィルタの実施例について説明する。
誘電体基板1上に1/4波長に相当する電気長を有する中心導体2と、その中心導体2の両側にそれぞれ問隔sをあけて形成された第1地導体3aおよび第2地導体3bと、第1入出力端子部4aの中心導体2および第1共振器5aの中心導体2に設けられたギャップg1 で構成された第1容量性結合部6aと、第2共振器5bの中心導体2および第3共振器5cの中心導体2の間に形成されたギャップg2 で構成された第2容量性結合部6bと、第4共振器5dの中心導体2と第2入出力端子部4bの中心導体2の間に形成されたギャップg3 で構成された第3容量性結合部6cと、第1共振器5aおよび第2共振器5bの接合部に設けられた中心導体2と第1地導体3a、第2地導体3b間を電気的に接続する短絡線路導体7aにより構成された第1誘導性結合部8aと、第3共振器5cおよび第4共振器5dの接合部に設けられた中心導体2と第1地導体3a、第2地導体3b間を電気的に接続する短絡線路導体7bにより構成された誘導性結合部8bと、より成る。
An embodiment of a coplanar filter in which the circuit board of the coplanar filter shown in FIG. 1 is housed in a metal casing shown in FIG. 2 having an inner wall made of a superconductor will be described.
A center conductor 2 having an electrical length corresponding to a quarter wavelength on the dielectric substrate 1, and a first ground conductor 3a and a second ground conductor 3b formed on both sides of the center conductor 2 with a spacing s between them. When, the center conductor 2 and the first capacitive coupling portion 6a composed of a gap g 1 provided at the center conductor 2 of the first resonator 5a of the first input-output terminal portion 4a, the center of the second resonator 5b a second capacitive coupling portion 6b made of a conductor 2 and the third resonator 5c gap g 2 formed between the center conductor 2 of the center conductor 2 and the second output terminal of the fourth resonator 5d a third capacitive coupling portion 6c constituted by 4b gap g 3 formed between the center conductor 2 of a central conductor 2 provided at the junction of the first resonator 5a and second resonator 5b first Consists of a short-circuit line conductor 7a that electrically connects the first ground conductor 3a and the second ground conductor 3b. The first inductive coupling portion 8a is electrically connected to the center conductor 2 provided at the junction of the third resonator 5c and the fourth resonator 5d with the first ground conductor 3a and the second ground conductor 3b. And an inductive coupling portion 8b constituted by a short-circuit line conductor 7b.

上述した通り、フィルタを金属筐体内に収容した場合、導体を流れる電流以外に、放射損失としてで消費される電力Wが存在し、金属筐体内壁に誘導される電流Iと金属筐体内壁の表面抵抗Rにより、W=RI2 として求められる。ところが、図2に示される如く、超伝導体を用いて筐体内壁を構成することにより、筐体内で消費される電力Wを低減することができ、フィルタの挿入損失を低減することができる。また、後で説明されるが、特に、共振器の特性インピーダンスを入出力端子部の特性インピーダンスより大きくしたフィルタに有効である。 As described above, when the filter is housed in the metal casing, there is power W consumed as radiation loss in addition to the current flowing through the conductor, and the current I induced on the inner wall of the metal casing and the inner wall of the metal casing From the surface resistance R, W = RI 2 is obtained. However, as shown in FIG. 2, by configuring the inner wall of the casing using the superconductor, the power W consumed in the casing can be reduced, and the insertion loss of the filter can be reduced. As will be described later, it is particularly effective for a filter in which the characteristic impedance of the resonator is larger than the characteristic impedance of the input / output terminal section.

一般に、分布定数線路上の電流と電圧の関係式は、
i、Vi:進行波の電流値、電圧値
i、Vi:反射波の電流値、電圧値
γ:伝搬定数
α:減衰定数
β:位相定数
Z:特性インピーダンス
R:直列抵抗
L:直列インダクタンス
G:並列コンダクタンス
C:静電容量
で表され、分布定数線路上の電流値は特性インピーダンスに逆比例する。
In general, the relational expression between current and voltage on the distributed constant line is
I i, V i: a current value of the traveling wave, the voltage value I i, V i: a current value of the reflected wave, the voltage value gamma: propagation constant alpha: attenuation constant beta: phase constant
Z: Characteristic impedance
R: Series resistance
L: Series inductance
G: Parallel conductance C: Expressed by capacitance, the current value on the distributed constant line is inversely proportional to the characteristic impedance.

