JP4490804B2 - Method of cooling steel sheet in continuous annealing furnace - Google Patents

Method of cooling steel sheet in continuous annealing furnace Download PDF

Info

Publication number
JP4490804B2
JP4490804B2 JP2004375756A JP2004375756A JP4490804B2 JP 4490804 B2 JP4490804 B2 JP 4490804B2 JP 2004375756 A JP2004375756 A JP 2004375756A JP 2004375756 A JP2004375756 A JP 2004375756A JP 4490804 B2 JP4490804 B2 JP 4490804B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
steel plate
cooling device
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004375756A
Other languages
Japanese (ja)
Other versions
JP2006183075A (en
Inventor
正則 星野
資文 武村
弘樹 村山
康司 簗場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004375756A priority Critical patent/JP4490804B2/en
Publication of JP2006183075A publication Critical patent/JP2006183075A/en
Application granted granted Critical
Publication of JP4490804B2 publication Critical patent/JP4490804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、ガスジェット方式の冷却装置を直列に複数配置した連続焼鈍炉における鋼板の冷却方法に関するものである。 The present invention relates to a cooling method of a steel sheet in the continuous annealing furnace in which a plurality arranged a cooling device in series of the gas jet.

例えば鋼板(鋼帯)の連続焼鈍ラインは、例えばペイオフリールからの鋼帯を溶接機、洗浄設備、入側ルーパなどの入側設備を通過させた後、加熱帯、均熱帯、徐冷帯、一次冷却帯、過時効帯、二次冷却帯を有する連続焼鈍炉で連続焼鈍後、出側ルーパを経て、調質圧延機により連続的に調質圧延し、その後、検査ルーパを経て検査後、テンションリールによってコイル状に巻き取るように構成されている。
この連続焼鈍炉の一次冷却帯では、温度が700〜400℃程度の鋼板を、例えばガスジェット冷却方式の冷却装置により、450〜200℃程度まで、所要の冷却速度で冷却しており、幅広い冷却速度を確保するために、一般には、大容量のガスジェット冷却装置を複数配置してなるものである。
これらのガスジェット冷却装置は、概念的には、特許文献1の図3、図4に開示されるような多数の突出ノズルを備えた吹き付けガス箱を、鋼板の両面に突出ノズルを向けて配置し、非酸化性の冷却ガス(例えばH富化N)をブロワーで圧送し突出ノズルから鋼板表面(両面)に吹き付けて鋼板を冷却するように構成されるものであり、冷却ガスの濃度(H濃度)、温度、流量、流速を選択することによって、冷却能力を調整することができる。
For example, a continuous annealing line for steel plates (steel strips), for example, after passing steel strips from payoff reels through entrance equipment such as welding machines, cleaning equipment, entrance loopers, heating zones, soaking zones, slow cooling zones, After continuous annealing in a continuous annealing furnace having a primary cooling zone, an overaging zone, and a secondary cooling zone, after passing through the exit looper, continuously temper-rolled by a temper rolling mill, and then after inspection through an inspection looper, It is configured to be wound in a coil shape by a tension reel.
In the primary cooling zone of this continuous annealing furnace, a steel plate having a temperature of about 700 to 400 ° C. is cooled to a temperature of about 450 to 200 ° C. at a required cooling rate by, for example, a gas jet cooling type cooling device. In order to ensure the speed, a plurality of large-capacity gas jet cooling devices are generally arranged.
These gas jet cooling devices are conceptually arranged with blowing gas boxes having a number of protruding nozzles as disclosed in FIGS. 3 and 4 of Patent Document 1, with the protruding nozzles facing both sides of the steel plate. In addition, the non-oxidizing cooling gas (for example, H 2 -enriched N 2 ) is pumped by a blower and sprayed from the protruding nozzle onto the steel plate surface (both sides) to cool the steel plate, and the concentration of the cooling gas The cooling capacity can be adjusted by selecting (H 2 concentration), temperature, flow rate, and flow rate.

これらの各冷却装置としては、同程度の冷却能力を有するものが用いられており、大型化に伴い温度制御性が悪化(粗くなる)し、冷却帯の出側、すなわち最終冷却装置の出側で、鋼板の冷却目標温度に対して大きな冷却誤差を生じやすいという問題がある。
一般にはガスジェット方式の冷却装置で冷却する場合には、ブロワー回転数をコントロールして温度制御するが、現状レベルの大容量の冷却装置の場合では、ブロワー回転数を例えば1%変化させた場合、理論上では、その鋼板側の温度変化代は例えば5℃程度であり、この温度ステップで温度制御ができることになるが、ブロワー回転数を1%変化させる制御をしても、実際には変動があるため、10〜15℃程度の冷却誤差を生じることは避けられない。
この冷却帯では、鋼板の冷却目標温度に対する冷却誤差を最終的に±0〜5℃程度にする温度制御が求められるが、冷却誤差の変動が大きいため、この要請に十分に応えられないという問題がある。
特開平9−235626号公報。
As each of these cooling devices, those having the same level of cooling capacity are used, and the temperature controllability deteriorates (becomes coarser) as the size increases, and the exit side of the cooling zone, that is, the exit side of the final cooling device Thus, there is a problem that a large cooling error is likely to occur with respect to the cooling target temperature of the steel plate.
In general, when cooling with a gas jet type cooling device, the temperature of the blower is controlled by controlling the blower rotation speed. However, in the case of a large capacity cooling device at the current level, the blower rotation speed is changed by, for example, 1%. Theoretically, the temperature variation on the steel sheet side is about 5 ° C., for example, and temperature control can be performed at this temperature step, but even if control is performed to change the blower rotational speed by 1%, it actually fluctuates. Therefore, it is inevitable that a cooling error of about 10 to 15 ° C. occurs.
In this cooling zone, it is required to control the temperature so that the cooling error with respect to the cooling target temperature of the steel plate is finally about ± 0 to 5 ° C. However, since the fluctuation of the cooling error is large, it is not possible to sufficiently meet this requirement. There is.
JP-A-9-235626.

