WO2018092872A1 - Piezoelectric vibration element manufacturing method - Google Patents

Piezoelectric vibration element manufacturing method Download PDF

Info

Publication number
WO2018092872A1
WO2018092872A1 PCT/JP2017/041434 JP2017041434W WO2018092872A1 WO 2018092872 A1 WO2018092872 A1 WO 2018092872A1 JP 2017041434 W JP2017041434 W JP 2017041434W WO 2018092872 A1 WO2018092872 A1 WO 2018092872A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
crosspiece
piece
vibration element
pieces
Prior art date
Application number
PCT/JP2017/041434
Other languages
French (fr)
Japanese (ja)
Inventor
尚士 大島
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018092872A1 publication Critical patent/WO2018092872A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks

Definitions

  • the present invention relates to a method for manufacturing a piezoelectric vibration element.
  • Piezoelectric vibrators are widely used as signal sources for reference signals used in oscillators and bandpass filters.
  • the piezoelectric vibrator is manufactured, for example, by forming a plurality of piezoelectric pieces on an aggregate substrate (wafer) by etching or the like, and providing excitation electrodes collectively on the plurality of piezoelectric pieces.
  • the excitation electrode is formed by providing a metal layer and a photoresist in this order on the collective substrate, patterning the photoresist, and etching the metal layer.
  • This invention is made in view of such a situation, and it aims at providing the manufacturing method of the piezoelectric vibration element which can suppress the fluctuation
  • a method of manufacturing a piezoelectric vibration element includes a step of preparing a piezoelectric substrate, a plurality of bars extending in a first direction and arranged in a second direction intersecting the first direction, and a plurality of bars.
  • a plurality of piezoelectric pieces that are located between the first and second crosspieces adjacent to each other in the section and are arranged in the first direction; a plurality of support sections that support the plurality of piezoelectric pieces on the first crosspiece; Forming a collective substrate from the piezoelectric substrate and projecting from the two crosspieces toward the first crosspiece and having a tip separated from the piezoelectric piece, and a metal on at least the main surface of the piezoelectric piece of the collective substrate
  • a step of forming a layer a step of applying a solution containing a photoresist on the metal layer to form a photoresist layer; a step of exposing and developing the photoresist layer to form an electrode pattern; and Remove according to pattern and form excitation electrode on main surface of piezoelectric piece Including that a step.
  • FIG. 1 is a flowchart showing a crystal piece forming step in a method for manufacturing a piezoelectric vibration element according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an excitation electrode forming step in the method for manufacturing a piezoelectric vibration element according to the embodiment of the present invention.
  • FIG. 3 is a plan view showing the collective substrate after completion of the crystal piece forming step shown in FIG.
  • FIG. 4 is a diagram showing a photoresist coating process by spin coating.
  • FIG. 5 is a diagram schematically showing how the photoresist spreads in FIG.
  • FIG. 6 is a diagram illustrating an aggregate substrate on which an electrode pattern is formed.
  • FIG. 7 is an exploded perspective view of a configuration example of a crystal resonator.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII of the crystal resonator shown in FIG.
  • FIG. 9 is a perspective view of a crystal resonator element according to a
  • FIG. 1 is a flowchart showing a crystal piece forming step in the method of manufacturing a piezoelectric vibration element according to the embodiment of the present invention.
  • FIG. 2 is a flowchart showing an excitation electrode forming step in the method for manufacturing a piezoelectric vibration element according to the embodiment of the present invention.
  • FIG. 3 is a plan view showing the collective substrate after completion of the crystal piece forming step shown in FIG.
  • FIG. 4 is a diagram showing a photoresist coating process by spin coating.
  • FIG. 5 is a diagram schematically showing how the photoresist spreads in FIG.
  • FIG. 6 is a diagram illustrating an aggregate substrate on which an electrode pattern is formed.
  • a piezoelectric vibrating element is a quartz vibrating element (Quartz Crystal Resonator)
  • a piezoelectric piece is a quartz piece (Quartz Crystal Element)
  • a piezoelectric substrate is a quartz wafer (Quartz).
  • a crystal substrate such as Crystal Wafer.
  • the embodiment according to the present invention is not limited to these.
  • a quartz substrate 99 (piezoelectric substrate) made of an artificial quartz plate as a piezoelectric material is prepared.
  • the quartz crystal substrate 99 which is an artificial quartz, is a plane parallel to the plane specified by the X axis and the Z ′ axis (hereinafter referred to as “XZ ′ plane”. The same applies to the plane specified by other axes.
  • the Y ′ axis is parallel to the normal direction of the main surface.
  • the Y ′ axis and the Z ′ axis are respectively the X axis, the Y axis, and the Z axis, which are the crystal axes of the artificial quartz crystal, the Y axis and the Z axis around the X axis in the direction from the Y axis to the Z axis. It is an axis rotated at 35 degrees 15 minutes ⁇ 1 minute 30 seconds.
  • the metal layer functions as a corrosion-resistant film against an etching solution (for example, ammonium fluoride or buffered hydrofluoric acid) used when etching the crystal.
  • an etching solution for example, ammonium fluoride or buffered hydrofluoric acid
  • a corrosion-resistant film for example, a multilayer film composed of a chromium (Cr) layer and a gold (Au) layer is used.
  • the metal layer is formed by vapor deposition or sputtering. Inside the metal layer, the Cr layer is located closer to the quartz substrate 99 than the Au layer, that is, the side in contact with the quartz substrate 99. In addition, the Au layer is located on the opposite side of the Cr layer from the quartz substrate 99 as compared to the Cr layer.
  • the Cr layer increases the adhesion with the quartz substrate 99, and the Au layer increases the corrosion resistance.
  • a photoresist layer is formed on the metal layer (S12).
  • the photoresist layer is formed by applying a photoresist solution on the metal layer and volatilizing the solvent by heating.
  • the photoresist solution is applied by, for example, a spray method or a spin coat method.
  • the photoresist layer is exposed and developed to form an external pattern of the crystal piece 110 (piezoelectric piece) (S13).
  • a positive photosensitive resin that removes the exposed portion by dissolution.
  • the photoresist layer is exposed in a state where a region corresponding to the crystal piece 110 is shielded from light by a photomask, and then an unnecessary portion is washed away by a developer. That is, the shape of the photomask is transferred to the photoresist layer. As a result, the photoresist layer remaining on the metal layer forms an external pattern of the crystal piece 110.
  • the quartz substrate 99 is removed according to the external pattern (S14).
  • a plurality of crystal pieces 110 are formed in the crystal substrate 99 by etching using the external pattern of the photoresist layer formed in the previous step.
  • the crystal pieces 110 are not separated into individual pieces and are connected to each other by the crosspieces 120. A specific shape will be described later.
  • the metal layer is removed by etching in accordance with the external pattern of the photoresist layer, and then the quartz substrate 99 is removed by etching.
  • the etching process is not particularly limited, and is, for example, general wet etching.
  • An iodine-based etching solution is used for the metal layer, and a hydrofluoric acid-based etching solution is used for the crystal.
  • the photoresist layer and the metal layer are removed (S15).
  • all of the photoresist layer and the metal layer adhering to the quartz substrate 99 are removed.
  • the crystal piece 110 is processed into a mesa structure (S16).
  • the mesa structure can be processed by repeating the same processes as in steps S11 to S15.
  • the difference between steps S11 to S14 in step S16 is that the shape of the photoresist layer in the step corresponding to step S13 is a mesa structure pattern that covers the vibrating portion 117 and exposes the peripheral portions 118 and 119.
  • the etching of the quartz crystal substrate 99 in the process corresponding to the process S14 is half etching.
  • the 1st direction D1 and the 2nd direction D2 which are shown in FIG. 3 are directions orthogonal to each other, they may be directions intersecting at an angle other than orthogonal to each other.
  • the first direction D1 is a direction parallel to the Z′-axis direction
  • the second direction D2 is a direction parallel to the X-axis direction.
  • the collective substrate 100 includes a crystal piece 110, a plurality of crosspieces 120, a plurality of support portions 130, and a plurality of protrusions 140.
  • each of the crystal pieces 110 has a rectangular shape having a short side parallel to the first direction D1 and a long side parallel to the second direction D2.
  • each of the crystal pieces 110 is held by the crosspiece 120 via the support portion 130 on the short side thereof.
  • a space (space) is formed around the crystal piece 110 by removing the crystal substrate 99 by etching except for the connection portion with the support portion 130.
  • Examples of the support part 130 include a plurality of first support parts 131 and a plurality of second support parts 132
  • examples of the protrusion part 140 include a plurality of first protrusion parts 141 and a plurality of second protrusion parts 142, respectively.
  • the first crystal piece 111 and the second crystal piece 112 are arranged in the first direction D1 at intervals, and are arranged in the second direction D2.
  • the first crosspiece 121 and the second crosspiece 122 each extend in the first direction D1 and are adjacent to each other in the second direction D2.
  • the first crystal piece 111 is provided with a space between the first crosspiece 121 and the second crosspiece 122, and the second crosspiece 122 is provided between the first crystal piece 111 and the second crystal piece 112.
  • the first crosspiece 121 has an end side 121b on the side close to the first crystal piece 111, and an end side 121a on the side opposite to the end side 121b.
  • the second crosspiece 122 has an end side 122b on the side close to the second crystal piece 112, and an end side 122a on the side close to the first crystal piece 111 (the side opposite to the end side 122b).
  • the first crystal piece 111 and the second crystal piece 112 each have corner portions C1 to C4. Taking the first crystal piece 111 as an example, corners C1 and C2 are located on the short side closer to the second crosspiece 122, and corners C3 and C4 are located on the short side closer to the first crosspiece 121. The corners C1 and C4 are located diagonally to each other.
  • the first crystal piece 111 is supported by the first crosspiece 121 via the first support 131, and the second crystal piece 112 is supported by the second crosspiece 122 via the second support 132. That is, the first crosspiece 121 that supports the first crystal piece 111 is a crosspiece located on one side of the second direction D2, that is, the positive direction side with respect to the first crystal piece 111. All the crystal pieces 110 of the collective substrate 100 are similarly supported by the crosspieces 120 located on one side in the second direction D2, that is, the positive direction side.
  • the first support portion 131 supports the first crystal piece 111 on the first crosspiece 121 at two points between the corner portion C3 and the end side 121b and between the corner portion C4 and the end side 121b. .
  • the second support portion 132 supports the second crystal piece 112 on the second crosspiece 122 at two points.
  • the first protrusion 141 protrudes from the end side 121a
  • the second protrusion 142 protrudes from the end side 122a toward the first crosspiece 121.
  • the second protrusion 142 has a tip 142 a that is separated from the first crystal piece 111.
  • the first protrusion 141 and the second protrusion 142 are arranged in the first direction D1 with a space between each other, and are adjacent to each other in the second direction D2.
  • the tip 142a of the second protrusion 142 is an end extending in the first direction D1 in the configuration example illustrated in FIG.
  • the second projecting portion 142 projects toward the space between one adjacent first crystal piece 111 and the other first crystal piece 111. That is, the second protrusion 142 protrudes so that the tip 142a approaches both the corner C1 of one first crystal piece 111 and the corner C2 of the other first crystal piece 111.
  • the second protrusion 142 preferably has at least its tip 142a to avoid a space between the first crystal piece 111 and the second crosspiece 122, and more preferably the entire second protrusion 142 has the first crystal piece 111. And projecting to avoid a space between the second crosspiece 122.
  • the second protrusion 142 is preferably separated from the space between the first crystal pieces 111 adjacent in the first direction D1. That is, the second protrusion 142 is not aligned with the first crystal piece 111 in the first direction D1. That is, the gap G2 in the second direction D2 of the space between the short side of the first crystal piece 111 on the second crosspiece 122 side and the end side 122a of the second crosspiece 122 is the corner of the first crystal piece 111. It is constant from C1 to the corner C2. Further, the gap G1 in the first direction D1 of the space between the long sides facing each other of the adjacent first crystal pieces 111 is constant from the corner C1 to the corner C3 of the first crystal piece 111.
  • the above describes the outer shape of the collective substrate 100 formed in steps S11 to S15 when viewed in plan from the normal line of the main surface of the collective substrate 100.
  • the main surface of the collective substrate 100 is a surface parallel to the surface specified by the first direction D1 and the second direction D2 (hereinafter referred to as “D1D2 surface”), and the main surface 110a of the crystal piece 110. It is almost parallel to.
  • D1D2 surface the surface parallel to the surface specified by the first direction D1 and the second direction D2
  • the main surface 110a of the crystal piece 110 It is almost parallel to.
  • the mesa structure of the crystal piece 110 formed in step S16 will be described.
  • the main surface of the first crystal piece 111 is indicated by reference numeral 111a
  • the main surface of the second crystal piece 112 is indicated by reference numeral 112a.
  • the quartz crystal piece 110 has a vibrating portion 117 including the center, and a thickness in the normal direction of the main surface 110a that is located outside the vibrating portion 117 is a vibrating portion. It has a peripheral edge different from 117.
  • the peripheral edge has a first peripheral edge 118 and a second peripheral edge 119.
  • the vibration part 117 has a short side parallel to the first direction D1 and a long side parallel to the second direction D2.
  • the first peripheral portion 118 and the second peripheral portion 119 are provided on both sides in the long side direction of the crystal piece 110 with respect to the vibrating portion 117.
  • the first peripheral portion 118 and the second peripheral portion 119 correspond to the peripheral portion of the crystal piece 110.
  • the first peripheral edge portion 118 includes a short side on the side connected to the first crosspiece 121 of the first crystal piece 111 and is more first than the vibrating portion 117.
  • the second peripheral edge 119 includes a short side opposite to the peripheral edge 118 of the first crystal piece 111 and is located closer to the second crosspiece 122 than the vibrating part 117.
  • the positional relationship among the vibrating part 117, the first peripheral part 118, and the second peripheral part 119 is the same in the other crystal pieces 110 such as the second crystal piece 112.
  • the vibrating portion 117 has a thickness different from that of the first peripheral portion 118 and the second peripheral portion 119 (hereinafter, “thickness” refers to a thickness parallel to the normal direction of the main surface 110a. Other “thicknesses”. The same shall apply to ".” Specifically, the thickness of the first peripheral edge portion 118 is smaller than the thickness of the vibrating portion 117. The thickness of the second peripheral edge 119 is also smaller than the thickness of the vibration part 117. Further, the crystal piece 110 is provided with steps at the boundary between the vibrating portion 117 and the first peripheral portion 118 and the boundary between the vibrating portion 117 and the second peripheral portion 119 in the long side direction of the crystal piece 110. . This level difference extends along the short side direction of the crystal piece 110.
  • this step is formed with a predetermined tilt angle that depends on the crystal orientation of the crystal.
  • the thickness of each of the 1st peripheral part 118 and the 2nd peripheral part 119 is the same as an example, you may differ.
  • the width W2 of the first peripheral edge 118 in the second direction D2 may be larger than the width W1 of the second peripheral edge 119 in the second direction D2. That is, the area of the first peripheral edge 118 may be larger than the area of the second peripheral edge 119 when the main surface 110a of the crystal piece 110 is viewed in plan.
  • the mode has been described by taking as an example a crystal piece having a mesa structure in which the vibration part is thicker than the peripheral part.
  • the present invention may be applied to a quartz piece having an inverted mesa structure in which the vibration part is thinner than the peripheral part.
  • the present invention may be applied to a quartz piece having a convex structure or a bevel structure in which changes in thickness (steps) between the vibrating portion and the peripheral portion change continuously.
  • metal layers 200 and 300 are formed on both main surfaces 101 and 102 of the aggregate substrate 100 (S21).
  • the collective substrate 100 used at this time is shown in FIG.
  • the metal layer is not necessarily formed on the entire main surfaces 101 and 102 of the collective substrate 100 (that is, the main surfaces of the crystal piece 110, the crosspiece 120, and the support portion 130). What is necessary is just to be formed in both main surfaces.
  • a metal layer may be provided on the side surfaces connected to the two main surfaces.
  • photoresist layers 400 and 500 are formed on the metal layers 200 and 300 (S22).
  • a photoresist layer 400 is first formed by spin coating on the main surface 101 on the side of the aggregate substrate 100 where the metal layer 200 is provided.
  • a photoresist layer 400 is formed on the main surface 102 of the aggregate substrate 100 on which the metal layer 300 is provided by a spin coating method.
  • the formation of the photoresist layer in the excitation electrode forming step will be described with reference to FIGS. 4 and 5 by taking the application of the photoresist solution 501 as an example.
  • the main surface 110a of the crystal piece 110 illustrated in FIG. 3 is a surface located on the main surface 102 side of the collective substrate 100.
  • the collective substrate 100 is placed on a turntable 610 so that the metal layer 300 is on the upper surface, and a photoresist solution 501 in which a photoresist is dissolved in a solvent is dropped onto the center 103 of the main surface 102.
  • the collective substrate 100 is installed such that the center 103 is located on the extension line of the rotation shaft 620 of the turntable 610.
  • the turntable 610 is rotated at the rotation speed R1 around the rotation shaft 620 so that the photoresist solution 501 spreads with a uniform thickness.
  • the photoresist solution 501 that receives the centrifugal force moves between the first crystal piece 111 and the second crosspiece 122 via the flow path 502 and the flow path 503.
  • the channel 502 is a channel formed between the corner C2 of the first crystal piece 111 and the tip 142a of the second protrusion 142 because the interval G4 is sufficiently smaller than the intervals G1 and G2.
  • the flow path 503 is a path formed between the corner C2 and the tip 142a because the gap G3 is sufficiently smaller than the gaps G1 and G2. The formation of such a flow path is attributed to the fact that if the space formed in the collective substrate 100 is sufficiently small, the photoresist solution can be spread over the space by surface tension.
