JPH11330803A - High frequency filter device, shared device and communication equipment - Google Patents

High frequency filter device, shared device and communication equipment

Info

Publication number
JPH11330803A
JPH11330803A JP10134741A JP13474198A JPH11330803A JP H11330803 A JPH11330803 A JP H11330803A JP 10134741 A JP10134741 A JP 10134741A JP 13474198 A JP13474198 A JP 13474198A JP H11330803 A JPH11330803 A JP H11330803A
Authority
JP
Japan
Prior art keywords
resonator
band
filter
electrode
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10134741A
Other languages
Japanese (ja)
Other versions
JP3380165B2 (en
Inventor
Jun Hattori
準 服部
Seiji Hidaka
青路 日高
Noribumi Matsui
則文 松井
Shoichi Narahashi
祥一 楢橋
Toshio Nojima
俊雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Murata Manufacturing Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Murata Manufacturing Co Ltd
Nippon Telegraph and Telephone Corp
NTT Mobile Communications Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd, Nippon Telegraph and Telephone Corp, NTT Mobile Communications Networks Inc filed Critical Murata Manufacturing Co Ltd
Priority to JP13474198A priority Critical patent/JP3380165B2/en
Publication of JPH11330803A publication Critical patent/JPH11330803A/en
Application granted granted Critical
Publication of JP3380165B2 publication Critical patent/JP3380165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Transceivers (AREA)

Abstract

PROBLEM TO BE SOLVED: To constitute a high frequency filter device, a shared, device and communication equipment in which low loss, high reliability, and high power resistance in a normal state can be maintained, and fatal characteristic deterioration will not be accompanied, even when the temperature of an electrode is raised above a transition temperature. SOLUTION: A high frequency filter device is constituted by combining a superconducting resonator Rs , using a superconductor as an electrode material with a normal conducting resonator Rn using a normal conductor as an electrode material. Especially, each resonance frequency is set so that band rejection filters superconducting band-pass filter(SBEF) 1 and 2 constituted of the superconducting resonator Rs can be provided in the neighborhood of the both edges of the pass band, and a band-pass filter normal conductive band-pass filter(NBPF) constituted of the normal conductive resonator Rn can be provided at the central part of the pass band. Thus, even when the temperature of an electrode is increased beyond the transition temperature, the band-pass characteristics as a whole can be maintained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、無線通信等に利
用されるマイクロ波帯やミリ波帯における高周波フィル
タ装置、共用器およびそれらを用いた通信装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency filter and a duplexer in a microwave band or a millimeter wave band used for wireless communication and the like, and a communication device using them.

【0002】[0002]

【従来の技術】無線通信に利用されるマイクロ波帯やミ
リ波帯の高周波フィルタ装置において、特に移動体通信
システムの基地局に使用される高周波フィルタ装置は、
大電力を扱うにも拘らず小型、低損失、低コスト化が要
求される。このような大電力を扱う高周波フィルタ装置
においては、無負荷Qが高く、且つ小型である誘電体共
振器が用いられているが、装置が小型になるほどその放
熱効率が低下し、温度上昇に対する対策が深刻な問題と
なる。
2. Description of the Related Art In microwave and millimeter wave band high frequency filter devices used for wireless communication, high frequency filter devices used particularly for base stations of mobile communication systems are known.
In spite of handling large power, small size, low loss and low cost are required. In such a high-frequency filter device handling large power, a small dielectric resonator having a high no-load Q and a small size is used. Is a serious problem.

【0003】そこで、特開平6−37513号公報で
は、電極材料として超伝導体を用いた装置が提案されて
いる。その構成例を図24に示す。同図の(A)は上面
図、(B)は(A)におけるA−A部分の断面図であ
る。このように、誘電体基板の下面に全面接地電極を形
成し、上面にマイクロストリップラインを形成してい
る。これらの電極は誘電体基板表面から超伝導体薄膜、
高耐熱性金属薄膜、高導電率金属薄膜の順に層をなして
形成している。
Therefore, Japanese Patent Application Laid-Open No. 6-37513 proposes an apparatus using a superconductor as an electrode material. FIG. 24 shows an example of the configuration. 3A is a top view, and FIG. 3B is a cross-sectional view taken along line AA in FIG. Thus, the ground electrode is formed entirely on the lower surface of the dielectric substrate, and the microstrip line is formed on the upper surface. These electrodes are made of a superconductor thin film,
The layers are formed in the order of a highly heat-resistant metal thin film and a highly conductive metal thin film.

【0004】このように超伝導体薄膜と高導電率金属薄
膜を組み合わせた電極を形成することによって、通常状
態では超伝導体薄膜の導電率は極めて大きくなって、導
体損失の少ない、Qの高い共振器(マイクロストリップ
共振器)として作用する。そして電極が超伝導体材料の
超伝導転移温度(以下単に「転移温度」という。)以上
に昇温した場合、超伝導体薄膜の導電率が急激に低下す
るが、高導電率金属薄膜により導体損失が低く抑えら
れ、致命的な特性劣化に到らない。
By forming an electrode in which a superconductor thin film and a high-conductivity metal thin film are combined as described above, the conductivity of the superconductor thin film becomes extremely large in a normal state, the conductor loss is small, and the Q is high. Acts as a resonator (microstrip resonator). When the temperature of the electrode rises above the superconducting transition temperature of the superconductor material (hereinafter, simply referred to as “transition temperature”), the conductivity of the superconductor thin film rapidly decreases. Loss is kept low, and no fatal characteristic deterioration occurs.

【0005】[0005]

【発明が解決しようとする課題】ところが、図24に示
した従来の装置においては、超伝導体または常伝導体
(金属導体)のそれぞれを単体の電極として構成する場
合に比べて、低損失性、信頼性、耐電力性の点で劣るも
のと考えられる。すなわち超伝導体薄膜に対して金属薄
膜を積層形成することによって超伝導体薄膜の物性に変
化を来すおそれがあり、電極が転移温度以上に昇温した
際に電極各層の発熱により信頼性が低下し、耐電力特性
に問題が生じるものと考えられる。また電極を超伝導体
薄膜のみにより構成した場合に比べて、電極が転移温度
以上に昇温した際のフィルタとしての挿入損失は小さく
なるが、転移温度を超える場合と超えない場合での導体
損失の変化が小さくなく、誘電体共振器としての無負荷
Qの変化およびフィルタとしての特性変化はまだ充分に
抑えられない。
However, the conventional device shown in FIG. 24 has a lower loss compared with a case where each of a superconductor or a normal conductor (metal conductor) is formed as a single electrode. , Reliability and power durability. That is, the physical properties of the superconductor thin film may be changed by laminating a metal thin film on the superconductor thin film, and when the electrode is heated to a transition temperature or higher, the reliability of the electrode is increased due to the heat generated by each layer of the electrode. It is considered that the power consumption decreases and a problem is caused in the power handling characteristics. Also, compared to the case where the electrode is composed of only a superconductor thin film, the insertion loss as a filter when the electrode is heated to the transition temperature or higher is smaller, but the conductor loss between when the electrode exceeds the transition temperature and when it does not exceed the transition temperature. Is not small, and the change of the no-load Q as the dielectric resonator and the change of the characteristic as the filter cannot be sufficiently suppressed yet.

【0006】この発明の目的は上述の各種問題点を解消
して、通常状態における低損失性、高信頼性、高耐電力
性を維持し、且つ電極が転移温度以上に昇温した場合で
も、致命的な特性劣化を招かないようにした高周波フィ
ルタ装置、共用器および通信装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned various problems, maintain low loss, high reliability, and high power durability in a normal state. An object of the present invention is to provide a high-frequency filter device, a duplexer, and a communication device that do not cause fatal deterioration of characteristics.

【0007】[0007]

【課題を解決するための手段】超伝導体薄膜と金属薄膜
との積層体からなる電極を用いることによる上述した問
題を解消するために、この発明では、超伝導体を電極材
料とする共振器と、常伝導体を電極材料とする共振器と
を組み合わせて高周波フィルタ装置を構成する。
In order to solve the above-mentioned problems caused by using an electrode composed of a laminate of a superconductor thin film and a metal thin film, the present invention provides a resonator using a superconductor as an electrode material. And a resonator using a normal conductor as an electrode material to form a high-frequency filter device.

【0008】超伝導体を電極材料とする共振器は、その
電極が超伝導を示す通常の使用状態で無負荷Qが極めて
高い特性を示し、転移温度以上に昇温した際に、この共
振器の無負荷Qは大きく低下することになる。一方、常
伝導体の導電率は温度依存性があるものの、超伝導体の
ように転移温度付近で導電率が急激に変化するようなこ
とがない。そのため常伝導体を電極材料とする共振器
は、超伝導体の転移温度を超えるか超えないかに殆ど関
係なく、共振器の無負荷Qは安定している。
[0008] A resonator using a superconductor as an electrode material exhibits an extremely high no-load Q in a normal use state in which the electrode exhibits superconductivity. Will be greatly reduced. On the other hand, although the conductivity of the normal conductor depends on the temperature, the conductivity does not suddenly change near the transition temperature unlike the superconductor. Therefore, in a resonator using a normal conductor as an electrode material, the no-load Q of the resonator is stable regardless of whether the transition temperature of the superconductor is exceeded or not.

【0009】したがって上記超伝導体が超伝導性を示す
通常状態では、超伝導体を電極材料とする共振器の高い
無負荷Qの特性が生かされて、電極温度が転移温度以上
に昇温した際には、常伝導体を電極材料とする共振器に
よるフィルタ特性を示すことになる。そのため電極の温
度が転移温度以上に昇温しても、致命的な特性劣化に到
らないように、常伝導体を電極材料とする共振器でフィ
ルタ特性の主要部を定め、超伝導体を電極材料とした共
振器を、フィルタ特性を強化するために用いれば、転移
温度以上に昇温した場合の致命的な特性劣化を招くこと
がない。
Therefore, in the normal state in which the superconductor exhibits superconductivity, the high unloaded Q characteristics of the resonator using the superconductor as an electrode material are utilized to raise the electrode temperature above the transition temperature. In this case, the filter characteristics of a resonator using a normal conductor as an electrode material will be exhibited. Therefore, even if the temperature of the electrode rises above the transition temperature, the main part of the filter characteristics is determined by a resonator using a normal conductor as the electrode material, and the superconductor is used in order to prevent fatal deterioration of the characteristics. If a resonator made of an electrode material is used to enhance the filter characteristics, there will be no catastrophic deterioration of the characteristics when the temperature rises above the transition temperature.

【0010】たとえば超伝導体を電極材料とする共振器
を、通過帯域の片端または両端の近傍の周波数を通過さ
せるフィルタとし、常伝導体を電極材料とする共振器
を、通過帯域の中央付近の周波数を通過させるフィルタ
とする。このことにより、電極の温度に関わらず常伝導
体を電極材料とする共振器により帯域通過特性をもたせ
ることができ、上記超伝導体が超伝導を示す通常の使用
状態では、その共振器は通過帯域の片端または両端の近
傍の周波数を通過させるため、通過帯域の上端、下端ま
たは両端に急峻な減衰特性をもたせることができる。し
たがって電極の温度が超伝導体の転移温度以上に昇温し
ても、この帯域通過特性の片端または両端の減衰特性が
緩やかになるだけであり、全体として帯域通過特性を保
つことができる。
For example, a resonator using a superconductor as an electrode material is used as a filter for passing frequencies near one or both ends of a pass band, and a resonator using a normal conductor as an electrode material is used near a center of the pass band. It is a filter that passes the frequency. As a result, a band-pass characteristic can be provided by a resonator using a normal conductor as an electrode material regardless of the temperature of the electrode. In a normal use state in which the superconductor exhibits superconductivity, the resonator does not pass. Since frequencies near one end or both ends of the band are passed, a steep attenuation characteristic can be provided at the upper end, lower end, or both ends of the pass band. Therefore, even if the temperature of the electrode rises above the transition temperature of the superconductor, only the attenuation characteristic at one end or both ends of the band-pass characteristic becomes moderate, and the band-pass characteristic can be maintained as a whole.

【0011】また、たとえば超伝導体を電極材料とする
共振器を、通過帯域の片端または両端の近傍の周波数を
阻止するフィルタとし、常伝導体を電極材料とする共振
器を、通過帯域の中央付近の周波数を通過させるフィル
タとする。この場合も、電極の温度に関わらず常伝導体
を電極材料とする共振器により帯域通過特性をもたせる
ことができ、上記超伝導体が超伝導を示す通常の使用状
態では、その共振器は通過帯域の片端または両端の近傍
の周波数を阻止するため、通過帯域の上側、下側または
両側に急峻な減衰特性をもたせることができる。
Further, for example, a resonator using a superconductor as an electrode material is used as a filter for blocking frequencies near one or both ends of a pass band, and a resonator using a normal conductor as an electrode material is used as a filter in the center of the pass band. A filter that passes nearby frequencies. Also in this case, regardless of the temperature of the electrode, a band-pass characteristic can be provided by a resonator using a normal conductor as an electrode material. In a normal use state in which the superconductor exhibits superconductivity, the resonator does not pass. Since frequencies near one or both ends of the band are blocked, a steep attenuation characteristic can be provided on the upper, lower, or both sides of the pass band.

【0012】また、この発明では常伝導体による電極の
一部または全部を、薄膜導電体層と薄膜誘電体層の積層
体からなる薄膜多層電極とする。このことにより電極部
分の電流密度の集中が緩和されて、全体として導体損失
が低減され、無負荷Qの高い共振器が得られる。したが
って、電極温度が上昇して、超伝導体が超伝導性を示さ
なくなる状態でも、常伝導体による電極を用いた共振器
の高い無負荷Q特性が生かされて、低挿入損失の高周波
フィルタ装置が得られる。
Further, in the present invention, a part or all of the electrode made of a normal conductor is a thin film multi-layer electrode made of a laminate of a thin film conductor layer and a thin film dielectric layer. This alleviates the concentration of the current density in the electrode portion, reduces the conductor loss as a whole, and obtains a resonator having a high no-load Q. Therefore, even when the temperature of the electrode rises and the superconductor does not show superconductivity, the high no-load Q characteristic of the resonator using the electrode made of the normal conductor is utilized, and the high-frequency filter device with low insertion loss is used. Is obtained.

【0013】また、この発明では、共通のポートとその
他の個別のポートとの間に、上記のいずれかの高周波フ
ィルタ装置を設けて共用器を構成する。たとえば共通の
ポートと個別の或るポートとの間に、送信信号を通過さ
せる送信フィルタとしての高周波フィルタ装置を設け、
共通のポートと他の個別のポートとの間に、受信信号を
通過させる受信フィルタとしての高周波フィルタ装置を
設ければ、全体として転移温度前後の温度変化に対する
特性変化の少ないアンテナ共用器等の送受共用器が得ら
れる。また1つの共通のポートと他の複数の個別のポー
トの間にそれぞれ送信信号を通過させる送信フィルタと
しての高周波フィルタ装置を設ければ、全体として転移
温度前後の温度変化に対する特性変化の少ない送信共用
器が得られる。
Further, in the present invention, any of the above high-frequency filter devices is provided between the common port and other individual ports to constitute a duplexer. For example, between a common port and an individual certain port, a high-frequency filter device as a transmission filter for transmitting a transmission signal is provided,
If a high-frequency filter device is provided between the common port and another individual port as a reception filter for passing a reception signal, transmission and reception of an antenna duplexer or the like having a small characteristic change with respect to a temperature change before and after the transition temperature as a whole is provided. A duplexer is obtained. Further, if a high-frequency filter device as a transmission filter for transmitting a transmission signal is provided between one common port and another plurality of individual ports, transmission sharing with a small characteristic change with respect to a temperature change around a transition temperature as a whole is provided. A vessel is obtained.

【0014】さらに、この発明では、上記のいずれかの
高周波フィルタ装置を通信信号の送信部または受信部に
設けて通信装置を構成する。たとえば移動体通信システ
ムの基地局に使用される送信共用器における各チャンネ
ルフィルタやアンテナフィルタに上記高周波フィルタ装
置を用いる。このことによって、小型、低損失、低コス
トで且つ信頼性の高い通信装置が得られる。
Further, according to the present invention, a communication device is provided by providing any one of the above-described high-frequency filter devices in a transmission unit or a reception unit of a communication signal. For example, the high-frequency filter device is used for each channel filter and antenna filter in a transmission duplexer used in a base station of a mobile communication system. As a result, a small, low-loss, low-cost and highly reliable communication device can be obtained.

【0015】[0015]

【発明の実施の形態】第1の実施形態に係る高周波フィ
ルタ装置の構成を図1および図2を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of a high-frequency filter device according to a first embodiment will be described with reference to FIGS.

【0016】図2は高周波フィルタ装置を構成する各部
をブロック化して示したものである。同図においてKは
結合回路、Rsは超伝導体を電極材料とする共振器(以
下「超伝導共振器」と言う。)、Rnは常伝導体を電極
材料とする共振器(以下「常伝導共振器」と言う。)、
PSは移相器であり、たとえば位相をπだけシフトさせ
る。また(fi)は共振周波数がfiの共振器であるこ
とを示している。たとえばRs(f1)は共振周波数が
f1の超伝導共振器であること、Rn(f8)は共振周
波数がf8の常伝導共振器であることを表している。
FIG. 2 is a block diagram showing components constituting the high frequency filter device. In the figure, K is a coupling circuit, Rs is a resonator using a superconductor as an electrode material (hereinafter referred to as “superconducting resonator”), and Rn is a resonator using a normal conductor as an electrode material (hereinafter “normal conduction”). Resonator ").
PS is a phase shifter, which shifts the phase by π, for example. (Fi) indicates that the resonator has a resonance frequency of fi. For example, Rs (f1) represents a superconducting resonator having a resonance frequency of f1, and Rn (f8) represents a normal conduction resonator having a resonance frequency of f8.

【0017】図1は上記各共振器の共振周波数と通過帯
域との関係を示している。この例では通過帯域の下端近
傍の周波数を共振周波数f1とf2の2つの超伝導共振
器が担い、通過帯域の中央から上端近傍の周波数を共振
周波数f3〜f8の6つの常伝導共振器が担う。そのた
め、通常の使用状態では図1の(A)に示すように通過
帯域の低域側は急峻な減衰特性を示す。超伝導共振器の
温度(電極の温度)が転移温度以上に昇温して、共振周
波数f1,f2を担う超伝導共振器の無負荷Q(Qo)
が低下した場合、その挿入損失が増大するため、図1の
(B)に示すように通過帯域の低域側の減衰特性は若干
なだらかになる。しかし、f3〜f8を担う常伝導共振
器の特性はほとんど変化しないため、全体として帯域通
過特性を維持することになる。
FIG. 1 shows the relationship between the resonance frequency of each resonator and the pass band. In this example, two superconducting resonators at resonance frequencies f1 and f2 carry frequencies near the lower end of the passband, and six normal conducting resonators at resonance frequencies f3 to f8 carry frequencies near the upper end from the center of the passband. . Therefore, in a normal use state, as shown in FIG. 1A, the lower side of the pass band exhibits a steep attenuation characteristic. The temperature (temperature of the electrode) of the superconducting resonator rises above the transition temperature, and the no-load Q (Qo) of the superconducting resonator having the resonance frequencies f1 and f2.
, The insertion loss increases, so that the attenuation characteristic on the lower side of the passband becomes slightly gentle as shown in FIG. However, since the characteristics of the normal conduction resonators responsible for f3 to f8 hardly change, the bandpass characteristics are maintained as a whole.

【0018】なお、通過帯域の上端側の減衰特性も急峻
にするためには、たとえば共振周波数f7,f8を担う
2つの共振器に超伝導共振器を用いればよい。
In order to sharpen the attenuation characteristic on the upper end side of the pass band, for example, a superconducting resonator may be used as two resonators having resonance frequencies f7 and f8.

【0019】図2に示したように、各共振器の共振周波
数を順に並べた場合の、共振周波数の隣接する共振器
を、たとえばπだけ移相する移相器PSを介して並列に
接続することにより、共振周波数の隣接する2つの共振
器は分岐点から見たインピーダンスが非常に大きくなる
ため、相互の干渉を防ぐことができる。
As shown in FIG. 2, when the resonance frequencies of the respective resonators are arranged in order, the adjacent resonators having the resonance frequencies are connected in parallel via a phase shifter PS which shifts the phase by, for example, π. Thus, the two resonators having adjacent resonance frequencies have a very large impedance as viewed from the branch point, and therefore, mutual interference can be prevented.

【0020】図2において各共振器はたとえば図18に
示すような、円柱形状の誘電体柱の上下面に電極を形成
した円形TMモードの誘電体共振器であり、結合回路K
はたとえばその円形TMモードの誘電体共振器と結合す
るループまたはプローブである。また移相器PSはたと
えば位相差πをもたせる電気長の線路である。
In FIG. 2, each resonator is a circular TM mode dielectric resonator having electrodes formed on the upper and lower surfaces of a cylindrical dielectric pillar as shown in FIG.
Is, for example, a loop or probe coupled to the circular TM mode dielectric resonator. The phase shifter PS is, for example, a line having an electrical length having a phase difference π.

【0021】なお、図18において(A)は遮蔽空胴
(キャビティ)内の底面に誘電体柱を載置した例、
(B)は上下面に電極を形成した誘電体柱を積層一体化
するとともに、外面の電極を遮蔽空胴(キャビティ)内
の天面と底面の間にそれぞれ接合させた例である。いず
れの場合も円形TMモードの誘電体共振器として作用す
るが、電極を超伝導体とすることによって超伝導共振器
となり、電極を常伝導体とすることによって常伝導共振
器となる。
FIG. 18A shows an example in which a dielectric column is mounted on the bottom surface in a shielding cavity.
(B) shows an example in which dielectric pillars having electrodes formed on the upper and lower surfaces are laminated and integrated, and the electrodes on the outer surface are respectively joined between the top surface and the bottom surface in the shielding cavity. In each case, the dielectric resonator acts as a circular TM mode dielectric resonator. However, a superconducting resonator is formed by making the electrode a superconductor, and a normal conduction resonator is formed by making the electrode a normal conductor.

【0022】上記共振器としては、その他に、後に説明
する図12のようなTM二重モードの誘電体共振器や、
図19〜図22に示すような短絡型誘電体共振器を用い
ることができる。これらの図において(A)は斜視図、
(B)は(A)におけるA−A部分の断面図である。図
19に示す例では、直方体形状の誘電体ブロックの外面
に電極を形成することによって、TMモードの誘電体共
振器として作用させる。図20の例では、中央に角柱状
の誘電体部分が形成されるように、その周囲に空隙部を
形成してTMモードの誘電体共振器として作用させる。
同様に、図21に示す例では、円柱形状の誘電体ブロッ
クの外面に電極を形成することによって、円形TMモー
ドの誘電体共振器として作用させる。図22の例では、
中央に円柱状の誘電体部分が形成されるように、その周
囲に空隙部を形成して円形TMモードの誘電体共振器と
して作用させる。いずれの場合も電極を超伝導体とする
ことによって超伝導共振器となり、電極を常伝導体とす
ることによって常伝導共振器となる。
Other examples of the resonator include a TM dual-mode dielectric resonator as described later with reference to FIG.
A short-circuit type dielectric resonator as shown in FIGS. 19 to 22 can be used. In these figures, (A) is a perspective view,
(B) is a sectional view of the AA part in (A). In the example shown in FIG. 19, an electrode is formed on the outer surface of a rectangular parallelepiped dielectric block to function as a TM mode dielectric resonator. In the example of FIG. 20, a void is formed around the dielectric portion so as to form a prismatic dielectric portion at the center, and the dielectric portion acts as a TM mode dielectric resonator.
Similarly, in the example shown in FIG. 21, an electrode is formed on the outer surface of a cylindrical dielectric block to function as a circular TM mode dielectric resonator. In the example of FIG.
A void is formed around the dielectric portion so as to form a cylindrical dielectric portion in the center, and the dielectric portion acts as a circular TM mode dielectric resonator. In any case, a superconducting resonator is formed by making the electrode a superconductor, and a normal conducting resonator is formed by making the electrode a normal conductor.

【0023】さらに、上記共振器は、誘電体共振器に限
らずストリップ型の共振器であってもよい。この場合
も、電極を超伝導体とすることによって超伝導共振器と
なり、電極を常伝導体とすることによって常伝導共振器
となる。
Further, the resonator is not limited to a dielectric resonator, but may be a strip resonator. Also in this case, a superconducting resonator is formed by using an electrode as a superconductor, and a normal conducting resonator is formed by using an electrode as a normal conductor.

【0024】次に、第2の実施形態である高周波フィル
タ装置の構成を図3〜図6を参照して説明する。
Next, the configuration of a high-frequency filter device according to a second embodiment will be described with reference to FIGS.

【0025】図6は高周波フィルタ装置の全体の構成を
ブロック化して表したものである。同図においてSBP
F1は超伝導共振器を用いた帯域通過フィルタ(以下
「超伝導帯域通過フィルタ」と言う。)、NBPFは常
伝導共振器を用いた帯域通過フィルタ(以下「常伝導帯
域通過フィルタ」と言う。)、PSは移相器であり、位
相をたとえばπだけシフトさせる。
FIG. 6 is a block diagram showing the entire structure of the high-frequency filter device. In the figure, SBP
F1 is a bandpass filter using a superconducting resonator (hereinafter referred to as “superconducting bandpass filter”), and NBPF is a bandpass filter using a normal conducting resonator (hereinafter referred to as “normal conducting bandpass filter”). ), PS is a phase shifter, which shifts the phase by, for example, π.

【0026】図3は常伝導帯域通過フィルタNBPFの
通過特性、図4は超伝導帯域通過フィルタSBPF1お
よびSBPF2のそれぞれの通過特性を示している。図
3に示す常伝導帯域通過フィルタNBPFは周波数f2
〜f3を通過帯域とし、図4に示す超伝導帯域通過フィ
ルタSBPF1は周波数f1〜f2を通過帯域とし、S
BPF2はf3〜f4を通過帯域とする。
FIG. 3 shows the pass characteristics of the normal conduction band pass filter NBPF, and FIG. 4 shows the respective pass characteristics of the superconducting band pass filters SBPF1 and SBPF2. The normal bandpass filter NBPF shown in FIG.
To f3 as pass bands, the superconducting band pass filter SBPF1 shown in FIG.
The BPF 2 has f3 to f4 as pass bands.

【0027】常伝導共振器は超伝導共振器に比べればQ
oが小さいため、常伝導帯域通過フィルタの通過帯域両
端の減衰特性は比較的なだらかとなる。一方、超伝導共
振器はのQoは極めて高いため、超伝導帯域通過フィル
タの通過帯域両端の減衰特性は急峻となる。
The normal conduction resonator has a higher Q than the superconducting resonator.
Since o is small, the attenuation characteristics at both ends of the pass band of the normal conduction band pass filter are relatively gentle. On the other hand, since the Qo of the superconducting resonator is extremely high, the attenuation characteristics at both ends of the passband of the superconducting bandpass filter become steep.

【0028】この3つの共振器を図6に示したように並
列接続することにより、その総合特性は図5のようにな
る。すなわち通過帯域のうち低域側(f1〜f2)は超
伝導帯域通過フィルタSBPF1が担い、通過帯域の高
域側(f3〜f4)側は超伝導帯域通過フィルタSBP
F2が担い、さらに通過帯域の中央部(f2〜f3)は
常伝導帯域通過フィルタNBPFが担う。したがって通
過帯域両端の減衰特性が急峻なフィルタ特性が得られ
る。
By connecting these three resonators in parallel as shown in FIG. 6, the overall characteristics are as shown in FIG. That is, the superconducting bandpass filter SBPF1 is responsible for the lower band (f1 to f2) of the passband, and the superconducting bandpass filter SBP is for the higher band (f3 to f4) of the passband.
F2 is carried, and the center part (f2 to f3) of the pass band is carried by the normal conduction band pass filter NBPF. Therefore, a filter characteristic having steep attenuation characteristics at both ends of the pass band can be obtained.

【0029】もし超伝導帯域通過フィルタを構成する超
伝導共振器の電極が転移温度以上となって超伝導性を示
さなくなると、超伝導帯域通過フィルタの挿入損失が増
大し減衰特性もなだらかとなるが、常伝導帯域通過フィ
ルタの作用により、通過帯域中心付近の挿入損失は若干
増加する程度に抑えられ、フィルタ全体として致命的な
特性の劣化に至らない。
If the electrodes of the superconducting resonator constituting the superconducting band-pass filter do not show superconductivity because of the transition temperature or higher, the insertion loss of the superconducting band-pass filter increases and the attenuation characteristics become gentle. However, due to the operation of the normal-conducting band-pass filter, the insertion loss near the center of the pass band is suppressed to a slight increase, and the fatal deterioration of the filter as a whole does not occur.

【0030】次に、第3の実施形態である高周波フィル
タ装置の構成を図7〜図11を参照して説明する。
Next, the configuration of a high frequency filter device according to a third embodiment will be described with reference to FIGS.

【0031】図10は高周波フィルタ装置の全体の構成
をブロック化して表したものである。同図においてSB
EF1は超伝導共振器を用いた帯域阻止フィルタ(以下
「超伝導帯域阻止フィルタ」と言う。)、NBPFは常
伝導帯域通過フィルタである。
FIG. 10 is a block diagram showing the entire structure of the high frequency filter device. In the figure, SB
EF1 is a band rejection filter using a superconducting resonator (hereinafter referred to as “superconducting band rejection filter”), and NBPF is a normal conduction bandpass filter.

【0032】図7は常伝導帯域通過フィルタNBPFの
通過特性、図8は超伝導帯域阻止フィルタSBEF1お
よびSBEF2のそれぞれの通過特性を示している。図
7に示す常伝導帯域通過フィルタNBPFは周波数f2
〜f3を通過帯域とし、図8に示す超伝導帯域阻止フィ
ルタSBEF1は周波数f1〜f2を阻止帯域とし、S
BEF2はf3〜f4を阻止帯域とする。
FIG. 7 shows the pass characteristics of the normal conduction band pass filter NBPF, and FIG. 8 shows the respective pass characteristics of the superconducting band reject filters SBEF1 and SBEF2. The normal conduction bandpass filter NBPF shown in FIG.
To f3 as pass bands, the superconducting band rejection filter SBEF1 shown in FIG.
BEF2 sets f3 to f4 as a stop band.

【0033】この3つの共振器を図10に示したように
直列接続することにより、その総合特性は図9のように
なる。すなわち通過帯域より低域側(f1〜f2)は超
伝導帯域阻止フィルタSBEF1が急峻に減衰させ、通
過帯域より高域側(f3〜f4)側は超伝導帯域阻止フ
ィルタSBEF2が急峻に減衰させる。したがって通過
帯域両端の減衰特性が急峻なフィルタ特性が得られる。
By connecting these three resonators in series as shown in FIG. 10, the overall characteristics are as shown in FIG. That is, the superconducting band rejection filter SBEF1 abruptly attenuates the lower side (f1 to f2) of the passband, and the superconducting band rejection filter SBEF2 abruptly attenuates the higher side (f3 to f4) of the passband. Therefore, a filter characteristic having steep attenuation characteristics at both ends of the pass band can be obtained.

【0034】もし超伝導帯域阻止フィルタを構成する超
伝導共振器の電極が転移温度以上となって超伝導性を示
さなくなると、超伝導帯域阻止フィルタSBEF1,S
BEF2の減衰量が小さくなるが、常伝導帯域通過フィ
ルタの作用により、通過帯域の挿入損失は若干増加する
程度に抑えられ、フィルタ全体としては致命的な特性劣
化に至らない。
If the electrodes of the superconducting resonator constituting the superconducting band rejection filter have a transition temperature or higher and no longer exhibit superconductivity, the superconducting band rejection filters SBEF1, SEF1
Although the amount of attenuation of the BEF 2 is reduced, the insertion loss in the pass band is suppressed to a slight increase due to the operation of the normal conduction band pass filter, and no fatal deterioration of the characteristics of the filter as a whole is caused.

【0035】図11は上記高周波フィルタ装置全体のよ
り具体的な構成例を示すブロック図である。ここでRn
は常伝導共振器、Rsは超伝導共振器、Kは結合回路、
TLは伝送線路である。2つの超伝導帯域阻止フィルタ
SBEF1およびSBEF2は、それぞれ4つの超伝導
共振器Rsを、線路上の波長をλgとした場合にλg/
4またはその奇数倍の電気長を有する伝送線路TLを介
して接続することにより構成している。このことによ
り、4つの減衰極を有する帯域阻止フィルタ特性をもた
せている。また常伝導帯域通過フィルタNBPFは4つ
の常伝導共振器Rnを順次結合させて帯域通過特性をも
たせている。そして、2つの超伝導帯域阻止フィルタS
BEF1,SBEF2と常伝導帯域通過フィルタNBP
Fとの間をλg/4またはその奇数倍の電気長を有する
伝送線路TLで接続している。これにより、常伝導帯域
通過フィルタNBPFの1段目の共振器Rnから超伝導
帯域阻止フィルタSBEF1の4段目の共振器Rsを見
たインピーダンスが非常に高くなるため両者が干渉する
ことがない。同様に、常伝導帯域通過フィルタNBPF
の4段目の共振器Rnから超伝導帯域阻止フィルタSB
EF2の1段目の共振器Rsを見たインピーダンスが非
常に高くなるため両者が干渉することがない。
FIG. 11 is a block diagram showing a more specific configuration example of the whole high frequency filter device. Where Rn
Is a normal conducting resonator, Rs is a superconducting resonator, K is a coupling circuit,
TL is a transmission line. Each of the two superconducting band-stop filters SBEF1 and SBEF2 has four superconducting resonators Rs and λg / λg when the wavelength on the line is λg.
4 or an odd multiple thereof. This provides a band rejection filter characteristic having four attenuation poles. The normal conduction bandpass filter NBPF has bandpass characteristics by sequentially coupling four normal conduction resonators Rn. And two superconducting band-stop filters S
BEF1, SBEF2 and normal conduction bandpass filter NBP
F and a transmission line TL having an electrical length of λg / 4 or an odd multiple thereof. Thereby, the impedance when the fourth stage resonator Rs of the superconducting band rejection filter SBEF1 from the first stage resonator Rn of the normal conduction bandpass filter NBPF to the fourth stage resonator Rs becomes very high. Similarly, a normal conduction bandpass filter NBPF
From the fourth-stage resonator Rn to the superconducting band-stop filter SB
Since the impedance seen from the resonator Rs in the first stage of the EF2 becomes very high, there is no interference between the two.

【0036】図12は以上に示した常伝導帯域通過フィ
ルタを構成する常伝導共振器の主要部の構成を示す斜視
図である。この例では、2つの四角柱状の誘電体柱を交
差させたような形状の誘電体コアを四角筒形状のキャビ
ティとともに一体成形し、そのキャビティの外周面(四
側面)に電極を形成したものである。キャビティの2つ
の開口面には金属板や、電極を形成したセラミック板を
設けることによって電磁界の遮蔽を行う。この構造によ
って図における縦方向と横方向にそれぞれTM110モ
ードの共振が生じ、TM二重モードの誘電体共振器を構
成する。そして、この2つの共振モードを結合させて2
段の共振器として用いる。外部との結合は、結合ループ
をキャビティ内部へ挿入して、所定のモードと磁界結合
させることにより行えばよい。
FIG. 12 is a perspective view showing a configuration of a main part of a normal conduction resonator constituting the normal conduction bandpass filter described above. In this example, a dielectric core having a shape in which two square pillar-shaped dielectric columns are crossed is integrally formed with a square cylindrical cavity, and electrodes are formed on the outer peripheral surface (four side surfaces) of the cavity. is there. Electromagnetic fields are shielded by providing a metal plate or a ceramic plate on which electrodes are formed on the two opening surfaces of the cavity. With this structure, TM110 mode resonance occurs in each of the vertical direction and the horizontal direction in the drawing, and a TM dual mode dielectric resonator is formed. Then, by combining these two resonance modes, 2
Used as a stage resonator. The coupling with the outside may be performed by inserting a coupling loop into the cavity and magnetically coupling with a predetermined mode.

【0037】常伝導帯域通過フィルタとしては、このT
M二重モード誘電体共振器以外に、図18に示した開放
型誘電体共振器、図19〜図22に示した短絡型誘電体
共振器、またはマイクロストリップ共振器等を用いても
よい。
As a normal conduction bandpass filter, this T
In addition to the M double mode dielectric resonator, an open dielectric resonator shown in FIG. 18, a short-circuited dielectric resonator shown in FIGS. 19 to 22, or a microstrip resonator may be used.

【0038】図13および図14は超伝導帯域阻止フィ
ルタの構成例を示す図である。図13はその外観斜視図
である。遮蔽キャビティ内に4つの超伝導共振器を設け
て、外部に入出力コネクタを設けている。
FIGS. 13 and 14 show examples of the configuration of the superconducting band rejection filter. FIG. 13 is an external perspective view thereof. Four superconducting resonators are provided in the shielding cavity, and an input / output connector is provided outside.

【0039】図14の(A)は遮蔽キャビティの上面を
取り除いた状態での平面図、(B)は(A)におけるA
−A部分の断面図である。各超伝導共振器は、円柱形状
の誘電体セラミクスの上下面にそれぞれ超伝導体電極を
形成している。これらの超伝導共振器は遮蔽キャビティ
の底面に取りつけている。また、遮蔽キャビティにはλ
g/4の電気長(λgは伝送線路上の波長)を有する伝
送線路を介して結合回路(プローブ)を突出させてい
る。各結合回路は超伝導共振器の円形TMモードと容量
結合する。この構造によって4段の共振器による帯域阻
止フィルタを構成する。
FIG. 14A is a plan view showing a state in which the upper surface of the shielding cavity is removed, and FIG.
It is sectional drawing of -A part. Each superconducting resonator has superconductor electrodes formed on the upper and lower surfaces of a cylindrical dielectric ceramic, respectively. These superconducting resonators are mounted on the bottom of the shielding cavity. Also, the shielding cavity has λ
A coupling circuit (probe) is projected through a transmission line having an electrical length of g / 4 (λg is a wavelength on the transmission line). Each coupling circuit is capacitively coupled to the circular TM mode of the superconducting resonator. With this structure, a band rejection filter composed of four stages of resonators is formed.

【0040】超伝導帯域阻止フィルタとしては、この他
に、TM二重モード誘電体共振器、短絡型誘電体共振
器、ストリップ共振器等を用いてもよい。
As the superconducting band rejection filter, a TM double mode dielectric resonator, a short-circuit type dielectric resonator, a strip resonator, or the like may be used.

【0041】図15および図16は常伝導帯域通過フィ
ルタの構成例を示す図である。図15はその外観斜視図
であり、遮蔽キャビティの内部に4つの常伝導共振器を
設け、外部に入出力コネクタを取りつけている。図16
の(A)は遮蔽キャビティの上面を取り除いた状態での
平面図、(B)は(A)におけるA−A部分の断面図で
ある。各共振器は円柱状の誘電体セラミクスの上下面に
薄膜多層電極を形成している。上面の薄膜多層電極には
結合コンデンサ(チップ)を取りつけていて、この結合
コンデンサと入出力コネクタの中心導体とを接続してい
る。また、隣接する共振器の結合コンデンサ同士を結合
回路(線路)で接続している。このような構造によって
4段の共振器からなる帯域通過フィルタを構成する。
FIGS. 15 and 16 show examples of the configuration of a normal conduction bandpass filter. FIG. 15 is a perspective view of the appearance, in which four normal-conducting resonators are provided inside the shield cavity, and an input / output connector is mounted outside. FIG.
(A) is a plan view in a state where an upper surface of a shielding cavity is removed, and (B) is a cross-sectional view of an AA portion in (A). Each resonator has thin-film multilayer electrodes formed on the upper and lower surfaces of a cylindrical dielectric ceramic. A coupling capacitor (chip) is attached to the thin film multilayer electrode on the upper surface, and the coupling capacitor is connected to the center conductor of the input / output connector. Also, coupling capacitors of adjacent resonators are connected by a coupling circuit (line). With such a structure, a band-pass filter including four resonators is configured.

【0042】図17は上記薄膜多層電極の構造を示す断
面図である。この例では、誘電体セラミクスの表面から
薄膜導電体層3a、薄膜誘電体層4a、薄膜導電体層3
b・・・の順に薄膜導電体層と薄膜誘電体層を交互に形
成することによって薄膜多層電極2を形成している。各
薄膜導電体層の周辺部は開放している。各薄膜電極層と
薄膜誘電体層による誘電体共振器が誘電体板による誘電
体共振器に結合するように、各薄膜電極層の厚みは共振
周波数における表皮深さと同程度かそれより薄い膜厚と
する。
FIG. 17 is a sectional view showing the structure of the thin-film multilayer electrode. In this example, the thin film conductor layer 3a, the thin film dielectric layer 4a, and the thin film conductor layer 3
The thin-film multilayer electrode 2 is formed by alternately forming the thin-film conductor layers and the thin-film dielectric layers in the order of b. The periphery of each thin-film conductor layer is open. The thickness of each thin film electrode layer is equal to or less than the skin depth at the resonance frequency so that the dielectric resonator formed by each thin film electrode layer and the thin film dielectric layer is coupled to the dielectric resonator formed by the dielectric plate. And

【0043】このような構造によれば、各薄膜誘電体層
4a,4b,4cはそれらの上下に存在する薄膜電極層
3a,3b,3cとともにそれぞれ極めて薄い誘電体共
振器を構成する。そのため、各薄膜誘電体層に構成され
る誘電体共振器の共振周波数を誘電体板による誘電体共
振器の共振周波数にほぼ等しくすることによって、各薄
膜誘電体層に構成される誘電体共振器の上下の薄膜電極
層に流れる電流の向き(位相)が揃うことになる。これ
により、誘電体板1の上下面部分における電流集中が緩
和され、表層にまで電流が分散されることになる。その
結果、導体損失が低減され、高いQo特性が得られる。
According to such a structure, each of the thin film dielectric layers 4a, 4b and 4c constitutes an extremely thin dielectric resonator together with the thin film electrode layers 3a, 3b and 3c located above and below them. Therefore, by setting the resonance frequency of the dielectric resonator formed in each thin film dielectric layer to be substantially equal to the resonance frequency of the dielectric resonator formed by the dielectric plate, the dielectric resonator formed in each thin film dielectric layer is The directions (phases) of the currents flowing through the upper and lower thin film electrode layers are aligned. As a result, the current concentration in the upper and lower portions of the dielectric plate 1 is reduced, and the current is dispersed to the surface layer. As a result, conductor loss is reduced, and high Qo characteristics are obtained.

【0044】次に、移動体通信システムの基地局に使用
される送信共用器およびそれを用いた通信装置の構成例
を図23を参照して説明する。図23において、各チャ
ンネルフィルタは各送信チャンネルの周波数帯を通過さ
せ、アイソレータは各チャンネル毎の送信機へ送信信号
が戻るのを阻止する。パワー合成回路は各チャンネルフ
ィルタを通過した送信信号を電力合成しアンテナフィル
タへ出力する。このアンテナフィルタはパワー合成され
た信号をアンテナへ出力する。この送信共用器とそれに
接続する各チャンネル毎の送信機とによって通信装置を
構成する。
Next, an example of the configuration of a transmission duplexer used in a base station of a mobile communication system and a communication apparatus using the same will be described with reference to FIG. In FIG. 23, each channel filter passes the frequency band of each transmission channel, and the isolator prevents the transmission signal from returning to the transmitter for each channel. The power combining circuit combines the power of the transmission signals passing through each channel filter and outputs the combined signal to the antenna filter. This antenna filter outputs the power-combined signal to the antenna. A communication device is constituted by the transmission duplexer and a transmitter for each channel connected thereto.

【0045】このような送信共用器において、各チャン
ネルフィルタやアンテナフィルタに、先に示したいずれ
かの高周波フィルタ装置を適用する。このことによっ
て、小型、低損失、低コストで且つ信頼性の高い送信共
用器および通信装置が得られる。
In such a transmission duplexer, any one of the high-frequency filter devices described above is applied to each channel filter and antenna filter. As a result, a small size, low loss, low cost, and highly reliable transmission duplexer and communication device can be obtained.

【0046】なお、この発明の共用器の実施形態としは
送信共用器を例に挙げたが、同様にして送信フィルタと
受信フィルタにこの発明の高周波フィルタ装置を用い
て、送受共用器を構成することができる。
The embodiment of the duplexer of the present invention has been described by taking the duplexer as an example. Similarly, the duplexer is constituted by using the high-frequency filter device of the present invention for the transmit filter and the receive filter. be able to.

【0047】[0047]

【発明の効果】この発明によれば、超伝導体が超伝導性
を示す通常状態では、超伝導体を電極材料とする誘電体
共振器の高い無負荷Qの特性が生かされて、電極温度が
転移温度以上に昇温した際には、常伝導体を電極材料と
する誘電体共振器によるフィルタ特性を示すことにな
る。そのため、常伝導体を電極材料とする誘電体共振器
でフィルタ特性の主要部を定め、超伝導体を電極材料と
した誘電体共振器を、フィルタ特性を強化するために用
いれば、転移温度以上に昇温した場合の致命的な特性劣
化を招くことがない。
According to the present invention, in the normal state where the superconductor exhibits superconductivity, the high unloaded Q characteristic of the dielectric resonator using the superconductor as the electrode material is utilized, and the electrode temperature is reduced. When the temperature rises above the transition temperature, it exhibits the filter characteristics of the dielectric resonator using the normal conductor as the electrode material. Therefore, if the main part of the filter characteristics is determined by the dielectric resonator using the normal conductor as the electrode material, and the dielectric resonator using the superconductor as the electrode material is used to enhance the filter characteristics, the transition temperature is higher than the transition temperature. When the temperature rises to a high level, no fatal deterioration of characteristics occurs.

【0048】また、この発明では常伝導体による電極の
一部または全部を、薄膜導電体層と薄膜誘電体層の積層
体からなる薄膜多層電極とすることにより、電極部分の
電流密度の集中が緩和されて、全体として導体損失が低
減され、無負荷Qの高い誘電体共振器が得られる。した
がって、電極温度が上昇して、超伝導体が超伝導性を示
さなくなる状態でも、常伝導体による電極を用いた誘電
体共振器の高い無負荷Q特性が生かされて、低挿入損失
の高周波フィルタ装置が得られる。
According to the present invention, a part or all of the electrode made of a normal conductor is formed as a thin film multilayer electrode composed of a laminate of a thin film conductor layer and a thin film dielectric layer. As a result, the conductor loss is reduced as a whole, and a dielectric resonator having a high unloaded Q can be obtained. Therefore, even in a state where the electrode temperature rises and the superconductor does not show superconductivity, the high no-load Q characteristic of the dielectric resonator using the electrode made of a normal conductor is utilized, and the high frequency of the low insertion loss is obtained. A filter device is obtained.

【0049】また、この発明では、転移温度前後の温度
変化に対する特性変化の少ない送受共用器や送信共用器
が得られる。
Further, according to the present invention, it is possible to obtain a duplexer or a duplexer which has a small characteristic change with respect to a temperature change around the transition temperature.

【0050】さらに、この発明では、上記のいずれかの
高周波フィルタ装置を通信信号の送信部または受信部に
設けて通信装置を構成するため、たとえば移動体通信シ
ステムの基地局に使用される送信共用器を用いた通信装
置を小型化、低損失化、低コスト化でき且つ信頼性を高
めることができる。
Further, according to the present invention, since any one of the above-described high-frequency filter devices is provided in a transmission unit or a reception unit of a communication signal to constitute a communication device, for example, a transmission sharing device used in a base station of a mobile communication system. The communication device using the device can be reduced in size, loss, cost, and reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態に係る高周波フィルタ装置の特
性を示す図
FIG. 1 is a diagram showing characteristics of a high-frequency filter device according to a first embodiment.

【図2】同高周波フィルタ装置の構成を示すブロック図FIG. 2 is a block diagram showing a configuration of the high-frequency filter device.

【図3】第2の実施形態に係る高周波フィルタ装置を構
成するフィルタの特性を示す図
FIG. 3 is a diagram illustrating characteristics of a filter included in a high-frequency filter device according to a second embodiment.

【図4】第2の実施形態に係る高周波フィルタ装置を構
成する他のフィルタの特性を示す図
FIG. 4 is a diagram showing characteristics of another filter included in the high-frequency filter device according to the second embodiment.

【図5】同高周波フィルタ装置の総合特性を示す図FIG. 5 is a diagram showing overall characteristics of the high-frequency filter device.

【図6】同フィルタ装置の構成を示すブロック図FIG. 6 is a block diagram showing a configuration of the filter device.

【図7】第3の実施形態に係る高周波フィルタ装置を構
成するフィルタの特性を示す図
FIG. 7 is a diagram illustrating characteristics of a filter included in a high-frequency filter device according to a third embodiment.

【図8】第3の実施形態に係る高周波フィルタ装置を構
成する他のフィルタの特性を示す図
FIG. 8 is a diagram showing characteristics of another filter included in the high frequency filter device according to the third embodiment.

【図9】同高周波フィルタ装置の総合特性を示す図FIG. 9 is a view showing overall characteristics of the high-frequency filter device.

【図10】同フィルタ装置の構成を示すブロック図FIG. 10 is a block diagram showing a configuration of the filter device.

【図11】第3の実施形態に係る高周波フィルタ装置の
より詳細な構成例を示すブロック図
FIG. 11 is a block diagram showing a more detailed configuration example of a high-frequency filter device according to a third embodiment.

【図12】常伝導帯域通過フィルタの構成例を示す図FIG. 12 is a diagram illustrating a configuration example of a normal conduction bandpass filter.

【図13】超伝導帯域阻止フィルタの外観斜視図FIG. 13 is an external perspective view of a superconducting band-stop filter.

【図14】同超伝導帯域阻止フィルタの内部構造を示す
FIG. 14 is a diagram showing an internal structure of the superconducting band-stop filter.

【図15】常伝導帯域通過フィルタの外観斜視図FIG. 15 is an external perspective view of a normal conduction bandpass filter.

【図16】同常伝導帯域通過フィルタの内部構造を示す
FIG. 16 is a diagram showing the internal structure of the normal conduction bandpass filter.

【図17】薄膜多層電極の構成を示す図FIG. 17 is a diagram showing a configuration of a thin-film multilayer electrode.

【図18】開放型誘電体共振器の例を示す図FIG. 18 shows an example of an open dielectric resonator.

【図19】短絡型誘電体共振器の例を示す図FIG. 19 shows an example of a short-circuit type dielectric resonator.

【図20】短絡型誘電体共振器の例を示す図FIG. 20 is a diagram showing an example of a short-circuit type dielectric resonator.

【図21】短絡型誘電体共振器の例を示す図FIG. 21 is a diagram showing an example of a short-circuit type dielectric resonator.

【図22】短絡型誘電体共振器の例を示す図FIG. 22 is a diagram showing an example of a short-circuit type dielectric resonator.

【図23】送信共用器および通信装置の構成例を示す図FIG. 23 is a diagram illustrating a configuration example of a transmission duplexer and a communication device.

【図24】従来の超伝導体装置の構成を示す図FIG. 24 is a diagram showing a configuration of a conventional superconductor device.

フロントページの続き (72)発明者 松井 則文 京都府長岡京市天神二丁目26番10号株式会 社村田製作所内 (72)発明者 楢橋 祥一 東京都港区虎ノ門二丁目10番1号エヌ・テ ィ・ティ移動通信網株式会社内 (72)発明者 野島 俊雄 東京都港区虎ノ門二丁目10番1号エヌ・テ ィ・ティ移動通信網株式会社内Continued on the front page (72) Inventor Norifumi Matsui 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto Prefecture Inside Murata Manufacturing Co., Ltd. (72) Inventor Shoichi Narahashi 2-1-1 Toranomon, Minato-ku, Tokyo (72) Inventor Toshio Nojima 2-10-1 Toranomon, Minato-ku, Tokyo NTT Mobile Communication Network Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 超伝導体を電極材料とする共振器と、常
伝導体を電極材料とする共振器とを組み合わせて構成し
たことを特徴とする高周波フィルタ装置。
1. A high-frequency filter device comprising a combination of a resonator using a superconductor as an electrode material and a resonator using a normal conductor as an electrode material.
【請求項2】 前記超伝導体を電極材料とする共振器
を、通過帯域の片端または両端の近傍の周波数を通過さ
せるフィルタとし、前記常伝導体を電極材料とする共振
器を、通過帯域の中央付近の周波数を通過させるフィル
タとして、全体に帯域通過特性をもたせたことを特徴と
する請求項1に記載の高周波フィルタ装置。
2. A resonator using the superconductor as an electrode material is a filter that passes frequencies near one or both ends of a pass band, and a resonator using the normal conductor as an electrode material is used as a filter in a pass band. 2. The high-frequency filter device according to claim 1, wherein the filter that passes frequencies near the center has band-pass characteristics as a whole.
【請求項3】 前記超伝導体を電極材料とする共振器
を、通過帯域の片端または両端の近傍の周波数を阻止す
るフィルタとし、前記常伝導体を電極材料とする共振器
を、通過帯域の中央付近の周波数を通過させるフィルタ
として、全体に帯域通過特性をもたせたことを特徴とす
る請求項1に記載の高周波フィルタ装置。
3. A resonator using the superconductor as an electrode material is a filter for blocking frequencies near one or both ends of a pass band, and a resonator using the normal conductor as an electrode material is used as a filter in a pass band. 2. The high-frequency filter device according to claim 1, wherein the filter that passes frequencies near the center has band-pass characteristics as a whole.
【請求項4】 前記常伝導体による電極の一部または全
部を、薄膜導電体層と薄膜誘電体層の積層体から成る薄
膜多層電極としたことを特徴とする請求項1〜3のいず
れかに記載の高周波フィルタ装置。
4. The thin-film multilayer electrode comprising a laminate of a thin-film conductor layer and a thin-film dielectric layer, wherein a part or all of the normal conductor electrode is a thin-film multilayer electrode. 2. The high frequency filter device according to 1.
【請求項5】 共通のポートとその他の個別のポートと
の間に、請求項1〜4のいずれかに記載の高周波フィル
タ装置を設けたことを特徴とする共用器。
5. A duplexer wherein the high-frequency filter device according to claim 1 is provided between a common port and another individual port.
【請求項6】 請求項1〜4のいずれかに記載の高周波
フィルタ装置を通信信号の送信部または受信部に設けた
ことを特徴とする通信装置。
6. A communication device, wherein the high-frequency filter device according to claim 1 is provided in a transmission unit or a reception unit of a communication signal.
JP13474198A 1998-05-18 1998-05-18 High frequency filter device, duplexer and communication device Expired - Lifetime JP3380165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13474198A JP3380165B2 (en) 1998-05-18 1998-05-18 High frequency filter device, duplexer and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13474198A JP3380165B2 (en) 1998-05-18 1998-05-18 High frequency filter device, duplexer and communication device

Publications (2)

Publication Number Publication Date
JPH11330803A true JPH11330803A (en) 1999-11-30
JP3380165B2 JP3380165B2 (en) 2003-02-24

Family

ID=15135505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13474198A Expired - Lifetime JP3380165B2 (en) 1998-05-18 1998-05-18 High frequency filter device, duplexer and communication device

Country Status (1)

Country Link
JP (1) JP3380165B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006102140A1 (en) * 2005-03-18 2006-09-28 Superconductor Technologies, Inc. Systems and methods for signal filtering
JP2007288434A (en) * 2006-04-14 2007-11-01 Toshiba Corp Amplifier and radio communication circuit
US7855620B2 (en) 2005-07-04 2010-12-21 Kabushiki Kaisha Toshiba Filter circuit device having parallel connected resonator groups with cascade connected delay circuits and radio communication device formed therefrom
US8040203B2 (en) 2008-09-11 2011-10-18 Kabushiki Kaisha Toshiba Filter circuit and radio communication device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445533B2 (en) 2007-08-28 2010-04-07 株式会社東芝 Filter circuit, radio communication apparatus, and signal processing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006102140A1 (en) * 2005-03-18 2006-09-28 Superconductor Technologies, Inc. Systems and methods for signal filtering
US7855620B2 (en) 2005-07-04 2010-12-21 Kabushiki Kaisha Toshiba Filter circuit device having parallel connected resonator groups with cascade connected delay circuits and radio communication device formed therefrom
JP2007288434A (en) * 2006-04-14 2007-11-01 Toshiba Corp Amplifier and radio communication circuit
US7528652B2 (en) 2006-04-14 2009-05-05 Kabushiki Kaisha Toshiba Amplifying device and radio communication circuit
US8040203B2 (en) 2008-09-11 2011-10-18 Kabushiki Kaisha Toshiba Filter circuit and radio communication device

Also Published As

Publication number Publication date
JP3380165B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
US6108569A (en) High temperature superconductor mini-filters and mini-multiplexers with self-resonant spiral resonators
US20030222732A1 (en) Narrow-band filters with zig-zag hairpin resonator
JP2000315904A (en) Electronic component, dielectric resonator, dielectric filter, duplexer and communication equipment
US20030222731A1 (en) Dual-mode bandpass filter with direct capacitive couplings and far-field suppression structures
EP2145393A1 (en) Zig-zag array resonators for relatively high-power hts applications
US6538527B2 (en) Resonator, filter, duplexer, and communication device
Hong et al. Recent advances in microstrip filters for communications and other applications
KR100673316B1 (en) Filter
JP3380165B2 (en) High frequency filter device, duplexer and communication device
JP3048509B2 (en) High frequency circuit element
JP2003309406A (en) Resonator, filter, composite filter device, transceiver, and communication apparatus
JPH11186812A (en) High frequency filter and branching filter
US6809615B2 (en) Band-pass filter and communication apparatus
Mimsyad et al. Ultra‐miniaturization design of substrate‐integrated waveguide cavity trisection bandpass filter
US6509810B2 (en) Filter, duplexer, and communication device
U-yen et al. The design of a compact, wide spurious-free bandwidth bandpass filter using stepped impedance resonators
US5691674A (en) Dielectric resonator apparatus comprising at least three quarter-wavelength dielectric coaxial resonators and having capacitance coupling electrodes
JPH08111604A (en) Dielectric filter
JP2001111302A (en) Low pass filter and electronic equipment using the same
KR20000006222A (en) High frequency circuit device
JPH07336113A (en) High frequency electrode and high frequency transmission line
JPH1155003A (en) Laminated dielectric filter
JPS6390202A (en) High-frequency filter
Zhang Novel Planar Microstrip and Dielectric Resonator Filters
JPH0722810A (en) Micro strip line filter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term