本発明は、連続焼鈍炉の冷却帯を、ガスジェット方式の冷却装置を直列に複数配置して構成する場合に、上記従来の問題を解決して、冷却帯出側での鋼板の冷却目標温度に対して、冷却誤差を確実に小さくできる温度制御が可能な連続焼鈍炉における鋼板の冷却方法を提供する。 The present invention solves the above-mentioned conventional problem when the cooling zone of the continuous annealing furnace is configured by arranging a plurality of gas jet type cooling devices in series, and achieves the cooling target temperature of the steel plate on the cooling zone exit side. against it, it provides a steel plate cooling method of securely small as possible temperature control capable continuous annealing furnace cooling error.

本発明は、上記課題を解決するために、以下の(1)を要旨とする。
(1)鋼板の連続焼鈍炉の冷却帯が、直列配置された複数のガスジェット方式の冷却装置から構成され、この内の最終の冷却装置として、他の冷却装置より冷却能力の低い冷却装置により冷却される、連続焼鈍炉における鋼板の冷却方法において
最終の冷却装置を除く他の冷却は鋼板への冷却ガスの突出流速の最大値が、70Nm/sec以上であり、最終の冷却装置の前段の冷却装置で、鋼板の冷却目標温度+△t℃(10≦△t≦50)まで冷却し、
最終の冷却装置鋼板の冷却目標温度+△t℃(10≦△t≦50)から鋼板の冷却目標温度まで鋼板を冷却する
ことを特徴とする連続焼鈍炉における鋼板の冷却方法
In order to solve the above problems, the present invention is summarized as the following (1).
(1) cooling zone of a continuous annealing furnace of steel sheet is composed of a cooling apparatus of a plurality of gas jet arranged in series, as the final cooling device of this, the lower cooling device cooling capability than other cooling device In the cooling method of the steel sheet in the continuous annealing furnace to be cooled ,
For the other cooling except the final cooling device, the maximum value of the protruding flow velocity of the cooling gas to the steel plate is 70 Nm / sec or more, and the cooling device in the previous stage of the final cooling device is the target cooling temperature of the steel plate + Δt ° C. (10 ≦ Δt ≦ 50)
Steel cooling method in the continuous annealing furnace final cooling apparatus characterized by cooling the steel sheet from the cooling target temperature + △ t ° C. of the steel plate (10 ≦ △ t ≦ 50) to the cooling target temperature of the steel sheet.

本発明による連続焼鈍炉における鋼板の冷却方法では、板の連続焼鈍炉の冷却帯が直列配置された複数のガスジェット方式の冷却装置から構成され、最終の冷却装置を除く他の冷却は鋼板への冷却ガスの突出流速の最大値が、70Nm/sec以上であり、最終の冷却装置の前段の冷却装置で、鋼板の冷却目標温度+△t℃(10≦△t≦50)まで冷却し、最終の冷却装置は鋼板の冷却目標温度+△t℃(10≦△t≦50)から鋼板の冷却目標温度まで鋼板を冷却する。したがって、例えば温度が700〜400℃程度の鋼板に対しても十分な冷却能力を確保し、例えば450〜200℃の冷却目標温度まで冷却する最終段階で冷却目標温度に対する冷却誤差を±5℃程度に抑える冷却制御が可能である。 In the cooling method of steel plate in by that continuous annealing furnace of the present invention, is constructed from the cooling device of the plurality of gas jet cooling zone of a continuous annealing furnace of the plate are arranged in series, other cooling except the last cooling device The maximum value of the flow velocity of the cooling gas to the steel plate is 70 Nm / sec or more, and is the cooling device in the previous stage of the final cooling device, up to the target cooling temperature of the steel plate + Δt ° C. (10 ≦ Δt ≦ 50) The final cooling device cools the steel plate from the target cooling temperature of the steel plate + Δt ° C. (10 ≦ Δt ≦ 50) to the target cooling temperature of the steel plate. Therefore, for example, a sufficient cooling capacity is secured even for a steel plate having a temperature of about 700 to 400 ° C., and a cooling error with respect to the cooling target temperature is about ± 5 ° C. in the final stage of cooling to a cooling target temperature of 450 to 200 ° C., for example. Cooling control can be suppressed to a minimum.

以下に、本発明を鋼板の連続焼鈍炉の(一次)冷却帯に適用した冷却帯について、図1〜図5に基づき具体的に説明する。
本発明の冷却帯1は、図1、図2に示すように、ここでは、前段側に配置するガスジェット方式の複数の大容量の他の冷却装置(以下「前段冷却装置」という。)2a、2bとガスジェット方式の小容量の最終の冷却装置(以下「最終冷却装置」という。)2sを直列配置してなるものである。
ガスジェット方式の冷却装置2a、2b、2sは、いずれも、多数の突出ノズル3を備えた冷却ガス箱4を、鋼板5の両面に突出ノズル3を向けて配置し、非酸化性の冷却ガス(例えばH富化N )をブロワー6で圧送し、突出ノズル3から鋼板表面(両面)に吹き付けて鋼板5を冷却するように構成したものである。
この冷却帯1では、基本的には、例えば700〜400℃程度の鋼板5を、複数の前段冷却装置2aおよび2bで、この冷却帯1での鋼板の冷却目標温度である450〜200℃より10〜50℃程度高い温度まで冷却し、微小の温度制御ステップを有する最終冷却装置2sで、鋼板が冷却目標温度に対して±5℃程度以下の許容冷却誤差範囲の温度になるように冷却するものである。
Below, the cooling zone which applied this invention to the (primary) cooling zone of the continuous annealing furnace of a steel plate is demonstrated concretely based on FIGS.
As shown in FIGS. 1 and 2, the cooling zone 1 of the present invention includes a plurality of other large-capacity gas jet cooling devices (hereinafter referred to as “pre-cooling devices”) 2 a disposed on the front side. 2b and a gas jet type small capacity final cooling device (hereinafter referred to as "final cooling device") 2s are arranged in series.
The gas jet type cooling devices 2a, 2b, and 2s each include a cooling gas box 4 having a large number of protruding nozzles 3 with the protruding nozzles 3 facing both surfaces of a steel plate 5, and a non-oxidizing cooling gas. (For example, H 2 enriched N 2 ) is pumped by the blower 6 and sprayed from the protruding nozzle 3 to the steel plate surface (both sides) to cool the steel plate 5.
In this cooling zone 1, basically, for example, a steel plate 5 having a temperature of about 700 to 400 ° C. is moved from 450 to 200 ° C., which is a cooling target temperature of the steel plate in this cooling zone 1, with a plurality of pre-stage cooling devices 2 a and 2 b. Cool to a temperature as high as about 10 to 50 ° C., and cool in a final cooling device 2 s having a minute temperature control step so that the steel sheet has a temperature within an allowable cooling error range of about ± 5 ° C. or less with respect to the cooling target temperature. Is.

ここで用いる最終冷却装置2sとしては、冷却帯1での鋼板5の冷却目標温度+△t℃(10℃≦△t≦50℃)から鋼板の冷却目標温度までの冷却能力を有するものであり、例えば、△tが50℃のとき、ブロワー6の回転数を1%変化させることにより0.5℃程度の微小な温度制御ステップを有し、冷却帯1で最終冷却段階の鋼板5を、鋼板の冷却目標温度+10〜50℃程度までの範囲内で精度よく冷却調整が可能で、この冷却帯1での鋼板5の冷却目標温度に対して、±5℃程度以下の冷却誤差を安定確保できるものである。
ここで、△t℃が冷却目標温度の(+)側の△t℃であるのは、最終冷却装置2sには、加熱機能がないため、前段の他の冷却装置で過冷却で鋼板5の温度が、冷却帯1出側での冷却目標温度以下になった場合には機能しないためである。
図3は、冷却装置の冷却能力(℃)と温度制御ステップ(℃)の関係を示したものであり、冷却能力が50℃以下の場合に温度制御ステップを2℃以下にできることから、微小な温度制御ステップを有することが求められる最終冷却装置2sとしては、冷却能力は50℃程度以下で、その範囲内で冷却調整ができるものが適性がある。
The final cooling device 2s used here has a cooling capacity from the cooling target temperature of the steel plate 5 in the cooling zone 1 + Δt ° C. (10 ° C. ≦ Δt ≦ 50 ° C.) to the cooling target temperature of the steel plate. For example, when Δt is 50 ° C., it has a minute temperature control step of about 0.5 ° C. by changing the rotational speed of the blower 6 by 1%, and the steel plate 5 in the final cooling stage in the cooling zone 1 Cooling adjustment with high accuracy is possible within the range of the target cooling temperature of the steel plate +10 to 50 ° C, and a stable cooling error of about ± 5 ° C or less with respect to the cooling target temperature of the steel plate 5 in this cooling zone 1 is ensured. It can be done.
Here, Δt ° C. is Δt ° C. on the (+) side of the cooling target temperature. Since the final cooling device 2s does not have a heating function, the steel plate 5 is supercooled by another cooling device in the previous stage. This is because it does not function when the temperature is equal to or lower than the cooling target temperature on the outlet side of the cooling zone 1.
FIG. 3 shows the relationship between the cooling capacity (° C.) of the cooling device and the temperature control step (° C.). When the cooling capacity is 50 ° C. or lower, the temperature control step can be reduced to 2 ° C. or lower. As the final cooling device 2s that is required to have a temperature control step, it is appropriate that the cooling capacity is about 50 ° C. or less and the cooling can be adjusted within the range.

また、前段冷却装置2a、2bトータルで、例えば700℃程度の高温の鋼板5を250℃程度の温度まで冷却できる冷却能力が必要な場合がある。
この条件を満足させるには、前段冷却装置2a、2bでの冷却ガスの突出流速の最大値を70Nm/sec以上にする必要がある。
図4は、冷却ガスの突出流速(Nm/sec)と冷却能力(℃)の関係を示したものであり、冷却ガスの突出流速の最大値70Nm/sec以上は、前段冷却装置2a、2bでは冷却能力100℃以上に相当する。
冷却能力が100℃以上の場合では、温度制御ステップが15〜20℃程度と大きくなるが、前段冷却装置2a、2bの冷却能力は100℃〜300℃程度あり、その範囲内で冷却調整ができれば、冷却能力が50℃程度の最終冷却装置2sで冷却帯1での鋼板5の冷却目標温度に対する冷却誤差を許容範囲である鋼板5の冷却目標温度±5℃以下に冷却することが可能である。
Moreover, the cooling capacity which can cool the high-temperature steel plate 5 of about 700 degreeC, for example to the temperature of about 250 degreeC by the front stage cooling device 2a, 2b total may be required.
In order to satisfy this condition, it is necessary to set the maximum value of the cooling gas protrusion flow rate in the pre-stage cooling devices 2a and 2b to 70 Nm / sec or more.
FIG. 4 shows the relationship between the cooling gas protrusion flow rate (Nm / sec) and the cooling capacity (° C.). The maximum value of the cooling gas protrusion flow rate of 70 Nm / sec or more is not This corresponds to a cooling capacity of 100 ° C. or higher.
When the cooling capacity is 100 ° C. or higher, the temperature control step is as large as about 15 to 20 ° C. However, the cooling capacity of the pre-stage cooling devices 2a and 2b is about 100 ° C. to 300 ° C. If cooling adjustment can be made within that range, The cooling error with respect to the target cooling temperature of the steel plate 5 in the cooling zone 1 can be cooled to an allowable range of the target cooling temperature ± 5 ° C. of the steel plate 5 by the final cooling device 2s having a cooling capacity of about 50 ° C. .

冷却帯1では、前段冷却装置2a、2bにより、最終冷却装置2sの冷却能力の範囲の温度になるように冷却するが、実際には前段冷却装置2a、2bで冷却誤差を生じて、最終冷却装置2sで冷却帯1の出側での鋼板5の冷却目標温度に対する冷却誤差を許容範囲内にできない場合があり、以下のような制御システムを備えることが有効である。
すなわち、最終冷却装置2sの出側、すなわち冷却帯1の出側に板温計7を設け、図2に示すように、板温計7からの測温情報を制御装置8で演算処理して、該板温計の測定値と冷却帯1の出側での鋼板5の冷却目標温度との偏差△t℃が、例えば+10℃〜+50℃の範囲にある場合には、冷却能力が50℃程度以下で温度制御精度の高い最終冷却装置2sにより、ただちに鋼板5の冷却目標温度±5℃以下にするための冷却を行う。
In the cooling zone 1, cooling is performed by the pre-stage cooling devices 2a and 2b so that the temperature is within the range of the cooling capacity of the final cooling device 2s. In some cases, the apparatus 2s cannot make the cooling error with respect to the cooling target temperature of the steel plate 5 on the exit side of the cooling zone 1 within an allowable range, and it is effective to have the following control system.
That is, a plate thermometer 7 is provided on the exit side of the final cooling device 2s, that is, the exit side of the cooling zone 1, and the temperature measurement information from the plate thermometer 7 is calculated by the control device 8 as shown in FIG. When the deviation Δt ° C. between the measured value of the plate thermometer and the cooling target temperature of the steel plate 5 on the outlet side of the cooling zone 1 is in the range of, for example, + 10 ° C. to + 50 ° C., the cooling capacity is 50 ° C. The final cooling device 2s having a temperature control accuracy of less than about is immediately cooled to bring the steel plate 5 to the target cooling temperature ± 5 ° C. or lower.

ここで、該板温計7の測定値と鋼板5の冷却目標鋼温度との偏差△t℃が50℃以上となって、最終冷却装置2sの冷却能力を超える場合があるが、この場合には、制御装置8により、ただちに前段冷却装置2a、2bにおいて、例えば流量調整弁9の開度、ブロワー6の回転数を変更して冷却ガスの突出(吹き付け)条件を変更するなどの冷却調整を行い、最終冷却装置2sで冷却して冷却帯1の出側での鋼板5の冷却目標温度±5℃以下にする。
なお、板温計7aを前段冷却装置2a、2bの出側にも配置して、最終冷却装置2sの冷却能力を超えた場合には、ただちに前段冷却装置2a、2bにおいて、例えば流量調整弁9の開度、ブロワー6の回転数を変更し冷却ガスの突出(吹き付け)条件を変更するなど冷却調整を早めることもでき、また、最終冷却装置2sでも50℃程度以下の冷却能力の範囲内で冷却調整をすることもできる。
Here, the deviation Δt ° C. between the measured value of the plate thermometer 7 and the cooling target steel temperature of the steel plate 5 may be 50 ° C. or more, which may exceed the cooling capacity of the final cooling device 2s. Is immediately adjusted by the control device 8 in the pre-stage cooling devices 2a and 2b, for example, by changing the opening (blowing) conditions of the cooling gas by changing the opening of the flow rate adjusting valve 9 and the rotational speed of the blower 6. The cooling is performed by the final cooling device 2 s so that the cooling target temperature of the steel plate 5 on the outlet side of the cooling zone 1 is ± 5 ° C. or lower.
If the plate thermometer 7a is also arranged on the outlet side of the preceding cooling devices 2a and 2b and the cooling capacity of the final cooling device 2s is exceeded, immediately in the preceding cooling devices 2a and 2b, for example, the flow rate adjusting valve 9 It is possible to speed up the cooling adjustment by changing the opening degree and the rotation speed of the blower 6 and changing the cooling gas projection (blowing) conditions. In the final cooling device 2s, the cooling capacity is within a range of about 50 ° C. or less. Cooling adjustment can also be performed.

なお、ここで用いる冷却装置の冷却能力を決める冷却能α(W/mK)と鋼板温度℃の関係は、理論式としては下記のように表される。
α=2・(ρCtV)/Le・1n{(Ti−Tg)/(To−Tg)} …(1)
ここで
ρ:鋼板密度 C:鋼板比熱 t:鋼板板厚
V:鋼板の通板速度 Le:有効冷却長 Ti:冷却前鋼板温度
To:冷却後鋼板温度 Tg:冷却ガス温度
これにより、鋼板の条件から各冷却装置の必要冷却能αが決まる。また冷却能αと冷却ガス突出流速(Nm/sec)の間にはある関係があるため、各冷却装置の必要な突出流速が決まる。これらにより設備としての仕様を決定することができる。
図5は、実際の冷却装置での冷却ガスの突出流速(Nm/sec)と冷却能αとの関係を示したものであり、通常、斜線領域が実用領域である。
最終冷却装置2sでの冷却ガスの突出流速は50Nm/sec程度であるから、200〜400(W/mK)の冷却能αがあり、前段冷却装置2a、2bの冷却ガスの突出流速は70Nm/sec以上であるから、300(W/mK)以上の冷却能αを有することになる。
冷却能αを変更する手段としては、ブロワーの回転数の他に、冷却ガスの温度の変更や、冷却装置と鋼板の距離の変更などがあり、これによって冷却調整ができる。
The relationship between the cooling capacity α (W / m 2 K) that determines the cooling capacity of the cooling device used here and the steel sheet temperature ° C. is expressed as follows as a theoretical formula.
α = 2 · (ρC P tV) / Le · 1n {(Ti−Tg) / (To−Tg)} (1)
Where ρ: Steel plate density C P : Steel plate specific heat t: Steel plate thickness V: Steel plate passing speed Le: Effective cooling length Ti: Steel plate temperature before cooling To: Steel plate temperature after cooling Tg: Cooling gas temperature The required cooling capacity α of each cooling device is determined from the conditions. Further, since there is a relationship between the cooling capacity α and the cooling gas protruding flow rate (Nm / sec), the required protruding flow rate of each cooling device is determined. By these, the specifications as equipment can be determined.
FIG. 5 shows the relationship between the cooling flow velocity (Nm / sec) of the cooling gas and the cooling capacity α in the actual cooling device, and the hatched area is usually the practical area.
Since the cooling flow velocity of the cooling gas in the final cooling device 2s is about 50 Nm / sec, there is a cooling capacity α of 200 to 400 (W / m 2 K), and the cooling flow velocity of the cooling gas in the preceding cooling devices 2a and 2b is Since it is 70 Nm / sec or more, it has a cooling capacity α of 300 (W / m 2 K) or more.
As means for changing the cooling capacity α, in addition to the rotational speed of the blower, there are a change in the temperature of the cooling gas, a change in the distance between the cooling device and the steel plate, and the cooling adjustment can be performed.

この実施例は、図2で示すような鋼板の連続焼鈍炉の冷却帯を、温度が700〜400℃の厚さ0.6〜3.2mm、幅600〜1800mmの冷薄鋼板(鋼帯)を対象とし、150m/分で搬送中に、冷却帯の出側で450〜200℃になるように冷却する、連続焼鈍炉の(一次、二次)冷却帯に適用する場合を想定した場合で、前段冷却装置2a、2bの冷却能力と最終冷却装置2sの冷却能力配分(好ましくない配分を含む)と、最終冷却装置の出側での冷却目標温度に対する温度偏差(冷却誤差)をシミュレーションしたものである。その結果を表1に示す。   In this example, a cooling zone of a steel sheet continuous annealing furnace as shown in FIG. 2 is a cold thin steel plate (steel strip) having a temperature of 700 to 400 ° C., a thickness of 0.6 to 3.2 mm, and a width of 600 to 1800 mm. Assuming the case where it is applied to the (primary, secondary) cooling zone of a continuous annealing furnace that is cooled to 450 to 200 ° C. on the exit side of the cooling zone during conveyance at 150 m / min. , Simulation of cooling capacity distribution (including unfavorable distribution) of the cooling capacity of the pre-stage cooling devices 2a and 2b and the cooling capacity of the final cooling device 2s (including unfavorable distribution) and temperature deviation (cooling error) with respect to the cooling target temperature on the outlet side of the final cooling device It is. The results are shown in Table 1.

Figure 0004490804
Figure 0004490804

「結果評価」
表1から、例えば以下のようなことが言える。
最終冷却装置2sの冷却能力を40℃〜60℃とした場合において、
前段冷却装置2a:100℃〜250℃
前段冷却装置2b:100℃〜200℃
とした場合に冷却帯1出側での鋼板の冷却目標温度に対して、10℃以下の冷却誤差で冷却可能で、特に、最終冷却装置2sの冷却能力を50℃または40℃とした場合において、
前段冷却装置2a:100℃〜150℃
前段冷却装置2b:100℃〜150℃
とした場合に冷却帯1出側での鋼板の冷却目標温度に対して、2℃以下の微小の冷却誤差で冷却できる。
なお、実施例1は、前段冷却装置は2a、2bの2基の設置を前提とし冷却能力が100〜250℃の冷却装置を使用する場合で示したが、鋼板5の温度が例えば700℃の温度領域にあり、冷却目標温度が例えば200℃程度の温度領域で冷却温度範囲が広い場合には、例えば前段冷却装置2aの冷却能力を250℃以上にしたり、前段冷却装置を3〜4基配置にし、各前段冷却装置の冷却能力を例えば100℃程度まで下げることも考慮できる。
また、鋼板の温度が低い場合や鋼板温度と冷却目標温度が近く冷却温度範囲が狭い冷却帯用として適用する場合には、前段冷却装置は1基配置にしたり、冷却能力を100℃程度の冷却装置を用いることも考慮できる。
"Result Evaluation"
From Table 1, for example, the following can be said.
When the cooling capacity of the final cooling device 2s is 40 ° C to 60 ° C,
Pre-cooling device 2a: 100 ° C to 250 ° C
Previous stage cooling device 2b: 100 ° C. to 200 ° C.
In this case, the steel plate can be cooled with a cooling error of 10 ° C. or less with respect to the cooling target temperature of the steel plate on the outlet side of the cooling zone 1, and particularly when the cooling capacity of the final cooling device 2s is 50 ° C. or 40 ° C. ,
Pre-cooling device 2a: 100 ° C to 150 ° C
Pre-cooling device 2b: 100 ° C to 150 ° C
In this case, the cooling can be performed with a minute cooling error of 2 ° C. or less with respect to the cooling target temperature of the steel plate on the outlet side of the cooling zone 1.
In addition, although Example 1 showed the case where the cooling device with a cooling capacity of 100-250 degreeC was used on the premise that two sets of 2a and 2b are used for the pre-stage cooling apparatus, the temperature of the steel plate 5 is 700 degreeC, for example. In the temperature range, when the target cooling temperature is about 200 ° C. and the cooling temperature range is wide, for example, the cooling capacity of the front cooling device 2a is increased to 250 ° C. or more, or three or four front cooling devices are arranged. It is also possible to consider reducing the cooling capacity of each pre-stage cooling device to about 100 ° C., for example.
Also, when the temperature of the steel plate is low, or when it is used for a cooling zone where the steel plate temperature and the target cooling temperature are close and the cooling temperature range is narrow, a single pre-stage cooling device is arranged or a cooling capacity of about 100 ° C. It is also possible to consider using an apparatus.

この実施例2は、図2で示すような鋼板の連続焼鈍炉の冷却帯を、温度が700℃〜400℃の厚さ0.6〜3.2mm、幅600〜1850mmの冷薄鋼板(鋼帯)を対象とし、150m/分で搬送中に、冷却帯の出側で450〜200℃になるように冷却する、連続焼鈍炉の各種冷却帯に適用する場合を想定し、実施例1の結果も考慮にいれて前段冷却装置2a、2bの冷却能力と最終冷却装置2sの冷却能力を配分(好ましくない配分例を含む)し、各冷却装置で冷却を分担させた場合の冷却帯1出側での冷却目標温度に対する温度偏差(冷却誤差)をシミュレーションしたものである。その結果を表2に示す。   In Example 2, a cooling zone of a continuous annealing furnace for steel plates as shown in FIG. 2 is used. A cold thin steel plate (steel having a temperature of 700 to 400 ° C., a thickness of 0.6 to 3.2 mm, and a width of 600 to 1850 mm). Assuming the case of applying to various cooling zones of a continuous annealing furnace that is cooled to 450 to 200 ° C. on the exit side of the cooling zone during conveyance at 150 m / min. In consideration of the result, the cooling capacity of the pre-stage cooling devices 2a and 2b and the cooling capacity of the final cooling device 2s are distributed (including an unfavorable distribution example), and the cooling zone 1 output when cooling is shared by each cooling device The temperature deviation (cooling error) with respect to the cooling target temperature on the side is simulated. The results are shown in Table 2.

Figure 0004490804
Figure 0004490804

「結果評価」
表2から、例えば下記(1)〜(3)のようなことが言える。
(1)前段冷却装置2bの出側温度が、最終冷却装置2sの好ましい冷却能力50℃程度以内である場合には、いずれも鋼板の冷却目標温度に対して2℃以下の微小の冷却誤差で冷却できる。
(2)前段冷却装置2bの出側温度が、最終冷却装置2sの好ましい冷却能力50℃程度を超える場合は、鋼板5の冷却目標温度に対して10℃以上の冷却誤差がでやすい。
(注)この冷却誤差を小さくするための対策としては、例えば前段冷却装置2a、2 bの冷却能力を調整すること、すなわち前段冷却装置の冷却能力を大きくして最終 冷却装置2sの好ましい冷却能力の範囲内で冷却可能にすることが有効である。
(3)最終冷却装置2sの冷却能力を50℃以上と大きくした場合には、鋼板5の冷却目標温度に対して、−(マイナス)側に10℃以上(過冷却)の冷却誤差がでやすい。
(注)この冷却誤差を小さくするための対策としては、例えば最終冷却装置2sの冷 却能力を50℃程度まで下げ、前段冷却装置2a、2bの冷却能を上げて前段冷却 装置2a、2bの出側温度を下げることが有効である。
なお、表2において、前段冷却装置2a、2bによる冷却温度が数十℃と低い冷却例もあるが、この前段冷却装置は最終冷却装置2sの冷却能力より大きい冷却能力を有しており、ここでは冷却調整して抑えた冷却をしている。
本発明では、適用する冷却帯の入側の鋼板温度と冷却帯出側の鋼板温度(冷却目標温度)に応じて、冷却目標温度±5℃以下に冷却するための前段冷却装置と最終冷却装置の最適な冷却能力を考慮し、その最適な配置を選択するものである。
概念的には、最終冷却装置の冷却能力を例えば50℃程度以下にして微小な温度制御を可能にし、最終冷却装置の冷却能力より大きい冷却能力を有する前段冷却装置によって最終冷却装置の冷却能力で冷却できる範囲まで冷却するものである。
前段冷却装置による冷却が不十分で、最終冷却装置の冷却能力の範囲を超え、冷却目標温度±5℃以下の冷却ができない場合には、前段冷却装置の冷却能力を調整(冷却調整)し、最終冷却装置の冷却能力の範囲まで冷却することができる。
最終冷却装置も冷却能力の調整が可能で、例えば冷却能力50℃以下の範囲で冷却調整ができる。
最終冷却装置の前段冷却装置ですでに冷却目標温度±5℃程度まで冷却されている場合には、最終冷却装置では冷却しないで通過させることも考慮できる。
"Result Evaluation"
From Table 2, the following (1) to (3) can be said, for example.
(1) When the outlet side temperature of the pre-stage cooling device 2b is within the preferable cooling capacity of about 50 ° C. of the final cooling device 2s, all are small cooling errors of 2 ° C. or less with respect to the cooling target temperature of the steel plate. Can be cooled.
(2) When the outlet side temperature of the pre-stage cooling device 2b exceeds the preferable cooling capacity of about 50 ° C. of the final cooling device 2s, a cooling error of 10 ° C. or more is likely to occur with respect to the cooling target temperature of the steel plate 5.
(Note) As a measure to reduce this cooling error, for example, adjusting the cooling capacity of the pre-cooling devices 2a and 2b, that is, increasing the cooling capacity of the pre-cooling device and increasing the cooling capacity of the final cooling device 2s It is effective to allow cooling within the range.
(3) When the cooling capacity of the final cooling device 2 s is increased to 50 ° C. or more, a cooling error of 10 ° C. or more (supercooling) tends to occur on the − (minus) side with respect to the cooling target temperature of the steel plate 5. .
(Note) As a measure to reduce this cooling error, for example, the cooling capacity of the final cooling device 2s is lowered to about 50 ° C., and the cooling capacity of the front cooling devices 2a and 2b is increased to increase the cooling capacity of the front cooling devices 2a and 2b. It is effective to lower the delivery temperature.
In Table 2, there is a cooling example in which the cooling temperature by the pre-stage cooling devices 2a and 2b is as low as several tens of degrees Celsius. However, this pre-stage cooling device has a cooling capacity larger than the cooling capacity of the final cooling apparatus 2s. Then, the cooling is adjusted and suppressed.
In the present invention, according to the steel plate temperature on the inlet side of the cooling zone to be applied and the steel plate temperature on the outlet side of the cooling zone (cooling target temperature), the pre-stage cooling device and the final cooling device for cooling to the cooling target temperature ± 5 ° C. or less. In consideration of the optimum cooling capacity, the optimum arrangement is selected.
Conceptually, the cooling capacity of the final cooling device can be controlled, for example, by setting the cooling capacity of the final cooling device to about 50 ° C. or less, and the cooling capacity of the final cooling device can be controlled by a pre-stage cooling device having a cooling capacity larger than that of the final cooling device. It cools to the range which can be cooled.
If the cooling by the pre-cooling device is insufficient, exceeds the range of the cooling capacity of the final cooling device, and cooling cannot be performed at the target cooling temperature ± 5 ° C or less, the cooling capacity of the pre-cooling device is adjusted (cooling adjustment), It can cool to the range of the cooling capacity of the final cooling device.
The cooling capacity of the final cooling device can also be adjusted. For example, the cooling can be adjusted in a range of 50 ° C. or less.
When it is already cooled to the cooling target temperature of about ± 5 ° C. in the pre-cooling device of the final cooling device, it can be considered that the final cooling device passes without cooling.

本発明は、上記の実施例の内容に限定されるものではない。実施例1、2は、本発明を連続焼鈍炉の冷却帯に適用の場合を示したが、同様の温度領域の鋼板の他の熱処理ライン(例えば溶融メッキライン)の冷却帯としても適用が可能である。
また、各冷却装置の構造、冷却能、冷却能力条件(冷却能力配分を含む)、配置条件、冷却操業(冷却温度、冷却速度)条件については、処理対象鋼帯条件(鋼種、サイズ、温度)、設備(処理ライン)の基本条件(搬送速度を含む)、操業スケジュールなどに応じて請求項の範囲を満足する範囲内で変更のあるものである。
The present invention is not limited to the contents of the above embodiments. Examples 1 and 2 show the case where the present invention is applied to a cooling zone of a continuous annealing furnace, but it can also be applied as a cooling zone of another heat treatment line (for example, a hot dipping line) of a steel plate in a similar temperature range. It is.
In addition, regarding the structure, cooling capacity, cooling capacity conditions (including cooling capacity allocation), arrangement conditions, and cooling operation (cooling temperature, cooling rate) conditions of each cooling device, the steel strip conditions to be processed (steel type, size, temperature) Depending on the basic conditions (including the conveyance speed) of the equipment (processing line), the operation schedule, etc., there are changes within a range that satisfies the scope of the claims.

本発明の冷却帯を連純焼鈍炉の冷却帯として配置した場合の各冷却装置の配置例を示す側面概念説明図。Side surface explanatory drawing which shows the example of arrangement | positioning of each cooling device at the time of arrange | positioning the cooling zone of this invention as a cooling zone of a continuous pure annealing furnace. 図1の冷却帯において各冷却装置の制御システムを設けた場合の側面概念説明図。Side surface explanatory drawing at the time of providing the control system of each cooling device in the cooling zone of FIG. 本発明で用いるガスジェット方式の冷却装置の冷却装置の冷却能力と温度制御ステップとの関係を示す説明図。Explanatory drawing which shows the relationship between the cooling capability of the cooling device of a gas jet type cooling device used by this invention, and a temperature control step. 本発明で用いるガスジェット方式の冷却装置の冷却ガスの突出流速と、冷却能力との関係を示す説明図。Explanatory drawing which shows the relationship between the protrusion flow velocity of the cooling gas of the cooling device of the gas jet system used by this invention, and cooling capacity. 本発明で用いる実際のガスジェット方式の冷却装置での冷却ガスの突出流速と冷却能との関係を示す説明図。Explanatory drawing which shows the relationship between the cooling gas protrusion flow velocity and cooling capacity in the actual gas jet type cooling device used in the present invention.

符号の説明Explanation of symbols

1 冷却帯 2a、2b 前段冷却装置
2s 最終冷却装置 3 突出ノズル
4 冷却ガス箱備 5 鋼板(鋼帯)
6 ブロワー 7、7a 板温計
8 制御装置 9 流量調整弁
DESCRIPTION OF SYMBOLS 1 Cooling zone 2a, 2b Previous stage cooling device 2s Final cooling device 3 Protruding nozzle 4 Cooling gas box 5 Steel plate (steel strip)
6 Blower 7, 7a Plate thermometer 8 Controller 9 Flow control valve

Claims (1)

鋼板の連続焼鈍炉の冷却帯が、直列配置された複数のガスジェット方式の冷却装置から構成され、この内の最終の冷却装置として、他の冷却装置より冷却能力の低い冷却装置により冷却される、連続焼鈍炉における鋼板の冷却方法において
最終の冷却装置を除く他の冷却は鋼板への冷却ガスの突出流速の最大値が、70Nm/sec以上であり、最終の冷却装置の前段の冷却装置で、鋼板の冷却目標温度+△t℃(10≦△t≦50)まで冷却し、
最終の冷却装置鋼板の冷却目標温度+△t℃(10≦△t≦50)から鋼板の冷却目標温度まで鋼板を冷却する
ことを特徴とする連続焼鈍炉における鋼板の冷却方法
The cooling zone of the steel sheet continuous annealing furnace is composed of a plurality of gas jet type cooling devices arranged in series, and the final cooling device is cooled by a cooling device having a lower cooling capacity than other cooling devices. In the method for cooling a steel plate in a continuous annealing furnace ,
For the other cooling except the final cooling device, the maximum value of the protruding flow velocity of the cooling gas to the steel plate is 70 Nm / sec or more, and the cooling device in the previous stage of the final cooling device is the target cooling temperature of the steel plate + Δt ° C. (10 ≦ Δt ≦ 50)
Steel cooling method in the continuous annealing furnace final cooling apparatus characterized by cooling the steel sheet from the cooling target temperature + △ t ° C. of the steel plate (10 ≦ △ t ≦ 50) to the cooling target temperature of the steel sheet.
JP2004375756A 2004-12-27 2004-12-27 Method of cooling steel sheet in continuous annealing furnace Active JP4490804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375756A JP4490804B2 (en) 2004-12-27 2004-12-27 Method of cooling steel sheet in continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375756A JP4490804B2 (en) 2004-12-27 2004-12-27 Method of cooling steel sheet in continuous annealing furnace

Publications (2)

Publication Number Publication Date
JP2006183075A JP2006183075A (en) 2006-07-13
JP4490804B2 true JP4490804B2 (en) 2010-06-30

Family

ID=36736407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375756A Active JP4490804B2 (en) 2004-12-27 2004-12-27 Method of cooling steel sheet in continuous annealing furnace

Country Status (1)

Country Link
JP (1) JP4490804B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101075917B1 (en) * 2008-12-22 2011-10-26 주식회사 포스코 Apparatus for cooling strip of bright annealing furnace
MX2018011993A (en) 2016-04-05 2019-02-07 Nippon Steel & Sumitomo Metal Corp Cooling facility in continuous annealing furnace.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212281A (en) * 1993-01-18 1994-08-02 Nkk Corp Cooling method of metal strip of continuous annealing furnace
JPH08232024A (en) * 1995-02-23 1996-09-10 Nisshin Steel Co Ltd Method for controlling temperature of metallic strip
JPH11236625A (en) * 1998-02-25 1999-08-31 Nkk Corp Apparatus for supplying gas in gas jet heating and cooling
JP2004269958A (en) * 2003-03-07 2004-09-30 Jfe Steel Kk Method for cooling steel strip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212281A (en) * 1993-01-18 1994-08-02 Nkk Corp Cooling method of metal strip of continuous annealing furnace
JPH08232024A (en) * 1995-02-23 1996-09-10 Nisshin Steel Co Ltd Method for controlling temperature of metallic strip
JPH11236625A (en) * 1998-02-25 1999-08-31 Nkk Corp Apparatus for supplying gas in gas jet heating and cooling
JP2004269958A (en) * 2003-03-07 2004-09-30 Jfe Steel Kk Method for cooling steel strip

Also Published As

Publication number Publication date
JP2006183075A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
US8359894B2 (en) Method for cooling hot-rolled steel strip
US6054095A (en) Widthwise uniform cooling system for steel strip in continuous steel strip heat treatment step
EP0815268B1 (en) Primary cooling method in continuously annealing steel strip
JP4490804B2 (en) Method of cooling steel sheet in continuous annealing furnace
JP5100327B2 (en) Cold rolled steel sheet manufacturing method
JP2006055884A (en) Method for manufacturing hot-rolled steel sheet and apparatus for controlling rolling
JP2009056504A (en) Manufacturing method and manufacturing device of hot-rolled steel sheet
JP2009241133A (en) Method of manufacturing bar steel and wire rod
JP3817153B2 (en) Hot-rolled steel sheet cooling equipment
EP0803583B2 (en) Primary cooling method in continuously annealing steel strips
KR20020096401A (en) Cooling control method for compensating set-up temperature by recalculating amount of cooling water
JP5544589B2 (en) Cooling control method for hot-rolled steel sheet
JP2006239777A (en) Method for manufacturing hot-rolled steel sheet
JPH06190419A (en) Method for cooling strip
JP2012218052A (en) Lower surface cooling device for hot steel sheet
JPH052728B2 (en)
JP4525133B2 (en) Manufacturing method of hot-rolled steel strip
JP2002011502A (en) Method and device for manufacturing hot-rolled steel sheet
JP2009052112A (en) Method for controlling transportation speed of metal strip in continuous annealing line, and method for manufacturing metal strip using the same
JPH0760303A (en) Cold rolling equipment of steel strip
JP2897134B2 (en) Furnace temperature control method for continuous annealing furnace
JP2003025008A (en) Control method for cooling metallic material to be rolled in hot rolling
JPH046224A (en) Method for controlling temperature of continuous annealing furnace
JPH02285032A (en) Method for adjusting thermal-crown of roll for cooling zone in continuous annealing furnace
JPH09125155A (en) Method for preventing meandering of passing steel sheet in continuous heat treatment furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4490804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350