  • the photoresist solution 501 is prevented from forming a liquid pool in the first crystal piece 111, and the thickness uniformity of the photoresist layer 500 is improved. To do. At this time, if the second protrusion 142 facing the corner C2 at the interval G4 is substantially trapezoidal, the angle of the corner of the second protrusion 142 facing the corner C2 becomes an obtuse angle.
  • the photoresist layers 400 and 500 are exposed and developed to form an electrode pattern (S23).
  • the electrode pattern 510 covers regions that will be the excitation electrode 314, the extraction electrode 315, and the connection electrode 316.
  • the photoresist layer 500 in the region other than the electrode pattern 510 is removed.
  • the thickness unevenness of the photoresist layer 500 due to the accumulation of the photoresist solution 501 can be reduced, so that a photoresist residue is generated in which a thick portion of the photoresist layer 500 is not completely removed by exposure and development. Can be suppressed.
  • the metal layers 200 and 300 are removed according to the electrode pattern to form an excitation electrode (S24).
  • an excitation electrode As shown in FIG. 6, taking the metal layer 300 as an example, the exposed metal layer 300 around the excitation electrode 314, the extraction electrode 315, and the connection electrode 316 covered with the electrode pattern 510 is removed.
  • the excitation electrode 314 is formed on the vibration unit 117.
  • the extraction electrode 315 and the connection electrode 316 are formed on the first peripheral edge 118.
  • the excitation electrode 314, the extraction electrode 315, and the connection electrode 316 are continuously connected to each other and electrically connected.
  • the extraction electrode 315 and the connection electrode 316 are formed simultaneously with the excitation electrode 314. Note that the extraction electrode 315 and the connection electrode 316 can be formed in a step different from the formation of the excitation electrode 314.
  • the photoresist layers 400 and 500 are removed (S25). As shown in FIG. 6, taking the photoresist layer 500 as an example, the removed photoresist layer 500 corresponds to the electrode pattern 510.
  • the excitation electrode forming process is thus completed.
  • a step of separating the piezoelectric substrates from the support portions and separating them into pieces is performed.
  • the piezoelectric substrate is separated into pieces by, for example, being broken from the support portion.
  • the piezoelectric substrate separated from the collective substrate is obtained as a piezoelectric vibration element.
  • the protrusions form the flow path of the photoresist solution, and therefore, when the photoresist layer is applied, the photoresist solution pools at the corners of the piezoelectric piece. Occurrence can be suppressed. That is, the uniformity of the thickness of the photoresist layer can be improved, and the generation of photoresist residues in the development process can be suppressed. By reducing the photoresist residue, it is possible to suppress the formation of unnecessary electrodes due to poor etching of the metal layer. That is, it is possible to provide a method for manufacturing a piezoelectric vibration element that can suppress fluctuations in frequency characteristics.
  • step S16 of processing the piezoelectric piece 110 into a mesa structure it is possible to suppress the occurrence of a crystal piece shape defect caused by the photoresist residue.
  • the first crosspiece 121 is a crosspiece located on one side in the second direction D2 of the two crosspieces 121 and 122 adjacent to each other, that is, on the positive direction side.
  • ) 110 may be supported by the first crosspiece 121 located on one side in the second direction D2, that is, the positive direction side, via the support 131.
  • the step of forming the photoresist layer 500 may include a spin coating method.
  • the spin coating method is more likely to cause photoresist accumulation due to surface irregularities and gaps of the piezoelectric substrate than the spray coating method, etc., but according to this embodiment, even if the spin coating method is used, the occurrence of photoresist accumulation occurs. Can be suppressed.
  • the protruding portion 142 may protrude toward the corner portions C1 and C2 of the piezoelectric piece (first crystal piece) 111. Accordingly, a flow path can be formed between the crosspiece and the corner portion where the photoresist is liable to be generated via the protruding portion, and the thickness of the photoresist layer can be made more uniform.
  • the protrusion 142 is provided between the adjacent piezoelectric pieces 111 arranged in the first direction D1 so as to avoid a space between the piezoelectric piece (first crystal piece) 111 and the second crosspiece 122 in the second direction D2. You may protrude toward the space. Thereby, the etching rate of the short side of the piezoelectric piece becomes constant, and the distortion of the short side on the second crosspiece side of the piezoelectric piece can be suppressed.
  • the protrusion 142 may be separated from the space between adjacent piezoelectric pieces (first crystal pieces) 111 in the first direction D1. Thereby, the etching rate of the long side of the piezoelectric piece becomes constant, and the distortion of the long side of the adjacent piezoelectric pieces facing each other can be suppressed.
  • the protrusion 142 has a first corner C1 of one of the two piezoelectric pieces adjacent in the first direction D1 in the plurality of piezoelectric pieces (first crystal pieces) 111 and a second corner of the other piezoelectric piece. You may protrude so that both may approach part C2. Accordingly, the gaps G3 and G4 between the first corner C1 and the second corner C2 and the protrusion 142 are smaller than the gap G2 between the first corner C1 and the second corner C2 and the crosspieces 121 and 122. .
  • the projecting portion 142 has a substantially trapezoidal shape when the main surface 111a is viewed in plan, and the width dimension in the first direction D1 decreases as the projecting portion 142 projects from the crosspiece portion in the second direction D2. That is, the corner on the tip 142a side of the protrusion 142 is configured to be an obtuse angle.
  • the piezoelectric piece (first crystal piece) 111 is located at the center when the main surface 111a is viewed in plan view, and the piezoelectric part 111 is located outside the vibrating part 117 and is located outside the vibrating part 117. You may have the peripheral part 118,119 in which the thickness in the normal line direction of the surface 111a differs from the vibration part 117. That is, even if the surface unevenness of the collective substrate to which the photoresist solution is applied is increased and the wet spreading of the photoresist solution is inhibited, the occurrence of photoresist accumulation can be suppressed.
  • peripheral edge portions 118 and 119 are thinner than the vibrating portion 117, and the peripheral edge portions 118 and 119 are located closer to the first crosspiece 121 than the vibrating portion 117, and the vibrating portion A second peripheral edge 119 located closer to the second crosspiece 122 than 117, and the area of the second peripheral edge 119 may be smaller than the area of the first peripheral edge 118.
  • a step of separating the piezoelectric pieces (first crystal pieces) 111 from the support portions 131 to form piezoelectric vibration elements may be included. Since the piezoelectric vibration element manufactured through the above steps can suppress fluctuations in frequency characteristics, the generation rate of defective products can be suppressed and the manufacturing cost can be reduced.
  • FIG. 7 is an exploded perspective view showing an example of a piezoelectric vibrator manufactured using the present embodiment.
  • 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • the crystal resonator 1 includes a crystal resonator element (Quartz Crystal Resonator) 10, a lid member 20, and a base member 30.
  • the lid member 20 and the base member 30 are holders for housing the crystal resonator element 10.
  • the lid member 20 has a concave shape
  • the base member 30 has a flat plate shape.
  • the lid member 20 has a box shape having an opening on the base member 30 side.
  • the lid member 20 may be flat and the base member 30 may be concave.
  • the crystal resonator element 10 includes an AT-cut type crystal piece (Quartz Crystal Element) 11.
  • the AT-cut crystal piece 11 has an X-axis, a Y-axis, and a Z-axis which are crystal axes of artificial quartz, and the Y-axis and the Z-axis are 35 degrees 15 minutes around the X-axis from the Y-axis to the Z-axis.
  • XZ ′ plane a plane parallel to the plane specified by the X axis and the Z ′ axis
  • the crystal piece 11 has a rectangular shape on the XZ ′ plane, a long side direction in which a long side parallel to the X-axis direction extends, a short side direction in which a short side parallel to the Z′-axis direction extends, and Y A thickness direction parallel to the 'axis direction extends.
  • the crystal piece 11 has a first main surface 12a and a second main surface 12b which are XZ ′ surfaces facing each other, and an end surface 12c extending along the short side and connecting the two main surfaces.
  • a quartz resonator element using an AT-cut quartz piece has high frequency stability over a wide temperature range, is excellent in aging characteristics, and can be manufactured at low cost.
  • the AT-cut quartz crystal resonator element uses a thickness shear vibration mode as a main vibration.
  • the crystal piece 11 has a rectangular shape on the XZ ′ plane, but is not limited to this, and may be a comb-teeth shape.
  • the crystal resonator element 10 includes a first excitation electrode 14a and a second excitation electrode 14b that constitute a pair of electrodes.
  • the first excitation electrode 14a is provided at the center of the first main surface 12a.
  • the second excitation electrode 14b is provided at the center of the second main surface 12b.
  • the first excitation electrode 14a and the second excitation electrode 14b are provided to face each other with the crystal piece 11 in between.
  • the first excitation electrode 14a and the second excitation electrode 14b are disposed so as to substantially overlap each other on the XZ ′ plane.
  • the crystal resonator element 10 has a pair of extraction electrodes 15a and 15b and a pair of connection electrodes 16a and 16b.
  • the connection electrode 16a is electrically connected to the first excitation electrode 14a via the extraction electrode 15a.
  • the connection electrode 16b is electrically connected to the second excitation electrode 14b through the extraction electrode 15b.
  • the connection electrodes 16 a and 16 b are terminals for electrically connecting the first excitation electrode 14 a and the second excitation electrode 14 b to the base member 30.
  • On the first main surface 12a, the first excitation electrode 14a, the extraction electrode 15a, and the connection electrode 16a are provided continuously. Further, the connection electrode 16a extends over the end surface 12c and the second main surface 12b.
  • connection electrode 16b extends over the end surface 12c and the first main surface 12a.
  • the connection electrodes 16 a and 16 b are arranged along the short side direction (Z′-axis direction) of the crystal piece 11.
  • the connection electrodes 16a and 16b may be arranged along the long side direction (X-axis direction) of the crystal piece 11. Further, the connection electrodes 16 a and 16 b may be arranged near the center of the long side or the short side of the crystal piece 11, or may be arranged on different sides of the crystal piece 11.
  • the conductive holding members 36 a and 36 b electrically connect the connection electrodes 16 a and 16 b to the pair of electrode pads of the base member 30, respectively.
  • the conductive holding members 36a and 36b are formed of a conductive adhesive such as an ultraviolet curable resin, for example.
  • the conductive holding member 36a is in contact with the connection electrodes 16a on the second main surface 12b and the end surface 12c. The same applies to the conductive holding member 36b.
  • the lid member 20 is bonded to the base member 30, and thereby accommodates the crystal resonator element 10 in the internal space 26.
  • the lid member 20 has an inner surface 24 and an outer surface 25, and has a concave shape that opens toward the third main surface 32 a of the base member 30.
  • the lid member 20 has a top surface portion 21 that faces the third main surface 32 a of the base member 30, and a side wall that is connected to the outer edge of the top surface portion 21 and extends in a direction intersecting the main surface of the top surface portion 21. Part 22.
  • the lid member 20 has a facing surface 23 that faces the third main surface 32 a of the base member 30 at the concave opening edge (end surface of the side wall portion 22), and this facing surface 23 surrounds the periphery of the crystal resonator element 10. It extends like a frame.
  • the material of the lid member 20 is not particularly limited, but is made of a conductive material such as metal. According to this, the electromagnetic shielding function which shields electromagnetic waves can be added to the lid member 20.
  • the base member 30 supports the crystal resonator element 10 so that it can be excited. Specifically, the crystal resonator element 10 is held on the third main surface 32a of the base member 30 through the conductive holding members 36a and 36b so as to be able to be excited.
  • the base member 30 has a base 31.
  • the base 31 has a third main surface 32a and a fourth main surface 32b that are XZ ′ surfaces facing each other.
  • the base 31 is a sintered material such as insulating ceramic (alumina).
  • the base member 30 has electrode pads 33a and 33b provided on the third main surface 32a and external electrodes 35a, 35b, 35c and 35d provided on the second main surface.
  • the electrode pads 33 a and 33 b are terminals for electrically connecting the base member 30 and the crystal resonator element 10.
  • the external electrodes 35a, 35b, 35c, and 35d are terminals for electrically connecting a mounting substrate (not shown) and the crystal unit 1.
  • the electrode pad 33a is electrically connected to the external electrode 35a via a via electrode 34a extending in the Y′-axis direction
  • the electrode pad 33b is an external electrode via a via electrode 34b extending in the Y′-axis direction. It is electrically connected to 35b.
  • the via electrodes 34a and 34b are formed in via holes that penetrate the base 31 in the Y′-axis direction.
  • the electrode pads 33a and 33b of the base member 30 are provided in the vicinity of the short side of the base member 30 on the X axis negative direction side on the third main surface 32a, away from the short side of the base member 30 and in the short side direction. Are arranged along.
  • the electrode pad 33a is connected to the connection electrode 16a of the crystal resonator element 10 via the conductive holding member 36a, while the electrode pad 33b is connected to the connection electrode 16b of the crystal resonator element 10 via the conductive holding member 36b. Is done.
  • the plurality of external electrodes 35a, 35b, 35c, and 35d are provided in the vicinity of each corner of the fourth main surface 32b.
  • the external electrodes 35a and 35b are disposed immediately below the electrode pads 33a and 33b. Accordingly, the external electrodes 35a and 35b can be electrically connected to the electrode pads 33a and 33b by the via electrodes 34a and 34b extending in the Y′-axis direction.
  • the external electrodes 35a and 35b arranged near the short side of the base member 30 on the X axis negative direction side are input / output electrodes to which an input / output signal of the crystal resonator element 10 is supplied. is there.
  • the external electrodes 35c and 35d arranged near the short side of the base member 30 on the X axis positive direction side are dummy electrodes to which input / output signals of the crystal resonator element 10 are not supplied. Such dummy electrodes are not supplied with input / output signals of other electronic elements on a mounting board (not shown) on which the crystal unit 1 is mounted.
  • the external electrodes 35c and 35d may be grounding electrodes to which a ground potential is supplied.
  • a sealing frame 37 is provided on the third main surface 32 a of the base 31.
  • the sealing frame 37 has a rectangular frame shape when the third main surface 32a is viewed in plan.
  • the electrode pads 33 a and 33 b are disposed inside the sealing frame 37, and the sealing frame 37 is provided so as to surround the crystal resonator element 10.
  • the sealing frame 37 is made of a conductive material.
  • a joining member 40 described later is provided on the sealing frame 37, whereby the lid member 20 is joined to the base member 30 via the joining member 40 and the sealing frame 37.
  • the electrode pads 33a and 33b, the external electrodes 35a to 35d, and the sealing frame 37 of the base member 30 are all made of a metal film.
  • a molybdenum (Mo) layer, a nickel (Ni) layer, and a gold (Au) layer are laminated in this order from the side contacting the base 31 (lower layer) to the side away from the base 31 (upper layer).
  • the via electrodes 34a and 34b can be formed by filling the via hole of the base 31 with a metal material such as molybdenum (Mo).
  • the quartz resonator element 10 is surrounded by the lid member 20 and the base member 30 (cavity). 26 is sealed.
  • the pressure in the internal space 26 is preferably in a vacuum state lower than the atmospheric pressure, so that the frequency characteristics of the crystal resonator 1 change with time due to oxidation of the first excitation electrode 14a and the second excitation electrode 14b. Can be reduced.
  • the joining member 40 is provided over the entire circumference of the lid member 20 and the base member 30. Specifically, the joining member 40 is provided on the sealing frame 37. Since the sealing frame 37 and the joining member 40 are interposed between the facing surface 23 of the side wall portion 22 of the lid member 20 and the third main surface 32a of the base member 30, the crystal resonator element 10 is covered with the lid member 20. And the base member 30 is sealed.
  • one end of the crystal piece 11 in the long side direction (the end on the side where the conductive holding members 36a and 36b are disposed) is a fixed end, and the other end is a free end. It has become.
  • the crystal resonator element 10, the lid member 20, and the base member 30 have rectangular shapes on the XZ ′ plane, and the long side direction and the short side direction are the same.
  • the position of the fixed end of the crystal resonator element 10 is not particularly limited, and may be fixed to the base member 30 at both ends in the long side direction of the crystal piece 11.
  • the crystal resonator element 10 and the electrodes of the base member 30 may be formed in such a manner that the crystal resonator element 10 is fixed at both ends of the crystal piece 11 in the long side direction.
  • an alternating electric field is applied between the pair of excitation electrodes 14 a and 14 b in the crystal resonator element 10 via the external electrodes 35 a and 35 b of the base member 30.
  • the crystal piece 11 vibrates in a predetermined vibration mode such as a thickness shear vibration mode, and resonance characteristics associated with the vibration are obtained.
  • FIG. 9 is a perspective view of a piezoelectric vibration element according to a modification of the present invention.
  • the modification is different from the configuration example shown in FIG. 7 in that the shape of the piezoelectric vibration element 210 is a tuning fork type.
  • the piezoelectric substrate 211 has two tuning fork arm portions 219a and 219b arranged in parallel to each other.
  • the tuning fork arm portions 219a and 219b extend in the X-axis direction, are aligned in the Z′-axis direction, and are connected to each other by a connecting portion 219c on the end face 212c side.
  • excitation electrodes 214a are provided on a pair of main surfaces that are parallel to the XZ 'plane and face each other, and excitation electrodes 214b intersect the pair of main surfaces and face each other. Is provided.
  • excitation electrodes 214b are provided on a pair of main surfaces, respectively, and excitation electrodes 214a are provided on a pair of side end surfaces.
  • the configuration of the piezoelectric vibration element 210 is not particularly limited, and the shape of the tuning fork arm, the arrangement of the excitation electrodes, and the like may be different.
  • Piezoelectric substrate (quartz substrate) 100 ... Aggregate substrate 110 ... Crystal piece (piezoelectric piece) DESCRIPTION OF SYMBOLS 111 ... 1st crystal piece 112 ... 2nd crystal piece 120 ... Crosspiece 121 ... 1st crosspiece 122 ... 2nd crosspiece 130 ... Support part 131 ... 1st support part 132 ... 2nd support part 140 ... Protrusion part 141 ... 1st protrusion 142 ... 2nd protrusion 142a ... tip C1, C2, C3, C4 ... corner 200, 300 ... metal layer 400, 500 ... photoresist layer 501 ... photoresist solution 502, 503 ... flow path 510 ... electrode Pattern 314 ... Excitation electrode 315 ... Extraction electrode 316 ... Connection electrode

Abstract

A piezoelectric vibration element manufacturing method comprises: a step of forming, from a piezoelectric substrate, an assembly substrate (100) which is provided with a plurality of crosspiece portions (120) extending in a first direction, and which is arranged in a second direction, a plurality of piezoelectric pieces (111) which are positioned between adjacent first crosspiece portion and second crosspiece portion, and which are arranged in the first direction, a plurality of support portions (131) which support the plurality of piezoelectric pieces (111) on the first crosspiece portion, and a protruding portion (142) which protrudes from the second crosspiece portion toward the first crosspiece portion, and which has a distal end spaced apart from the piezoelectric pieces (111); a step of forming a metal layer (300); a step of forming a photoresist layer (500) on the metal layer (300); a step of forming an electrode pattern (510) by exposing and developing the photoresist layer (500); and a step of forming an excitation electrode (314) on a main surface of the piezoelectric pieces (111) by removing the metal layer (300) in accordance with the electrode pattern (510).

Description

圧電振動素子の製造方法Method for manufacturing piezoelectric vibration element
 本発明は、圧電振動素子の製造方法に関する。 The present invention relates to a method for manufacturing a piezoelectric vibration element.
 発振装置や帯域フィルタなどに用いられる基準信号の信号源に圧電振動子が広く用いられている。圧電振動子は、例えば、集合基板(ウェハ)にエッチングなどで複数の圧電片を形成し、当該複数の圧電片に一括して励振電極を設けることによって製造される。励振電極は、集合基板上に金属層、フォトレジストをこの順に設け、フォトレジストをパターニングして金属層をエッチングすることによって形成される。 Piezoelectric vibrators are widely used as signal sources for reference signals used in oscillators and bandpass filters. The piezoelectric vibrator is manufactured, for example, by forming a plurality of piezoelectric pieces on an aggregate substrate (wafer) by etching or the like, and providing excitation electrodes collectively on the plurality of piezoelectric pieces. The excitation electrode is formed by providing a metal layer and a photoresist in this order on the collective substrate, patterning the photoresist, and etching the metal layer.
特開2005-223396号公報JP 2005-223396 A
 上記のように複数の圧電片に一括して励振電極を設ける際、それぞれの圧電片の周囲には間隙が形成されている。フォトレジストは、溶媒に溶解させた状態での塗布によって形成されるが、集合基板に凹凸や間隙が存在すると、フォトレジストの溶液の塗れ広がりが阻害され、フォトレジストの厚みが不均一となる恐れがある。このような場合、励振電極を形成する工程において、フォトリソグラフィによるフォトレジスト除去が不十分となり、不要な金属層が残る恐れがある。 As described above, when the excitation electrodes are collectively provided on the plurality of piezoelectric pieces, a gap is formed around each piezoelectric piece. Photoresist is formed by application in a state of being dissolved in a solvent. However, if unevenness or gaps exist in the aggregate substrate, the spread of the photoresist solution may be inhibited, and the thickness of the photoresist may become uneven. There is. In such a case, in the step of forming the excitation electrode, the photoresist removal by photolithography becomes insufficient, and an unnecessary metal layer may remain.
 本発明はこのような事情に鑑みてなされたものであり、周波数特性の変動を抑制することができる圧電振動素子の製造方法を提供することを目的とする。 This invention is made in view of such a situation, and it aims at providing the manufacturing method of the piezoelectric vibration element which can suppress the fluctuation | variation of a frequency characteristic.
 本発明の一態様に係る圧電振動素子の製造方法は、圧電基板を準備する工程と、第1方向に延在し第1方向と交差する第2方向に並ぶ複数の桟部と、複数の桟部における隣同士の第1桟部と第2桟部との間に位置し第1方向に並ぶ複数の圧電片と、複数の圧電片を第1桟部に支持する複数の支持部と、第2桟部から第1桟部に向かい突出し且つ圧電片から離れた先端を有する突出部と、を備える集合基板を圧電基板から形成する工程と、集合基板の少なくとも圧電片の主面の上に金属層を形成する工程と、金属層の上にフォトレジストを含む溶液を塗布しフォトレジスト層を形成する工程と、フォトレジスト層を露光及び現像して電極パターンを形成する工程と、金属層を電極パターンに従って除去して圧電片の主面の上に励振電極を形成する工程と、を含む。 A method of manufacturing a piezoelectric vibration element according to one aspect of the present invention includes a step of preparing a piezoelectric substrate, a plurality of bars extending in a first direction and arranged in a second direction intersecting the first direction, and a plurality of bars. A plurality of piezoelectric pieces that are located between the first and second crosspieces adjacent to each other in the section and are arranged in the first direction; a plurality of support sections that support the plurality of piezoelectric pieces on the first crosspiece; Forming a collective substrate from the piezoelectric substrate and projecting from the two crosspieces toward the first crosspiece and having a tip separated from the piezoelectric piece, and a metal on at least the main surface of the piezoelectric piece of the collective substrate A step of forming a layer; a step of applying a solution containing a photoresist on the metal layer to form a photoresist layer; a step of exposing and developing the photoresist layer to form an electrode pattern; and Remove according to pattern and form excitation electrode on main surface of piezoelectric piece Including that a step.
 本発明によれば、周波数特性の変動を抑制することができる圧電振動素子の製造方法を提供することが可能となる。 According to the present invention, it is possible to provide a method for manufacturing a piezoelectric vibration element that can suppress fluctuations in frequency characteristics.
図1は、本発明の実施形態に係る圧電振動素子の製造方法における水晶片形成工程を示すフローチャートである。FIG. 1 is a flowchart showing a crystal piece forming step in a method for manufacturing a piezoelectric vibration element according to an embodiment of the present invention. 図2は、本発明の実施形態に係る圧電振動素子の製造方法における励振電極形成工程を示すフローチャートである。FIG. 2 is a flowchart showing an excitation electrode forming step in the method for manufacturing a piezoelectric vibration element according to the embodiment of the present invention. 図3は、図1に示した水晶片形成工程終了後の集合基板を示す平面図である。FIG. 3 is a plan view showing the collective substrate after completion of the crystal piece forming step shown in FIG. 図4は、スピンコート法によるフォトレジストの塗布工程を示す図である。FIG. 4 is a diagram showing a photoresist coating process by spin coating. 図5は、図4におけるフォトレジストの広がり方を模式的に示す図である。FIG. 5 is a diagram schematically showing how the photoresist spreads in FIG. 図6は、電極パターンが形成された集合基板を示す図である。FIG. 6 is a diagram illustrating an aggregate substrate on which an electrode pattern is formed. 図7は、水晶振動子の構成例の分解斜視図である。FIG. 7 is an exploded perspective view of a configuration example of a crystal resonator. 図8は、図7に示した水晶振動子のVIII-VIII線に沿った断面図である。FIG. 8 is a cross-sectional view taken along line VIII-VIII of the crystal resonator shown in FIG. 図9は、変形例に係る水晶振動素子の斜視図である。FIG. 9 is a perspective view of a crystal resonator element according to a modification.
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施形態に限定して解するべきではない。 Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar components are denoted by the same or similar reference numerals. The drawings are exemplary, the dimensions and shapes of each part are schematic, and the technical scope of the present invention should not be limited to the embodiment.
 <実施形態>
 図1~図6を参照しつつ、本発明の実施形態に係る圧電振動素子の製造方法について説明する。ここで、図1は、本発明の実施形態に係る圧電振動素子の製造方法における水晶片形成工程を示すフローチャートである。図2は、本発明の実施形態に係る圧電振動素子の製造方法における励振電極形成工程を示すフローチャートである。図3は、図1に示した水晶片形成工程終了後の集合基板を示す平面図である。図4は、スピンコート法によるフォトレジストの塗布工程を示す図である。図5は、図4におけるフォトレジストの広がり方を模式的に示す図である。図6は、電極パターンが形成された集合基板を示す図である。
<Embodiment>
A method for manufacturing a piezoelectric vibration element according to an embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is a flowchart showing a crystal piece forming step in the method of manufacturing a piezoelectric vibration element according to the embodiment of the present invention. FIG. 2 is a flowchart showing an excitation electrode forming step in the method for manufacturing a piezoelectric vibration element according to the embodiment of the present invention. FIG. 3 is a plan view showing the collective substrate after completion of the crystal piece forming step shown in FIG. FIG. 4 is a diagram showing a photoresist coating process by spin coating. FIG. 5 is a diagram schematically showing how the photoresist spreads in FIG. FIG. 6 is a diagram illustrating an aggregate substrate on which an electrode pattern is formed.
 まず、図1を参照して水晶片形成工程について説明する。なお、以下の実施形態の説明において、例えば、圧電振動素子とは水晶振動素子(Quartz Crystal Resonator)であり、圧電片とは水晶片(Quartz Crystal Element)であり、圧電基板とは水晶ウェハ(Quartz Crystal Wafer)などの水晶基板である。但し、本発明に係る実施形態は、これらに限定されるものではない。 First, the crystal piece forming process will be described with reference to FIG. In the following description of the embodiments, for example, a piezoelectric vibrating element is a quartz vibrating element (Quartz Crystal Resonator), a piezoelectric piece is a quartz piece (Quartz Crystal Element), and a piezoelectric substrate is a quartz wafer (Quartz). A crystal substrate such as Crystal Wafer. However, the embodiment according to the present invention is not limited to these.
 まず、水晶片形成工程の開始に際して、圧電材料である人工水晶の平板からなる水晶基板99(圧電基板)を準備する。このとき、人工水晶である水晶基板99は、X軸及びZ´軸で特定される面と平行な面(以下、「XZ´面」と呼ぶ。他の軸によって特定される面についても同様である。)が主面となるように形成され、Y´軸が主面の法線方向と平行となる。なお、Y´軸及びZ´軸は、それぞれ、人工水晶の結晶軸であるX軸、Y軸、Z軸のうち、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に35度15分±1分30秒回転させた軸である。 First, at the start of the crystal piece forming step, a quartz substrate 99 (piezoelectric substrate) made of an artificial quartz plate as a piezoelectric material is prepared. At this time, the quartz crystal substrate 99, which is an artificial quartz, is a plane parallel to the plane specified by the X axis and the Z ′ axis (hereinafter referred to as “XZ ′ plane”. The same applies to the plane specified by other axes. And the Y ′ axis is parallel to the normal direction of the main surface. The Y ′ axis and the Z ′ axis are respectively the X axis, the Y axis, and the Z axis, which are the crystal axes of the artificial quartz crystal, the Y axis and the Z axis around the X axis in the direction from the Y axis to the Z axis. It is an axis rotated at 35 degrees 15 minutes ± 1 minute 30 seconds.
 次に、水晶基板99の両主面に金属層を形成する(S11)。金属層は、水晶をエッチングする際に用いられるエッチング液(例えば、フッ化アンモニウムあるいは緩衝フッ酸)に対する耐蝕膜として機能する。このような耐蝕膜としては、例えば、クロム(Cr)層と金(Au)層とからなる多層膜が用いられる。金属層は蒸着法やスパッタ法によって形成される。金属層の内部において、Cr層がAu層と比べて水晶基板99に近い側、すなわち水晶基板99に接触する側に位置する。また、Au層がCr層とは反対側の、Cr層と比べて水晶基板99から遠い側に位置する。Cr層は水晶基板99との密着力を高め、Au層は耐蝕性を高める。 Next, metal layers are formed on both main surfaces of the quartz substrate 99 (S11). The metal layer functions as a corrosion-resistant film against an etching solution (for example, ammonium fluoride or buffered hydrofluoric acid) used when etching the crystal. As such a corrosion-resistant film, for example, a multilayer film composed of a chromium (Cr) layer and a gold (Au) layer is used. The metal layer is formed by vapor deposition or sputtering. Inside the metal layer, the Cr layer is located closer to the quartz substrate 99 than the Au layer, that is, the side in contact with the quartz substrate 99. In addition, the Au layer is located on the opposite side of the Cr layer from the quartz substrate 99 as compared to the Cr layer. The Cr layer increases the adhesion with the quartz substrate 99, and the Au layer increases the corrosion resistance.
 次に、金属層の上にフォトレジスト層を形成する(S12)。フォトレジスト層は、フォトレジスト溶液を金属層の上に塗布し、加熱により溶媒を揮発させることで成膜される。フォトレジスト溶液は、例えば、スプレー法やスピンコート法によって塗布される。 Next, a photoresist layer is formed on the metal layer (S12). The photoresist layer is formed by applying a photoresist solution on the metal layer and volatilizing the solvent by heating. The photoresist solution is applied by, for example, a spray method or a spin coat method.
 次に、フォトレジスト層を露光・現像し水晶片110(圧電片)の外形パターンを形成する(S13)。フォトレジスト層は、微細加工への適応性の観点から、露光された部分を溶解によって除去するポジ型の感光性樹脂を用いることが望ましい。ポジ型の感光性樹脂を使用する場合、フォトレジスト層は、水晶片110に相当する領域をフォトマスクで遮光された状態で露光され、その後、現像液によって不要な部分を洗い流される。つまり、フォトマスクの形状がフォトレジスト層に転写される。この結果、金属層の上に残ったフォトレジスト層は、水晶片110の外形パターンを形成する。 Next, the photoresist layer is exposed and developed to form an external pattern of the crystal piece 110 (piezoelectric piece) (S13). For the photoresist layer, from the viewpoint of adaptability to microfabrication, it is desirable to use a positive photosensitive resin that removes the exposed portion by dissolution. When a positive photosensitive resin is used, the photoresist layer is exposed in a state where a region corresponding to the crystal piece 110 is shielded from light by a photomask, and then an unnecessary portion is washed away by a developer. That is, the shape of the photomask is transferred to the photoresist layer. As a result, the photoresist layer remaining on the metal layer forms an external pattern of the crystal piece 110.
 次に、水晶基板99を外形パターンに従って除去する(S14)。このとき、前工程で形成したフォトレジスト層の外形パターンを利用し、エッチング処理によって水晶基板99の中に複数の水晶片110を形成する。なお、水晶片110のそれぞれは、個片化されず桟部120によって互いに連結されている。具体的な形状については、後述する。本工程では、フォトレジスト層の外形パターンに従って金属層をエッチングによって除去し、次いで水晶基板99をエッチングによって除去する。エッチング処理は、特に限定されるものではなく、例えば一般的なウエットエッチングであり、金属層に対してはヨウ素系のエッチング溶液を用い、水晶に対してはフッ酸系のエッチング溶液を用いる。 Next, the quartz substrate 99 is removed according to the external pattern (S14). At this time, a plurality of crystal pieces 110 are formed in the crystal substrate 99 by etching using the external pattern of the photoresist layer formed in the previous step. The crystal pieces 110 are not separated into individual pieces and are connected to each other by the crosspieces 120. A specific shape will be described later. In this step, the metal layer is removed by etching in accordance with the external pattern of the photoresist layer, and then the quartz substrate 99 is removed by etching. The etching process is not particularly limited, and is, for example, general wet etching. An iodine-based etching solution is used for the metal layer, and a hydrofluoric acid-based etching solution is used for the crystal.
 次に、フォトレジスト層及び金属層を除去する(S15)。ここで、一旦、水晶基板99に付着しているフォトレジスト層及び金属層を全て除去する。その後、水晶片110をメサ型構造に加工する(S16)。メサ型構造への加工は、工程S11~S15と同様の処理を繰り返すことで実施可能である。このような工程S16における工程S11~S14との相違点は、工程S13に相当する工程におけるフォトレジスト層の形状が振動部117を覆い周縁部118,119を露出するメサ型構造パターンであることと、工程S14に相当する工程における水晶基板99のエッチングがハーフエッチングであること、である。 Next, the photoresist layer and the metal layer are removed (S15). Here, all of the photoresist layer and the metal layer adhering to the quartz substrate 99 are removed. Thereafter, the crystal piece 110 is processed into a mesa structure (S16). The mesa structure can be processed by repeating the same processes as in steps S11 to S15. The difference between steps S11 to S14 in step S16 is that the shape of the photoresist layer in the step corresponding to step S13 is a mesa structure pattern that covers the vibrating portion 117 and exposes the peripheral portions 118 and 119. The etching of the quartz crystal substrate 99 in the process corresponding to the process S14 is half etching.
 上記の工程を経て形成された集合基板100の形状について、図3を参照しつつ説明する。なお、図3に示す第1方向D1及び第2方向D2は互いに直交する方向であるが、互いに直交以外の角度で交差する方向であってもよい。図3に図示した例では、第1方向D1はZ´軸方向と平行な方向であり、第2方向D2はX軸方向と平行な方向である。 The shape of the collective substrate 100 formed through the above steps will be described with reference to FIG. In addition, although the 1st direction D1 and the 2nd direction D2 which are shown in FIG. 3 are directions orthogonal to each other, they may be directions intersecting at an angle other than orthogonal to each other. In the example illustrated in FIG. 3, the first direction D1 is a direction parallel to the Z′-axis direction, and the second direction D2 is a direction parallel to the X-axis direction.
 集合基板100は、水晶片110と、複数の桟部120と、複数の支持部130と、複数の突出部140と、を備えている。図3に図示した例では、水晶片110のそれぞれは、第1方向D1に平行な短辺と、第2方向D2に平行な長辺と、を有する矩形状である。また、水晶片110は、それぞれ、その短辺において、支持部130を介して桟部120に保持されている。水晶片110の周囲には、支持部130との接続部分を除き、エッチングによって水晶基板99が除去されたことで間隙(スペース)が形成されている。より具体的な構成例として、水晶片110の例として複数の第1水晶片111及び複数の第2水晶片112を、桟部120の例として第1桟部121及び第2桟部122を、支持部130の例として複数の第1支持部131及び複数の第2支持部132を、また突出部140の例として複数の第1突出部141及び複数の第2突出部142を、それぞれ挙げて説明する。 The collective substrate 100 includes a crystal piece 110, a plurality of crosspieces 120, a plurality of support portions 130, and a plurality of protrusions 140. In the example illustrated in FIG. 3, each of the crystal pieces 110 has a rectangular shape having a short side parallel to the first direction D1 and a long side parallel to the second direction D2. In addition, each of the crystal pieces 110 is held by the crosspiece 120 via the support portion 130 on the short side thereof. A space (space) is formed around the crystal piece 110 by removing the crystal substrate 99 by etching except for the connection portion with the support portion 130. As a more specific configuration example, a plurality of first crystal pieces 111 and a plurality of second crystal pieces 112 as an example of the crystal piece 110, a first crosspiece 121 and a second crosspiece 122 as an example of the crosspiece 120, Examples of the support part 130 include a plurality of first support parts 131 and a plurality of second support parts 132, and examples of the protrusion part 140 include a plurality of first protrusion parts 141 and a plurality of second protrusion parts 142, respectively. explain.
 第1水晶片111及び第2水晶片112は、それぞれ間隔を空けて第1方向D1に並び、互いに第2方向D2に並んでいる。第1桟部121及び第2桟部122は、それぞれ第1方向D1に延在し、第2方向D2で隣り合っている。第1水晶片111は、第1桟部121と第2桟部122との間に間隔を空けて設けられ、第2桟部122は、第1水晶片111と第2水晶片112との間に間隔を空けて設けられている。つまり、水晶片110と桟部120とは、第2方向D2において交互に配列し、且つ互いに離れている。第1桟部121は、第1水晶片111に近い側に端辺121bを有し、端辺121bとは反対側に端辺121aを有する。第2桟部122は、第2水晶片112に近い側に端辺122bを有し、第1水晶片111に近い側(端辺122bとは反対側)に端辺122aを有する。第1水晶片111及び第2水晶片112は、それぞれ、角部C1~C4を有する。第1水晶片111を例に挙げると、第2桟部122に近い側の短辺に角部C1,C2が位置し、第1桟部121に近い側の短辺に角部C3,C4が位置し、角部C1,C4が互いに対角に位置する。 The first crystal piece 111 and the second crystal piece 112 are arranged in the first direction D1 at intervals, and are arranged in the second direction D2. The first crosspiece 121 and the second crosspiece 122 each extend in the first direction D1 and are adjacent to each other in the second direction D2. The first crystal piece 111 is provided with a space between the first crosspiece 121 and the second crosspiece 122, and the second crosspiece 122 is provided between the first crystal piece 111 and the second crystal piece 112. Are provided at intervals. That is, the crystal pieces 110 and the crosspieces 120 are alternately arranged in the second direction D2 and are separated from each other. The first crosspiece 121 has an end side 121b on the side close to the first crystal piece 111, and an end side 121a on the side opposite to the end side 121b. The second crosspiece 122 has an end side 122b on the side close to the second crystal piece 112, and an end side 122a on the side close to the first crystal piece 111 (the side opposite to the end side 122b). The first crystal piece 111 and the second crystal piece 112 each have corner portions C1 to C4. Taking the first crystal piece 111 as an example, corners C1 and C2 are located on the short side closer to the second crosspiece 122, and corners C3 and C4 are located on the short side closer to the first crosspiece 121. The corners C1 and C4 are located diagonally to each other.
 第1水晶片111は第1支持部131を介して第1桟部121に支持され、第2水晶片112は第2支持部132を介して第2桟部122に支持されている。つまり、第1水晶片111を支持する第1桟部121は、第1水晶片111に対して第2方向D2の一方側、すなわち正方向側に位置する桟部である。集合基板100の全ての水晶片110が同様に、第2方向D2の一方側、すなわち正方向側に位置する桟部120によって支持されている。第1支持部131は、角部C3と端辺121bとの間、並びに角部C4と端辺121bとの間、の2点において第1水晶片111を第1桟部121に支持している。第2支持部132も同様に、2点において第2水晶片112を第2桟部122に支持している。第1突出部141は端辺121aから突出し、第2突出部142は端辺122aから第1桟部121に向かい突出している。また、第2突出部142は、第1水晶片111から離れた先端142aを有する。第1突出部141及び第2突出部142は、それぞれ間隔を空けて第1方向D1に並び、互いに第2方向D2で隣り合っている。 The first crystal piece 111 is supported by the first crosspiece 121 via the first support 131, and the second crystal piece 112 is supported by the second crosspiece 122 via the second support 132. That is, the first crosspiece 121 that supports the first crystal piece 111 is a crosspiece located on one side of the second direction D2, that is, the positive direction side with respect to the first crystal piece 111. All the crystal pieces 110 of the collective substrate 100 are similarly supported by the crosspieces 120 located on one side in the second direction D2, that is, the positive direction side. The first support portion 131 supports the first crystal piece 111 on the first crosspiece 121 at two points between the corner portion C3 and the end side 121b and between the corner portion C4 and the end side 121b. . Similarly, the second support portion 132 supports the second crystal piece 112 on the second crosspiece 122 at two points. The first protrusion 141 protrudes from the end side 121a, and the second protrusion 142 protrudes from the end side 122a toward the first crosspiece 121. Further, the second protrusion 142 has a tip 142 a that is separated from the first crystal piece 111. The first protrusion 141 and the second protrusion 142 are arranged in the first direction D1 with a space between each other, and are adjacent to each other in the second direction D2.
 第2突出部142の先端142aは、図3に図示した構成例において、第1方向D1に延在する端辺である。また、第2突出部142は、隣り合う一方の第1水晶片111と他方の第1水晶片111との間のスペースに向かって突出している。つまり、第2突出部142は、先端142aが一方の第1水晶片111の角部C1と、他方の第1水晶片111の角部C2と、の両方に近づくように突出している。第2突出部142は、望ましくは少なくともその先端142aが第1水晶片111と第2桟部122との間のスペースを避けるように、さらに望ましくは第2突出部142全体が第1水晶片111と第2桟部122との間のスペースを避けるように突出している。また、第2突出部142は、望ましくは第1方向D1で隣り合う第1水晶片111の間のスペースからは離れている。すなわち、第2突出部142は第1水晶片111と第1方向D1で並んでいない。つまり、第1水晶片111の第2桟部122側の短辺と第2桟部122の端辺122aとの間のスペースの第2方向D2における間隔G2は、第1水晶片111の角部C1から角部C2に亘って一定である。また、隣り合う第1水晶片111の互いに対向する長辺間のスペースの第1方向D1における間隔G1は、第1水晶片111の角部C1から角部C3に亘って一定である。また、先端142aと角部C1との間のスペースの間隔がG3であり、先端142aと角部C2との間のスペースの間隔がG4であるときに、間隔G3は、間隔G4と等しく、間隔G1,G2よりも小さい(G3=G4,G3<G1,G3<G2)。 The tip 142a of the second protrusion 142 is an end extending in the first direction D1 in the configuration example illustrated in FIG. The second projecting portion 142 projects toward the space between one adjacent first crystal piece 111 and the other first crystal piece 111. That is, the second protrusion 142 protrudes so that the tip 142a approaches both the corner C1 of one first crystal piece 111 and the corner C2 of the other first crystal piece 111. The second protrusion 142 preferably has at least its tip 142a to avoid a space between the first crystal piece 111 and the second crosspiece 122, and more preferably the entire second protrusion 142 has the first crystal piece 111. And projecting to avoid a space between the second crosspiece 122. The second protrusion 142 is preferably separated from the space between the first crystal pieces 111 adjacent in the first direction D1. That is, the second protrusion 142 is not aligned with the first crystal piece 111 in the first direction D1. That is, the gap G2 in the second direction D2 of the space between the short side of the first crystal piece 111 on the second crosspiece 122 side and the end side 122a of the second crosspiece 122 is the corner of the first crystal piece 111. It is constant from C1 to the corner C2. Further, the gap G1 in the first direction D1 of the space between the long sides facing each other of the adjacent first crystal pieces 111 is constant from the corner C1 to the corner C3 of the first crystal piece 111. When the space interval between the tip 142a and the corner C1 is G3 and the space interval between the tip 142a and the corner C2 is G4, the interval G3 is equal to the interval G4, and the interval It is smaller than G1 and G2 (G3 = G4, G3 <G1, G3 <G2).
 以上は、集合基板100の主面の法線から平面視した場合の、工程S11~S15によって形成される集合基板100の外形を説明したものである。このとき、集合基板100の主面は、第1方向D1及び第2方向D2によって特定される面と平行な面(以下、「D1D2面」と呼ぶ。)であり、水晶片110の主面110aと略平行である。次に、工程S16によって形成される水晶片110のメサ型構造について説明する。なお、図3において、第1水晶片111の主面は符号111aで示し、第2水晶片112の主面は符号112aで示している。 The above describes the outer shape of the collective substrate 100 formed in steps S11 to S15 when viewed in plan from the normal line of the main surface of the collective substrate 100. At this time, the main surface of the collective substrate 100 is a surface parallel to the surface specified by the first direction D1 and the second direction D2 (hereinafter referred to as “D1D2 surface”), and the main surface 110a of the crystal piece 110. It is almost parallel to. Next, the mesa structure of the crystal piece 110 formed in step S16 will be described. In FIG. 3, the main surface of the first crystal piece 111 is indicated by reference numeral 111a, and the main surface of the second crystal piece 112 is indicated by reference numeral 112a.
 具体的には、水晶片110は、主面110aを平面視したときに、中央を含む振動部117と、振動部117よりも外側に位置し主面110aの法線方向における厚さが振動部117とは異なる周縁部を有している。この周縁部は、第1周縁部118及び第2周縁部119を有する。振動部117は、第1方向D1に平行な短辺、及び第2方向D2に平行な長辺を有する。第1周縁部118及び第2周縁部119は、振動部117に対して水晶片110の長辺方向での両側に設けられている。第1周縁部118及び第2周縁部119は、水晶片110の周縁部に相当する。第1水晶片111を例に挙げると、第1周縁部118は、第1水晶片111の第1桟部121に接続される側の短辺を含むものであり、振動部117よりも第1桟部121に近い側に位置する。また、第2周縁部119は、第1水晶片111の周縁部118とは反対側の短辺を含むものであり、振動部117よりも第2桟部122に近い側に位置する。振動部117、第1周縁部118、及び第2周縁部119の位置関係は、第2水晶片112などの他の水晶片110においても同様である。 Specifically, when the main surface 110a is viewed in plan, the quartz crystal piece 110 has a vibrating portion 117 including the center, and a thickness in the normal direction of the main surface 110a that is located outside the vibrating portion 117 is a vibrating portion. It has a peripheral edge different from 117. The peripheral edge has a first peripheral edge 118 and a second peripheral edge 119. The vibration part 117 has a short side parallel to the first direction D1 and a long side parallel to the second direction D2. The first peripheral portion 118 and the second peripheral portion 119 are provided on both sides in the long side direction of the crystal piece 110 with respect to the vibrating portion 117. The first peripheral portion 118 and the second peripheral portion 119 correspond to the peripheral portion of the crystal piece 110. Taking the first crystal piece 111 as an example, the first peripheral edge portion 118 includes a short side on the side connected to the first crosspiece 121 of the first crystal piece 111 and is more first than the vibrating portion 117. Located on the side close to the crosspiece 121. Further, the second peripheral edge 119 includes a short side opposite to the peripheral edge 118 of the first crystal piece 111 and is located closer to the second crosspiece 122 than the vibrating part 117. The positional relationship among the vibrating part 117, the first peripheral part 118, and the second peripheral part 119 is the same in the other crystal pieces 110 such as the second crystal piece 112.
 振動部117は、第1周縁部118及び第2周縁部119とは異なる厚さ(以下、「厚さ」は、主面110aの法線方向に平行な厚さを指す。他の「厚さ」についても同様とする。)を有する。具体的には、第1周縁部118の厚さは、振動部117の厚さよりも小さい。第2周縁部119の厚さも、振動部117の厚さよりも小さい。また、水晶片110には、水晶片110の長辺方向において、振動部117と第1周縁部118との境界、及び振動部117と第2周縁部119との境界に段差が設けられている。この段差は水晶片110の短辺方向に沿って延在している。水晶の結晶である水晶片110において、この段差は、水晶の結晶方位に依存する所定の傾斜角をもって形成されている。なお、第1周縁部118及び第2周縁部119のそれぞれの厚さは、一例として同一であるが、異なっていてもよい。第1周縁部118の第2方向D2における幅W2は、第2周縁部119の第2方向D2における幅W1よりも大きくてもよい。つまり、水晶片110の主面110aを平面視したときに、第1周縁部118の面積は、第2周縁部119の面積よりも大きくてもよい。 The vibrating portion 117 has a thickness different from that of the first peripheral portion 118 and the second peripheral portion 119 (hereinafter, “thickness” refers to a thickness parallel to the normal direction of the main surface 110a. Other “thicknesses”. The same shall apply to "." Specifically, the thickness of the first peripheral edge portion 118 is smaller than the thickness of the vibrating portion 117. The thickness of the second peripheral edge 119 is also smaller than the thickness of the vibration part 117. Further, the crystal piece 110 is provided with steps at the boundary between the vibrating portion 117 and the first peripheral portion 118 and the boundary between the vibrating portion 117 and the second peripheral portion 119 in the long side direction of the crystal piece 110. . This level difference extends along the short side direction of the crystal piece 110. In the crystal piece 110, which is a crystal of quartz, this step is formed with a predetermined tilt angle that depends on the crystal orientation of the crystal. In addition, although the thickness of each of the 1st peripheral part 118 and the 2nd peripheral part 119 is the same as an example, you may differ. The width W2 of the first peripheral edge 118 in the second direction D2 may be larger than the width W1 of the second peripheral edge 119 in the second direction D2. That is, the area of the first peripheral edge 118 may be larger than the area of the second peripheral edge 119 when the main surface 110a of the crystal piece 110 is viewed in plan.
 本実施形態では、振動部が周縁部よりも厚いメサ型構造の水晶片を例に挙げて態様を説明した。しかしながら、本発明は、振動部が周縁部よりも薄い逆メサ型構造の水晶片に適用してもよい。また、振動部と周縁部の厚みの変化(段差)が連続的に変化するコンベックス型構造又はベベル型構造の水晶片に本発明を適用してもよい。 In the present embodiment, the mode has been described by taking as an example a crystal piece having a mesa structure in which the vibration part is thicker than the peripheral part. However, the present invention may be applied to a quartz piece having an inverted mesa structure in which the vibration part is thinner than the peripheral part. In addition, the present invention may be applied to a quartz piece having a convex structure or a bevel structure in which changes in thickness (steps) between the vibrating portion and the peripheral portion change continuously.
 次に、図2を参照して励振電極形成工程について説明する。なお、励振電極形成工程のS21~S25は、水晶片形成工程のS11~S15と同様の処理であり、各工程において同様の部分については説明を省略し、異なる部分についてのみ説明を行う。まず、集合基板100の両主面101,102に金属層200,300を形成する(S21)。このとき用いられる集合基板100は図3に図示したものである。このとき金属層は、必ずしも集合基板100の両主面101,102の全体(すなわち、水晶片110、桟部120、支持部130の両主面)に形成する必要はなく、少なくとも水晶片110の両主面に形成されていればよい。なお、両主面間の電気的導通を得るために、両主面に接続される側面に金属層を設けることがある。 Next, the excitation electrode forming process will be described with reference to FIG. Note that S21 to S25 of the excitation electrode forming step are the same as steps S11 to S15 of the crystal piece forming step, and description of similar parts in each step is omitted, and only different parts are described. First, metal layers 200 and 300 are formed on both main surfaces 101 and 102 of the aggregate substrate 100 (S21). The collective substrate 100 used at this time is shown in FIG. At this time, the metal layer is not necessarily formed on the entire main surfaces 101 and 102 of the collective substrate 100 (that is, the main surfaces of the crystal piece 110, the crosspiece 120, and the support portion 130). What is necessary is just to be formed in both main surfaces. In order to obtain electrical continuity between the two main surfaces, a metal layer may be provided on the side surfaces connected to the two main surfaces.
 次に、金属層200,300の上にフォトレジスト層400,500を形成する(S22)。このとき、集合基板100の金属層200が設けられた側の主面101に、先にフォトレジスト層400をスピンコート法によって形成する。次いで、集合基板100の金属層300が設けられた側の主面102に、フォトレジスト層400をスピンコート法によって形成する。励振電極形成工程におけるフォトレジスト層の形成について、フォトレジスト溶液501の塗布を例に挙げ、図4及び図5を参照して説明する。なお、図3で図示した水晶片110の主面110aは、集合基板100の主面102側に位置する面である。 Next, photoresist layers 400 and 500 are formed on the metal layers 200 and 300 (S22). At this time, a photoresist layer 400 is first formed by spin coating on the main surface 101 on the side of the aggregate substrate 100 where the metal layer 200 is provided. Next, a photoresist layer 400 is formed on the main surface 102 of the aggregate substrate 100 on which the metal layer 300 is provided by a spin coating method. The formation of the photoresist layer in the excitation electrode forming step will be described with reference to FIGS. 4 and 5 by taking the application of the photoresist solution 501 as an example. The main surface 110a of the crystal piece 110 illustrated in FIG. 3 is a surface located on the main surface 102 side of the collective substrate 100.
 図4に示すように、金属層300が上面となるように集合基板100を回転台610に載置し、フォトレジストを溶媒に溶かしたフォトレジスト溶液501を主面102の中心103に滴下する。フォトレジスト層500の厚みを均一にするために、集合基板100は、中心103が回転台610の回転軸620の延長線上に位置するように設置する。次に、フォトレジスト溶液501が均一な厚みで濡れ広がるように、回転軸620を中心として回転台610を回転速度R1で回転させる。 As shown in FIG. 4, the collective substrate 100 is placed on a turntable 610 so that the metal layer 300 is on the upper surface, and a photoresist solution 501 in which a photoresist is dissolved in a solvent is dropped onto the center 103 of the main surface 102. In order to make the thickness of the photoresist layer 500 uniform, the collective substrate 100 is installed such that the center 103 is located on the extension line of the rotation shaft 620 of the turntable 610. Next, the turntable 610 is rotated at the rotation speed R1 around the rotation shaft 620 so that the photoresist solution 501 spreads with a uniform thickness.
 図5に示すように、遠心力を受けたフォトレジスト溶液501は、流路502及び流路503を介して、第1水晶片111と第2桟部122との間を移動する。流路502は、間隔G4が間隔G1及びG2に比べて充分小さいために、第1水晶片111の角部C2と第2突出部142の先端142aとの間に形成される流路である。また、流路503は、間隔G3が間隔G1及びG2に比べて充分小さいために、角部C2と先端142aとの間に形成される経路である。このような流路の形成は、集合基板100内に形成されたスペースが充分に小さければ、表面張力によってそのスペースを超えてフォトレジスト溶液が濡れ広がることができることに起因する。流路502,503が第2突出部142によって形成されることで、第1水晶片111にフォトレジスト溶液501が液溜りを形成することを抑制し、フォトレジスト層500の厚みの均一性が向上する。このとき、角部C2と間隔G4で対向する第2突出部142が略台形形状であれば、角部C2と対向する第2突出部142の角部の角度が鈍角になる。 As shown in FIG. 5, the photoresist solution 501 that receives the centrifugal force moves between the first crystal piece 111 and the second crosspiece 122 via the flow path 502 and the flow path 503. The channel 502 is a channel formed between the corner C2 of the first crystal piece 111 and the tip 142a of the second protrusion 142 because the interval G4 is sufficiently smaller than the intervals G1 and G2. The flow path 503 is a path formed between the corner C2 and the tip 142a because the gap G3 is sufficiently smaller than the gaps G1 and G2. The formation of such a flow path is attributed to the fact that if the space formed in the collective substrate 100 is sufficiently small, the photoresist solution can be spread over the space by surface tension. Since the flow paths 502 and 503 are formed by the second projecting portions 142, the photoresist solution 501 is prevented from forming a liquid pool in the first crystal piece 111, and the thickness uniformity of the photoresist layer 500 is improved. To do. At this time, if the second protrusion 142 facing the corner C2 at the interval G4 is substantially trapezoidal, the angle of the corner of the second protrusion 142 facing the corner C2 becomes an obtuse angle.
 次に、フォトレジスト層400,500を露光・現像し電極パターンを形成する(S23)。図6に示すように、フォトレジスト層500を例に挙げると、電極パターン510は、励振電極314、引出電極315、及び接続電極316となる領域を覆う。電極パターン510以外の領域のフォトレジスト層500は除去される。前の行程S22においてフォトレジスト溶液501の液溜りに起因したフォトレジスト層500の厚みムラが小さくできるため、フォトレジスト層500の厚い部分が露光・現像において除去しきれずに残るフォトレジスト残渣の発生が抑制できる。 Next, the photoresist layers 400 and 500 are exposed and developed to form an electrode pattern (S23). As shown in FIG. 6, taking the photoresist layer 500 as an example, the electrode pattern 510 covers regions that will be the excitation electrode 314, the extraction electrode 315, and the connection electrode 316. The photoresist layer 500 in the region other than the electrode pattern 510 is removed. In the previous step S22, the thickness unevenness of the photoresist layer 500 due to the accumulation of the photoresist solution 501 can be reduced, so that a photoresist residue is generated in which a thick portion of the photoresist layer 500 is not completely removed by exposure and development. Can be suppressed.
