JP2005223396A - Electrode forming method of piezoelectric device and mcf employing the same - Google Patents

Electrode forming method of piezoelectric device and mcf employing the same Download PDF

Info

Publication number
JP2005223396A
JP2005223396A JP2004026546A JP2004026546A JP2005223396A JP 2005223396 A JP2005223396 A JP 2005223396A JP 2004026546 A JP2004026546 A JP 2004026546A JP 2004026546 A JP2004026546 A JP 2004026546A JP 2005223396 A JP2005223396 A JP 2005223396A
Authority
JP
Japan
Prior art keywords
electrode
substrate
piezoelectric
metal film
mcf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004026546A
Other languages
Japanese (ja)
Inventor
Takeshi Yamashita
剛 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2004026546A priority Critical patent/JP2005223396A/en
Publication of JP2005223396A publication Critical patent/JP2005223396A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a concentrically spreading a resist material forms a resist reservoir on the rotating external edge end surface of the concave of each electrode substrate, if a photoresist film is formed on an electrode metallic film on the entire concave surface of a crystal wafer on which a plurality of electrode substrates of inverse-mesa structure are formed, the residue of the resist material which has not been dissolved by development remains if exposure and development processing are performed, and unnecessary metallic film remains in a substrate vibrating portion when an excitation electrode is formed by etching processing. <P>SOLUTION: When electrode metallic films 2 are vapor-deposited by vapor deposition on each concave surface of a plurality of piezoelectric substrates 1 of the inverse-mesa structure formed on a piezoelectric material wafer, the electrode metallic films 2 are vapor-deposited by providing a mask 4 on a portion (rotating external edge end surface) 3 where the resist reservoir of each substrate concave on the wafer is formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧電デバイスの電極形成方法に関し、特に逆メサ構造の電極基板の凹部面側に蒸着された電極金属膜面に、スピンコートによってフォトレジスト材を塗布し、マスキング、露光及び現像処理によって電極パターンをもつフォトレジスト膜を形成し、エッチング処理によって電極を形成する圧電デバイスの電極形成方法に関する。   The present invention relates to a method for forming an electrode of a piezoelectric device, and in particular, a photoresist material is applied by spin coating on the electrode metal film surface deposited on the concave surface side of an electrode substrate having an inverted mesa structure, and masking, exposure, and development processing are performed. The present invention relates to an electrode forming method for a piezoelectric device in which a photoresist film having an electrode pattern is formed and an electrode is formed by an etching process.

近年、通信機器の小型化あるいは高周波化が進み、その基準周波数の制御デバイスである発振器やフィルタにおいても共振周波数が益々高周波化してきている。
圧電基板、例えばATカットの水晶基板の両主面に2組の相対する励振電極を所定の間隔で形成し、この2組の電極上に励起される振動モード相互間の音響結合の結果生じる2つの振動モードを利用して、帯域通過型のフィルタ、即ち多重モード水晶フィルタ(Monolithic Crystal Filter:以下、MCFという)が構成されることが知られている。そしてまた、このMCFの共振周波数は、水晶基板の厚みに反比例することは周知の通りであり、例えば、100MHz台の共振周波数を得るための基板の厚みをおよそ10μmとなる。
In recent years, communication equipment has been miniaturized or increased in frequency, and the resonance frequency has been increased even in oscillators and filters that are control devices of the reference frequency.
Two opposing excitation electrodes are formed at predetermined intervals on both principal surfaces of a piezoelectric substrate, for example, an AT-cut quartz crystal substrate, and the result of acoustic coupling between vibration modes excited on the two sets of electrodes 2 It is known that a band-pass filter, that is, a multi-mode crystal filter (hereinafter referred to as MCF) is configured using two vibration modes. As is well known, the resonance frequency of the MCF is inversely proportional to the thickness of the quartz substrate. For example, the thickness of the substrate for obtaining a resonance frequency on the order of 100 MHz is about 10 μm.

このように極めて薄い基板は機械的強度が弱いため、組立て時あるいは使用時の振動、衝撃によって破損しやすく量産性や信頼性の点で問題があった。
その対策として、振動部分の厚みが薄く、且つ機械的な保持強度を持つ水晶基板の構造として、所謂逆メサ構造の基板、即ち基板中央部が台形状に窪んだ構造の水晶基板の、中央部の薄肉振動部両面に励振電極を形成し、前記振動部の周囲を保持して一体的に形成された肉厚の環状囲繞部に外部と接続される接続電極を形成して、前記励振電極から延出したリード電極で接続電極に接続した構成とすることによって、機械的強度を持たせた基板構造とする方法がとられている。
Since such an extremely thin substrate has a low mechanical strength, it is liable to be damaged by vibration or shock during assembly or use, and there is a problem in mass productivity and reliability.
As a countermeasure, as a quartz substrate structure having a thin vibration part and mechanical holding strength, a so-called inverted mesa structure substrate, that is, a central portion of a quartz substrate having a substrate center portion recessed in a trapezoidal shape. Excitation electrodes are formed on both surfaces of the thin-walled vibration part, and a connection electrode connected to the outside is formed on the annular annular part integrally formed to hold the periphery of the vibration part, and from the excitation electrode A method has been adopted in which a substrate structure having mechanical strength is provided by connecting the connection electrode to the connection electrode using an extended lead electrode.

図2は、逆メサ構造の水晶基板に相対する2対の励振電極を形成したバランス型MCFの説明図で、(a)は模式的な電気的回路図、(b)は基板の電極構造を示す縦断面図、(c)は励振時の基板上における振動エネルギーの分布図を示す。
同図(a)の電気回路図で表される本MCF20は、同図(b)に示すように逆メサ構造の水晶基板21中央の薄肉振動部21aの両面に2対の励振電極22a、22bを備え、この励振電極22a、22bは前記振動部21aの周囲の環状囲繞部21b両面に形成された図示しない接続電極と前記励振電極22a、22bからそれぞれ延出した図示しないリード電極によって接続されている。
この水晶基板21は、例えば、基板中央の振動部21aの厚みはおよそ10μm、環状囲繞部21bはおよそ80μmの厚みとして強度を持たせている。
そして、本MCF20は、励振時の振動エネルギーが同図(c)に示すように基板中央振動部21aに分布する帯域通過型のフィルターである。
2A and 2B are explanatory diagrams of a balanced MCF in which two pairs of excitation electrodes facing a quartz substrate having an inverted mesa structure are formed. FIG. 2A is a schematic electric circuit diagram, and FIG. The longitudinal cross-sectional view shown, (c) shows a distribution diagram of vibration energy on the substrate at the time of excitation.
The present MCF 20 represented by the electric circuit diagram of FIG. 6A includes two pairs of excitation electrodes 22a and 22b on both surfaces of the thin vibrating portion 21a at the center of the quartz substrate 21 having an inverted mesa structure as shown in FIG. The excitation electrodes 22a and 22b are connected by connection electrodes (not shown) formed on both surfaces of the annular surrounding portion 21b around the vibration portion 21a and lead electrodes (not shown) extending from the excitation electrodes 22a and 22b, respectively. Yes.
In the quartz substrate 21, for example, the vibration portion 21a at the center of the substrate has a thickness of about 10 μm, and the annular surrounding portion 21b has a thickness of about 80 μm.
The present MCF 20 is a band-pass filter in which vibration energy during excitation is distributed in the substrate central vibration portion 21a as shown in FIG.

前述の逆メサ構造の水晶基板21の振動部21aに電極を形成する手順を、説明を簡単にするため、基板凹部底面の振動部21aに形成される励振電極22a、22bについて説明する。
図3は、MCFの励振電極を金属蒸着によって、逆メサ構造の水晶基板に形成する作業手順を示す基本的な工程図である。なお、図面の符号は、共通部は図2の符号をそのまま用いる。
同図に示されるように、凹部底面に薄肉の振動部21aとその周囲に肉厚の環状囲繞部21bとを有する水晶基板21(同図(ア))の凹部上面に、振動部21aに形成する電極パターンを有するマスク23を施す(同図(イ))。
そののち、蒸着装置の蒸着源24より電極金属を蒸散させ、マスク23を介して振動部21aに電極金属を蒸着させて、励振電極22a、22bを形成する(同図(ウ))。
In order to simplify the description of the procedure for forming the electrodes on the vibration part 21a of the quartz substrate 21 having the inverted mesa structure described above, the excitation electrodes 22a and 22b formed on the vibration part 21a on the bottom surface of the substrate recess will be described.
FIG. 3 is a basic process diagram showing an operation procedure for forming an excitation electrode of the MCF on a quartz substrate having an inverted mesa structure by metal vapor deposition. In addition, the code | symbol of drawing uses the code | symbol of FIG. 2 as it is for a common part.
As shown in the figure, the vibrating portion 21a is formed on the upper surface of the concave portion of the quartz substrate 21 (FIG. 5A) having a thin vibrating portion 21a on the bottom surface of the concave portion and a thick annular surrounding portion 21b around it. A mask 23 having an electrode pattern to be applied is applied (FIG. 2A).
After that, the electrode metal is evaporated from the vapor deposition source 24 of the vapor deposition apparatus, and the electrode metal is vapor-deposited on the vibrating portion 21a through the mask 23, thereby forming the excitation electrodes 22a and 22b (FIG. 5C).

なお、逆メサ構造の基板の平坦面側には、ここでは図示しないが、電極パターンをもつマスクを直接基板面に施して、電極金属を蒸着によって付着させて電極を形成する。
しかしながら、同図に示す方法では、マスク23と電極形成面(振動部21a面)との間に空隙(図2(b)の場合は8μm)があるため、蒸散した電極金属蒸気がマスクされるべき領域にまで廻り込み、所定のパターンをもつ電極を形成できない(図3(ウ)は、この状態を示す)と言う欠点がある。
Although not shown here, a mask having an electrode pattern is directly applied to the substrate surface on the flat surface side of the substrate having an inverted mesa structure, and an electrode metal is deposited by vapor deposition to form an electrode.
However, in the method shown in the figure, since there is a gap (8 μm in the case of FIG. 2B) between the mask 23 and the electrode forming surface (vibrating portion 21a surface), the evaporated electrode metal vapor is masked. There is a drawback that the electrode having a predetermined pattern cannot be formed by going to the power region (FIG. 3C shows this state).

図4は、上記問題を解決する方法としてとられる、フォトリソグラフィ技法を用いて逆メサ型構造の水晶基板に電極を形成する従来の作業手順を示す基本的な工程図である。なお、前述と同様に、逆メサ構造の基板の凹部底面振動部に励振電極を形成する作業手順について説明する。 FIG. 4 is a basic process diagram showing a conventional work procedure for forming electrodes on a quartz substrate having an inverted mesa structure using a photolithography technique, which is taken as a method for solving the above problem. In the same manner as described above, an operation procedure for forming the excitation electrode on the concave bottom vibration portion of the substrate having the inverted mesa structure will be described.

先ず、同図(ア)に示される逆メサ構造の水晶基板31の、凹部面側全面に図示しない蒸着源より所定の厚みの電極金属膜32を蒸着によって付着させる(同図(イ))。次に前記電極金属膜32の上に、フォトレジスト膜33を全面塗布し(同図(ウ))、その上から電極パターンを形成するマスク34を施して、このマスク34を介して光源35より前記フォトレジスト膜32に露光する(同図(エ))。
さらに、現像処理によって不要のフォトレジストを除去した(同図(オ))のち、エッチング処理によって不要な金属膜を除去し(同図(カ))、最後にフォトレジスト膜33aを剥離することによって、所定のパターンの励振電極32a、32bが形成される(同図(キ))。
上記図(エ)のフォトレジスト膜33に対する露光の工程において、マスク34と電極形成面との間に空隙があっても、光源光の直進性によって正確なパターンでレジスト膜33面に露光することができるため、現像・エッチングによって正確なパターンの励振電極32a、32bを形成することが可能となる。
特開平9−284092号公報
First, an electrode metal film 32 having a predetermined thickness is deposited on the entire surface of the concave surface of the quartz substrate 31 having the inverted mesa structure shown in FIG. Next, a photoresist film 33 is applied on the entire surface of the electrode metal film 32 ((c) in the figure), and a mask 34 for forming an electrode pattern is applied thereon. The photoresist film 32 is exposed (FIG. 4D).
Further, after removing the unnecessary photoresist by the development process ((f) in the figure), the unnecessary metal film is removed by the etching process (figure (f)), and finally the photoresist film 33a is peeled off. Then, the excitation electrodes 32a and 32b having a predetermined pattern are formed ((G) in the figure).
In the step of exposing the photoresist film 33 in FIG. 5D, even if there is a gap between the mask 34 and the electrode formation surface, the surface of the resist film 33 is exposed with an accurate pattern by the straightness of the light source light. Therefore, it is possible to form the excitation electrodes 32a and 32b having an accurate pattern by development and etching.
Japanese Patent Laid-Open No. 9-284092

図4の作業手順は、1個のMCFについて電極形成の手順を示したものであるが、実際の製造工程においては、水晶ウエハ上に逆メサ構造で形成された複数個の水晶電極基板のそれぞれに対して、同時に図4の作業処理が順次施され、そののち、切断・分割されて個々のMCFを得るという製造方法がとられる。
そして、同図(ウ)のフォトレジスト膜33塗布の実作業は、図5のスピンコートによるフォトレジスト膜塗布作業の説明図に示されるように作業される。
即ち、図5(ア)に示されるように、マトリクス状に逆メサ構造の複数の電極基板31が形成された水晶ウエハ30は、凹部面側全面に所定の厚みの電極金属膜32が蒸着によって付着されて回転台36に載置され、前記水晶ウエハ30の回転中央部にフォトレジスト材33'を垂下し、回転台36を所定の速度で回転させることによって(図イ)、遠心力によって全面に所定の厚さのレジスト膜33を塗布する(同図(ウ))スピンコートという方法がとられるのが一般的である。
The work procedure of FIG. 4 shows the procedure of electrode formation for one MCF, but in the actual manufacturing process, each of a plurality of crystal electrode substrates formed in a reverse mesa structure on a crystal wafer. On the other hand, a manufacturing method is employed in which the work process of FIG. 4 is sequentially performed, and then cut and divided to obtain individual MCFs.
The actual operation of applying the photoresist film 33 in FIG. 5C is performed as shown in the explanatory diagram of the photoresist film application operation by spin coating in FIG.
That is, as shown in FIG. 5A, in the crystal wafer 30 in which a plurality of electrode substrates 31 having a reverse mesa structure are formed in a matrix, an electrode metal film 32 having a predetermined thickness is formed by vapor deposition on the entire surface of the concave surface. Attached and placed on the turntable 36, a photoresist material 33 'is suspended at the center of rotation of the crystal wafer 30, and the turntable 36 is rotated at a predetermined speed (FIG. 1), and the entire surface is caused by centrifugal force. In general, a resist film 33 having a predetermined thickness is applied to the substrate (FIG. 5C), which is called spin coating.

しかしながら、この作業方法によると、レジスト材33'は回転の中心より外側に向かって同心円状に広がって塗膜を形成するが、同図(エ)に示されるように、塗布面は逆メサ構造の電極基板31の凹部が形成されているので、同心円状に広がるレジスト材33'は各電極基板31の回転外縁端面にレジスト溜まり33bを形成する。
このようなレジスト溜まり33bが形成されたレジスト膜33に露光、現像処理を行うと、図6の説明図に示すように、レジスト溜り33bの位置に、現像によって溶解しきらなかったレジスト材の残渣37が残ってしまい(図6(ア)、(イ))、エッチング処理によって励振電極32a、32bを形成したときに基板振動部31aに不要な金属膜38が残ってしまう(同図(ウ)(エ))。
However, according to this working method, the resist material 33 'spreads concentrically outward from the center of rotation to form a coating film, but as shown in FIG. Since the concavities of the electrode substrate 31 are formed, the resist material 33 ′ that spreads concentrically forms a resist pool 33 b on the end surface of the rotation edge of each electrode substrate 31.
When the resist film 33 on which such a resist pool 33b is formed is exposed and developed, as shown in the explanatory diagram of FIG. 6, the residue of the resist material that cannot be completely dissolved by development at the position of the resist pool 33b. 37 (FIGS. 6A and 6A), and when the excitation electrodes 32a and 32b are formed by etching, an unnecessary metal film 38 remains on the substrate vibrating portion 31a (FIG. 6C). (D)).

上述の不要な金属膜38が基板振動部31aに残ることによってMCFの振動エネルギーが抑制され、基板振動部31a上での振動エネルギーは、例えば同図(オ)の実線に示す分布を示す。
このため、MCFの電気的特性、特にCI値が上昇してQが低下してしまい、所定のフィルタ特性が得られないという問題があった。
本発明は、上記課題を解決するためになされたものであって、逆メサ構造の凹部を有する電極基板にスピンコートによってフォトレジストを塗布する際に、各凹部の回転外縁端面にフォトレジスト溜まりが発生することを防止する電極形成方法を提供することを目的とする。
The above-described unnecessary metal film 38 remains on the substrate vibrating portion 31a, so that the vibration energy of the MCF is suppressed, and the vibration energy on the substrate vibrating portion 31a has a distribution indicated by a solid line in FIG.
For this reason, there is a problem that the electrical characteristics of the MCF, in particular, the CI value increases and the Q decreases, and a predetermined filter characteristic cannot be obtained.
The present invention has been made in order to solve the above-described problems, and when a photoresist is applied to an electrode substrate having a concave portion having a reverse mesa structure by spin coating, a photoresist pool is formed on the rotation outer edge end surface of each concave portion. It is an object of the present invention to provide an electrode forming method that prevents the generation.

上記課題を解決するため、請求項1の発明においては、請求項1の発明においては、圧電材ウエハ上に逆メサ構造で形成された複数個の圧電基板のそれぞれの凹部面全面に蒸着によって形成された電極金属膜に、スピンコートによってフォトレジスト材を塗布し、マスキング、露光及び現像処理によって前記電極金属膜上に電極パターンをもつフォトレジスト膜を形成し、エッチング処理によって前記圧電基板の凹部底面振動部にパターン電極を形成する圧電デバイスの電極形成方法において、
前記圧電基板に電極金属膜を蒸着する際に、フォトレジストのスピンコート時に回転する圧電材ウエハのそれぞれの圧電基板凹部における回転外縁端面に金属膜が蒸着しないようにマスキングを施して、前記電極金属膜を蒸着することを特徴とする。
In order to solve the above problems, in the invention of claim 1, in the invention of claim 1, a plurality of piezoelectric substrates formed in a reverse mesa structure on a piezoelectric material wafer are formed by vapor deposition over the entire concave surface. A photoresist material is applied to the formed electrode metal film by spin coating, a photoresist film having an electrode pattern is formed on the electrode metal film by masking, exposure and development processes, and a bottom surface of the concave portion of the piezoelectric substrate is etched. In the electrode forming method of the piezoelectric device that forms the pattern electrode in the vibration part,
When the electrode metal film is deposited on the piezoelectric substrate, the electrode metal film is masked so that the metal film is not deposited on the rotating outer edge end surface of each piezoelectric substrate recess of the piezoelectric material wafer that rotates during the spin coating of the photoresist. It is characterized by depositing a film.

また、請求項2においては、請求項1に記載の圧電デバイスの電極形成方法であって、前記圧電材が水晶であることを特徴とする。
さらに、請求項3においては、請求項1または請求項2に記載の圧電デバイスの電極形成方法であって、前記圧電デバイスがモノリシック・クリスタル・フィルタ(MCF)であることを特徴とする。
According to a second aspect of the present invention, in the piezoelectric device electrode forming method according to the first aspect, the piezoelectric material is quartz.
Further, according to a third aspect of the present invention, there is provided the electrode forming method for a piezoelectric device according to the first or second aspect, wherein the piezoelectric device is a monolithic crystal filter (MCF).

本発明の圧電デバイスの電極形成方法は、圧電材ウエハ上に逆メサ構造で複数個形成された圧電基板のそれぞれの凹部面側に蒸着によって電極金属膜を蒸着する際に、ウエハ上のそれぞれの基板凹部の回転外縁端面にマスキングを施して電極金属膜を蒸着するようにしたので、前記電極金属膜の蒸着後に、スピンコートによってフォトレジスト膜を塗布した際にそれぞれの凹部の回転外縁端面にレジスト溜まりが生じても、露光、現像、エッチングの結果、電極基板の振動部上に不要な金属膜の発生を防止することができる。
したがって、本発明の電極形成方法は、所望の特性を持ったMCFを高い歩留まりで製造することができ、そのため、低コストのMCFを安定的に提供する上で大いに貢献できる。
The method of forming an electrode of a piezoelectric device of the present invention is the method of depositing an electrode metal film by vapor deposition on each concave surface side of a piezoelectric substrate formed with a plurality of inverted mesa structures on a piezoelectric material wafer. Since the electrode metal film is deposited by masking the rotation outer edge end face of the substrate recess, when the photoresist film is applied by spin coating after the electrode metal film is deposited, the resist is applied to the rotation outer edge face of each recess. Even if accumulation occurs, it is possible to prevent generation of an unnecessary metal film on the vibrating portion of the electrode substrate as a result of exposure, development, and etching.
Therefore, the electrode forming method of the present invention can produce an MCF having desired characteristics with a high yield, and thus can greatly contribute to providing a low-cost MCF stably.

本発明を図面に示した実施の形態に基づいて説明する。図1は、本発明に係わるフォトリソグラフィ技法を用いて逆メサ構造の水晶基板にMCFの励振電極を形成する作業手順を示す基本的な工程図である。
前述と同様に、本方法による実際の製造工程においても、水晶ウエハ上に複数形成された電極基板のそれぞれに対して、同時に以下に述べる作業処理が施され、そののち、切断・分割されて個々のMCFが得るという製造方法がとられるが、説明を簡単にするために、1個分のMCF電極基板に施される作業手順を示して説明する。
同図に示すように、先ず、逆メサ構造の水晶基板1の凹部側全面に、所定の厚みの電極金属膜2を蒸着によって付着させるが、このとき、後工程においてフォトレジストをスピンコートによって塗布した際にレジスト溜りが形成される部分(回転時の凹部外縁端面)3を覆うようにマスク4を施して蒸着源5より電極金属を蒸散させて電極金属膜2を蒸着させる(同図(ア))。
The present invention will be described based on the embodiments shown in the drawings. FIG. 1 is a basic process diagram showing an operation procedure for forming an excitation electrode of MCF on a quartz substrate having an inverted mesa structure using a photolithography technique according to the present invention.
Similarly to the above, in the actual manufacturing process according to this method, each of the plurality of electrode substrates formed on the quartz wafer is simultaneously subjected to the following processing, and then cut and divided into individual substrates. In order to simplify the description, an operation procedure applied to one MCF electrode substrate will be shown and described.
As shown in the figure, first, an electrode metal film 2 having a predetermined thickness is deposited on the entire recess side of the quartz substrate 1 having a reverse mesa structure by vapor deposition. At this time, a photoresist is applied by spin coating in a subsequent process. Then, a mask 4 is applied so as to cover a portion where the resist pool is formed (the outer edge of the concave outer edge during rotation), and the electrode metal is evaporated from the evaporation source 5 to deposit the electrode metal film 2 (FIG. )).

その後に、スピンコートによって所定の厚みのフォトレジスト膜6を全面に塗布する(同図(イ))。次に、電極パターンを形成するためのマスク7を施し、このマスク7を介して光源8より前記フォトレジスト膜6に露光する(同図(ウ))。
次に、現像処理によって所定のパターンのフォトレジスト膜6aを形成した(同図(エ))のち、エッチングによって不要な金属膜を除去して所定のパターンに金属膜を形成し(同図(オ))、最後にフォトレジスト膜6aを剥離することによって、所定のパターンの励振電極2a、(2b)を形成する(同図(カ))。
After that, a photoresist film 6 having a predetermined thickness is applied to the entire surface by spin coating (FIG. 1A). Next, a mask 7 for forming an electrode pattern is applied, and the photoresist film 6 is exposed from the light source 8 through the mask 7 (FIG. 5C).
Next, after a photoresist film 6a having a predetermined pattern is formed by development processing (FIG. 5D), an unnecessary metal film is removed by etching to form a metal film in a predetermined pattern (FIG. )), And finally, the photoresist film 6a is peeled off to form the excitation electrodes 2a and (2b) having a predetermined pattern (FIG. 5F).

同図(エ)の現像処理の結果、スピンコートによってレジスト溜り部3にレジスト材の残渣6bが生じたとしても、この部分には電極金属膜2が蒸着されていないので、従来のように不要な金属膜が基板振動部1aに形成されることはない。
したがって、上述の電極形成方法で製造されたMCFは、基板振動部1aに分布する振動エネルギーの劣化がないので、優れた電気的特性をもつMCFを提供できる。
Even if a resist residue 6b is generated in the resist reservoir 3 by spin coating as a result of the development process in FIG. 6D, the electrode metal film 2 is not deposited on this portion, so that it is unnecessary as in the prior art. No metal film is formed on the substrate vibrating portion 1a.
Therefore, the MCF manufactured by the above-described electrode forming method does not deteriorate the vibration energy distributed in the substrate vibrating portion 1a, and thus can provide an MCF having excellent electrical characteristics.

なお、同図(キ)は、上記手順の(ウ)の工程で施されるマスク7のパターンにリード電極9a、9b及び接続電極10a、10bのパターンを形成することによって、水晶電極基板1の凹部面側の振動部1aに励振電極2a、2bとリード電極9a、9bとが、また、環状囲繞部1bに接続電極10a、10bが形成されたMCFの上面図である。
同図から判るように、同図(ア)の工程で施されるマスク4は、前記振動部1aに形成される励振電極2a、2bから延出するリ−ド電極9a、9bが形成される側の逆側に施されるように、換言すれば、水晶ウエハの逆メサ構造の各基板電極1に形成される接続電極10a、10bとこれにつながるリ−ド電極9a、9bとは、フォトレジストのスピンコート時の回転の中心側に形成されるように電極パターンの設計がなされなくてはならないのは当然のことである。
In the figure, (K) shows the pattern of the lead electrode 9a, 9b and the connection electrodes 10a, 10b formed on the pattern of the mask 7 applied in the step (c) of the above procedure, thereby forming the crystal electrode substrate 1 FIG. 5 is a top view of an MCF in which excitation electrodes 2a and 2b and lead electrodes 9a and 9b are formed on the vibration portion 1a on the concave surface side, and connection electrodes 10a and 10b are formed on the annular surrounding portion 1b.
As can be seen from the figure, the mask 4 applied in the step (a) of the figure is formed with lead electrodes 9a and 9b extending from the excitation electrodes 2a and 2b formed on the vibrating part 1a. In other words, the connection electrodes 10a and 10b formed on each substrate electrode 1 of the inverted mesa structure of the quartz wafer and the lead electrodes 9a and 9b connected to the substrate electrodes 1 Needless to say, the electrode pattern must be designed so as to be formed on the center side of rotation during spin coating of the resist.

本発明に係るフォトリソグラフィ技法を用いて逆メサ型構造の水晶基板にMCFの励振電極を形成する方法の作業手順を示す基本的な工程図。The basic process figure which shows the operation | movement procedure of the method of forming the excitation electrode of MCF in the quartz substrate of a reverse mesa structure using the photolithographic technique which concerns on this invention. 逆メサ構造の水晶基板に相対する2対の励振電極を形成したバランス型MCFの説明図で、(a)は模式的な電気的回路図、(b)は基板の電極構造を示す縦断面図、(c)は励振時の基板上における振動エネルギーの分布図。It is explanatory drawing of the balance type | mold MCF which formed two pairs of excitation electrodes facing the quartz substrate of a reverse mesa structure, (a) is typical electric circuit diagram, (b) is a longitudinal cross-sectional view which shows the electrode structure of a board | substrate , (C) is a distribution diagram of vibration energy on the substrate during excitation. MCFの励振電極を金属蒸着によって、逆メサ構造の水晶基板に形成する作業手順を示す基本的な工程図。The basic process drawing which shows the operation | movement procedure which forms the excitation electrode of MCF in the quartz substrate of a reverse mesa structure by metal vapor deposition. フォトリソグラフィ技法を用いて逆メサ型構造の水晶基板に電極を形成する従来の作業手順を示す基本的な工程図。The basic process figure which shows the conventional operation | movement procedure which forms an electrode in the quartz substrate of a reverse mesa structure using a photolithographic technique. スピンコートによるフォトレジスト膜塗布作業の説明図。Explanatory drawing of the photoresist film application | coating operation | work by spin coating. フォトレジストのスピンコート時にレジスト溜りの位置に生じるレジスト材の残渣による影響の説明図。Explanatory drawing of the influence by the residue of the resist material produced in the position of a resist pool at the time of spin coating of a photoresist.

符号の説明Explanation of symbols

1・・水晶基板、 1a・・振動部、 2・・電極金属膜、
3・・レジスト溜りが形成される部分(回転時の凹部外縁端面)、 4・・マスク、
5・・蒸着源、 6、6a・・フォトレジスト膜、 7・・マスク、8・・光源、
9a、9b・・リード電極、 10a、10b・・接続電極、
20・・MCF、21・・水晶基板、21a・・振動部、21b・・環状囲繞部、
22a、22b・・励振電極、23・・マスク、24・・蒸着源、
30・・水晶ウエハ、31・・水晶基板、31a・・、32・・電極金属膜、
32a、32b・・励振電極、 33、33a・・フォトレジスト膜、
33'・・フォトレジスト材、33b・・レジスト溜り、34・・マスク、35・・光源、
36・・回転台、 37・・レジスト材の残渣、 38・・不要な金属膜
1 .... Quartz substrate, 1a ... Vibrating part, 2 .... Electrode metal film,
3 .. part where resist pool is formed (end surface of recess outer edge during rotation) 4.. Mask
5 .... Vapor deposition source, 6, 6a ... Photo resist film, 7 .... Mask, 8 .... Light source,
9a, 9b ... lead electrodes, 10a, 10b ... connecting electrodes,
20 ·· MCF, 21 ·· Quartz substrate, 21a ·· vibrating portion, 21b ·· annular surrounding portion,
22a, 22b ... excitation electrode, 23 ... mask, 24 ... deposition source,
30..Quartz wafer, 31..Quartz substrate, 31a .., 32..Electrode metal film,
32a, 32b ... excitation electrodes, 33, 33a ... photoresist film,
33 '.. Photoresist material, 33b .. Resist reservoir, 34 .. Mask, 35 .. Light source,
36 .. Turntable 37.. Resist residue 38.. Unnecessary metal film

Claims (3)

圧電材ウエハ上に逆メサ構造で形成された複数個の圧電基板のそれぞれの凹部面全面に蒸着によって形成された電極金属膜に、スピンコートによってフォトレジスト材を塗布し、マスキング、露光及び現像処理によって前記電極金属膜上に電極パターンをもつフォトレジスト膜を形成し、エッチング処理によって前記圧電基板の凹部底面振動部にパターン電極を形成する圧電デバイスの電極形成方法において、
前記圧電基板に電極金属膜を蒸着する際に、フォトレジストのスピンコート時に回転する圧電材ウエハのそれぞれの圧電基板凹部における回転外縁端面に金属膜が蒸着しないようにマスキングを施して、前記電極金属膜を蒸着することを特徴とする圧電デバイスの電極形成方法。
A photoresist material is applied by spin coating to the electrode metal film formed by vapor deposition on the entire concave surface of each of a plurality of piezoelectric substrates formed in a reverse mesa structure on a piezoelectric material wafer, and masking, exposure and development processing are performed. In the electrode forming method of a piezoelectric device, a photoresist film having an electrode pattern is formed on the electrode metal film by, and a pattern electrode is formed on the bottom vibration portion of the recess of the piezoelectric substrate by an etching process.
When the electrode metal film is deposited on the piezoelectric substrate, the electrode metal film is masked so that the metal film is not deposited on the rotating outer edge end surface of each piezoelectric substrate recess of the piezoelectric material wafer that rotates during the spin coating of the photoresist. A method for forming an electrode of a piezoelectric device, comprising depositing a film.
前記圧電材が水晶であることを特徴とする請求項1に記載の圧電デバイスの電極形成方法。   The method for forming an electrode of a piezoelectric device according to claim 1, wherein the piezoelectric material is quartz. 前記圧電デバイスがモノリシック・クリスタル・フィルタ(MCF)であることを特徴とする請求項1又は2に記載の圧電デバイスの電極形成方法。
The method of forming an electrode of a piezoelectric device according to claim 1 or 2, wherein the piezoelectric device is a monolithic crystal filter (MCF).
JP2004026546A 2004-02-03 2004-02-03 Electrode forming method of piezoelectric device and mcf employing the same Pending JP2005223396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026546A JP2005223396A (en) 2004-02-03 2004-02-03 Electrode forming method of piezoelectric device and mcf employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004026546A JP2005223396A (en) 2004-02-03 2004-02-03 Electrode forming method of piezoelectric device and mcf employing the same

Publications (1)

Publication Number Publication Date
JP2005223396A true JP2005223396A (en) 2005-08-18

Family

ID=34998727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026546A Pending JP2005223396A (en) 2004-02-03 2004-02-03 Electrode forming method of piezoelectric device and mcf employing the same

Country Status (1)

Country Link
JP (1) JP2005223396A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187322A (en) * 2007-01-29 2008-08-14 Epson Toyocom Corp Manufacturing method of mesa type piezoelectric vibrating element
JP2009246940A (en) * 2008-03-13 2009-10-22 Epson Toyocom Corp Piezoelectric vibration piece, piezoelectric device, and manufacturing method of piezoelectric vibration piece
WO2018092872A1 (en) * 2016-11-21 2018-05-24 株式会社村田製作所 Piezoelectric vibration element manufacturing method
KR20220044703A (en) * 2017-12-11 2022-04-11 엘지디스플레이 주식회사 Display apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187322A (en) * 2007-01-29 2008-08-14 Epson Toyocom Corp Manufacturing method of mesa type piezoelectric vibrating element
JP2009246940A (en) * 2008-03-13 2009-10-22 Epson Toyocom Corp Piezoelectric vibration piece, piezoelectric device, and manufacturing method of piezoelectric vibration piece
JP2013138512A (en) * 2008-03-13 2013-07-11 Seiko Epson Corp Method of manufacturing vibration piece
WO2018092872A1 (en) * 2016-11-21 2018-05-24 株式会社村田製作所 Piezoelectric vibration element manufacturing method
KR20220044703A (en) * 2017-12-11 2022-04-11 엘지디스플레이 주식회사 Display apparatus
KR102435644B1 (en) 2017-12-11 2022-08-23 엘지디스플레이 주식회사 Display apparatus

Similar Documents

Publication Publication Date Title
JP5239748B2 (en) Quartz crystal
JP3543772B2 (en) Manufacturing method of piezoelectric vibrating reed
JP5272651B2 (en) Manufacturing method of vibrating piece
JP2010136202A (en) Method of manufacturing piezoelectric oscillating piece, piezoelectric oscillating piece, and piezoelectric resonator
JP2005223396A (en) Electrode forming method of piezoelectric device and mcf employing the same
KR100630916B1 (en) Method of manufacturing a vibrating structure gyroscope
JP2008174767A (en) Tool for film deposition
US20230067030A1 (en) Fabrication of mems structures from fused silica for inertial sensors
JP2008098747A (en) Method of manufacturing tuning fork type crystal vibration chip, method of manufacturing crystal vibrating device, and tuning fork type crystal vibration chip and crystal vibrating device
JP2008169414A (en) Jig for film deposition
US7138288B2 (en) Method for manufacturing small crystal resonator
JP5769557B2 (en) Method for manufacturing crystal resonator element
US20150145381A1 (en) Quartz vibrator and manufacturing method thereof
JP5002304B2 (en) Manufacturing method of crystal unit
US20230188109A1 (en) Method For Manufacturing Vibrator Element
JP2007208675A (en) Substrate
JP2014107716A (en) Process of manufacturing piezo electric element
JP4324948B2 (en) Manufacturing method of high-frequency piezoelectric vibration device
JP3734127B2 (en) Piezoelectric vibrator, piezoelectric oscillator, and method of manufacturing piezoelectric vibration element used therefor
JP2023035794A (en) Crystal oscillator and method for manufacturing the same
JP2023065838A (en) Method for manufacturing vibration element
WO2018092872A1 (en) Piezoelectric vibration element manufacturing method
TW202408043A (en) Manufacturing method of piezoelectric vibration element
JP6424076B2 (en) Method for manufacturing piezoelectric vibrator
JP2006014017A (en) Surface acoustic wave device and its manufacturing method