ここで、コプレーナ型線路において説明する。コプレーナ型線路における特性インピーダンスは、
0 =(η0 /4√εeff )×(K’(k)/K(k))
と表される。ここで、εeff はコプレーナ型線路の実効比誘電率、η0 は自由空間の波動インピーダンス、K(k)は第1種完全楕円積分であり、’は微分を表す。更に、
εeff =1+((εr−1)/2)×(K’(k)/K(k))×(K(k1)/K’(k1))
η0 =√(μ0 /ε0 )=120π
K(k)=∫0 1 dx/{(√(1−x2) }×(1−k22))
k=w/d
1 =sinh(πw/4h)/sinh(πd/4h)
と表され、特性インピーダンスZ0 は地導体間隔dに対する中心導体幅wの比k、および誘電体基板の誘電率εr 、と誘電体基板厚hで決定される。従って、図3に示す様に、地導体間隔dに対する中心導体幅wの比kをパラメータとして、特性インピーダンスZ0 を増大することができる。
Here, the coplanar type line will be described. The characteristic impedance of the coplanar line is
Z 0 = (η 0 / 4√ε eff ) × (K ′ (k) / K (k))
It is expressed. Here, ε eff is the effective relative permittivity of the coplanar line, η 0 is the free space wave impedance, K (k) is the first type complete elliptic integral, and 'represents the differentiation. Furthermore,
ε eff = 1 + ((ε r −1) / 2) × (K ′ (k) / K (k)) × (K (k 1 ) / K ′ (k 1 ))
η 0 = √ (μ 0 / ε 0 ) = 120π
K (k) = ∫ 0 1 dx / {(√ (1-x 2 )} × (1-k 2 x 2 ))
k = w / d
k 1 = sinh (πw / 4h) / sinh (πd / 4h)
The characteristic impedance Z 0 is determined by the ratio k of the center conductor width w to the ground conductor interval d, the dielectric constant ε r of the dielectric substrate, and the dielectric substrate thickness h. Therefore, as shown in FIG. 3, the characteristic impedance Z 0 can be increased using the ratio k of the center conductor width w to the ground conductor interval d as a parameter.

以上のことを勘案して、この発明の他の実施例を図4を参照して説明する。図4は、例えば、50Ωの特性インピーダンスを有する入出力端子部4に100Ωの特性インピーダンスを有する共振器を組み合わせた実施例である。即ち、図4は、入出力端子部4aおよび第1共振器5a間、第2共振器5bおよび第3共振器5c間、第4共振器および入出力端子部間4bを容量性結合により結合し、第1共振器5aと第2共振器5b間、第3共振器5cおよび第4共振器5d間を誘導性結合により結合して構成した、1/4波長4段コプレーナフィルタの実施例である。第1入出力端子部4aおよび第2入出力端子部4bの特性インピーダンスは、これら入出力端子部に接続されるデバイスの特性インピーダンスとの整合を図る観点から50Ωとした。この場合、誘電体基板1として誘電率9.68のMgO基板を用い、第1入出力端子部4aおよび第2入出力端子部4bの中心導体幅wは218μm、地導体間隔dは400μmとしている。また、第1共振器5aないし第4共振器5dの中心導体幅は218μmとし、地導体問隔dは1,780μmとしてこれら共振器の特性インピーダンスを100Ωとしている。   In consideration of the above, another embodiment of the present invention will be described with reference to FIG. FIG. 4 shows an embodiment in which a resonator having a characteristic impedance of 100Ω is combined with an input / output terminal portion 4 having a characteristic impedance of 50Ω, for example. That is, in FIG. 4, the input / output terminal portion 4a and the first resonator 5a, the second resonator 5b and the third resonator 5c, and the fourth resonator and the input / output terminal portion 4b are coupled by capacitive coupling. This is an embodiment of a quarter-wavelength four-stage coplanar filter constructed by inductive coupling between the first resonator 5a and the second resonator 5b, and between the third resonator 5c and the fourth resonator 5d. . The characteristic impedance of the first input / output terminal portion 4a and the second input / output terminal portion 4b was set to 50Ω from the viewpoint of matching with the characteristic impedance of the device connected to these input / output terminal portions. In this case, an MgO substrate having a dielectric constant of 9.68 is used as the dielectric substrate 1, the central conductor width w of the first input / output terminal portion 4a and the second input / output terminal portion 4b is 218 μm, and the ground conductor interval d is 400 μm. . The center conductor width of the first resonator 5a to the fourth resonator 5d is 218 μm, the ground conductor interval d is 1,780 μm, and the characteristic impedance of these resonators is 100Ω.