 次に、金属層200,300を電極パターンに従って除去し励振電極を形成する(S24)。図6に示すように、金属層300を例に挙げると、電極パターン510によって覆われた励振電極314、引出電極315、及び接続電極316の周りの露出した金属層300が除去される。なお、励振電極314は、振動部117に形成される。また、引出電極315及び接続電極316は、第1周縁部118に形成される。励振電極314、引出電極315、及び接続電極316は、互いに連続し電気的に接続されている。引出電極315、及び接続電極316は、励振電極314と同時に形成される。なお、引出電極315、及び接続電極316は、励振電極314の形成とは別工程で形成することもできる。 Next, the metal layers 200 and 300 are removed according to the electrode pattern to form an excitation electrode (S24). As shown in FIG. 6, taking the metal layer 300 as an example, the exposed metal layer 300 around the excitation electrode 314, the extraction electrode 315, and the connection electrode 316 covered with the electrode pattern 510 is removed. The excitation electrode 314 is formed on the vibration unit 117. In addition, the extraction electrode 315 and the connection electrode 316 are formed on the first peripheral edge 118. The excitation electrode 314, the extraction electrode 315, and the connection electrode 316 are continuously connected to each other and electrically connected. The extraction electrode 315 and the connection electrode 316 are formed simultaneously with the excitation electrode 314. Note that the extraction electrode 315 and the connection electrode 316 can be formed in a step different from the formation of the excitation electrode 314.
 次に、フォトレジスト層400,500を除去する(S25)。図6に示すように、フォトレジスト層500を例に挙げると、除去されるフォトレジスト層500とは、電極パターン510に相当する。以上で励振電極形成工程は終了する。なお、図示は省略しているが、工程S25の後、圧電基板をそれぞれ支持部から分離して個片化する工程が実施される。圧電基板は、例えば支持部から折り取ることで個片化される。集合基板から分離された圧電基板は、圧電振動素子として取得される。 Next, the photoresist layers 400 and 500 are removed (S25). As shown in FIG. 6, taking the photoresist layer 500 as an example, the removed photoresist layer 500 corresponds to the electrode pattern 510. The excitation electrode forming process is thus completed. Although illustration is omitted, after the step S25, a step of separating the piezoelectric substrates from the support portions and separating them into pieces is performed. The piezoelectric substrate is separated into pieces by, for example, being broken from the support portion. The piezoelectric substrate separated from the collective substrate is obtained as a piezoelectric vibration element.
 以上のとおり、本発明の一態様によれば、圧電基板(水晶基板)99を準備する工程と、第1方向D1に延在し第1方向D1と交差する第2方向D2に並ぶ複数の桟部120と、複数の桟部120における隣同士の第1桟部121と第2桟部122との間に位置し第1方向D1に並ぶ複数の圧電片(第1水晶片)111と、複数の圧電片111を第1桟部121に支持する複数の支持部131と、第2桟部122から第1桟部121に向かい突出し且つ圧電片111から離れた先端を有する突出部142と、を備える集合基板100を圧電基板99から形成する工程と、集合基板100の少なくとも圧電片111の主面111aの上に金属層300を形成する工程と、金属層300の上にフォトレジストを含む溶液を塗布しフォトレジスト層500を形成する工程と、フォトレジスト層500を露光及び現像して電極パターン510を形成する工程と、金属層300を電極パターン510に従って除去して圧電片111の主面111aの上に励振電極314を形成する工程と、を含む、圧電振動素子の製造方法が提供される。 As described above, according to one aspect of the present invention, a step of preparing the piezoelectric substrate (quartz substrate) 99 and a plurality of bars arranged in the second direction D2 extending in the first direction D1 and intersecting the first direction D1. A plurality of piezoelectric pieces (first crystal pieces) 111 that are positioned between the first crosspiece portion 120 and the first crosspiece portion 121 and the second crosspiece portion 122 that are adjacent to each other in the plurality of crosspiece portions 120 and arranged in the first direction D1. A plurality of support portions 131 that support the piezoelectric piece 111 on the first crosspiece 121 and a protrusion 142 that protrudes from the second crosspiece 122 toward the first crosspiece 121 and has a tip that is separated from the piezoelectric piece 111. A step of forming the collective substrate 100 provided from the piezoelectric substrate 99, a step of forming the metal layer 300 on at least the main surface 111a of the piezoelectric piece 111 of the collective substrate 100, and a solution containing a photoresist on the metal layer 300. Apply and photoresist 500, exposing and developing the photoresist layer 500 to form an electrode pattern 510, removing the metal layer 300 in accordance with the electrode pattern 510, and exciting electrode 314 on main surface 111a of piezoelectric piece 111. Forming a piezoelectric vibration element.
 上記の実施形態によれば、励振電極形成工程において、突出部がフォトレジスト溶液の流路を形成するため、フォトレジスト層を塗布する際に圧電片の角部でのフォトレジスト溶液の液溜りの発生を抑制することができる。つまり、フォトレジスト層の厚みの均一性を向上させることができ、現像工程におけるフォトレジスト残渣の発生を抑制することができる。フォトレジスト残渣の低減によって、金属層のエッチング不良による不要な電極の形成を抑制することができる。つまり、周波数特性の変動を抑制することができる圧電振動素子の製造方法を提供することが可能となる。 According to the above embodiment, in the excitation electrode forming step, the protrusions form the flow path of the photoresist solution, and therefore, when the photoresist layer is applied, the photoresist solution pools at the corners of the piezoelectric piece. Occurrence can be suppressed. That is, the uniformity of the thickness of the photoresist layer can be improved, and the generation of photoresist residues in the development process can be suppressed. By reducing the photoresist residue, it is possible to suppress the formation of unnecessary electrodes due to poor etching of the metal layer. That is, it is possible to provide a method for manufacturing a piezoelectric vibration element that can suppress fluctuations in frequency characteristics.
 なお、水晶基板99に圧電片(水晶片)110、桟部120、支持部130、及び突出部140が形成された後の工程であり且つフォトレジスト溶液の塗布工程を含むものであれば、励振電極形成工程に限定されず他の工程であったとしても、本実施形態と同様にフォトレジスト溜りの発生を抑制することができる。例えば、圧電片110をメサ型構造に加工する工程S16においては、フォトレジスト残渣に起因する水晶片の形状不良の発生を抑制することができる。 In addition, if it is a step after the piezoelectric piece (crystal piece) 110, the crosspiece 120, the support portion 130, and the protruding portion 140 are formed on the quartz substrate 99 and includes a step of applying a photoresist solution, excitation is performed. Even if it is another process without being limited to the electrode forming process, it is possible to suppress the generation of the photoresist pool as in the present embodiment. For example, in step S16 of processing the piezoelectric piece 110 into a mesa structure, it is possible to suppress the occurrence of a crystal piece shape defect caused by the photoresist residue.
 第1桟部121は、隣同士の2つの桟部121,122のうち第2方向D2の一方側、すなわち正方向側に位置する桟部であり、集合基板100の全ての圧電片(水晶片)110は、支持部131を介して第2方向D2の一方側、すなわち正方向側に位置する第1桟部121に支持されていてもよい。これにより、集合基板から圧電片を分離して圧電振動素子とする個片化工程において、例えば集合基板の向きを変えずに同じ方向から力を加えて全ての圧電片を折り取ることができる。つまり、個片化工程を簡略化することができる。 The first crosspiece 121 is a crosspiece located on one side in the second direction D2 of the two crosspieces 121 and 122 adjacent to each other, that is, on the positive direction side. ) 110 may be supported by the first crosspiece 121 located on one side in the second direction D2, that is, the positive direction side, via the support 131. Thereby, in the singulation process of separating the piezoelectric pieces from the collective substrate to form the piezoelectric vibration element, for example, all the piezoelectric pieces can be folded by applying a force from the same direction without changing the orientation of the collective substrate. That is, the singulation process can be simplified.
 フォトレジスト層500を形成する工程は、スピンコート法を含んでもよい。スピンコート法は、スプレーコート法等と比べて、圧電基板の表面凹凸や隙間に起因したフォトレジスト溜りが生じやすいが、本実施形態によれは、スピンコート法であってもフォトレジスト溜りの発生を抑制することが可能となる。 The step of forming the photoresist layer 500 may include a spin coating method. The spin coating method is more likely to cause photoresist accumulation due to surface irregularities and gaps of the piezoelectric substrate than the spray coating method, etc., but according to this embodiment, even if the spin coating method is used, the occurrence of photoresist accumulation occurs. Can be suppressed.
 突出部142は、圧電片(第1水晶片)111の角部C1,C2に向かい突出していてもよい。これにより、突出部を介して、桟部とフォトレジスト溜りが生じやすい角部との間に流路を形成することができ、フォトレジスト層の厚みをより均一化することができる。 The protruding portion 142 may protrude toward the corner portions C1 and C2 of the piezoelectric piece (first crystal piece) 111. Accordingly, a flow path can be formed between the crosspiece and the corner portion where the photoresist is liable to be generated via the protruding portion, and the thickness of the photoresist layer can be made more uniform.
 突出部142は、第2方向D2における圧電片(第1水晶片)111と第2桟部122との間のスペースを避けるように、第1方向D1に並ぶ隣同士の圧電片111の間のスペースに向かって突出していてもよい。これにより、圧電片の短辺のエッチングレートが一定となり、圧電片の第2桟部側の短辺の歪みを抑制することができる。 The protrusion 142 is provided between the adjacent piezoelectric pieces 111 arranged in the first direction D1 so as to avoid a space between the piezoelectric piece (first crystal piece) 111 and the second crosspiece 122 in the second direction D2. You may protrude toward the space. Thereby, the etching rate of the short side of the piezoelectric piece becomes constant, and the distortion of the short side on the second crosspiece side of the piezoelectric piece can be suppressed.
 突出部142は、第1方向D1における隣同士の圧電片(第1水晶片)111の間のスペースから離れていてもよい。これにより、圧電片の長辺のエッチングレートが一定となり、隣同士の圧電片の互いに対向する長辺の歪みを抑制することができる。 The protrusion 142 may be separated from the space between adjacent piezoelectric pieces (first crystal pieces) 111 in the first direction D1. Thereby, the etching rate of the long side of the piezoelectric piece becomes constant, and the distortion of the long side of the adjacent piezoelectric pieces facing each other can be suppressed.
 突出部142が、複数の圧電片(第1水晶片)111における第1方向D1で隣り合う2つの圧電片のうち一方の圧電片の第1角部C1と、他方の圧電片の第2角部C2と、の両方に近づくように突出してもよい。これにより、第1角部C1および第2角部C2と突出部142との間隔G3、G4が、第1角部C1および第2角部C2と桟部121,122との間隔G2より小さくなる。この結果、第1角部C1と突出部142の鈍角の角部との間で近接した間隔G3を流動性のあるレジストの流路を形成すると共に、第2角部C2と突出部142との間でも流路を形成することができる。つまり、より効果的にフォトレジスト溜りの発生を抑制することができる。なお、突出部142は、主面111aを平面視したときに略台形形状であり、桟部から第2方向D2へ突出していくに従って第1方向D1の幅寸法が小さくなっている。つまり、突出部142の先端142a側の角部が鈍角に構成される。これによれば、フォトレジスト溶液を圧電片111の角部から突出部142の角部へと排出できる流量が、突出部142の角部が直角および鋭角の場合に比べて大きくできる効果がある。 The protrusion 142 has a first corner C1 of one of the two piezoelectric pieces adjacent in the first direction D1 in the plurality of piezoelectric pieces (first crystal pieces) 111 and a second corner of the other piezoelectric piece. You may protrude so that both may approach part C2. Accordingly, the gaps G3 and G4 between the first corner C1 and the second corner C2 and the protrusion 142 are smaller than the gap G2 between the first corner C1 and the second corner C2 and the crosspieces 121 and 122. . As a result, a gap G3 close to the first corner C1 and the obtuse corner of the protrusion 142 forms a fluid resist flow path, and the second corner C2 and the protrusion 142 A flow path can be formed even between them. That is, the occurrence of photoresist accumulation can be suppressed more effectively. The projecting portion 142 has a substantially trapezoidal shape when the main surface 111a is viewed in plan, and the width dimension in the first direction D1 decreases as the projecting portion 142 projects from the crosspiece portion in the second direction D2. That is, the corner on the tip 142a side of the protrusion 142 is configured to be an obtuse angle. According to this, there is an effect that the flow rate at which the photoresist solution can be discharged from the corner portion of the piezoelectric piece 111 to the corner portion of the protruding portion 142 can be increased as compared with the case where the corner portion of the protruding portion 142 has a right angle and an acute angle.
 圧電片(第1水晶片)111は、主面111aを平面視したときに、中央に位置し励振電極が形成される振動部117と、振動部117よりも外側に位置し圧電片111の主面111aの法線方向における厚みが振動部117とは異なる周縁部118,119と、を有してもよい。つまり、フォトレジスト溶液を塗布する集合基板の表面凹凸が増加することでフォトレジスト溶液の濡れ広がりが阻害されたとしても、フォトレジスト溜りの発生を抑制することができる。 The piezoelectric piece (first crystal piece) 111 is located at the center when the main surface 111a is viewed in plan view, and the piezoelectric part 111 is located outside the vibrating part 117 and is located outside the vibrating part 117. You may have the peripheral part 118,119 in which the thickness in the normal line direction of the surface 111a differs from the vibration part 117. That is, even if the surface unevenness of the collective substrate to which the photoresist solution is applied is increased and the wet spreading of the photoresist solution is inhibited, the occurrence of photoresist accumulation can be suppressed.
 周縁部118,119の厚みが、振動部117の厚みよりも薄く、周縁部118,119が、振動部117よりも第1桟部121に近い側に位置する第1周縁部118と、振動部117よりも第2桟部122に近い側に位置する第2周縁部119と、を有し、第2周縁部119の面積は、第1周縁部118の面積よりも小さくてもよい。このように、いわゆるメサ型構造の圧電片であっても、圧電片の表面凹凸に起因したフォトレジスト溜りの発生を抑制することができる。 The peripheral edge portions 118 and 119 are thinner than the vibrating portion 117, and the peripheral edge portions 118 and 119 are located closer to the first crosspiece 121 than the vibrating portion 117, and the vibrating portion A second peripheral edge 119 located closer to the second crosspiece 122 than 117, and the area of the second peripheral edge 119 may be smaller than the area of the first peripheral edge 118. As described above, even in the case of a piezoelectric piece having a so-called mesa structure, it is possible to suppress the occurrence of photoresist accumulation due to the surface unevenness of the piezoelectric piece.
 さらに、圧電片(第1水晶片)111をそれぞれ支持部131から分離して圧電振動素子とする工程を含んでもよい。上記工程を経て製造された圧電振動素子は、周波数特性の変動を抑制することができるため、不良品の発生率を抑制し、製造コストを低減することができる。 Furthermore, a step of separating the piezoelectric pieces (first crystal pieces) 111 from the support portions 131 to form piezoelectric vibration elements may be included. Since the piezoelectric vibration element manufactured through the above steps can suppress fluctuations in frequency characteristics, the generation rate of defective products can be suppressed and the manufacturing cost can be reduced.
 次に、図7及び図8を参照しつつ、本実施形態に係る圧電振動素子を利用して製造される圧電振動子の構成例について説明する。なお、以下においては、圧電基板として水晶片(Quartz Crystal Element)を利用した水晶振動子(Quartz Crystal Resonator Unit)を例に挙げて説明する。ここで、図7は、本実施形態を利用して製造される圧電振動子の一例を示す分解斜視図である。図8は、図7のVIII-VIII線断面図である。 Next, a configuration example of a piezoelectric vibrator manufactured using the piezoelectric vibration element according to the present embodiment will be described with reference to FIGS. 7 and 8. In the following description, a quartz resonator (Quartz Crystal Resonator Unit) using a quartz piece (Quartz Crystal Element) as a piezoelectric substrate will be described as an example. Here, FIG. 7 is an exploded perspective view showing an example of a piezoelectric vibrator manufactured using the present embodiment. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
 図7に示すように、水晶振動子1は、水晶振動素子(Quartz Crystal Resonator)10と、蓋部材20と、ベース部材30とを備える。蓋部材20及びベース部材30は、水晶振動素子10を収容するための保持器である。図7に示す例では、蓋部材20は凹状をなしており、ベース部材30は平板状をなしている。蓋部材20は、具体的にはベース部材30側に開口を有する箱形状である。なお、蓋部材20が平板状、且つベース部材30が凹状であってもよい。 As shown in FIG. 7, the crystal resonator 1 includes a crystal resonator element (Quartz Crystal Resonator) 10, a lid member 20, and a base member 30. The lid member 20 and the base member 30 are holders for housing the crystal resonator element 10. In the example shown in FIG. 7, the lid member 20 has a concave shape, and the base member 30 has a flat plate shape. Specifically, the lid member 20 has a box shape having an opening on the base member 30 side. The lid member 20 may be flat and the base member 30 may be concave.
 水晶振動素子10は、ATカット型の水晶片(Quartz Crystal Element)11を有する。ATカット型の水晶片11は、人工水晶の結晶軸であるX軸、Y軸、Z軸のうち、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に35度15分±1分30秒回転させた軸をそれぞれY´軸及びZ´軸とした場合、X軸及びZ´軸によって特定される面と平行な面(以下、「XZ´面」と呼ぶ。)を主面として切り出されたものである。水晶片11は、XZ´面において矩形状であり、X軸方向に平行な長辺が延在する長辺方向と、Z´軸方向に平行な短辺が延在する短辺方向と、Y´軸方向に平行な厚さが延在する厚さ方向を有する。水晶片11は、互いに対向するXZ´面である第1主面12a及び第2主面12bと、短辺に沿って延在し両主面を繋ぐ端面12cと、を有する。 The crystal resonator element 10 includes an AT-cut type crystal piece (Quartz Crystal Element) 11. The AT-cut crystal piece 11 has an X-axis, a Y-axis, and a Z-axis which are crystal axes of artificial quartz, and the Y-axis and the Z-axis are 35 degrees 15 minutes around the X-axis from the Y-axis to the Z-axis. When the axes rotated by ± 1 minute 30 seconds are defined as the Y ′ axis and the Z ′ axis, respectively, a plane parallel to the plane specified by the X axis and the Z ′ axis (hereinafter referred to as “XZ ′ plane”). It was cut out as the main surface. The crystal piece 11 has a rectangular shape on the XZ ′ plane, a long side direction in which a long side parallel to the X-axis direction extends, a short side direction in which a short side parallel to the Z′-axis direction extends, and Y A thickness direction parallel to the 'axis direction extends. The crystal piece 11 has a first main surface 12a and a second main surface 12b which are XZ ′ surfaces facing each other, and an end surface 12c extending along the short side and connecting the two main surfaces.
 ATカット水晶片を用いた水晶振動素子は、広い温度範囲で高い周波数安定性を有し、また、経時変化特性にも優れている上、低コストで製造することが可能である。また、ATカット水晶振動素子は、厚みすべり振動モード(Thickness Shear Mode)を主振動として用いられる。なお、水晶片のカット角度は、ATカット以外の異なるカット(例えばBTカットなど)を適用してもよい。また、水晶片11は、XZ´面において矩形状をなしているが、これに限定されるものではなく、櫛歯型であってもよい。 A quartz resonator element using an AT-cut quartz piece has high frequency stability over a wide temperature range, is excellent in aging characteristics, and can be manufactured at low cost. Further, the AT-cut quartz crystal resonator element uses a thickness shear vibration mode as a main vibration. In addition, you may apply different cuts (for example, BT cut etc.) other than AT cut for the cut angle of a crystal piece. Further, the crystal piece 11 has a rectangular shape on the XZ ′ plane, but is not limited to this, and may be a comb-teeth shape.
 水晶振動素子10は、一対の電極を構成する第1励振電極14a及び第2励振電極14bを有する。第1励振電極14aは、第1主面12aの中央部に設けられている。また、第2励振電極14bは、第2主面12bの中央部に設けられている。第1励振電極14aと第2励振電極14bは、水晶片11を挟んで互いに対向して設けられている。第1励振電極14aと第2励振電極14bとは、XZ´面において略全体が重なり合うように配置されている。 The crystal resonator element 10 includes a first excitation electrode 14a and a second excitation electrode 14b that constitute a pair of electrodes. The first excitation electrode 14a is provided at the center of the first main surface 12a. The second excitation electrode 14b is provided at the center of the second main surface 12b. The first excitation electrode 14a and the second excitation electrode 14b are provided to face each other with the crystal piece 11 in between. The first excitation electrode 14a and the second excitation electrode 14b are disposed so as to substantially overlap each other on the XZ ′ plane.
 水晶振動素子10は、一対の引出電極15a,15bと、一対の接続電極16a,16bと、を有する。接続電極16aは、引出電極15aを介して第1励振電極14aと電気的に接続されている。また、接続電極16bは、引出電極15bを介して第2励振電極14bと電気的に接続されている。接続電極16a及び16bは、第1励振電極14a及び第2励振電極14bをベース部材30に電気的に接続するための端子である。第1主面12aにおいて、第1励振電極14a、引出電極15a、及び接続電極16aは連続して設けられている。さらに、接続電極16aは、端面12c及び第2主面12bに亘って延在している。第2主面12bにおいても同様に、第2励振電極14b、引出電極15b、及び接続電極16bが連続して設けられている。また、接続電極16bは、端面12c及び第1主面12aに亘って延在している。図7に示した構成例では、接続電極16a及び16bは、水晶片11の短辺方向(Z´軸方向)に沿って配列されている。なお、接続電極16a及び16bは、水晶片11の長辺方向(X軸方向)に沿って配列されていてもよい。また、接続電極16a及び16bは、水晶片11の長辺又は短辺の中央付近に配置されてもよく、それぞれ水晶片11の別の辺に配置されてもよい。 The crystal resonator element 10 has a pair of extraction electrodes 15a and 15b and a pair of connection electrodes 16a and 16b. The connection electrode 16a is electrically connected to the first excitation electrode 14a via the extraction electrode 15a. The connection electrode 16b is electrically connected to the second excitation electrode 14b through the extraction electrode 15b. The connection electrodes 16 a and 16 b are terminals for electrically connecting the first excitation electrode 14 a and the second excitation electrode 14 b to the base member 30. On the first main surface 12a, the first excitation electrode 14a, the extraction electrode 15a, and the connection electrode 16a are provided continuously. Further, the connection electrode 16a extends over the end surface 12c and the second main surface 12b. Similarly, on the second main surface 12b, the second excitation electrode 14b, the extraction electrode 15b, and the connection electrode 16b are continuously provided. The connection electrode 16b extends over the end surface 12c and the first main surface 12a. In the configuration example shown in FIG. 7, the connection electrodes 16 a and 16 b are arranged along the short side direction (Z′-axis direction) of the crystal piece 11. The connection electrodes 16a and 16b may be arranged along the long side direction (X-axis direction) of the crystal piece 11. Further, the connection electrodes 16 a and 16 b may be arranged near the center of the long side or the short side of the crystal piece 11, or may be arranged on different sides of the crystal piece 11.
 導電性保持部材36a,36bは、ベース部材30の一対の電極パッドに、接続電極16a及び16bをそれぞれ電気的に接続する。導電性保持部材36a,36bは、例えば、紫外線硬化樹脂などの導電性接着剤によって形成される。導電性保持部材36aは、例えば、第2主面12b及び端面12cの接続電極16aと接触している。導電性保持部材36bについても同様である。導電性保持部材と接続電極との接触面積を増加させることで、電極パッドと接続電極との導電性を向上させることができる。 The conductive holding members 36 a and 36 b electrically connect the connection electrodes 16 a and 16 b to the pair of electrode pads of the base member 30, respectively. The conductive holding members 36a and 36b are formed of a conductive adhesive such as an ultraviolet curable resin, for example. For example, the conductive holding member 36a is in contact with the connection electrodes 16a on the second main surface 12b and the end surface 12c. The same applies to the conductive holding member 36b. By increasing the contact area between the conductive holding member and the connection electrode, the conductivity between the electrode pad and the connection electrode can be improved.
 蓋部材20は、ベース部材30に接合され、これによって水晶振動素子10を内部空間26に収容する。蓋部材20は、内面24及び外面25を有し、ベース部材30の第3主面32aに向かって開口した凹状をなしている。蓋部材20は、ベース部材30の第3主面32aに対向する天面部21と、天面部21の外縁に接続されておりかつ天面部21の主面に対して交差する方向に延在する側壁部22とを有する。蓋部材20は、凹状の開口縁(側壁部22の端面)においてベース部材30の第3主面32aに対向する対向面23を有し、この対向面23は、水晶振動素子10の周囲を囲むように枠状に延在している。蓋部材20の材質は特に限定されるものではないが、例えば金属などの導電材料で構成される。これによれば、蓋部材20に電磁波を遮蔽する電磁シールド機能を付加することができる。 The lid member 20 is bonded to the base member 30, and thereby accommodates the crystal resonator element 10 in the internal space 26. The lid member 20 has an inner surface 24 and an outer surface 25, and has a concave shape that opens toward the third main surface 32 a of the base member 30. The lid member 20 has a top surface portion 21 that faces the third main surface 32 a of the base member 30, and a side wall that is connected to the outer edge of the top surface portion 21 and extends in a direction intersecting the main surface of the top surface portion 21. Part 22. The lid member 20 has a facing surface 23 that faces the third main surface 32 a of the base member 30 at the concave opening edge (end surface of the side wall portion 22), and this facing surface 23 surrounds the periphery of the crystal resonator element 10. It extends like a frame. The material of the lid member 20 is not particularly limited, but is made of a conductive material such as metal. According to this, the electromagnetic shielding function which shields electromagnetic waves can be added to the lid member 20.
 ベース部材30は水晶振動素子10を励振可能に支持するものである。具体的には、水晶振動素子10は導電性保持部材36a,36bを介してベース部材30の第3主面32aに励振可能に保持されている。ベース部材30は基体31を有する。基体31は、互いに対向するXZ´面である第3主面32a及び第4主面32bを有する。基体31は、例えば絶縁性セラミック(アルミナ)などの焼結材である。 The base member 30 supports the crystal resonator element 10 so that it can be excited. Specifically, the crystal resonator element 10 is held on the third main surface 32a of the base member 30 through the conductive holding members 36a and 36b so as to be able to be excited. The base member 30 has a base 31. The base 31 has a third main surface 32a and a fourth main surface 32b that are XZ ′ surfaces facing each other. The base 31 is a sintered material such as insulating ceramic (alumina).
 ベース部材30は、第3主面32aに設けられた電極パッド33a,33bと、第2主面に設けられた外部電極35a,35b,35c,35dと、を有する。電極パッド33a,33bは、ベース部材30と水晶振動素子10とを電気的に接続するための端子である。また、外部電極35a,35b,35c,35dは、図示しない実装基板と水晶振動子1とを電気的に接続するための端子である。電極パッド33aは、Y´軸方向に延在するビア電極34aを介して外部電極35aに電気的に接続され、電極パッド33bは、Y´軸方向に延在するビア電極34bを介して外部電極35bに電気的に接続されている。ビア電極34a,34bは基体31をY´軸方向に貫通するビアホール内に形成される。 The base member 30 has electrode pads 33a and 33b provided on the third main surface 32a and external electrodes 35a, 35b, 35c and 35d provided on the second main surface. The electrode pads 33 a and 33 b are terminals for electrically connecting the base member 30 and the crystal resonator element 10. The external electrodes 35a, 35b, 35c, and 35d are terminals for electrically connecting a mounting substrate (not shown) and the crystal unit 1. The electrode pad 33a is electrically connected to the external electrode 35a via a via electrode 34a extending in the Y′-axis direction, and the electrode pad 33b is an external electrode via a via electrode 34b extending in the Y′-axis direction. It is electrically connected to 35b. The via electrodes 34a and 34b are formed in via holes that penetrate the base 31 in the Y′-axis direction.
 ベース部材30の電極パッド33a,33bは、第3主面32a上においてベース部材30のX軸負方向側の短辺付近に設けられ、ベース部材30の短辺から離れてかつ当該短辺方向に沿って配列されている。電極パッド33aは、導電性保持部材36aを介して水晶振動素子10の接続電極16aに接続され、他方、電極パッド33bは、導電性保持部材36bを介して水晶振動素子10の接続電極16bに接続される。 The electrode pads 33a and 33b of the base member 30 are provided in the vicinity of the short side of the base member 30 on the X axis negative direction side on the third main surface 32a, away from the short side of the base member 30 and in the short side direction. Are arranged along. The electrode pad 33a is connected to the connection electrode 16a of the crystal resonator element 10 via the conductive holding member 36a, while the electrode pad 33b is connected to the connection electrode 16b of the crystal resonator element 10 via the conductive holding member 36b. Is done.
 複数の外部電極35a,35b,35c,35dは、第4主面32bのそれぞれの角付近に設けられている。例えば、外部電極35a,35bが、電極パッド33a,33bの直下に配置されている。これによってY´軸方向に延在するビア電極34a,34bによって、外部電極35a,35bを電極パッド33a,33bに電気的に接続することができる。4つの外部電極35a~35dのうち、ベース部材30のX軸負方向側の短辺付近に配置された外部電極35a,35bは、水晶振動素子10の入出力信号が供給される入出力電極である。また、ベース部材30のX軸正方向側の短辺付近に配置された外部電極35c,35dは、水晶振動素子10の入出力信号が供給されないダミー電極となっている。このようなダミー電極には、水晶振動子1が実装される図示しない実装基板上の他の電子素子の入出力信号も供給されない。あるいは、外部電極35c,35dは、接地電位が供給される接地用電極であってもよい。蓋部材20を接地用電極である外部電極35c,35dに接続することによって、蓋部材20の電磁シールド機能を向上させることができる。 The plurality of external electrodes 35a, 35b, 35c, and 35d are provided in the vicinity of each corner of the fourth main surface 32b. For example, the external electrodes 35a and 35b are disposed immediately below the electrode pads 33a and 33b. Accordingly, the external electrodes 35a and 35b can be electrically connected to the electrode pads 33a and 33b by the via electrodes 34a and 34b extending in the Y′-axis direction. Out of the four external electrodes 35a to 35d, the external electrodes 35a and 35b arranged near the short side of the base member 30 on the X axis negative direction side are input / output electrodes to which an input / output signal of the crystal resonator element 10 is supplied. is there. The external electrodes 35c and 35d arranged near the short side of the base member 30 on the X axis positive direction side are dummy electrodes to which input / output signals of the crystal resonator element 10 are not supplied. Such dummy electrodes are not supplied with input / output signals of other electronic elements on a mounting board (not shown) on which the crystal unit 1 is mounted. Alternatively, the external electrodes 35c and 35d may be grounding electrodes to which a ground potential is supplied. By connecting the lid member 20 to the external electrodes 35c and 35d, which are grounding electrodes, the electromagnetic shielding function of the lid member 20 can be improved.
 基体31の第3主面32aには、封止枠37が設けられている。例えば、封止枠37は、第3主面32aを平面視したときに矩形の枠状をなしている。また、電極パッド33a,33bは、封止枠37の内側に配置されており、封止枠37は水晶振動素子10を囲むように設けられている。封止枠37は、導電材料により構成されている。封止枠37上には後述する接合部材40が設けられ、これによって、蓋部材20が接合部材40及び封止枠37を介してベース部材30に接合される。例えば、ベース部材30の電極パッド33a,33b、外部電極35a~d及び封止枠37はいずれも金属膜から構成されている。当該金属膜は、例えば、基体31に接触する側(下層)から、基体31から離れる側(上層)にかけて、モリブデン(Mo)層、ニッケル(Ni)層、及び金(Au)層がこの順に積層されて構成されている。また、ビア電極34a,34bは、基体31のビアホールにモリブデン(Mo)などの金属材料を充填して形成することができる。 A sealing frame 37 is provided on the third main surface 32 a of the base 31. For example, the sealing frame 37 has a rectangular frame shape when the third main surface 32a is viewed in plan. The electrode pads 33 a and 33 b are disposed inside the sealing frame 37, and the sealing frame 37 is provided so as to surround the crystal resonator element 10. The sealing frame 37 is made of a conductive material. A joining member 40 described later is provided on the sealing frame 37, whereby the lid member 20 is joined to the base member 30 via the joining member 40 and the sealing frame 37. For example, the electrode pads 33a and 33b, the external electrodes 35a to 35d, and the sealing frame 37 of the base member 30 are all made of a metal film. In the metal film, for example, a molybdenum (Mo) layer, a nickel (Ni) layer, and a gold (Au) layer are laminated in this order from the side contacting the base 31 (lower layer) to the side away from the base 31 (upper layer). Has been configured. The via electrodes 34a and 34b can be formed by filling the via hole of the base 31 with a metal material such as molybdenum (Mo).
 蓋部材20及びベース部材30の両者が封止枠37及び接合部材40を介して接合されることによって、水晶振動素子10が、蓋部材20とベース部材30とによって囲まれた内部空間(キャビティ)26に封止される。この場合、内部空間26の圧力は大気圧力よりも低圧な真空状態であることが好ましく、これにより第1励振電極14a,第2励振電極14bの酸化による水晶振動子1の周波数特性の経時変化などが低減できるため好ましい。 When both the lid member 20 and the base member 30 are joined via the sealing frame 37 and the joining member 40, the quartz resonator element 10 is surrounded by the lid member 20 and the base member 30 (cavity). 26 is sealed. In this case, the pressure in the internal space 26 is preferably in a vacuum state lower than the atmospheric pressure, so that the frequency characteristics of the crystal resonator 1 change with time due to oxidation of the first excitation electrode 14a and the second excitation electrode 14b. Can be reduced.
 接合部材40は、蓋部材20及びベース部材30の各全周に亘って設けられている。具体的には、接合部材40は封止枠37上に設けられている。封止枠37及び接合部材40が、蓋部材20の側壁部22の対向面23と、ベース部材30の第3主面32aと、の間に介在することによって、水晶振動素子10が蓋部材20及びベース部材30によって封止される。 The joining member 40 is provided over the entire circumference of the lid member 20 and the base member 30. Specifically, the joining member 40 is provided on the sealing frame 37. Since the sealing frame 37 and the joining member 40 are interposed between the facing surface 23 of the side wall portion 22 of the lid member 20 and the third main surface 32a of the base member 30, the crystal resonator element 10 is covered with the lid member 20. And the base member 30 is sealed.
 本構成例に係る水晶振動素子10は、水晶片11の長辺方向の一方端(導電性保持部材36a,36bが配置される側の端部)が固定端であり、その他方端が自由端となっている。また、水晶振動素子10、蓋部材20、及びベース部材30は、XZ´面において、それぞれ矩形状をなしており、互いに長辺方向及び短辺方向が同一である。 In the crystal resonator element 10 according to this configuration example, one end of the crystal piece 11 in the long side direction (the end on the side where the conductive holding members 36a and 36b are disposed) is a fixed end, and the other end is a free end. It has become. In addition, the crystal resonator element 10, the lid member 20, and the base member 30 have rectangular shapes on the XZ ′ plane, and the long side direction and the short side direction are the same.
 但し、水晶振動素子10の固定端の位置は特に限定されるものではなく、水晶片11の長辺方向の両端においてベース部材30に固定されていてもよい。この場合、水晶振動素子10を水晶片11の長辺方向の両端において固定する態様で、水晶振動素子10及びベース部材30の各電極を形成すればよい。 However, the position of the fixed end of the crystal resonator element 10 is not particularly limited, and may be fixed to the base member 30 at both ends in the long side direction of the crystal piece 11. In this case, the crystal resonator element 10 and the electrodes of the base member 30 may be formed in such a manner that the crystal resonator element 10 is fixed at both ends of the crystal piece 11 in the long side direction.
 本構成例に係る水晶振動子1においては、ベース部材30の外部電極35a,35bを介して、水晶振動素子10における一対の励振電極14a,14bの間に交番電界を印加する。これにより、厚みすべり振動モードなどの所定の振動モードによって水晶片11が振動し、該振動に伴う共振特性が得られる。 In the crystal resonator 1 according to this configuration example, an alternating electric field is applied between the pair of excitation electrodes 14 a and 14 b in the crystal resonator element 10 via the external electrodes 35 a and 35 b of the base member 30. As a result, the crystal piece 11 vibrates in a predetermined vibration mode such as a thickness shear vibration mode, and resonance characteristics associated with the vibration are obtained.
 以上のような水晶振動子を製造する場合に、本実施形態に係る製造方法を利用することで、水晶振動子の性能(励振周波数)の変動を抑制することができる。 When manufacturing a crystal resonator as described above, fluctuations in the performance (excitation frequency) of the crystal resonator can be suppressed by using the manufacturing method according to this embodiment.
 次に、圧電振動子の変形例について説明する。以下の変形例では、上記実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については逐次言及しない。 Next, a modification of the piezoelectric vibrator will be described. In the following modified example, description of matters common to the above embodiment is omitted, and only different points will be described. In particular, the same operation effect by the same configuration will not be mentioned sequentially.
<変形例>
 図9は、本発明の変形例に係る圧電振動素子の斜視図である。変形例は、圧電振動素子210の形状が音叉型である点で、図7に示した構成例と相違している。具体的には、圧電基板211が互いに平行に配置された2つの音叉腕部219a,219bを有する。音叉腕部219a,219bは、X軸方向に延在し、Z´軸方向に並び、端面212c側の連結部219cで互いに連結されている。音叉腕部219aでは、XZ´面に平行であり互いに対向する一対の主面にそれぞれ励振電極214aが設けられ、当該一対の主面と交差し互いに対向する一対の側端面にそれぞれ励振電極214bが設けられている。音叉腕部219bでは、一対の主面にそれぞれ励振電極214bが設けられ、一対の側端面にそれぞれ励振電極214aが設けられている。なお、圧電振動素子210の構成は特に限定されるものではなく、音叉腕部の形状や励振電極の配置などが異なっていてもよい。
<Modification>
FIG. 9 is a perspective view of a piezoelectric vibration element according to a modification of the present invention. The modification is different from the configuration example shown in FIG. 7 in that the shape of the piezoelectric vibration element 210 is a tuning fork type. Specifically, the piezoelectric substrate 211 has two tuning fork arm portions 219a and 219b arranged in parallel to each other. The tuning fork arm portions 219a and 219b extend in the X-axis direction, are aligned in the Z′-axis direction, and are connected to each other by a connecting portion 219c on the end face 212c side. In the tuning fork arm portion 219a, excitation electrodes 214a are provided on a pair of main surfaces that are parallel to the XZ 'plane and face each other, and excitation electrodes 214b intersect the pair of main surfaces and face each other. Is provided. In the tuning fork arm portion 219b, excitation electrodes 214b are provided on a pair of main surfaces, respectively, and excitation electrodes 214a are provided on a pair of side end surfaces. The configuration of the piezoelectric vibration element 210 is not particularly limited, and the shape of the tuning fork arm, the arrangement of the excitation electrodes, and the like may be different.
 以上のような変形例においても、上記したのと同様の効果を得ることができる。 Even in the above modification, the same effect as described above can be obtained.
 なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 The embodiment described above is for facilitating understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof. In other words, those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention. For example, each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate. In addition, each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.
 99…圧電基板(水晶基板) 100…集合基板
 110…水晶片(圧電片)
 111…第1水晶片 112…第2水晶片
 120…桟部 121…第1桟部 122…第2桟部
 130…支持部 131…第1支持部 132…第2支持部
 140…突出部 141…第1突出部 142…第2突出部 142a…先端
 C1,C2,C3,C4…角部 200,300…金属層
 400,500…フォトレジスト層 501…フォトレジスト溶液
 502,503…流路 510…電極パターン
 314…励振電極 315…引出電極 316…接続電極
99 ... Piezoelectric substrate (quartz substrate) 100 ... Aggregate substrate 110 ... Crystal piece (piezoelectric piece)
DESCRIPTION OF SYMBOLS 111 ... 1st crystal piece 112 ... 2nd crystal piece 120 ... Crosspiece 121 ... 1st crosspiece 122 ... 2nd crosspiece 130 ... Support part 131 ... 1st support part 132 ... 2nd support part 140 ... Protrusion part 141 ... 1st protrusion 142 ... 2nd protrusion 142a ... tip C1, C2, C3, C4 ... corner 200, 300 ... metal layer 400, 500 ... photoresist layer 501 ... photoresist solution 502, 503 ... flow path 510 ... electrode Pattern 314 ... Excitation electrode 315 ... Extraction electrode 316 ... Connection electrode

Claims (10)

  1.  圧電基板を準備する工程と、
     第1方向に延在し前記第1方向と交差する第2方向に並ぶ複数の桟部と、前記複数の桟部における隣同士の第1桟部と第2桟部との間に位置し前記第1方向に並ぶ複数の圧電片と、前記複数の圧電片を前記第1桟部に支持する複数の支持部と、前記第2桟部から前記第1桟部に向かい突出し且つ前記圧電片から離れた先端を有する突出部と、を備える集合基板を前記圧電基板から形成する工程と、
     前記集合基板の少なくとも前記圧電片の主面の上に金属層を形成する工程と、
     前記金属層の上にフォトレジストを含む溶液を塗布しフォトレジスト層を形成する工程と、
     前記フォトレジスト層を露光及び現像して電極パターンを形成する工程と、
     前記金属層を前記電極パターンに従って除去して前記圧電片の前記主面の上に励振電極を形成する工程と、
    を含む、圧電振動素子の製造方法。
    Preparing a piezoelectric substrate;
    A plurality of crosspieces extending in a first direction and arranged in a second direction intersecting the first direction, and located between adjacent first and second crosspieces in the plurality of crosspieces, A plurality of piezoelectric pieces arranged in a first direction; a plurality of support portions for supporting the plurality of piezoelectric pieces on the first crosspiece; and a projection protruding from the second crosspiece toward the first crosspiece and from the piezoelectric pieces. Forming a collective substrate from the piezoelectric substrate comprising a protrusion having a distant tip; and
    Forming a metal layer on at least a main surface of the piezoelectric piece of the aggregate substrate;
    Applying a solution containing a photoresist on the metal layer to form a photoresist layer;
    Exposing and developing the photoresist layer to form an electrode pattern;
    Removing the metal layer according to the electrode pattern to form an excitation electrode on the main surface of the piezoelectric piece;
    A method for manufacturing a piezoelectric vibration element, comprising:
  2.  前記第1桟部は、隣同士の2つの桟部のうち前記第2方向の一方側に位置する桟部であり、前記集合基板の全ての前記圧電片は、前記支持部を介して前記第2方向の前記一方側に位置する前記第1桟部に支持されている、
     請求項1に記載の圧電振動素子の製造方法。
    The first crosspiece is a crosspiece located on one side in the second direction among the two crosspieces adjacent to each other, and all the piezoelectric pieces of the collective substrate are connected to the first via the support. Supported by the first crosspiece located on the one side in two directions,
    The method for manufacturing a piezoelectric vibration element according to claim 1.
  3.  前記フォトレジスト層を形成する工程は、スピンコート法を含む、
     請求項1又は2に記載の圧電振動素子の製造方法。
    The step of forming the photoresist layer includes a spin coating method.
    The method for manufacturing a piezoelectric vibration element according to claim 1.
  4.  前記突出部は、前記圧電片の角部に向かい突出している、
     請求項1から3のいずれか1項に記載の圧電振動素子の製造方法。
    The protruding portion protrudes toward a corner portion of the piezoelectric piece.
    The manufacturing method of the piezoelectric vibration element of any one of Claim 1 to 3.
  5.  前記突出部は、前記第2方向における前記圧電片と前記第2桟部との間のスペースを避けるように、前記第1方向に並ぶ隣同士の前記圧電片の間のスペースに向かって突出している、
     請求項1から4のいずれか1項に記載の圧電振動素子の製造方法。
    The protruding portion protrudes toward a space between adjacent piezoelectric pieces arranged in the first direction so as to avoid a space between the piezoelectric piece and the second crosspiece in the second direction. Yes,
    The manufacturing method of the piezoelectric vibration element of any one of Claim 1 to 4.
  6.  前記突出部は、前記第1方向における隣同士の前記圧電片の間のスペースから離れている、
     請求項1から5のいずれか1項に記載の圧電振動素子の製造方法。
    The protrusion is separated from a space between the adjacent piezoelectric pieces in the first direction.
    The method for manufacturing a piezoelectric vibration element according to claim 1.
  7.  前記突出部が、前記複数の圧電片における隣り合う2つの圧電片のうち一方の圧電片の第1角部と、他方の圧電片の第2角部と、の両方に近づくように突出している、
     請求項1から6のいずれか1項に記載の圧電振動素子の製造方法。
    The protruding portion protrudes so as to approach both the first corner of one piezoelectric piece and the second corner of the other piezoelectric piece of two adjacent piezoelectric pieces in the plurality of piezoelectric pieces. ,
    The method for manufacturing a piezoelectric vibration element according to claim 1.
  8.  前記圧電片は、前記主面を平面視したときに、
     中央に位置し前記励振電極が形成される振動部と、
     前記振動部よりも外側に位置し前記圧電片の前記主面の法線方向における厚みが前記振動部とは異なる周縁部と、を有する、
     請求項1から7のいずれか1項に記載の圧電振動素子の製造方法。
    When the piezoelectric piece is viewed in plan from the main surface,
    A vibrating part located in the center and where the excitation electrode is formed;
    A peripheral edge located on the outer side of the vibrating portion and having a thickness in the normal direction of the principal surface of the piezoelectric piece that is different from the vibrating portion;
    The manufacturing method of the piezoelectric vibration element of any one of Claim 1 to 7.
  9.  前記周縁部の厚みが、前記振動部の厚みよりも薄く、
     前記周縁部が、前記振動部よりも前記第1桟部に近い側に位置する第1周縁部と、前記振動部よりも前記第2桟部に近い側に位置する第2周縁部と、を有し、
     前記第2周縁部の面積は、前記第1周縁部の面積よりも小さい、
     請求項8に記載の圧電振動素子の製造方法。
    The peripheral edge is thinner than the vibrating part,
    A first peripheral portion located on a side closer to the first crosspiece portion than the vibrating portion; and a second peripheral portion located on a side closer to the second crosspiece portion than the vibrating portion. Have
    The area of the second peripheral edge is smaller than the area of the first peripheral edge,
    The method for manufacturing a piezoelectric vibration element according to claim 8.
  10.  さらに、前記圧電片をそれぞれ前記支持部から分離して圧電振動素子とする工程を含む、
     請求項1から9のいずれか1項に記載の圧電振動素子の製造方法。
    Further, the method includes a step of separating the piezoelectric pieces from the support portions to form piezoelectric vibration elements.
    The method for manufacturing a piezoelectric vibration element according to claim 1.
PCT/JP2017/041434 2016-11-21 2017-11-17 Piezoelectric vibration element manufacturing method WO2018092872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-225896 2016-11-21
JP2016225896 2016-11-21

Publications (1)

Publication Number Publication Date
WO2018092872A1 true WO2018092872A1 (en) 2018-05-24

Family

ID=62145600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041434 WO2018092872A1 (en) 2016-11-21 2017-11-17 Piezoelectric vibration element manufacturing method

Country Status (1)

Country Link
WO (1) WO2018092872A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273679A (en) * 2002-03-14 2003-09-26 Seiko Epson Corp Method of manufacturing piezoelectric vibrator, photo- mask, piezoelectric vibrator, and piezoelectric device
JP2005223396A (en) * 2004-02-03 2005-08-18 Toyo Commun Equip Co Ltd Electrode forming method of piezoelectric device and mcf employing the same
JP2014011552A (en) * 2012-06-28 2014-01-20 Kyocera Crystal Device Corp Intermediate product of piezoelectric element and method of manufacturing piezoelectric element
JP2016152476A (en) * 2015-02-17 2016-08-22 セイコーエプソン株式会社 Wafer and inspection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273679A (en) * 2002-03-14 2003-09-26 Seiko Epson Corp Method of manufacturing piezoelectric vibrator, photo- mask, piezoelectric vibrator, and piezoelectric device
JP2005223396A (en) * 2004-02-03 2005-08-18 Toyo Commun Equip Co Ltd Electrode forming method of piezoelectric device and mcf employing the same
JP2014011552A (en) * 2012-06-28 2014-01-20 Kyocera Crystal Device Corp Intermediate product of piezoelectric element and method of manufacturing piezoelectric element
JP2016152476A (en) * 2015-02-17 2016-08-22 セイコーエプソン株式会社 Wafer and inspection method

Similar Documents

Publication Publication Date Title
JP5239748B2 (en) Quartz crystal
US8810112B2 (en) Piezoelectric devices and methods for manufacturing piezoelectric substrates used in such devices
JP6017189B2 (en) Piezoelectric vibrating piece and piezoelectric device
US8773005B2 (en) Quartz-crystal devices exhibiting reduced electrical impedance
US20130193807A1 (en) Quartz crystal vibrating piece and quartz crystal device
US8742651B2 (en) Piezoelectric vibrating pieces and piezoelectric devices comprising same, and methods for manufacturing same
US7437932B2 (en) Gyro vibration piece and gyro sensor
US8779652B2 (en) At-cut quartz-crystal vibrating pieces and devices, and methods for manufacturing same
JP2004289650A (en) Manufacturing of piezoelectric device and piezoelectric vibrating piece
JP6569874B2 (en) Quartz crystal resonator and manufacturing method thereof
TWI676353B (en) Crystal vibration element and manufacturing method thereof
JP5272651B2 (en) Manufacturing method of vibrating piece
WO2018092872A1 (en) Piezoelectric vibration element manufacturing method
JP2013229645A (en) Piezoelectric device and manufacturing method of the same
JP2001053036A (en) Dicing blade and piezoelectric element plate
JP7175081B2 (en) Piezoelectric vibration element manufacturing method and aggregate substrate
JP2016174328A (en) Wafer manufacturing method and wafer
JP7045637B2 (en) Manufacturing method of piezoelectric vibration element and assembly board
JP6617928B2 (en) Method for manufacturing piezoelectric vibration element
JP6506535B2 (en) Piezoelectric vibrating reed and piezoelectric vibrator
JPH09181556A (en) Piezoelectric vibrator
JP4449482B2 (en) Piezoelectric vibrating piece, method for manufacturing piezoelectric vibrating piece, piezoelectric vibrator, and piezoelectric oscillator
JP7427399B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JP3734127B2 (en) Piezoelectric vibrator, piezoelectric oscillator, and method of manufacturing piezoelectric vibration element used therefor
JP6525766B2 (en) Quartz crystal vibrator assembly wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP