JP2005220432A - Plate temperature cooling control method in cooling zone of continuous steel plate heat treatment equipment - Google Patents

Plate temperature cooling control method in cooling zone of continuous steel plate heat treatment equipment Download PDF

Info

Publication number
JP2005220432A
JP2005220432A JP2004032537A JP2004032537A JP2005220432A JP 2005220432 A JP2005220432 A JP 2005220432A JP 2004032537 A JP2004032537 A JP 2004032537A JP 2004032537 A JP2004032537 A JP 2004032537A JP 2005220432 A JP2005220432 A JP 2005220432A
Authority
JP
Japan
Prior art keywords
plate
cooling
cooling zone
blower
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004032537A
Other languages
Japanese (ja)
Inventor
Shintaro Harada
新太郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004032537A priority Critical patent/JP2005220432A/en
Publication of JP2005220432A publication Critical patent/JP2005220432A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plate temperature cooling control method in a cooling zone capable of suppressing insufficient cooling or supercooling of a steel plate traveling through the cooling zone of a continuous heat treatment equipment. <P>SOLUTION: In the plate temperature cooling control method to perform feed-forward control of the number of rotations of a cooling blower 4 by interlocking the plate passing schedule with information on the target plate temperature on the cooling zone inlet side, the target plate temperature on the cooling zone outlet side, the plate thickness, the plate width and the plate passing speed during the actual operation, and information on the welding point tracking, the plate thickness measured by a plate thickness meter 10 is taken in before the steel plate 1 is introduced in the cooling zone 2, the mean actual plate thickness is calculated for each divided section of the coil, and the mean actual plate thickness is used for the operation of the number of rotation of the blower for the plate temperature control during the feed-forward operation when the steel plate 1 is cooled by the cooling blower 4 in the cooling zone 2 of the continuous heat treatment equipment of the steel plate. The heat balance of the cooling zone 2 such as the cooling heat-removal amount of the steel plate 1, the furnace body heat radiation amount, and the heat exchange in a heat exchanger 6 is calculated, and the constant resolution of the number of rotations of the blower which must be stabilized when the temperature is converged to the plate temperature on the target output side is operated in advance to form the command value of the number of rotations of the blower. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼板の連続熱処理設備の冷却帯における板温冷却制御方法に関する。   The present invention relates to a plate temperature cooling control method in a cooling zone of a continuous heat treatment facility for steel plates.

鋼板を加熱帯、冷却帯などを備えた連続熱処理設備を走行させて連続的に熱処理することが行われている。そのうち、冷却帯での板温の制御について、例えば特許文献1や特許文献2に開示されている。   Continuously heat-treating a steel plate by running a continuous heat treatment facility equipped with a heating zone, a cooling zone, and the like is performed. Among them, the control of the plate temperature in the cooling zone is disclosed in, for example, Patent Document 1 and Patent Document 2.

特許文献1は、鋼板の板厚変更時に、板厚の変更率から冷却負荷の変化率を演算し、フィードフォワード制御を行っている。また、特許文献2では、安定状態判別器で通板実績データから、安定通板制御データを選別し、それをフィードフォワード制御の補正に用いている。   In Patent Document 1, when changing the plate thickness of a steel plate, the rate of change of the cooling load is calculated from the rate of change of the plate thickness, and feedforward control is performed. Moreover, in patent document 2, the stable passage discriminating device sorts out the stable pass plate control data from the pass plate record data, and uses it for the correction of the feedforward control.

図5は従来の鋼板の冷却制御のシステム図である。図5において、鋼板1を冷却する冷却帯2には走行する鋼板1を冷却するための冷却用ウインドボックス3が配置され、冷却用ウインドボックス3からは冷却ブロワ4により冷却用の気体が噴射され、噴射された気体は、ダクト5に排出され、ダクトの途中で熱交換器6により冷却されて冷却ブロワ4により冷却帯2へ循環させる。冷却帯2の出側には冷却帯出側板温計7が、入側には冷却帯入側板温計8がそれぞれ配置されて板温が検出される。   FIG. 5 is a system diagram for cooling control of a conventional steel sheet. In FIG. 5, a cooling wind box 3 for cooling the traveling steel plate 1 is disposed in a cooling zone 2 for cooling the steel plate 1, and cooling gas is injected from the cooling wind box 3 by the cooling blower 4. The injected gas is discharged to the duct 5, cooled by the heat exchanger 6 in the middle of the duct, and circulated to the cooling zone 2 by the cooling blower 4. A cooling zone exit side plate thermometer 7 is arranged on the exit side of the cooling zone 2 and a cooling zone entrance side plate thermometer 8 is arranged on the entry side to detect the plate temperature.

板温の冷却制御は、冷却ブロワ4の回転数を変更して行われる。ブロワ回転数の変更は、冷却帯の目標板温と実績板温の偏差によるフィードフォワード制御とプロセスコンピュータ9により、溶接点トラッキング情報(通板速度、溶接点位置)、と通板スケジュール情報(鋼種、公称板厚、板幅、通板速度、冷却帯入側温度、冷却帯出側目標温度)から、板温制御モデルにて、公称板厚、板幅、目標板温、ライン速度の変更量や変更率などをパラメータとして、ブロワ回転数演算器9でブロワ回転数の変更量を演算するフィードフォワード制御が行われる。
特開平6−212281号公報 特開2000−239748号公報
The cooling control of the plate temperature is performed by changing the rotation speed of the cooling blower 4. The blower rotation speed is changed by feedforward control based on the deviation between the target plate temperature and the actual plate temperature in the cooling zone and the process computer 9, welding point tracking information (plate passing speed, welding point position), and plate passing schedule information (steel type). , Nominal plate thickness, plate width, plate passing speed, cooling zone inlet side temperature, cooling zone outlet side target temperature), plate thickness control model, nominal plate thickness, plate width, target plate temperature, line speed change amount Using the change rate as a parameter, feedforward control is performed in which the blower rotational speed calculator 9 calculates the amount of change in the blower rotational speed.
JP-A-6-212281 JP 2000-239748 A

鋼板の板温制御においては、冷却帯に連続して通板される鋼板の公称板厚、熱処理温度、通板速度の異なる鋼板がつながる溶接点通過時や、目標板温や通板速度を変更した際に、公称板厚、板幅、目標板温、ライン速度の変更量や変更率などをパラメータとして、ブロワ回転数の変更量を演算するフィードフォワード制御がなされる。そして、板温制御に使用する板厚値は、プロセスコンピュータが通板スケジュールとして認識している公称板厚である。このように、従来のフィードフォワードでは公称板厚、板幅、目標板温、通板速度の変更量から、ブロワの回転数の変更量を演算するモデルが一般的であり、実績板温が目標板温に収束した際の、熱的に平衡な定常状態における冷却帯全体の平衡熱収支計算によるものではない。   In steel plate temperature control, the target plate temperature and plate passing speed are changed when passing through welding points where steel plates with different nominal plate thickness, heat treatment temperature, and plate passing speed are continuously passed through the cooling zone. When this is done, feedforward control is performed to calculate the amount of change in the blower rotational speed using parameters such as nominal plate thickness, plate width, target plate temperature, line speed change amount and change rate as parameters. And the plate | board thickness value used for plate | board temperature control is a nominal plate | board thickness which the process computer recognizes as a plate-feeding schedule. As described above, in conventional feedforward, a model that calculates the amount of change in the blower rotation speed from the amount of change in nominal plate thickness, plate width, target plate temperature, and plate feed speed is common, and the actual plate temperature is the target. It is not based on the calculation of the equilibrium heat balance of the entire cooling zone in the steady state in thermal equilibrium when it converges to the plate temperature.

また、一般に冷却帯はブロワ回転数の変更が、鋼板温度の変更に反映されるまでの時間は、回転数変更時間と冷却ガスが鋼板に到達するまでのダクト長だけであり、応答が速い。   Further, in general, the time until the change of the blower rotation speed is reflected in the change of the steel plate temperature is only the rotation speed change time and the duct length until the cooling gas reaches the steel plate in the cooling zone, and the response is fast.

しかし、冷却用ウインドボックスの配置、すなわち冷却帯の設備長さと出側板温計までの距離を考慮して、回転数指令変更が板温変化に反映された実績板温を確認してから次の回転数指令を演算できるように、ブロワ回転数変更タイミングを設定するので、応答が速い割に、ブロワ回転数の設定変更タイミングは長めであり、目標板温に収束するのに数分の時間を要することがある(図4従来例参照)。 However, considering the layout of the cooling windbox, that is, the length of the cooling zone and the distance to the outlet side thermometer, after confirming the actual plate temperature in which the change in the rotational speed command is reflected in the plate temperature change, Since the blower rotation speed change timing is set so that the rotation speed command can be calculated, although the response is fast, the blower rotation speed setting change timing is longer, and it takes several minutes to converge to the target plate temperature. It may be necessary (see the conventional example in FIG. 4).

特許文献1では、鋼板の板厚変更時に、その変更率から冷却負荷の変効率を演算し、フィードフォワード制御を行っているが、板厚の範囲によって板厚変更率に対するブロワ回転数変更量が一様でないために、板厚変効率からの予測制御では後行材の先端から目標板温に精度良く合わせることが困難である。また、鋼板のコイルの先端部、尾端部はコイル中央に比べて板厚の公差内の誤差が大きい傾向にあることも、公称板厚しか認識していない板温制御モデルには、予測制御を難しくする。   In Patent Document 1, when changing the plate thickness of the steel sheet, the change rate of the cooling load is calculated from the change rate and feedforward control is performed. However, the amount of change in the blower rotation speed with respect to the plate thickness change rate depends on the plate thickness range. Since it is not uniform, it is difficult for the predictive control based on the plate thickness changing efficiency to accurately match the target plate temperature from the leading edge of the succeeding material. In addition, the tip and tail ends of steel sheet coils tend to have larger errors within the plate thickness tolerance than the center of the coil. Make it difficult.

JISで規定されている冷延鋼板の公称板厚の許容差は、公称板厚、板幅によるが、最大概ね±5%から15%の誤差範囲に規定されている。また、熱延鋼板の厚さ許容差は、冷延鋼板より大きく、連続焼鈍炉を通す対象となりうる板サイズで見ても、最大概ね±7%から15%の誤差範囲に規定されている。通常、板温制御は、通板スケジュールにて認識している公称板厚を板温制御モデルに使用している。しかし、鋼板から抜熱すべき熱量は板厚に比例するため、所定の板温を実現するための実際の鋼板の抜熱量は、板温制御モデルが認識している公称板厚の鋼板の抜熱量に対して最大±5から15%の誤差があることになる。   The tolerance of the nominal thickness of the cold-rolled steel sheet specified by JIS depends on the nominal thickness and width, but is specified within a maximum error range of ± 5% to 15%. Further, the thickness tolerance of the hot-rolled steel sheet is larger than that of the cold-rolled steel sheet, and is defined within a maximum error range of about ± 7% to 15% even when viewed from a plate size that can be passed through a continuous annealing furnace. Normally, the plate temperature control uses the nominal plate thickness recognized in the plate passing schedule for the plate temperature control model. However, since the amount of heat to be removed from the steel plate is proportional to the plate thickness, the actual amount of heat removed from the steel plate to achieve a predetermined plate temperature is the removal of the steel plate with the nominal plate thickness recognized by the plate temperature control model. There will be a maximum error of ± 5 to 15% with respect to the amount of heat.

図3は熱バランスが取れた定常通板状態すなわち平衡状態での、板厚と冷却負荷すなわち冷却ブロワの回転数を表すグラフである。ここでは簡略化のため、冷却帯入側板温一定、通板速度一定、板幅一定とする。図3において、T、Tは冷却帯出側板温一定の曲線であり、ここではT<Tとするので、Tの方がブロワの回転数が大きくなっている。T1high,T2highは各公称板厚の鋼板が、JISに規定された許容板厚の範囲内で最大厚さの場合に冷却帯出側板温を各々T、Tとする冷却ブロワの回転数曲線である。そしてT1low、T2lowは最小厚さの場合に冷却帯出側板温を各々T、Tとする冷却ブロワの回転数曲線である。 FIG. 3 is a graph showing the plate thickness and the cooling load, that is, the rotational speed of the cooling blower in a steady plate-passing state in which heat balance is achieved, that is, in an equilibrium state. Here, for simplification, the cooling zone inlet side plate temperature is constant, the plate passing speed is constant, and the plate width is constant. In FIG. 3, T 1 and T 2 are curves with a constant cooling zone outlet side plate temperature, and here, T 1 <T 2 , so that the rotational speed of the blower is larger in T 1 . T 1high, T 2high the steel sheet of each nominal thickness is the rotational speed of the cooling blower for cooling home use side plate temperature with each T 1, T 2 in the case of maximum thickness within the allowable board thickness range specified in JIS It is a curve. T 1low and T 2low are the rotation speed curves of the cooling blower where the cooling zone outlet side plate temperatures are respectively T 1 and T 2 when the thickness is minimum.

一例として、公称板厚t、実板厚t1aの先行材と、公称板厚t、実板厚t2aの後行材について溶接点前後の冷却制御を考える(t1a<t,t2a>t)。冷却帯出側板温は溶接点前後で共にTで変わらないとする。グラフから、ブロワ回転数はR1aからR2aに変更されなければならないが、板温制御モデルが認識しているのは公称板厚のt、tであるから、ブロワ回転数の変更量はRとRの差ΔRとなる。従ってR1a+ΔRがフィードフォワード制御で演算されるブロワ回転数の指令値となってしまい、冷却不足となり、板温はTより高いTまでしか冷やされないことになる。 As an example, cooling control before and after the welding point is considered for a preceding material having a nominal thickness t 1 and an actual thickness t 1a , and a succeeding material having a nominal thickness t 2 and an actual thickness t 2a (t 1a <t 1 , t 2a > t 2 ). Cooling home use side plate temperature is no different in both T 1 before and after the welding point. From the graph, the blower rotational speed must be changed from R 1a to R 2a , but since the plate temperature control model recognizes the nominal plate thicknesses t 1 and t 2 , the amount of change in the blower rotational speed Is the difference ΔR between R 2 and R 1 . Accordingly, R 1a + ΔR becomes a command value for the blower rotational speed calculated by feedforward control, and cooling is insufficient, so that the plate temperature is cooled only to T 2 higher than T 1 .

逆に、公称板厚より厚手の先行材と、公称板厚より薄手の後行材がつながる溶接点においては、後行材先端において過冷却となる。   On the contrary, in the welding point where the preceding material thicker than the nominal plate thickness and the subsequent material thinner than the nominal plate thickness are connected, the leading edge of the subsequent material is overcooled.

また、特許文献2では、安定状態判別器で安定通板時のデータを選別し、その安定通板制御データをフィードフォワードの補正に用いているが、安定状態を判別することが難しいとともに、設備新設初期時には安定データが集まっておらず、予測制御がうまく機能しない。また最近の多品種生産においては、鋼種変更によるヒートサイクルの変更も多く、鋼種、板厚、板幅、通板速度なども多岐にわたり、なかなか安定データが蓄積できないという問題がある。   Moreover, in patent document 2, although the data at the time of stable passage are selected with the stable state discriminator and the stable passage control data are used for feedforward correction, it is difficult to determine the stable state, At the initial stage of new construction, stable data is not collected and predictive control does not work well. In recent multi-product production, there are many changes in the heat cycle by changing the steel type, and there are various types of steel, plate thickness, plate width, plate passing speed, etc., and there is a problem that stable data cannot be accumulated easily.

そこで、本発明は、連続熱処理設備の冷却帯を走行する鋼板の冷却不足あるいは過冷却を抑えることができる、冷却帯における板温冷却制御方法を提供するものである。   Therefore, the present invention provides a plate temperature cooling control method in a cooling zone that can suppress insufficient cooling or overcooling of a steel plate traveling in a cooling zone of a continuous heat treatment facility.

本発明は、鋼板の連続熱処理設備の冷却帯において冷却ブロワにより鋼板を冷却する際に、通板スケジュールと実操業の冷却帯入側目標板温、冷却帯出側目標板温、板厚、板幅、通板速度の情報と、溶接点トラッキングの情報とを連動して冷却ブロワの回転数をフィードフォワード制御する、鋼板の連続熱処理設備の冷却帯における板温冷却制御方法において、鋼板が冷却帯に導入される前に板厚計で測定された板厚測定値を取り込み、コイル数分割毎に平均実板厚を算出し、この平均実板厚をフィードフォワード演算時に板温制御のブロワ回転数演算に使用するとともに、鋼板の冷却抜熱量、炉体放散量、熱交換器での熱交換など冷却帯の熱収支計算を行い、目標出側板温に収束した際に安定すべきブロワ回転数の定常解を予め演算しブロワ回転数指令値とすることを特徴とする。   In the cooling zone of the steel plate continuous heat treatment facility, the present invention is designed to cool the steel plate with a cooling blower, and the cooling plate inlet side target plate temperature, the cooling zone outlet side target plate temperature, the plate thickness, and the plate width in the actual operation. In the plate temperature cooling control method in the cooling zone of the continuous heat treatment equipment for the steel plate, the rotation speed of the cooling blower is feedforward controlled in conjunction with the information on the plate passing speed and the welding point tracking information. Takes the measured thickness value measured by the thickness gauge before being introduced, calculates the average actual thickness for each division of the number of coils, and calculates the average actual thickness in the feedforward calculation, the blower rotation speed calculation for the plate temperature control In addition, the heat balance calculation of the cooling zone, such as the amount of heat removed from the steel sheet, the amount of heat dissipated in the furnace, and the heat exchange in the heat exchanger, is performed, and the blower rotation speed that should be stabilized when it converges to the target outlet plate temperature Calculate the solution in advance Characterized by a rotation speed command value.

本発明は、ブロワ回転数演算を公称板厚による演算ではなく、平均実板厚を使用するので、フィードフォワード制御の制御性が向上し、溶接点直後の板温はずれが減少する。また、設定板温を変更した場合や、通板速度を変更した場合などの板温制御過渡期においても板温の収束が速くなる。   In the present invention, since the average rotational plate thickness is used instead of the calculation based on the nominal plate thickness for the blower rotational speed calculation, the controllability of the feedforward control is improved and the deviation of the plate temperature immediately after the welding point is reduced. Also, the plate temperature converges faster in the plate temperature control transition period such as when the set plate temperature is changed or when the plate passing speed is changed.

本発明は、まず、連続熱処理設備の焼鈍炉の入側に設置されたオンラインの板厚計の出力を常時プロセスコンピュータに取り込み、溶接点トラッキングと連動し、コイルを仮想的に数分割し、各分割の平均実板厚を演算しておく。板厚の測定は、連続熱処理設備の焼鈍炉の入側だけでなく、連続熱処理設備の前工程である冷延ラインや熱延ラインの出側に設置した板厚計の測定値をコイル情報として取り込んで制御してもよい。そして、フィードフォワード演算に入る際に、従来使用していた公称板厚でなく、板厚計の測定値から求めた平均実板厚を板温制御に使用する。   In the present invention, first, the output of an on-line sheet thickness meter installed on the entrance side of the annealing furnace of the continuous heat treatment equipment is always taken into the process computer, interlocked with the welding point tracking, the coil is virtually divided into several parts, The average actual plate thickness of the division is calculated. Sheet thickness measurement is not limited to the entrance side of the annealing furnace of the continuous heat treatment equipment, but the measured values of the thickness gauges installed on the cold-rolling line and the exit side of the hot-rolling line are the coil information. You may take in and control. Then, when entering the feedforward calculation, the average actual plate thickness obtained from the measured value of the plate thickness meter is used for the plate temperature control, not the nominal plate thickness conventionally used.

さらに、通板する鋼板の冷却負荷(冷却帯入側目標板温、冷却帯出側目標板温、平均実板厚、板幅、ライン速度)から、板温が目標板温に収束し、安定した定常通板時の、鋼板からの抜熱、炉体放散熱、雰囲気放散熱、熱交換器熱交換などの熱平衡計算を予め行い、目標出側板温に収束した際に安定すべきブロワ回転数の定常解を予め演算し、その定常解をブロワ回転数の指令値とする。   Furthermore, the plate temperature converged to the target plate temperature and stabilized from the cooling load of the steel plate to be passed (cooling zone entry side plate temperature, cooling zone exit side plate temperature, average actual plate thickness, plate width, line speed). Perform heat balance calculations such as heat removal from the steel plate, furnace body heat dissipation, atmosphere heat dissipation, heat exchanger heat exchange, etc. during steady plate passing in advance, and the number of blower revolutions to be stabilized when it converges to the target outlet side plate temperature. A steady solution is calculated in advance, and the steady solution is used as a command value for the blower speed.

平常時は目標板温と実績板温の偏差に基づくフィードバック制御にてブロワ回転数をコントロールする。しかし、溶接点通過によるヒートサイクル変更や板厚、板幅、通板速度の変更時と、操業により目標板温や通板速度を変更したという情報が入ると、板温制御モデルがフィードフォワード演算にはいる。フィードフォワード演算に入ると、平均実板厚を含めた前述のパラメータを読み、定常解モデルにてブロワ回転数の解を演算する。そしてこの定常解をブロワの回転数指令値とする。その後は、次にフィードフォワード演算に入る事象が発生するまで、フィートバック制御で板温が制御される。   In normal times, the blower speed is controlled by feedback control based on the deviation between the target and actual plate temperatures. However, when the heat cycle is changed by passing through the welding point, the thickness, width, and threading speed are changed, and the information that the target sheet temperature and threading speed have been changed by operation is entered, the sheet temperature control model performs feedforward calculation. Enter. When the feedforward calculation is entered, the above-mentioned parameters including the average actual plate thickness are read, and the solution of the blower rotational speed is calculated using the steady solution model. This steady solution is used as the blower rotational speed command value. Thereafter, the plate temperature is controlled by the foot-back control until the next event of entering the feedforward operation occurs.

また、定常解モデルは図3のグラフに示すとおり、冷却帯の放散熱までを加味した、冷却帯すなわちジェットクーラの熱収支と熱交換器の熱収支を考慮し、収束計算によって熱的にバランスする解が求まるモデルとする。   In addition, as shown in the graph of Fig. 3, the steady solution model takes into account the heat balance of the cooling zone, ie, the jet cooler and the heat balance of the heat exchanger, taking into account the heat dissipated in the cooling zone. A model that can find a solution to solve.

図1は本発明を適用した一実施例を示すシステム図である。鋼板1を冷却する冷却帯2には走行する鋼板1を冷却するための冷却用ウインドボックス3が配置され、冷却用ウインドボックス3からは冷却ブロワ4により冷却用の気体が噴射され、噴射された気体はダクト5に排出され、ダクトの途中で熱交換器6により冷却されて冷却ブロワ4により冷却帯2へ循環させる。冷却帯2の出側には冷却帯出側板温計7が、入り側には冷却帯入側板温計8がそれぞれ配置されて板温が検出される。鋼板1が冷却帯2に導入される前に板厚計10で板厚が測定される。本発明では、ブロワ回転数演算に公称板厚ではなく、鋼板が冷却帯に導入される前に板厚計10で測定された板厚から求めた平均実板厚を適用する。     FIG. 1 is a system diagram showing an embodiment to which the present invention is applied. A cooling wind box 3 for cooling the traveling steel plate 1 is disposed in the cooling zone 2 for cooling the steel plate 1, and a cooling gas is injected from the cooling wind box 3 by the cooling blower 4 and injected. The gas is discharged to the duct 5, cooled by the heat exchanger 6 in the middle of the duct, and circulated to the cooling zone 2 by the cooling blower 4. A cooling zone exit side plate thermometer 7 is arranged on the exit side of the cooling zone 2, and a cooling zone entrance side plate thermometer 8 is arranged on the entry side to detect the plate temperature. Before the steel plate 1 is introduced into the cooling zone 2, the plate thickness is measured by the plate thickness meter 10. In the present invention, not the nominal thickness but the average actual thickness obtained from the thickness measured by the thickness gauge 10 before the steel plate is introduced into the cooling zone is applied to the blower rotational speed calculation.

板温の制御は、冷却ブロワの回転数を変更して行われる。ブロワ回転数の変更は、冷却帯の目標板温と実績板温の偏差によるフィードフォワード制御とプロセスコンピュータにより、溶接点トラッキング情報(通板速度、溶接点位置)、と通板スケジュール情報(鋼種、実板厚、板幅、通板速度、冷却帯入側温度、冷却帯出側目標温度)から、板温制御モデルにて、実板厚、板幅、目標板温、ライン速度の変更量や変更率などをパラメータとして、ブロワ回転数演算器9でブロワ回転数の変更量を演算するフィードフォワード制御が行われる。   The plate temperature is controlled by changing the rotation speed of the cooling blower. The blower speed is changed by feedforward control based on the deviation between the target plate temperature and the actual plate temperature in the cooling zone and the process computer, welding point tracking information (plate speed, welding point position), and plate schedule information (steel type, Actual plate thickness, plate width, plate speed, cooling zone inlet side temperature, cooling zone outlet side target temperature), and changes and changes in actual plate thickness, plate width, target plate temperature, line speed in the plate temperature control model Feedforward control is performed in which the blower rotational speed calculator 9 calculates the amount of change in the blower rotational speed using the rate and the like as parameters.

図2は本発明による板温制御のフローを表す図である。溶接点通過時、通板速度変更あるいは目標板温変更時のモードが判定される(ステップS1)。このステップS1で平常時のモードと判定されると、プロセスコンピュータ9は目標板温と実績板温の偏差に基づくフィードバック演算を行う(ステップS2)。フィードバック演算に基づいてブロワ回転数指令によりブロワの回転数をコントロールする(ステップS3)。   FIG. 2 is a diagram showing a flow of plate temperature control according to the present invention. When the welding point passes, the mode for changing the plate passing speed or changing the target plate temperature is determined (step S1). If it is determined in this step S1 that the mode is normal, the process computer 9 performs a feedback calculation based on the deviation between the target plate temperature and the actual plate temperature (step S2). Based on the feedback calculation, the rotational speed of the blower is controlled by a blower rotational speed command (step S3).

ステップS1で溶接点通過時、通板速度変更あるいは目標板温変更時のモードと判定されると、板厚計で測定された実測値に基づいて求められた平均実板厚、通板速度、冷却帯入側温度、冷却帯出側目標温度、板幅から、定常解による板温制御モデルにて、フィードフォワード演算を行う(ステップS4)。フィードフォワード演算に基づいてブロワ回転数指令によりブロワの回転数をコントロールする(ステップS5)。   If it is determined in step S1 that the welding speed has passed and the mode for changing the plate speed or the target plate temperature is changed, the average actual plate thickness, the plate speed, obtained based on the actual measurement values measured by the thickness gauge, From the cooling zone inlet side temperature, the cooling zone outlet side target temperature, and the plate width, a feedforward calculation is performed using a plate temperature control model based on a steady solution (step S4). Based on the feedforward calculation, the rotational speed of the blower is controlled by a blower rotational speed command (step S5).

次に、冷却帯の熱バランスについて説明する。
:ジェットクーラ吹き付け強制対流による抜熱量
:鋼板からの放散熱量
:冷却帯放散熱量(雰囲気放散熱も含む)
:鋼板の処理量
1:冷却帯入側の鋼板顕熱
2:冷却帯出側の鋼板顕熱
B:鋼板幅
Lf:冷却帯 伝熱有効炉長
α :ジェットクーラ熱伝達率
ΔTm:鋼板と冷却ガスの対数平均温度差
N:ブロワ回転数
とすると、
=Q+Q
=W×(I1−I2)
=2×B×Lf×α×ΔTm
となる。
Ws=Ws(B、板温、通板速度)
α=α(吹き付け流速、吹き付け距離、ノズルピッチ、ガスの物性値)
=Q(冷却帯炉温、炉帯熱貫流率、炉帯放散面積、雰囲気ガス量)
であり、
N∝Vg∝α
となる。
Next, the heat balance of the cooling zone will be described.
Q C : Heat removal by forced convection with jet cooler spray Q S : Heat dissipation from steel plate Q L : Heat dissipation from cooling zone (including atmosphere heat dissipation)
W S: amount of processing steel I S 1: cooling zone steel sheet entry side sensible I S 2: Cooling home use side of the steel sheet sensible B: steel Width Lf: cooling zone heat transfer effective furnace length alpha: Jet cooler heat transfer coefficient ΔTm: Logarithmic average temperature difference between steel plate and cooling gas N: Blower rotation speed
Q S = Q L + Q C
Q S = W S × (I S 1 -I S 2)
Q C = 2 × B × Lf × α × ΔTm
It becomes.
Ws = Ws (B, plate temperature, plate speed)
α = α (Blowing flow velocity, spraying distance, nozzle pitch, gas physical properties)
Q L = Q L (cooling zone furnace temperature, furnace zone heat transmissivity, furnace zone radiation area, amount of atmospheric gas)
And
N∝Vg∝α n
It becomes.

次に、熱交換器の熱バランスについて説明する。
Qhx1:熱交換器での抜熱量
Ahx:熱交換器の伝熱面積
Khx:熱交換器の熱貫流率
ΔTmhx:ガス−水の対数平均温度差
Vg:ジェットクーラ 循環ガス量
ΔKg:ジェットクーラ 循環ガスの熱交換器 入側と出側の顕熱差
Vw:冷却水量
ΔKw:冷却水の熱交換器 入側と出側の顕熱差
Qhx1=Qc=Ahx×Khx×ΔTmhx=Vg×ΔKg=Vw×ΔKw
上記に基づき、冷却帯と熱交換器の熱収支をバランスさせた状態で、冷却帯出側目標板温を達成できる
吹き付け流速、すなわちブロワ回転数を収束計算により算出する。
Next, the heat balance of the heat exchanger will be described.
Qhx1: Heat removal amount in heat exchanger Ahx: Heat transfer area of heat exchanger Khx: Heat flow rate of heat exchanger ΔTmhx: Logarithmic average temperature difference of gas-water Vg: Jet cooler Circulating gas amount ΔKg: Jet cooler Circulating gas Sensible heat difference between the inlet side and the outlet side Vw: cooling water amount ΔKw: heat exchanger of the cooling water sensible heat difference between the inlet side and the outlet side Qhx1 = Qc = Ahx × Khx × ΔTmhx = Vg × ΔKg = Vw × ΔKw
Based on the above, in a state where the heat balance of the cooling zone and the heat exchanger is balanced, the spraying flow rate at which the cooling zone outlet side target plate temperature can be achieved, that is, the blower rotational speed is calculated by convergence calculation.

図4は溶接点通過後の時間と板温との関係を示すグラフである。焼鈍後の鋼板を、冷却帯で所定の板温に冷却するが、鋼種によって冷却帯の入側目標温度と、出側目標板温がプロセスコンピュータで設定されており、自動制御されている。図4に示すように、従来の制御では、例えば、目標板温が変わらなくても、鋼板の溶接点を通過し、鋼板の板厚、板幅が変化すると、3分間程度実績板温が、目標板温±15℃程度の範囲で振れ、目標板温±5℃の範囲に収束するまで約10分近く要すことがあった。これに本発明を適用すると、1回目のブロワ回転数設定から、目標板温±5℃程度の範囲に入れることができた。この後は通常のフィードバック制御により目標板温に収束していく。   FIG. 4 is a graph showing the relationship between the time after passing the welding point and the plate temperature. The annealed steel plate is cooled to a predetermined plate temperature in the cooling zone, and the inlet side target temperature and the outlet side target plate temperature of the cooling zone are set by a process computer depending on the steel type, and are automatically controlled. As shown in FIG. 4, in the conventional control, for example, even if the target plate temperature does not change, when the plate thickness of the steel plate and the plate width change, the actual plate temperature is about 3 minutes. It sometimes took about 10 minutes for the target plate temperature to swing within the range of about ± 15 ° C. and converge to the target plate temperature of ± 5 ° C. When the present invention was applied to this, the target plate temperature could be within a range of about ± 5 ° C. from the first blower rotation speed setting. After this, the target plate temperature is converged by normal feedback control.

本発明を適用した一実施例を示すシステム図である。It is a system diagram showing an example to which the present invention is applied. 本発明の板温制御のフローを表す図である。It is a figure showing the flow of plate temperature control of this invention. 板厚とブロア回転数の関係を示すグラフである。It is a graph which shows the relationship between plate | board thickness and a blower rotation speed. 溶接点通過後の時間と板温との関係を示すグラフである。It is a graph which shows the relationship between the time after welding point passage, and plate temperature. 従来の鋼板の冷却制御のシステム図である。It is a system figure of the cooling control of the conventional steel plate.

符号の説明Explanation of symbols

1:鋼板
2:冷却帯
3:冷却用ウインドボックス
4:冷却ブロワ
5:ダクト
6:熱交換器
7:冷却帯出側板温計
8:冷却帯入側板温計
9:プロセスコンピュータ
10:板厚計
1: Steel plate 2: Cooling zone 3: Cooling wind box 4: Cooling blower 5: Duct 6: Heat exchanger 7: Cooling zone outlet side thermometer 8: Cooling zone inlet side thermometer 9: Process computer 10: Plate thickness gauge

Claims (1)

鋼板の連続熱処理設備の冷却帯において冷却ブロワにより鋼板を冷却する際に、通板スケジュールと実操業の冷却帯入側目標板温、冷却帯出側目標板温、板厚、板幅、通板速度の情報と、溶接点トラッキングの情報とを連動して冷却ブロワの回転数をフィードフォワード制御する、鋼板の連続熱処理設備の冷却帯における板温冷却制御方法において、
鋼板が冷却帯に導入される前に板厚計で測定された板厚測定値を取り込み、コイル数分割毎に平均実板厚を算出し、この平均実板厚をフィードフォワード演算時に板温制御のブロワ回転数演算に使用するとともに、鋼板の冷却抜熱量、炉体放散量、熱交換器での熱交換など冷却帯の熱収支計算を行い、目標出側板温に収束した際に安定すべきブロワ回転数の定常解を予め演算しブロワ回転数指令値とすることを特徴とする鋼板の連続熱処理設備の冷却帯における板温冷却制御方法。
When cooling the steel plate with a cooling blower in the cooling zone of the continuous heat treatment equipment for the steel plate, the cooling plate inlet side target plate temperature, cooling zone outlet side target plate temperature, plate thickness, plate width, plate passing speed in the actual operation In the plate temperature cooling control method in the cooling zone of the continuous heat treatment equipment of the steel plate, which feedforward-controls the rotational speed of the cooling blower in conjunction with the information of the welding point tracking information,
Takes the measured thickness measured by the thickness gauge before the steel plate is introduced into the cooling zone, calculates the average actual thickness for each number of coils divided, and controls the average actual thickness at the time of feedforward calculation It should be used when calculating the heat balance of the cooling zone, such as the amount of heat removed from the steel plate, the amount of heat dissipated in the furnace, and the heat exchange in the heat exchanger, and should be stable when it converges to the target outlet side plate temperature. A plate temperature cooling control method in a cooling zone of a continuous heat treatment facility for a steel plate, wherein a steady solution of a blower rotational speed is calculated in advance and used as a blower rotational speed command value.
JP2004032537A 2004-02-09 2004-02-09 Plate temperature cooling control method in cooling zone of continuous steel plate heat treatment equipment Withdrawn JP2005220432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004032537A JP2005220432A (en) 2004-02-09 2004-02-09 Plate temperature cooling control method in cooling zone of continuous steel plate heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032537A JP2005220432A (en) 2004-02-09 2004-02-09 Plate temperature cooling control method in cooling zone of continuous steel plate heat treatment equipment

Publications (1)

Publication Number Publication Date
JP2005220432A true JP2005220432A (en) 2005-08-18

Family

ID=34996301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032537A Withdrawn JP2005220432A (en) 2004-02-09 2004-02-09 Plate temperature cooling control method in cooling zone of continuous steel plate heat treatment equipment

Country Status (1)

Country Link
JP (1) JP2005220432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255431A (en) * 2007-04-05 2008-10-23 Nippon Steel Corp Plate temperature control method in continuous treatment line, apparatus, and computer program
JP2008308731A (en) * 2007-06-14 2008-12-25 Nippon Steel Engineering Co Ltd Method for controlling temperature of continuous heat treatment furnace for steel strip
JP2020063497A (en) * 2018-10-19 2020-04-23 Jfeスチール株式会社 Method and apparatus for controlling temperature of metal strip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255431A (en) * 2007-04-05 2008-10-23 Nippon Steel Corp Plate temperature control method in continuous treatment line, apparatus, and computer program
JP2008308731A (en) * 2007-06-14 2008-12-25 Nippon Steel Engineering Co Ltd Method for controlling temperature of continuous heat treatment furnace for steel strip
JP2020063497A (en) * 2018-10-19 2020-04-23 Jfeスチール株式会社 Method and apparatus for controlling temperature of metal strip
JP7052671B2 (en) 2018-10-19 2022-04-12 Jfeスチール株式会社 Metal band temperature control method and temperature control device

Similar Documents

Publication Publication Date Title
RU2291750C2 (en) Control method for finishing line stands arranged in front of cooling section and designed for rolling hot rolled metal strip
JP4598586B2 (en) Cooling control method, apparatus, and computer program
JP4208505B2 (en) Winding temperature controller
JP2005220432A (en) Plate temperature cooling control method in cooling zone of continuous steel plate heat treatment equipment
JP2003039109A (en) Device for controlling coil winding temperature
JP4894686B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP3710572B2 (en) Heating furnace control device
JP4349177B2 (en) Steel extraction temperature prediction method for continuous heating furnace
KR100568358B1 (en) Hot strip cooling control mothode for chage target temperature
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JP2555116B2 (en) Steel material cooling control method
JP6645036B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JP2000271626A (en) Method for controlling coiling temperature
JP2015167976A (en) Winding temperature control method of hot rolled steel sheet
JP5239887B2 (en) Hot rolled steel sheet manufacturing apparatus and manufacturing method
JP2006159261A (en) Method and apparatus for manufacturing hot-rolled steel sheet
JP2008188604A (en) Temperature control method in cooling of steel sheet
JP3661668B2 (en) Metal plate manufacturing method and temperature control device
JP6645037B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JP3518504B2 (en) How to set cooling conditions for steel sheets
JP3946733B2 (en) Shape control method and shape control apparatus in rolling mill
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JPH09216011A (en) Method for controlling cooling of hot rolled steel sheet
JP4490804B2 (en) Method of cooling steel sheet in continuous annealing furnace
KR100736804B1 (en) Method for manufacturing steel product and manufacturing facilities therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501