以上の1/4波長4段コプレーナフィルタの実施例の電流密度分布は、図5およびこの一部を拡大して示した図6に示される。第1共振器5aないし第4共振器5dの何れについても、電流密度分布は第1容量性結合部6a、第2容量性結合部6b、第3容量性結合部6cが節となり、第1誘導性結合部8aと第2誘導性結合部8bが腹となるほぼ正弦波状であり、この点は、図7および図8に示される従来のコプレーナフィルタの電流密度分布と同じである。しかし、第1共振器5aないし第4共振器5dの特性インピーダンスを大きく設計製造してあるところから、各共振器における電流密度の低減が図られ、最大電流密度も図7および図8の従来例と比較して約45%低減し、電力換算で約70%の低減となる。
更に、この実施例において、中心導体2および第1、第2地導体を例えばランタン系、イットリウム系、ビスマス系、タリウム系その他の高温超電導体で形成して超伝導コプレーナフィルタを構成した場合、最大電流密度を低減することができたことから、高温超伝導体の臨界電流を超える電流が流れる恐れは少なくなり、超伝導コプレーナフィルタが破壊されることなく、超伝導コプレーナフィルタの低損失効果を充分に発揮することができる。
The current density distribution of the embodiment of the above-described quarter wavelength four-stage coplanar filter is shown in FIG. 5 and FIG. 6 showing an enlarged part thereof. In any of the first resonator 5a to the fourth resonator 5d, the current density distribution is a node of the first capacitive coupling unit 6a, the second capacitive coupling unit 6b, and the third capacitive coupling unit 6c, and the first induction. The sexual coupling portion 8a and the second inductive coupling portion 8b are substantially sinusoidal, and this point is the same as the current density distribution of the conventional coplanar filter shown in FIGS. However, since the characteristic impedances of the first resonator 5a to the fourth resonator 5d are designed and manufactured to be large, the current density in each resonator is reduced, and the maximum current density is also the conventional example shown in FIGS. About 45%, and about 70% reduction in terms of electric power.
Further, in this embodiment, when the central conductor 2 and the first and second ground conductors are formed of, for example, a lanthanum-based, yttrium-based, bismuth-based, thallium-based or other high-temperature superconductor, Since the current density could be reduced, there is less risk of current exceeding the critical current of high-temperature superconductors, and the low-loss effect of the superconducting coplanar filter is sufficiently achieved without destroying the superconducting coplanar filter. Can be demonstrated.

ところで、共振器の特性インピーダンスを入出力端子部の特性インピーダンスより大きくしたフィルタは、電流密度の低減は図れるものの、放射損失は特に増大する。放射損失としてケース内で消費される電力Wは、導体に誘導される電流Iと導体の表面抵抗Rにより、W=RI2 として求められる。図4に示される実施例を図11の金属筐体10において、誘電体基板1から4.5mmの高さに金蒸着した銅板の筐体を設置している例を想定すると、帯域内挿入損失は0.0063dbである。これに対して、図2に示される如く内壁を超伝導体で構成した筐体にフィルタを収容することにより、更なる低損失化を図ることができる。この場合の挿入損失の低減の一例を図9に示す。この例は、帯域内挿入損失を約0.001db程度削減している。 By the way, although the filter in which the characteristic impedance of the resonator is larger than the characteristic impedance of the input / output terminal portion can reduce the current density, the radiation loss is particularly increased. The power W consumed in the case as radiation loss is obtained as W = RI 2 from the current I induced in the conductor and the surface resistance R of the conductor. In the embodiment shown in FIG. 4, assuming an example in which a case of a copper plate with gold deposited at a height of 4.5 mm from the dielectric substrate 1 is installed in the metal case 10 of FIG. Is 0.0063 db. On the other hand, as shown in FIG. 2, the loss can be further reduced by housing the filter in a casing having an inner wall made of a superconductor. An example of the insertion loss reduction in this case is shown in FIG. In this example, the in-band insertion loss is reduced by about 0.001 db.

図2において、筐体10の内壁に超伝導体100を適用する方法としては、例えば、ランタン系、イットリウム系、ビスマス系、タリウム系その他の高温超伝導体を、スパッタリング法、真空蒸着法、CVD法、厚膜法その他の成膜法により、MgO、SrTiO3 、LaGaO3 、LaAlO3 の如き酸化金属材料の基板に成膜した、超伝導体成膜基板を筐体内壁に貼り付する方法が簡便である。また、特性インピーダンスを大きくする程、筐体内壁の低損失化効果は大きい。
以上の図示説明は、コプレーナ型伝送線路を基にして構成したコプレーナフィルタの実施例についての説明であった。ところで、フィルタ構成の基になる伝送線路としては、入出力端子部の特性インピーダンスおよび伝送線路内に形成される共振器の特性インピーダンスの双方を適宜に設計調整してフィルタを構成することができる伝送線路でありさえすれば、グランディッドコプレーナ型線路、マイクロストリップ型線路の如きコプレーナ型線路以外の如何なる構造の伝送線路も同様に使用することができる。
In FIG. 2, as a method of applying the superconductor 100 to the inner wall of the housing 10, for example, a lanthanum-based, yttrium-based, bismuth-based, thallium-based or other high-temperature superconductor is formed by sputtering, vacuum evaporation, CVD. A method of attaching a superconductor film-forming substrate formed on a metal oxide material substrate such as MgO, SrTiO 3 , LaGaO 3 , or LaAlO 3 to the inner wall of the casing by a method, a thick film method, or other film forming methods. Convenient. Further, as the characteristic impedance is increased, the effect of reducing the loss of the inner wall of the housing is greater.
The above description of the description is an explanation of an example of a coplanar filter configured based on a coplanar transmission line. By the way, as a transmission line on which the filter configuration is based, a transmission can be configured by appropriately designing and adjusting both the characteristic impedance of the input / output terminal portion and the characteristic impedance of the resonator formed in the transmission line. As long as it is a line, a transmission line having any structure other than a coplanar line such as a grounded coplanar line or a microstrip line can be used as well.

コプレーナフィルタを説明する図。The figure explaining a coplanar filter. 内面に超伝導体を適用した金属筐体に収容したコプレーナフィルタを示す図。The figure which shows the coplanar filter accommodated in the metal housing | casing which applied the superconductor to the inner surface. 対地導体間隔中心導体幅比に対する特性インピーダンスを示す図。The figure which shows the characteristic impedance with respect to the ground conductor space | interval center conductor width ratio. 実施例を説明する図。The figure explaining an Example. 図4の実施例の電流密度分布図。FIG. 5 is a current density distribution diagram of the embodiment of FIG. 4. 図5の電流密度分布の一部を拡大して示した図。The figure which expanded and showed a part of current density distribution of FIG. 従来例の電流密度分布図。The current density distribution figure of a prior art example. 図7の電流密度分布の一部を拡大して示した図。The figure which expanded and showed a part of current density distribution of FIG. 挿入損失の低減効果の比較を示す図。The figure which shows the comparison of the reduction effect of insertion loss. コプレーナ線路の概念を説明する図。The figure explaining the concept of a coplanar track | line. 金属筐体に収容したコプレーナフィルタを示す図。The figure which shows the coplanar filter accommodated in the metal housing | casing.

符号の説明Explanation of symbols

1 誘電体基板 2 中心導体
3a 第1地導体 3b 第2地導体
4a 第1入出力端子部 4b 第2入出力端子部
5a 第1共振器 5b 第2共振器
5c 第3共振器 5d 第4共振器
6a 第1容量性結合部 6b 第2容量性結合部
6c 第3容量性結合部 7a 短絡線路導体
7b 短絡線路導体 8a 第1誘導性結合部
8b 第2誘導性結合部 9 縁線
10 金属筐体 100 超伝導体
d 地導体間隔 g1 、g2 、g3 ギャップ
s 中心導体と第1地導体、第2地導体との間の間隔
w 中心導体幅
DESCRIPTION OF SYMBOLS 1 Dielectric board | substrate 2 Center conductor 3a 1st ground conductor 3b 2nd ground conductor 4a 1st input / output terminal part 4b 2nd input / output terminal part 5a 1st resonator 5b 2nd resonator 5c 3rd resonator 5d 4th resonance 6a 1st capacitive coupling part 6b 2nd capacitive coupling part 6c 3rd capacitive coupling part 7a Short circuit conductor 7b Short circuit conductor 8a 1st inductive coupling part 8b 2nd inductive coupling part 9 Edge line 10 Metal enclosure Body 100 Superconductor d Ground conductor spacing g 1 , g 2 , g 3 gap s Spacing between the center conductor and the first ground conductor, the second ground conductor w Center conductor width

Claims (5)

誘電体基板と当該誘電体基板の表面に形成される中心導体および地導体とにより構成した複数の共振器および入出力端子部を有し、誘電体基板を包含する筐体を有するフィルタにおいて、
筐体内壁を超伝導体で構成したことを特徴とするフィルタ。
In a filter having a plurality of resonators constituted by a dielectric substrate and a central conductor and a ground conductor formed on the surface of the dielectric substrate and an input / output terminal portion, and having a casing including the dielectric substrate,
A filter characterized in that the inner wall of the housing is made of a superconductor.
誘電体基板を具備し、当該誘電体基板の同一の表面に形成された中心導体およびこれの両側に平行に形成された地導体により構成された複数の共振器および入出力端子部を具備するコプレーナフィルタにおいて、
筐体内壁を超伝導体で構成したことを特徴とするコプレーナフィルタ。
A coplanar comprising a dielectric substrate, and comprising a plurality of resonators and input / output terminal portions composed of a central conductor formed on the same surface of the dielectric substrate and ground conductors formed in parallel on both sides thereof In the filter,
A coplanar filter characterized in that the inner wall of the housing is made of a superconductor.
請求項1および請求項2の内の何れかに記載されるフィルタにおいて、
筐体は、MgO、SrTiO3 、LaGaO3 、LaAlO3 の如き酸化金属材料の基板にランタン系、イットリウム系、ビスマス系、タリウム系の如き高温超伝導体を成膜した超伝導体成膜基板を内壁に貼り付たものより成ることを特徴とするフィルタ。
In the filter according to any one of claims 1 and 2,
The casing is a superconductor film-forming substrate in which a high-temperature superconductor such as lanthanum, yttrium, bismuth, or thallium is formed on a metal oxide substrate such as MgO, SrTiO 3 , LaGaO 3 , or LaAlO 3. A filter characterized by comprising a material attached to an inner wall.
請求項1ないし請求項3の内の何れかに記載されるフィルタにおいて、
共振器の特性インピーダンスを入出力端子部の特性インピーダンスよりも大きく構成したことを特徴とするフィルタ。
In the filter according to any one of claims 1 to 3,
A filter characterized in that the characteristic impedance of the resonator is larger than the characteristic impedance of the input / output terminal portion.
請求項4に記載されるフィルタにおいて、
特性インピーダンスは、
0 =(η0 /4√εeff )×(K’(k)/K(k))であり、
ここで、εeff はコプレーナ型線路の実効比誘電率、
η0 は自由空間の波動インピーダンス、
K(k)は第1種完全楕円積分、
’は微分であり、
更に、εeff =1+((εr−1)/2)×(K’(k)/K(k))
×(K(k1)/K’(k1))
η0 =√(μ0 /ε0 )=120π
K(k)=∫0 1 dx/{(√(1−x2) }×(1−k22))
k=w/d
1 =sinh(πw/4h)/sinh(πd/4h)
と表され、特性インピーダンスZ0 は地導体間隔dに対する中心導体幅wの比k、および誘電体基板の誘電率εr 、と誘電体基板厚hで決定され、地導体間隔dに対する中心導体幅wの比kをパラメータとして、特性インピーダンスZ0 を増大した、
ことを特徴とするフィルタ。
The filter according to claim 4, wherein
Characteristic impedance is
Z 0 = (η 0 / 4√ε eff ) × (K ′ (k) / K (k)),
Where ε eff is the effective dielectric constant of the coplanar line,
η 0 is the free space wave impedance,
K (k) is a complete elliptic integral of the first kind,
'Is the derivative,
Furthermore, ε eff = 1 + ((ε r −1) / 2) × (K ′ (k) / K (k))
× (K (k 1 ) / K ′ (k 1 ))
η 0 = √ (μ 0 / ε 0 ) = 120π
K (k) = ∫ 0 1 dx / {(√ (1-x 2 )} × (1-k 2 x 2 ))
k = w / d
k 1 = sinh (πw / 4h) / sinh (πd / 4h)
The characteristic impedance Z 0 is determined by the ratio k of the center conductor width w to the ground conductor interval d, the dielectric constant ε r of the dielectric substrate, and the dielectric substrate thickness h, and the center conductor width with respect to the ground conductor interval d The characteristic impedance Z 0 was increased using the ratio k of w as a parameter.
A filter characterized by that.
JP2004027188A 2004-02-03 2004-02-03 filter Expired - Fee Related JP4167187B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004027188A JP4167187B2 (en) 2004-02-03 2004-02-03 filter
US11/046,885 US7183874B2 (en) 2004-02-03 2005-02-01 Casing contained filter
DE602005014576T DE602005014576D1 (en) 2004-02-03 2005-02-02 microwave filters
ES05002143T ES2325924T3 (en) 2004-02-03 2005-02-02 MICROWAVE FILTER
EP05002143A EP1564834B1 (en) 2004-02-03 2005-02-02 Microwave filter
CNB2005100091251A CN100385730C (en) 2004-02-03 2005-02-03 Microwave filter
KR1020050009785A KR100673316B1 (en) 2004-02-03 2005-02-03 Filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027188A JP4167187B2 (en) 2004-02-03 2004-02-03 filter

Publications (2)

Publication Number Publication Date
JP2005223446A true JP2005223446A (en) 2005-08-18
JP4167187B2 JP4167187B2 (en) 2008-10-15

Family

ID=34697856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027188A Expired - Fee Related JP4167187B2 (en) 2004-02-03 2004-02-03 filter

Country Status (7)

Country Link
US (1) US7183874B2 (en)
EP (1) EP1564834B1 (en)
JP (1) JP4167187B2 (en)
KR (1) KR100673316B1 (en)
CN (1) CN100385730C (en)
DE (1) DE602005014576D1 (en)
ES (1) ES2325924T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245227A (en) * 2007-03-29 2008-10-09 Ntt Docomo Inc Coplanar waveguide resonator and coplanar waveguide filter using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA109490C2 (en) * 2013-12-26 2015-08-25 SMUG-TANK FILTER
CN104300191A (en) * 2014-10-21 2015-01-21 成都顺为超导科技股份有限公司 Waveguide filter for superconducting membranes on E surface
CN104319443A (en) * 2014-10-21 2015-01-28 成都顺为超导科技股份有限公司 E-plane superconducting diaphragm filter
US10446898B2 (en) * 2017-06-29 2019-10-15 Qualcomm Incorporated On-chip coplanar waveguide having a shielding layer comprising a capacitor formed by sets of interdigitated fingers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2363464A (en) * 1942-04-29 1944-11-21 Commercial Solvents Corp Beta-aminoalkyl acetals
FR2261656A2 (en) 1973-02-20 1975-09-12 Minet Roger Super-conductive microwave filter - with several line band resonators in cryostat structure
US4918049A (en) * 1987-11-18 1990-04-17 Massachusetts Institute Of Technology Microwave/far infrared cavities and waveguides using high temperature superconductors
US5215959A (en) * 1990-09-21 1993-06-01 University Of California, Berkeley Devices comprised of discrete high-temperature superconductor chips disposed on a surface
US5179074A (en) 1991-01-24 1993-01-12 Space Systems/Loral, Inc. Hybrid dielectric resonator/high temperature superconductor filter
US5750473A (en) * 1995-05-11 1998-05-12 E. I. Du Pont De Nemours And Company Planar high temperature superconductor filters with backside coupling
US5770987A (en) * 1996-09-06 1998-06-23 Henderson; Bert C. Coplanar waVeguide strip band pass filter
CN1189975C (en) 1999-02-26 2005-02-16 富士通株式会社 Superconducting filter module, superconducting filter assembly, and thermal insulation type coaxial cable
JP3433914B2 (en) 1999-09-08 2003-08-04 日本電気株式会社 Bandpass filter and method for adjusting passband of bandpass filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245227A (en) * 2007-03-29 2008-10-09 Ntt Docomo Inc Coplanar waveguide resonator and coplanar waveguide filter using the same
US7978027B2 (en) 2007-03-29 2011-07-12 Ntt Docomo, Inc. Coplanar waveguide resonator and coplanar waveguide filter using the same

Also Published As

Publication number Publication date
KR100673316B1 (en) 2007-01-24
EP1564834A1 (en) 2005-08-17
EP1564834B1 (en) 2009-05-27
JP4167187B2 (en) 2008-10-15
CN100385730C (en) 2008-04-30
US20050184826A1 (en) 2005-08-25
DE602005014576D1 (en) 2009-07-09
KR20060041614A (en) 2006-05-12
ES2325924T3 (en) 2009-09-24
CN1652393A (en) 2005-08-10
US7183874B2 (en) 2007-02-27

Similar Documents

Publication Publication Date Title
CN1874053B (en) Miniaturized band-pass filter with harmonic suppression for loading fan-shaped offset of microstrip
WO2000052782A1 (en) Superconducting filter module, superconducting filter, and heat-insulated coaxial cable
Chang et al. Analysis and applications of uniplanar compact photonic bandgap structures
JP2005223392A (en) Coupling line and filter
EP1265310B1 (en) Superconducting microstrip filter
JP3478219B2 (en) Resonator, resonance element, resonator device, filter, duplexer, and communication device
JP4426931B2 (en) Coplanar filter and method for forming the same
Hong et al. Recent advances in microstrip filters for communications and other applications
JPH11308009A (en) Single mode and dual mode helix-mounted cavity filter
JP4167187B2 (en) filter
JP3379471B2 (en) Transmission line, resonator, filter, duplexer, and communication device
JP3866716B2 (en) filter
JPH07202507A (en) Micro strip line filter
Ma et al. A low-loss 5GHz bandpass filter using HTS coplanar waveguide quarter-wavelength resonators
US6252475B1 (en) High-frequency circuit element
Suzuki et al. A low-loss 5 GHz bandpass filter using HTS quarter-wavelength coplanar waveguide resonators
JP2001111302A (en) Low pass filter and electronic equipment using the same
JP2002290117A (en) Coplanar line-type parallel resonator and coplanar line- type band pass filter using the same
JPH07336113A (en) High frequency electrode and high frequency transmission line
CN117458111B (en) Gradual change type medium substrate integrated low-loss transmission line
JPH11330803A (en) High frequency filter device, shared device and communication equipment
JP4125842B2 (en) High frequency filter
Mahmood et al. Multiband dielectric resonator filter (MBDRF) with defected ground structure (DGS) for wireless application
Zhang Novel Planar Microstrip and Dielectric Resonator Filters
JPH0722810A (en) Micro strip line filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees