JP2005219485A - Laminated body and medical bag made of the same - Google Patents

Laminated body and medical bag made of the same Download PDF

Info

Publication number
JP2005219485A
JP2005219485A JP2004375894A JP2004375894A JP2005219485A JP 2005219485 A JP2005219485 A JP 2005219485A JP 2004375894 A JP2004375894 A JP 2004375894A JP 2004375894 A JP2004375894 A JP 2004375894A JP 2005219485 A JP2005219485 A JP 2005219485A
Authority
JP
Japan
Prior art keywords
ethylene
weight
olefin copolymer
component
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004375894A
Other languages
Japanese (ja)
Other versions
JP4505321B2 (en
Inventor
Takahiro Amamiya
隆浩 雨宮
Kazutoshi Takenaka
一利 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
Original Assignee
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyethylene Corp filed Critical Japan Polyethylene Corp
Priority to JP2004375894A priority Critical patent/JP4505321B2/en
Publication of JP2005219485A publication Critical patent/JP2005219485A/en
Application granted granted Critical
Publication of JP4505321B2 publication Critical patent/JP4505321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Laminated Bodies (AREA)
  • Bag Frames (AREA)
  • Wrappers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated body with a highly hygienic property, superior in a flexibility, transparency and stab resistance and high in a temperature resistance and good in a bag drop strength at a low temperature environment and useful for forming a medical care bag containing a pharmaceutical liquid, a blood or the like and a bag for a medical care. <P>SOLUTION: The laminated body comprises at least an outer layer, a middle layer and an internal layer in the order wherein the outer layer is made of a polyolefinic resin (A) with a specified Vicat softening temperature, the middle layer is formed by a composition consisted of an ethylene-α-olefine copolymer (B) with an MFR of 0.1-20 g/10 min and a density of 0.880-0.930 g/cm<SP>3</SP>of 85-97 wt.% and an HDPE (C) with an MFR of 0.1-20 g/10 min and a density of 0.940-0.980 g/cm<SP>3</SP>of 3-15 wt.% and the internal layer is formed by a composition (b) consisted of the component (B) of 80-95 wt.% and the component (C) of 5-20 wt.% and further the content of the HDPE in the composition (a) and the content of the HDPE in the composition (b) satisfy a specified relational expression. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、衛生性、柔軟性、透明性、突き刺し強度、耐熱性、落袋強度、ヒートシール適性、等に優れた積層体、及びそれからなる薬液、血液等を入れる医療用袋に関する。   The present invention relates to a laminate excellent in hygiene, flexibility, transparency, puncture strength, heat resistance, bag drop strength, heat sealability, and the like, and a medical bag containing a drug solution, blood, and the like comprising the laminate.

医療用袋には、内容液が視認できるような透明性、内容液の滴下性の観点から柔軟性、滅菌など加熱処理によっても透明性,柔軟性を損なうことのない耐熱性が求められる。上記要求を備え、しかも衛生性の良好な樹脂材料としてポリエチレン系の積層体が検討され、多くの提案がなされている。   The medical bag is required to have transparency so that the content liquid can be visually recognized and from the viewpoint of dripping of the content liquid, flexibility, heat resistance such as sterilization and heat resistance that does not impair the flexibility. As a resin material having the above requirements and having good hygiene, a polyethylene laminate has been studied and many proposals have been made.

例えば、内外層が0.910〜0.940g/cmの密度を有するエチレン・α−オレフィン共重合体である線状低密度ポリエチレンからなり、中間層が0.880〜0.905g/cmの密度を有するエチレン・α−オレフィン共重合体である線状低密度ポリエチレンからなり、かつ、内層および外層と中間層との間に密度の差を少なくとも0.01g/cm設けた三層構造のプラスチック容器が提案されている(例えば、特許文献1参照)。しかしながら、上記のプラスチック容器は、耐熱性が充分でないという大きな問題がある。特に滅菌処理の温度条件を120℃以上という過酷な条件にした場合には、この成形品は、透明性や柔軟性が低下したりする。 For example, the inner and outer layers are made of linear low density polyethylene which is an ethylene / α-olefin copolymer having a density of 0.910 to 0.940 g / cm 3 , and the intermediate layer is 0.880 to 0.905 g / cm 3. A three-layer structure comprising a linear low-density polyethylene which is an ethylene / α-olefin copolymer having a density of at least 0.01 g / cm 3 between the inner layer, the outer layer and the intermediate layer A plastic container has been proposed (see, for example, Patent Document 1). However, the plastic container has a big problem that the heat resistance is not sufficient. In particular, when the temperature condition of the sterilization treatment is set to a severe condition of 120 ° C. or higher, the molded product has reduced transparency and flexibility.

また、密度が0.910g/cm以上0.950g/cm未満の直鎖状ポリエチレンで形成された外層と、密度が0.940g/cm以下の直鎖状ポリエチレンで形成された内層と、前記外層と内層との間に、密度が0.920g/cm以下で外層および内層を形成する直鎖状ポリエチレンの密度とは異なる密度を有する直鎖状ポリエチレンから形成されてなる少なくとも一つの中間層を含む中間層部とを有し、かつ、これらの層の少なくとも一つの層が、密度が0.950g/cm以上の高密度ポリエチレンを5〜55重量%含む直鎖状ポリエチレン組成物で形成されていることを特徴とする樹脂積層体が提案されている(例えば、特許文献2参照)。
さらに、外層が特定のビカット軟化温度を有するポリオレフィン系樹脂材料で形成され、内層が低結晶成分と高結晶成分とを含むエチレン・α−オレフィン共重合体を主成分とするポリエチレン系材料で形成された積層体が提案されている(例えば、特許文献3参照)。
しかしながら、これらの積層体からなる医療用袋は、耐熱性が向上し透明性の低下は改善されるが、柔軟性低下の改善は充分ではない。さらに耐熱性を改善するために、高密度ポリエチレンを増やしても、今度は突き刺し強度や落袋強度が悪化することになるため、柔軟性及び透明性に優れ、かつ耐熱性が高く、さらには突き刺し強度や落袋時の破袋強度についても良好で、ヒートシール適性に優れた医療用袋は、従来の多層医療用袋では達成できていなかった。
特開昭63−248633号公報 特開平6−246886号公報 特開2001−162746号公報
An outer layer formed of linear polyethylene having a density of 0.910 g / cm 3 or more and less than 0.950 g / cm 3 ; and an inner layer formed of linear polyethylene having a density of 0.940 g / cm 3 or less; And at least one linear polyethylene having a density of 0.920 g / cm 3 or less between the outer layer and the inner layer and having a density different from that of the linear polyethylene forming the outer layer and the inner layer. A linear polyethylene composition comprising an intermediate layer portion including an intermediate layer, and at least one of these layers includes 5 to 55% by weight of high-density polyethylene having a density of 0.950 g / cm 3 or more. There has been proposed a resin laminate characterized by being formed of (see, for example, Patent Document 2).
Furthermore, the outer layer is formed of a polyolefin-based resin material having a specific Vicat softening temperature, and the inner layer is formed of a polyethylene-based material mainly composed of an ethylene / α-olefin copolymer containing a low crystal component and a high crystal component. A laminated body has been proposed (see, for example, Patent Document 3).
However, medical bags made of these laminates have improved heat resistance and improved transparency, but not enough to improve flexibility. In order to further improve heat resistance, even if high-density polyethylene is increased, the piercing strength and drop-off bag strength will deteriorate this time. Therefore, the flexibility and transparency are excellent, and the heat resistance is high. A medical bag excellent in strength and bag breaking strength at the time of dropping a bag and excellent in heat sealability could not be achieved by a conventional multilayer medical bag.
JP-A 63-248633 JP-A-6-246886 JP 2001-162746 A

本発明は、上記問題点に鑑み、衛生性が高く、柔軟性、透明性及び突き刺し強度に優れ、かつ耐熱性が高く、さらには、低温雰囲気下での落袋強度についても良好な、薬液、血液などを収容する医療用袋用積層体及びそれからなる医療用袋を提供することを課題とする。   In view of the above problems, the present invention is highly hygienic, excellent in flexibility, transparency and puncture strength, has high heat resistance, and has a good bag drop strength in a low temperature atmosphere. It is an object of the present invention to provide a laminated body for medical bags that contains blood and the like, and a medical bag comprising the same.

本発明者らは、上記問題点を解決すべく鋭意検討した結果、特定のポリオレフィン系樹脂材料と特定の高密度ポリエチレンを含む特定のエチレン・α−オレフィン共重合体組成物を積層し、水冷インフレーション成形することにより、衛生性が高く、柔軟性、透明性及び突き刺し強度に優れ、かつ耐熱性が高く、さらには、低温雰囲気下での落袋強度についても良好な、薬液、血液などを収容する医療用袋用積層体が得られるとの知見を得て、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors laminated a specific ethylene / α-olefin copolymer composition containing a specific polyolefin-based resin material and a specific high-density polyethylene, and water-cooled inflation. By molding, it contains chemicals, blood, etc. that have high hygiene, excellent flexibility, transparency and puncture strength, high heat resistance, and good bag drop strength in a low-temperature atmosphere. The knowledge that a laminate for medical bags can be obtained has led to the completion of the present invention.

すなわち、本発明の第1の発明によれば、少なくとも外層、中間層及び内層をこの順で含む積層体であって、
前記外層は、ビカット軟化温度が90〜140℃のポリオレフィン系樹脂材料(A)により形成され、
前記中間層は、メルトフローレートが0.1〜20g/10分、密度が0.880〜0.930g/cmのエチレン・α−オレフィン共重合体(B)85〜97重量%とメルトフローレートが0.1〜20g/10分、密度が0.940〜0.980g/cmの高密度ポリエチレン(C)3〜15重量%とからなるエチレン・α−オレフィン共重合体組成物(a)により形成され、
前記内層は、メルトフローレートが0.1〜20g/10分、密度が0.880〜0.930g/cmのエチレン・α−オレフィン共重合体(A)80〜95重量%とメルトフローレートが0.1〜20g/10分、密度が0.940〜0.980g/cmの高密度ポリエチレン(C)5〜20重量%からなるエチレン・α−オレフィン共重合体組成物(b)により形成され、
かつ、エチレン・α−オレフィン共重合体組成物(a)における高密度ポリエチレンの含有量[HDPEa](重量%)とエチレン・α−オレフィン共重合体組成物(b)における高密度ポリエチレンの含有量[HDPEb](重量%)とが、下記式(1)及び式(2)を満足することを特徴とする積層体が提供される。
0<[HDPEb]−[HDPEa]<15 ・・・(1)
10<[HDPEb]+[HDPEa]<30 ・・・(2)
That is, according to the first aspect of the present invention, the laminate includes at least the outer layer, the intermediate layer, and the inner layer in this order,
The outer layer is formed of a polyolefin resin material (A) having a Vicat softening temperature of 90 to 140 ° C.,
The intermediate layer has a melt flow rate of 85 to 97% by weight with an ethylene / α-olefin copolymer (B) having a melt flow rate of 0.1 to 20 g / 10 min and a density of 0.880 to 0.930 g / cm 3. An ethylene / α-olefin copolymer composition (a) comprising 3 to 15% by weight of high density polyethylene (C) having a rate of 0.1 to 20 g / 10 min and a density of 0.940 to 0.980 g / cm 3 )
The inner layer has an melt flow rate of 80 to 95% by weight of an ethylene / α-olefin copolymer (A) having a melt flow rate of 0.1 to 20 g / 10 min and a density of 0.880 to 0.930 g / cm 3. Is an ethylene / α-olefin copolymer composition (b) comprising 5 to 20% by weight of high density polyethylene (C) having a density of 0.1 to 20 g / 10 min and a density of 0.940 to 0.980 g / cm 3. Formed,
And the content [HDPEa] (weight%) of the high density polyethylene in the ethylene / α-olefin copolymer composition (a) and the content of the high density polyethylene in the ethylene / α-olefin copolymer composition (b) There is provided a laminate characterized in that [HDPEb] (% by weight) satisfies the following formulas (1) and (2).
0 <[HDPEb] − [HDPEa] <15 (1)
10 <[HDPEb] + [HDPEa] <30 (2)

また、本発明の第2の発明によれば、第1の発明において、中間層又は内層のエチレン・α−オレフィン共重合体(B)の少なくとも一方が、メタロセン触媒を用いて製造され、かつ、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.5〜4.0であることを特徴とする積層体が提供される。   According to the second invention of the present invention, in the first invention, at least one of the intermediate layer or the inner layer ethylene / α-olefin copolymer (B) is produced using a metallocene catalyst, and A laminate having a ratio (Mw / Mn) of a weight average molecular weight (Mw) to a number average molecular weight (Mn) of 1.5 to 4.0 is provided.

また、本発明の第3の発明によれば、第1又は2の発明において、ポリオレフィン系樹脂材料(A)が、示差走査熱量測定法(DSC)によって得られる融解ピークの補外融解終了温度が110〜125℃の高圧法低密度ポリエチレンであることを特徴とする積層体が提供される。   According to the third invention of the present invention, in the first or second invention, the polyolefin resin material (A) has an extrapolated melting end temperature of the melting peak obtained by differential scanning calorimetry (DSC). A laminate is provided that is a high-pressure low-density polyethylene at 110 to 125 ° C.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、エチレン・α−オレフィン共重合(B)の示差走査熱量測定法(DSC)によって得られる融解ピークの補外融解終了温度(Tm)と高密度ポリエチレン(C)の補外融解終了温度(Tm)が下記式(3)を満たすことを特徴とする積層体が提供される。
15≦(Tm−Tm)≦50 ・・・(3)
According to the fourth invention of the present invention, in any of the first to third inventions, the melting peak obtained by differential scanning calorimetry (DSC) of ethylene / α-olefin copolymerization (B) is compensated. An outer melting end temperature (Tm b ) and an extrapolated melting end temperature (Tm c ) of the high-density polyethylene (C) satisfy the following formula (3).
15 ≦ (Tm c −Tm b ) ≦ 50 (3)

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、前記外層、中間層及び内層を構成する樹脂組成物のオルゼン曲げこわさが下記式(4)を満たすことを特徴とする積層体が提供される。
中間層<内層<外層 ・・・(4)
According to the fifth invention of the present invention, in any one of the first to fourth inventions, the Olsen bending stiffness of the resin composition constituting the outer layer, the intermediate layer, and the inner layer satisfies the following formula (4): A laminate is provided.
Intermediate layer <Inner layer <Outer layer (4)

また、本発明の第6の発明によれば、第1〜5のいずれかの発明の積層体からなることを特徴とする医療用袋が提供される。   According to a sixth aspect of the present invention, there is provided a medical bag comprising the laminate according to any one of the first to fifth aspects.

本発明の積層体は、衛生性が良好であるだけでなく、115℃滅菌処理後の柔軟性、透明性、突き刺し強度に著しく優れ、かつ耐熱性、輸送時、取り扱い時に問題となる落袋強度に優れ、さらに、シール時の上側シールバーへの付着を防ぐものであるので、医療用袋、特に輸液バッグなどの医療分野における軟質容器として、好適に用いることができる。   The laminate of the present invention not only has good hygiene, but also has excellent flexibility, transparency and puncture strength after 115 ° C. sterilization treatment, and heat resistance, bag drop strength that causes problems during transportation and handling In addition, since it adheres to the upper seal bar during sealing, it can be suitably used as a soft container in the medical field such as a medical bag, particularly an infusion bag.

本発明の積層体は、少なくとも外層、中間層及び内層をこの順で含む積層体であり、外層はポリオレフィン系樹脂材料(A)により形成され、中間層及び内層はエチレン・α−オレフィン共重合体(B)と高密度ポリエチレン(C)を、それぞれ特定の割合で含有する、エチレン・α−オレフィン共重合体組成物(a)及び(b)により形成される。以下に各層を構成する成分、積層体等について説明する。   The laminate of the present invention is a laminate comprising at least an outer layer, an intermediate layer, and an inner layer in this order. The outer layer is formed of a polyolefin resin material (A), and the intermediate layer and the inner layer are ethylene / α-olefin copolymers. It is formed by ethylene / α-olefin copolymer compositions (a) and (b) each containing (B) and high-density polyethylene (C) at specific ratios. The components, laminates, etc. constituting each layer will be described below.

1.外層
(1)ポリオレフィン系樹脂材料(A)
本発明の積層体の外層に用いるポリオレフィン系樹脂材料(A)は、ビカット軟化温度90〜140℃、好ましくは95℃〜130℃、より好ましくは100〜120℃のポリオレフィン系樹脂である。ビカット軟化温度が90℃未満ではシール時、上側シールバーへの付着がおこり、好ましくない。また、140℃を超えると柔軟性に欠け好ましくない。
また、成分(A)のビカット軟化温度Taは、内層樹脂組成物のビカット軟化温度Tbとの関係において、
Tb<Ta≦140℃
を満たすものが好ましいものとして用いられる。外層のポリオレフィン系樹脂材料のビカット軟化温度Taが内層の樹脂組成物のビカット軟化温度Tb以下であると、製袋時(内層と内層をシールバーにより熱融着させる)、シールバーに外層側から取られ(外層が上側シールバーへ付着)、作業効率が低下するので好ましくない。
なお、ビカット軟化温度は、JIS−K7206−1974に準拠して測定する値である。
1. Outer layer (1) Polyolefin resin material (A)
The polyolefin resin material (A) used for the outer layer of the laminate of the present invention is a polyolefin resin having a Vicat softening temperature of 90 to 140 ° C, preferably 95 ° C to 130 ° C, more preferably 100 to 120 ° C. If the Vicat softening temperature is less than 90 ° C., adhesion to the upper seal bar occurs during sealing, which is not preferable. Moreover, when it exceeds 140 degreeC, a softness | flexibility is lacking and it is not preferable.
Further, the Vicat softening temperature Ta of the component (A) is related to the Vicat softening temperature Tb of the inner layer resin composition.
Tb <Ta ≦ 140 ° C.
Those satisfying the conditions are preferably used. When the Vicat softening temperature Ta of the polyolefin resin material of the outer layer is equal to or lower than the Vicat softening temperature Tb of the resin composition of the inner layer, when the bag is made (the inner layer and the inner layer are heat-sealed by the seal bar), It is not preferable because it is removed (the outer layer adheres to the upper seal bar) and the working efficiency is lowered.
The Vicat softening temperature is a value measured according to JIS-K7206-1974.

上記特性を満たすポリオレフィン系樹脂材料(A)としては、次に説明する(i)示差走査熱量測定法(DSC)によって得られる融解ピークの補外融解終了温度が110℃以上の高圧法低密度ポリエチレン、(ii)密度が0.910g/cm以上のエチレンと炭素数3〜18のα−オレフィンとの共重合体又はこれらの混合物が挙げられる。 The polyolefin resin material (A) satisfying the above characteristics includes (i) a high-pressure low-density polyethylene having an extrapolated melting end temperature of 110 ° C. or higher at a melting peak obtained by differential scanning calorimetry (DSC) described below. (Ii) A copolymer of ethylene having a density of 0.910 g / cm 3 or more and an α-olefin having 3 to 18 carbon atoms, or a mixture thereof.

(i)高圧法低密度ポリエチレン
外層に用いるポリオレフィン系樹脂材料として用いることのできる高圧法低密度ポリエチレンは、示差走査熱量測定法(DSC)によって得られる融解ピークの補外融解終了温度(Tm)が110℃以上であり、好ましくは110〜125℃、より好ましくは113〜120℃である。Tmが110℃未満では耐熱性が悪くなる。
ここで、Tmの測定は、セイコー社製示差走査熱量計を用い、サンプル量は5.0mgを採り、170℃で5分間保持した後、−10℃まで10℃/分の降温スピードで結晶化させた後に1分間保持し、さらに10℃/分の昇温スピードで融解させたときの融解ピークの補外融解終了温度で評価する。
(I) High pressure method low density polyethylene The high pressure method low density polyethylene which can be used as a polyolefin resin material used for the outer layer is an extrapolated melting end temperature (Tm a ) of a melting peak obtained by differential scanning calorimetry (DSC). Is 110 ° C. or higher, preferably 110 to 125 ° C., more preferably 113 to 120 ° C. Tm a heat resistance is deteriorated at below 110 ° C..
The measurement of Tm a uses a Seiko Co. differential scanning calorimeter, the sample amount takes a 5.0 mg, was held 5 minutes at 170 ° C., crystals 10 ° C. / min cooling speed to -10 ° C. It is held for 1 minute after being converted to an extrapolated melting end temperature at the melting peak when it is further melted at a heating rate of 10 ° C./min.

また、高圧法低密度ポリエチレンのMFRは、特に限定されないが、好ましくは0.05〜100g/10分、より好ましくは0.1〜50g/10分、特に好ましくは0.2〜20g/10分である。該MFR値がこの範囲であれば、成膜が安定するという利点を有する。
ここで、MFRの測定は、JIS−K6922−2:1997附属書(190℃、21.18N荷重)に準拠して行う。
The MFR of the high-pressure low-density polyethylene is not particularly limited, but is preferably 0.05 to 100 g / 10 minutes, more preferably 0.1 to 50 g / 10 minutes, and particularly preferably 0.2 to 20 g / 10 minutes. It is. When the MFR value is within this range, there is an advantage that the film formation is stable.
Here, the measurement of MFR is performed according to JIS-K6922-2: 1997 annex (190 degreeC, 21.18N load).

さらに、高圧法低密度ポリエチレンの密度は、特に制限されないが、好ましくは0.915〜0.940g/cm、より好ましくは0.920〜0.935g/cmである。密度がこの範囲であれば、耐熱性、柔軟性が優れるという利点を有する。
ここで、密度は、JIS−K6922−2:1997附属書(低密度ポリエチレンの場合)に準拠して行う(23℃)。
Further, the density of the high-pressure low-density polyethylene is not particularly limited, but is preferably 0.915 to 0.940 g / cm 3 , more preferably 0.920 to 0.935 g / cm 3 . If the density is within this range, the heat resistance and flexibility are excellent.
Here, the density is determined according to JIS-K6922-2: 1997 appendix (in the case of low density polyethylene) (23 ° C.).

なお、高圧法低密度ポリエチレンは、1種又は2種以上の混合物であっても良い。   The high-pressure method low-density polyethylene may be one type or a mixture of two or more types.

(ii)エチレンと炭素数3〜18のα−オレフィンとの共重合体
外層に用いるポリオレフィン系樹脂材料として用いることのできるエチレンと炭素数3〜18のα−オレフィンとの共重合体は、密度が0.910g/cm以上であり、好ましくは0.910〜0.940g/cm、より好ましくは0.910〜0.935g/cmである。密度がこの範囲であれば、耐熱性、柔軟性、透明性が優れるという利点を有する。
ここで、密度の測定は、JIS−K6922−2:1997附属書(低密度ポリエチレンの場合)に準拠して行う(23℃)。
(Ii) Copolymer of ethylene and an α-olefin having 3 to 18 carbon atoms A copolymer of ethylene and an α-olefin having 3 to 18 carbon atoms that can be used as a polyolefin-based resin material used for the outer layer has a density of Is 0.910 g / cm 3 or more, preferably 0.910 to 0.940 g / cm 3 , more preferably 0.910 to 0.935 g / cm 3 . If the density is within this range, the heat resistance, flexibility, and transparency are excellent.
Here, the density is measured according to JIS-K6922-2: 1997 appendix (in the case of low density polyethylene) (23 ° C.).

また、エチレンと炭素数3〜18のα−オレフィンとの共重合体のMFRは、特に限定されないが、好ましくは0.05〜100g/10分、より好ましくは0.1〜50g/10分、特に好ましくは0.2〜20g/10分である。MFR値がこの範囲であれば、成膜が安定するという利点を有する。
ここで、MFRの測定は、JIS−K6922−2:1997附属書(190℃、21.18N荷重)に準拠して行う。
Moreover, although MFR of the copolymer of ethylene and C3-C18 alpha olefin is not specifically limited, Preferably it is 0.05-100 g / 10min, More preferably, it is 0.1-50 g / 10min, Most preferably, it is 0.2-20 g / 10min. If the MFR value is within this range, there is an advantage that the film formation is stable.
Here, the measurement of MFR is performed according to JIS-K6922-2: 1997 annex (190 degreeC, 21.18N load).

エチレンと炭素数3〜18のα−オレフィンとの共重合体としては、チーグラー型触媒を用いて製造されたもの、メタロセン系触媒を用いて製造されたものを挙げることができる。なお、エチレンと炭素数3〜18のα−オレフィンとの共重合体は、1種又は2種以上の混合物であっても良い。   As a copolymer of ethylene and a C3-C18 alpha olefin, what was manufactured using the Ziegler type catalyst and what was manufactured using the metallocene catalyst can be mentioned. In addition, the 1 type, or 2 or more types of mixture may be sufficient as the copolymer of ethylene and a C3-C18 alpha olefin.

外層に用いるポリオレフィン系樹脂材料として、上記(i)または(ii)成分の中では、特に成形時に立ち上げの際に樹脂がたれてしまうのを防ぐ、バブルが安定するなど、溶融時の張力の観点から(i)示差走査熱量測定法(DSC)によって得られる融解ピークの補外融解終了温度が110℃以上の高圧法低密度ポリエチレンが好ましい。
さらに、溶融張力が0.8〜20gであることが好ましく、0.9〜15gであることがより好ましく、1.0〜10gであることが特に好ましい。溶融張力がこの範囲であれば、成形時立ち上げの際に樹脂がたれてしまうのを防ぐ、バブルが安定するなどのため、成形性が優れるという利点を有する。
As the polyolefin-based resin material used for the outer layer, among the components (i) or (ii), the resin is prevented from dripping particularly at the time of start-up at the time of molding, the bubble is stabilized, etc. From the viewpoint, (i) a high-pressure low-density polyethylene having an extrapolated melting end temperature of a melting peak obtained by differential scanning calorimetry (DSC) of 110 ° C. or higher is preferable.
Furthermore, the melt tension is preferably 0.8 to 20 g, more preferably 0.9 to 15 g, and particularly preferably 1.0 to 10 g. If the melt tension is within this range, there is an advantage that the moldability is excellent because the resin is prevented from dripping at the time of start-up at the time of molding and the bubbles are stabilized.

(2)その他の成分
本発明の積層体の外層には、本発明の効果を著しく損なわない範囲において、一般に樹脂組成物用として用いられる補助添加成分を必要に応じて配合することもできる。そのような補助添加成分としては、例えば、酸化防止剤(中でも、フェノール系、およびリン系酸化防止剤が好ましい)、アンチブロッキング剤、中和剤、熱安定剤を挙げることができる。
また、成分(A)の総重量に対して、本発明の効果を損なわない範囲で、柔軟性を付与するため、もしくは/かつ、層間接着力を向上させるため、チーグラー系又はメタロセン系触媒によって重合された結晶性のエチレン・α−オレフィン共重合体及び/又はEBR、EPR等のエチレン・α−オレフィンエラストマー若しくはSEBS、水添スチレンブロック共重合体等のスチレン系エラストマー等のゴム系化合物を3〜75重量%配合することもできる。
(2) Other components In the outer layer of the laminate of the present invention, an auxiliary additive component generally used for a resin composition can be blended as necessary within a range that does not significantly impair the effects of the present invention. Examples of such auxiliary additive components include antioxidants (in particular, phenol-based and phosphorus-based antioxidants are preferable), anti-blocking agents, neutralizing agents, and heat stabilizers.
In order to impart flexibility to the total weight of the component (A) without impairing the effects of the present invention and / or to improve interlayer adhesion, polymerization is performed with a Ziegler-based or metallocene-based catalyst. A crystalline ethylene / α-olefin copolymer and / or a rubber compound such as an ethylene / α-olefin elastomer such as EBR or EPR or a styrene elastomer such as SEBS or hydrogenated styrene block copolymer; 75% by weight can also be blended.

2.中間層
本発明の積層体の中間層は、エチレン・α−オレフィン共重合体(B)と高密度ポリエチレン(C)を含有するエチレン・α−オレフィン共重合体組成物(a)からなる層である。各成分について説明する。
(1)エチレン・α−オレフィン共重合体(B)
本発明の積層体の中間層に用いるエチレン・α−オレフィン共重合体(B)は、エチレンと炭素数3〜12のα−オレフィンとの共重合体である。該共重合体は、下記(B1)〜(B2)の特性を有し、好ましくは、メタロセン触媒で重合され、さらに(B3)〜(B4)の特性を有するエチレン・α−オレフィン共重合体である。以下、構成モノマー、重合法、及びそれが有する特性について順次に説明する。
2. Intermediate Layer The intermediate layer of the laminate of the present invention is a layer comprising an ethylene / α-olefin copolymer composition (a) containing an ethylene / α-olefin copolymer (B) and high-density polyethylene (C). is there. Each component will be described.
(1) Ethylene / α-olefin copolymer (B)
The ethylene / α-olefin copolymer (B) used for the intermediate layer of the laminate of the present invention is a copolymer of ethylene and an α-olefin having 3 to 12 carbon atoms. The copolymer has the following characteristics (B1) to (B2), and is preferably an ethylene / α-olefin copolymer that is polymerized with a metallocene catalyst and further has characteristics (B3) to (B4). is there. Hereinafter, the constituent monomer, the polymerization method, and the characteristics of the monomer will be described in order.

(i)モノマー構成
本発明に使用されるエチレン・α−オレフィン共重合体は、エチレンから誘導される構成単位を主成分としたエチレンとα−オレフィンのランダム共重合体である。
コモノマーとして用いられるα−オレフィンは、好ましくは炭素数3〜12のα−オレフィンである。具体的には、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−ヘプテン、4−メチル−ペンテン−1、4−メチル−ヘキセン−1、4,4−ジメチルペンテン−1等を挙げることができる。かかるエチレン・α−オレフィン共重合体の具体例としては、エチレン・プロピレン共重合体、エチレン・1−ブテン共重合体、エチレン・1−ヘキセン共重合体、エチレン・1−オクテン共重合体、エチレン・4−メチル−ペンテン−1共重合体が挙げられる。また、α−オレフィンは1種または2種以上の組み合わせでもよい。2種のα−オレフィンを組み合わせてターポリマーとする場合は、エチレン・プロピレン・ヘキセンターポリマー、エチレン・ブテン・ヘキセンターポリマー、エチレン・プロピレン・オクテンターポリマー、エチレン・ブテン・オクテンターポリマーが挙げられる。
なお、エチレン・α−オレフィン共重合体中におけるエチレン単位の量は、特性(B4)として後述する。
(I) Monomer configuration The ethylene / α-olefin copolymer used in the present invention is a random copolymer of ethylene and an α-olefin mainly composed of a structural unit derived from ethylene.
The α-olefin used as a comonomer is preferably an α-olefin having 3 to 12 carbon atoms. Specifically, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-heptene, 4-methyl-pentene-1, 4-methyl-hexene-1, 4,4-dimethylpentene- 1 etc. can be mentioned. Specific examples of such ethylene / α-olefin copolymers include ethylene / propylene copolymers, ethylene / 1-butene copolymers, ethylene / 1-hexene copolymers, ethylene / 1-octene copolymers, ethylene -4-methyl-pentene-1 copolymer is mentioned. Moreover, 1 type or 2 or more types of combinations may be sufficient as an alpha olefin. When two types of α-olefins are combined to form a terpolymer, ethylene / propylene / hexcenter polymer, ethylene / butene / hexcenter polymer, ethylene / propylene / octene terpolymer, and ethylene / butene / octene terpolymer may be mentioned. .
The amount of ethylene units in the ethylene / α-olefin copolymer will be described later as the characteristic (B4).

(ii)重合触媒及び重合法
本発明で用いるエチレン・α−オレフィン共重合体は、チーグラー触媒、バナジウム触媒、メタロセン触媒、好ましくはメタロセン触媒を使用して製造することができる。製造法は、高圧イオン重合法、気相法、溶液法、スラリー法が挙げられる。
(Ii) Polymerization Catalyst and Polymerization Method The ethylene / α-olefin copolymer used in the present invention can be produced using a Ziegler catalyst, a vanadium catalyst, a metallocene catalyst, preferably a metallocene catalyst. Examples of the production method include a high-pressure ion polymerization method, a gas phase method, a solution method, and a slurry method.

(iii)特性
(B1)メルトフローレート(MFR)
本発明で用いるエチレン・α−オレフィンのMFR(190℃、21.18N荷重)は、0.1〜20g/10分であり、好ましくは0.5〜10g/10分であり、より好ましくは1.0〜5g/10分である。エチレン・α−オレフィン共重合体のMFRが0.1g/10分未満では樹脂圧力が高く成形性が不良となり、20g/10分を超えるとインフレーション成形時、バブルが不安定になり成形性が不良になる。
ここで、エチレン・α−オレフィン共重合体のMFRは、JIS−K6922−2:1997附属書(190℃、21.18N荷重)に準拠して測定する。
(Iii) Characteristics (B1) Melt flow rate (MFR)
MFR (190 degreeC, 21.18N load) of the ethylene * alpha-olefin used by this invention is 0.1-20 g / 10min, Preferably it is 0.5-10 g / 10min, More preferably, it is 1 0.0 to 5 g / 10 min. When the MFR of the ethylene / α-olefin copolymer is less than 0.1 g / 10 min, the resin pressure is high and the moldability is poor, and when it exceeds 20 g / 10 min, the bubbles become unstable during inflation molding and the moldability is poor. become.
Here, the MFR of the ethylene / α-olefin copolymer is measured according to JIS-K6922-2: 1997 appendix (190 ° C., 21.18 N load).

(B2)密度
本発明で用いるエチレン・α−オレフィン共重合体の密度は、0.880〜0.930g/cm、好ましくは0.885〜0.925g/cm、さらに好ましくは0.890〜0.920g/cmである。エチレン・α−オレフィン共重合体の密度が0.880g/cm未満では、115℃処理後に透明性不良が発生し、0.930g/cmを超えると透明性不良、柔軟性低下のため好ましくない。
ここで、エチレン・α−オレフィン共重合体の密度は、JIS−K6922−2:1997附属書(低密度ポリエチレンの場合)に準拠して23℃で測定する。
(B2) Density The density of the ethylene / α-olefin copolymer used in the present invention is 0.880 to 0.930 g / cm 3 , preferably 0.885 to 0.925 g / cm 3 , and more preferably 0.890. ˜0.920 g / cm 3 . When the density of the ethylene / α-olefin copolymer is less than 0.880 g / cm 3 , poor transparency occurs after 115 ° C. treatment, and when it exceeds 0.930 g / cm 3 , it is preferable because of poor transparency and reduced flexibility. Absent.
Here, the density of the ethylene / α-olefin copolymer is measured at 23 ° C. in accordance with JIS-K6922-2: 1997 appendix (in the case of low density polyethylene).

(B3)重量平均分子量(Mw)/数平均分子量(Mn)
本発明で用いるエチレン・α−オレフィン共重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、1.5〜4.0、好ましくは1.8〜3.3である。Mw/Mnが上記範囲を超える場合には、透明性が低下するので好ましくなく、上記範囲未満の場合には、押出負荷が上昇する、シャークスキンが発生しやすくなるなど、加工適性が悪化する。
Mw/Mnを所定の範囲にする方法としては、適当なメタロセン触媒を選択する方法等が挙げられる。
Mw/Mnの測定は、ゲルパーミエーションクロマトグラフィー(GPC)で行い、測定条件は次の通りである。
(B3) Weight average molecular weight (Mw) / Number average molecular weight (Mn)
The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the ethylene / α-olefin copolymer used in the present invention is 1.5 to 4.0, preferably 1.8 to 3.3. When Mw / Mn exceeds the above range, the transparency is lowered, which is not preferable. When it is less than the above range, processability is deteriorated such that the extrusion load increases and shark skin is easily generated.
Examples of a method for setting Mw / Mn within a predetermined range include a method for selecting an appropriate metallocene catalyst.
Mw / Mn is measured by gel permeation chromatography (GPC), and the measurement conditions are as follows.

装置:ウオーターズ社製GPC 150C型
検出器:MIRAN社製 1A赤外分光光度計(測定波長、3.42μm)
カラム:昭和電工製AD806M/S 3本(カラムの較正は東ソー製単分散ポリスチレン(A500,A2500,F1,F2,F4,F10,F20,F40,F288の各0.5mg/ml溶液)の測定を行い、溶出体積と分子量の対数値を2次式で近似した。また、試料の分子量はポリスチレンとポリエチレンの粘度式を用いてポリエチレンに換算した。ここでポリスチレンの粘度式の係数はα=0.723、logK=−3.967であり、ポリエチレンはα=0.733、logK=−3.407である。)
測定温度:140℃
濃度:20mg/10mL
注入量:0.2ml
溶媒:オルソジクロロベンゼン
流速:1.0ml/分。
Apparatus: Waters GPC 150C type detector: MIRAN 1A infrared spectrophotometer (measurement wavelength: 3.42 μm)
Column: Showa Denko 3 AD806M / S (column calibration is Tosoh monodisperse polystyrene (0.5 mg / ml solution each of A500, A2500, F1, F2, F4, F10, F20, F40, F288) The logarithm of the elution volume and molecular weight was approximated by a quadratic equation, and the molecular weight of the sample was converted to polyethylene using the viscosity equation of polystyrene and polyethylene, where the coefficient of the viscosity equation of polystyrene was α = 0. 723, log K = −3.967, and polyethylene has α = 0.733 and log K = −3.407.)
Measurement temperature: 140 ° C
Concentration: 20 mg / 10 mL
Injection volume: 0.2ml
Solvent: orthodichlorobenzene Flow rate: 1.0 ml / min.

(B4)α−オレフィンの含有量
本発明で用いるエチレン・α−オレフィン共重合体中のα−オレフィンの含有量は、5〜40重量%が好ましく、より好ましくは7〜35重量%、さらに好ましくは9〜30重量%である。α−オレフィンの含有量が少ない場合、フィルムの衝撃強度、及び柔軟性が得られず、多すぎる場合は耐熱性が損なわれる。ここでα−オレフィンの含有量は、下記の条件の13C−NMR法によって計測される値である。
装置:日本電子製 JEOL−GSX270
濃度:300mg/2mL
溶媒:オルソジクロロベンゼン
(B4) Content of α-olefin The content of α-olefin in the ethylene / α-olefin copolymer used in the present invention is preferably 5 to 40% by weight, more preferably 7 to 35% by weight, even more preferably. Is 9-30% by weight. When the α-olefin content is low, the impact strength and flexibility of the film cannot be obtained, and when it is too high, the heat resistance is impaired. Here, the content of α-olefin is a value measured by 13 C-NMR method under the following conditions.
Device: JEOL-GSX270 manufactured by JEOL
Concentration: 300 mg / 2 mL
Solvent: Orthodichlorobenzene

なお、エチレン・α−オレフィン共重合体は、1種又は2種以上の混合物であっても良い。   The ethylene / α-olefin copolymer may be one kind or a mixture of two or more kinds.

(2)高密度ポリエチレン(C)
本発明の積層体の中間層に用いる高密度ポリエチレン(C)は、下記(C1)〜(C2)の特性を有する高密度ポリエチレンである。
(i)特性
(C1)メルトフローレート(MFR:190℃、21.18N荷重)
本発明で用いる成分(C)のMFRは、0.1〜20g/10分、好ましくは1〜20g/10分、さらに好ましくは2〜20g/10分である。成分(C)のMFRが0.1g/10分未満であると、成分(B)中への分散性に欠けるので、115℃処理時の耐熱性を改良せず、好ましくない。また、MFRが20g/10分を超えると、成膜安定性に欠け好ましくない。
ここで、高密度ポリエチレンのMFRは、JIS−K6922−2:1997附属書(190℃、21.18N荷重)に準拠して測定する。
(2) High density polyethylene (C)
The high density polyethylene (C) used for the intermediate layer of the laminate of the present invention is a high density polyethylene having the following properties (C1) to (C2).
(I) Characteristics (C1) Melt flow rate (MFR: 190 ° C., 21.18 N load)
The MFR of the component (C) used in the present invention is 0.1 to 20 g / 10 minutes, preferably 1 to 20 g / 10 minutes, and more preferably 2 to 20 g / 10 minutes. If the MFR of the component (C) is less than 0.1 g / 10 minutes, the dispersibility in the component (B) is lacking, so the heat resistance during the 115 ° C. treatment is not improved, which is not preferable. On the other hand, if the MFR exceeds 20 g / 10 min, the film formation stability is insufficient, which is not preferable.
Here, MFR of high density polyethylene is measured based on JIS-K6922-2: 1997 appendix (190 degreeC, 21.18N load).

(C2)密度
本発明で用いる成分(C)の密度は、0.940〜0.980g/cm、好ましくは0.950〜0.980g/cm、さらに好ましくは0.960〜0.980g/cmである。成分(C)の密度が0.940g/cm未満では耐熱性改良効果が十分ではなく、0.980g/cmを超えるポリエチレンの製造は困難である。
ここで、成分(C)の密度は、JIS−K6922−2:1997附属書(23℃)に準拠して測定する。
(C2) Density The density of the component (C) used in the present invention is 0.940 to 0.980 g / cm 3 , preferably 0.950 to 0.980 g / cm 3 , and more preferably 0.960 to 0.980 g. / Cm 3 . When the density of the component (C) is less than 0.940 g / cm 3 , the effect of improving heat resistance is not sufficient, and it is difficult to produce polyethylene exceeding 0.980 g / cm 3 .
Here, the density of a component (C) is measured based on JIS-K6922-2: 1997 annex (23 degreeC).

なお、高密度ポリエチレンは、1種又は2種以上の混合物であっても良い。   In addition, 1 type or a 2 or more types of mixture may be sufficient as high density polyethylene.

(ii)重合法及び重合触媒
本発明の成分(C)の製造は、目的の物性を有する重合体を製造し得る限りその重合方法や触媒について特に制限はないが、中圧法プロセスによって得られるポリエチレンが好適である。
触媒については、チーグラー型触媒(すなわち、担持または非担持ハロゲン含有チタン化合物と有機アルミニウム化合物の組み合わせに基づくもの)、カミンスキー型触媒(すなわち、担持または非担持メタロセン化合物と有機アルミニウム化合物、特にアルモキサンの組み合わせに基づくもの)が挙げられる。
チーグラー型触媒としては、例えば、ハロゲン化マグネシウム、ハロゲン化チタン、および電子供与体化合物を成分とする固体触媒成分と有機アルミニウム化合物との組み合わせ触媒を用いて通常の重合方法により得ることができる。
ポリエチレンの形状は限定されるものでなく、ペレット状、粉末状、ワックス状いずれであってもよい。
(Ii) Polymerization Method and Polymerization Catalyst The production of component (C) of the present invention is not particularly limited with respect to the polymerization method and catalyst as long as a polymer having the desired physical properties can be produced, but polyethylene obtained by an intermediate pressure process. Is preferred.
For catalysts, Ziegler type catalysts (ie, based on a combination of supported or unsupported halogen-containing titanium compounds and organoaluminum compounds), Kaminsky type catalysts (ie, supported or unsupported metallocene compounds and organoaluminum compounds, especially alumoxanes). Based on the combination).
The Ziegler-type catalyst can be obtained by a usual polymerization method using, for example, a combination catalyst of a solid catalyst component and an organoaluminum compound containing magnesium halide, titanium halide, and an electron donor compound as components.
The shape of polyethylene is not limited, and may be any of pellets, powders, and waxes.

(3)成分(B)と成分(C)の関係
組成物(a)中における成分(B)と成分(C)は、示差走査熱量測定法(DSC)によって得られる融解ピークの補外融解終了温度(Tm)と成分(C)の補外融解終了温度(Tm)が次の式(3)を満たすことが好ましい。
15≦(Tm−Tm)≦50 ・・・(3)
成分(B)の融解ピークの補外融解終了温度(Tm)と成分(C)の補外融解終了温度(Tm)との差が15未満の場合、滅菌時の耐熱性が十分でなく、50を超える場合、柔軟性に欠けるため好ましくない。
ここで、Tm及びTmの測定は、セイコー社製示差走査熱量計を用い、サンプル量は5.0mgを採り、170℃で5分間保持した後、−10℃まで10℃/分の降温スピードで結晶化させた後に1分間保持し、さらに10℃/分の昇温スピードで融解させたときの融解ピークの補外融解終了温度で評価する。
融解ピークが複数存在、及び、融解ピークが複数重なっている場合には、最も高温側に出るピークに対する補外融解終了温度を求めた。
補外融解終了温度は、JIS−K−7121に準拠して求める。
(3) Relationship between component (B) and component (C) Component (B) and component (C) in composition (a) are subjected to extrapolation of the melting peak obtained by differential scanning calorimetry (DSC). It is preferable that the extrapolated melting end temperature (Tm c ) of the temperature (Tm b ) and the component (C) satisfy the following formula (3).
15 ≦ (Tm c −Tm b ) ≦ 50 (3)
If the difference between the components extrapolation melting completion temperature of melting peak (B) (Tm b) and extrapolated ending melting temperature of component (C) (Tm c) is less than 15, is not sufficient heat resistance during sterilization , More than 50 is not preferable because it lacks flexibility.
The measurement of Tm b and Tm c uses a Seiko Co. differential scanning calorimeter, the sample amount takes a 5.0 mg, was held 5 minutes at 170 ° C., cooling of 10 ° C. / min to -10 ° C. After crystallization at a speed, the temperature is held for 1 minute, and further evaluated by the extrapolated melting end temperature of the melting peak when melted at a heating rate of 10 ° C./min.
When there were a plurality of melting peaks and a plurality of melting peaks overlapped, the extrapolation melting end temperature for the peak appearing on the highest temperature side was determined.
The extrapolation melting end temperature is determined according to JIS-K-7121.

(4)その他の添加成分
本発明の中間層に用いる樹脂組成物(a)には、本発明の効果を著しく損なわない範囲で、他の付加的任意成分を配合することができる。このような任意成分としては、通常のポリオレフィン系樹脂材料に使用される酸化防止剤(中でも、フェノール系、及びリン系酸化防止剤が好ましい)、アンチブロッキング剤、中和剤、熱安定剤、結晶核剤、透明化剤、滑剤、着色剤、分散剤、過酸化物、充填剤、蛍光増白剤等を挙げることができる。
また、柔軟性を付与するため、チーグラー型触媒またはメタロセン系触媒によって重合された結晶性のエチレン・α−オレフィン共重合体および/またはEBR、EPR等のエチレン・α−オレフィンエラストマー、SEBS、HSBR等のスチレン系エラストマー等のゴム系化合物を配合することができ、成形時のバブル安定性を向上させるため、高圧法低密度ポリエチレン(HP−LD)を配合することができる。
さらに、高圧法低密度ポリエチレンの配合割合は、上記成分(B)及び成分(C)の樹脂混合物100重量部に対して3〜70重量部、チーグラー型触媒またはメタロセン系触媒によって重合された結晶性のエチレン・α−オレフィン共重合体、ゴム系化合物の場合は3〜240重量部程度が好ましい。
(4) Other additive components The resin composition (a) used for the intermediate layer of the present invention can be blended with other additional optional components as long as the effects of the present invention are not significantly impaired. As such optional components, antioxidants used in ordinary polyolefin resin materials (in particular, phenol-based and phosphorus-based antioxidants are preferable), antiblocking agents, neutralizing agents, heat stabilizers, crystals Examples thereof include a nucleating agent, a clarifying agent, a lubricant, a coloring agent, a dispersing agent, a peroxide, a filler, and a fluorescent brightening agent.
In order to give flexibility, crystalline ethylene / α-olefin copolymers polymerized by Ziegler type catalysts or metallocene catalysts and / or ethylene / α-olefin elastomers such as EBR and EPR, SEBS, HSBR, etc. In order to improve the bubble stability at the time of molding, high pressure method low density polyethylene (HP-LD) can be blended.
Further, the blending ratio of the high pressure method low density polyethylene is 3 to 70 parts by weight with respect to 100 parts by weight of the resin mixture of the component (B) and the component (C), and the crystallinity polymerized by the Ziegler type catalyst or the metallocene catalyst. In the case of the ethylene / α-olefin copolymer and rubber compound, about 3 to 240 parts by weight are preferable.

(5)成分(B)と成分(C)の配合割合
エチレン・α−オレフィン共重合体組成物(a)中における成分(B)と成分(C)の配合割合は、成分(B)85〜97重量%に対して成分(C)が3〜15重量%、好ましくは、成分(B)90〜97重量%に対して成分(C)が3〜10重量%となるように配合する。成分(C)の割合が上記範囲より大きいと柔軟性、落袋強度が低下するので好ましくない。また、成分(C)の配合割合が上記範囲より小さいと、耐熱性が低下するので好ましくない。
(5) Blending ratio of component (B) and component (C) The blending ratio of component (B) and component (C) in the ethylene / α-olefin copolymer composition (a) is 85-85. It mix | blends so that a component (C) may be 3 to 15 weight% with respect to 97 weight%, Preferably a component (C) will be 3 to 10 weight% with respect to 90 to 97 weight% of a component (B). If the ratio of the component (C) is larger than the above range, the flexibility and bag drop strength are lowered, which is not preferable. Moreover, since the heat resistance falls when the mixture ratio of a component (C) is smaller than the said range, it is unpreferable.

(6)エチレン・α−オレフィン共重合体組成物(a)の調整方法
エチレン・α−オレフィン共重合体組成物(a)は、成分(B)及び成分(C)を通常の樹脂組成物の製造方法に従って配合し、必要に応じて溶融混練することにより調整することができる。
より具体的には、成分(B)と成分(C)とを、あらかじめドライブレンドし、そのブレンド物をそのまま成形機のホッパーに投入してもよい。また、そのブレンド物を押出機、ブラベンダープラストグラフ、バンバリーミキサー、ニーダーブレンダー等を用いて溶融、混練し、通常用いられている方法でペレット状とし、フィルムもしくはシートを製造することもできる。
(6) Preparation method of ethylene / α-olefin copolymer composition (a) The ethylene / α-olefin copolymer composition (a) comprises components (B) and (C) prepared from a conventional resin composition. It can mix | blend according to a manufacturing method and can adjust by melt-kneading as needed.
More specifically, the component (B) and the component (C) may be dry blended in advance, and the blended product may be put into a hopper of a molding machine as it is. Further, the blend can be melted and kneaded using an extruder, a Brabender plastograph, a Banbury mixer, a kneader blender, etc., and formed into pellets by a commonly used method to produce a film or sheet.

3.内層
本発明の積層体の内層は、エチレン・α−オレフィン共重合体(B)と高密度ポリエチレン(C)を含有するエチレン・α−オレフィン共重合体組成物(b)からなる層である。各成分について説明する。
(1)エチレン・α−オレフィン共重合体(B)
本発明の積層体の内層に用いるエチレン・α−オレフィン共重合体(B)は、前述の中間層に用いたエチレン・α−オレフィン共重合体と同様の共重合体であり、中間層と同一であってもよく、異なっていても良い。
なお、エチレン・α−オレフィン共重合体は、1種又は2種以上の混合物であっても良い。
3. Inner layer The inner layer of the laminate of the present invention is a layer composed of an ethylene / α-olefin copolymer composition (b) containing an ethylene / α-olefin copolymer (B) and high-density polyethylene (C). Each component will be described.
(1) Ethylene / α-olefin copolymer (B)
The ethylene / α-olefin copolymer (B) used for the inner layer of the laminate of the present invention is the same copolymer as the ethylene / α-olefin copolymer used for the intermediate layer, and is the same as the intermediate layer. It may be different or different.
The ethylene / α-olefin copolymer may be one kind or a mixture of two or more kinds.

(2)高密度ポリエチレン(C)
本発明の積層体の内層に用いる高密度ポリエチレン(C)は、前述の中間層に用いた高密度ポリエチレンと同様であり、中間層と同一であってもよく、異なっていても良い。
なお、高密度ポリエチレンは、1種又は2種以上の混合物であっても良い。
(2) High density polyethylene (C)
The high density polyethylene (C) used for the inner layer of the laminate of the present invention is the same as the high density polyethylene used for the intermediate layer described above, and may be the same as or different from the intermediate layer.
In addition, 1 type or a 2 or more types of mixture may be sufficient as high density polyethylene.

(3)成分(B)と成分(C)の関係
エチレン・α−オレフィン共重合体組成物(b)中における成分(B)と成分(C)は、示差走査熱量測定法(DSC)によって得られる融解ピークの補外融解終了温度(Tm)と成分(C)の補外融解終了温度(Tm)が次の式(3)を満たすことが好ましい。
15≦(Tm−Tm)≦50 ・・・(3)
成分(B)の融解ピークの補外融解終了温度(Tm)と成分(C)の補外融解終了温度(Tm)との差が15未満の場合、滅菌時の耐熱性が十分でなく、50を超える場合、柔軟性に欠けるため好ましくない。
なお、Tm及びTmの測定は、セイコー社製示差走査熱量計を用い、サンプル量は5.0mgを採り、170℃で5分間保持した後、−10℃まで10℃/分の降温スピードで結晶化させた後に1分間保持し、さらに10℃/分の昇温スピードで融解させたときの融解ピークの補外融解終了温度で評価する。
(3) Relationship between component (B) and component (C) Component (B) and component (C) in the ethylene / α-olefin copolymer composition (b) are obtained by differential scanning calorimetry (DSC). it is extrapolated ending melting temperature of the extrapolated ending melting temperature of the melting peak (Tm b) to component (C) (Tm c) preferably satisfies the following formula (3).
15 ≦ (Tm c −Tm b ) ≦ 50 (3)
If the difference between the components extrapolation melting completion temperature of melting peak (B) (Tm b) and extrapolated ending melting temperature of component (C) (Tm c) is less than 15, is not sufficient heat resistance during sterilization , More than 50 is not preferable because it lacks flexibility.
The measurement of Tm b and Tm c uses a Seiko Co. differential scanning calorimeter, the sample amount takes a 5.0 mg, it was held 5 minutes at 170 ° C., of 10 ° C. / min to -10 ° C. cooling speed The crystal is held for 1 minute after being crystallized at, and evaluated by the extrapolated melting end temperature of the melting peak when melted at a heating rate of 10 ° C./min.

(4)その他の添加成分
本発明の内層に用いるエチレン・α−オレフィン共重合体組成物(b)には、本発明の効果を著しく損なわない範囲で、他の付加的任意成分を配合することができる。このような任意成分としては、通常のポリオレフィン系樹脂材料に使用される酸化防止剤(中でも、フェノール系、及びリン系酸化防止剤が好ましい)、アンチブロッキング剤、中和剤、熱安定剤、結晶核剤、透明化剤、滑剤、着色剤、分散剤、過酸化物、充填剤、蛍光増白剤等を挙げることができる。
また、柔軟性を付与するため、チーグラー型触媒またはメタロセン系触媒によって重合された結晶性のエチレン・α−オレフィン共重合体および/またはEBR、EPR等のエチレン・α−オレフィンエラストマー、SEBS、HSBR等のスチレン系エラストマー等のゴム系化合物を配合することができ、成形時のバブル安定性を向上させるため、高圧法低密度ポリエチレン(HP−LD)を配合することができる。
さらに、高圧法低密度ポリエチレンの配合割合は、上記成分(B)及び成分(C)の樹脂混合物100重量部に対して3〜70重量部、チーグラー型触媒またはメタロセン系触媒によって重合された結晶性のエチレン・α−オレフィン共重合体、ゴム系化合物の場合は3〜240重量部程度が好ましい。
(4) Other additive components The ethylene / α-olefin copolymer composition (b) used for the inner layer of the present invention is blended with other additional optional components as long as the effects of the present invention are not significantly impaired. Can do. As such optional components, antioxidants used in ordinary polyolefin resin materials (in particular, phenol-based and phosphorus-based antioxidants are preferable), antiblocking agents, neutralizing agents, heat stabilizers, crystals Examples thereof include a nucleating agent, a clarifying agent, a lubricant, a coloring agent, a dispersing agent, a peroxide, a filler, and a fluorescent brightening agent.
In order to give flexibility, crystalline ethylene / α-olefin copolymers polymerized by Ziegler type catalysts or metallocene catalysts and / or ethylene / α-olefin elastomers such as EBR and EPR, SEBS, HSBR, etc. In order to improve the bubble stability at the time of molding, high pressure method low density polyethylene (HP-LD) can be blended.
Further, the blending ratio of the high pressure method low density polyethylene is 3 to 70 parts by weight with respect to 100 parts by weight of the resin mixture of the component (B) and the component (C), and the crystallinity polymerized by the Ziegler type catalyst or the metallocene catalyst. In the case of the ethylene / α-olefin copolymer and rubber compound, about 3 to 240 parts by weight are preferable.

(5)成分(B)と成分(C)の配合割合
エチレン・α−オレフィン共重合体組成物(b)中における成分(B)と成分(C)の配合割合は、成分(B)80〜95重量%に対して成分(C)が5〜20重量%、好ましくは、成分(B)87〜92重量%に対して成分(C)が8〜17重量%となるように配合する。成分(C)の割合が上記範囲より大きいと柔軟性、落袋強度が低下するので好ましくない。また、成分(C)の配合割合が上記範囲より小さいと、耐熱性が低下するので好ましくない。
(5) Blending ratio of component (B) and component (C) The blending ratio of component (B) and component (C) in the ethylene / α-olefin copolymer composition (b) is from component (B) 80 to It mix | blends so that a component (C) may be 5 to 20 weight% with respect to 95 weight%, Preferably, a component (C) will be 8 to 17 weight% with respect to 87 to 92 weight% of a component (B). If the ratio of the component (C) is larger than the above range, the flexibility and bag drop strength are lowered, which is not preferable. Moreover, since the heat resistance falls when the mixture ratio of a component (C) is smaller than the said range, it is unpreferable.

(6)中間層の(C)成分量と内層の(C)成分量比の割合
本発明の積層体に用いる成分(C)は、中間層における含有量と内層における含有量が下記式(1)、式(2)を満足する必要がある。
エチレン・α−オレフィン共重合体組成物(a)における成分(C)の配合割合:HDPEaと、エチレン・α−オレフィン共重合体組成物(b)における成分(C)の配合割合:HDPEbとは、
0<HDPEb−HDPEa<15 ・・・(1)
10<HDPEb+HDPEa<30 ・・・(2)
を満たし、好ましくは
0<HDPEb−HDPEa<12 ・・・(1)’
13<HDPEb+HDPEa<27 ・・・(2)’
を満たす必要がある。
上記関係を満たさないと、中間層が内層よりも柔軟性が劣ってしまい、柔軟性と耐熱性のバランスが悪くなり、積層体全体の柔軟性不足、耐熱性不良による透明性悪化、突き刺し強度不足等がおこり好ましくない。
(6) Ratio of the (C) component amount of the intermediate layer and the (C) component amount ratio of the inner layer The component (C) used in the laminate of the present invention has a content in the intermediate layer and a content in the inner layer represented by the following formula (1) ) And formula (2) must be satisfied.
Blending ratio of component (C) in ethylene / α-olefin copolymer composition (a): HDPEa and blending ratio of component (C) in ethylene / α-olefin copolymer composition (b): HDPEb ,
0 <HDPEb-HDPEa <15 (1)
10 <HDPEb + HDPEa <30 (2)
And preferably 0 <HDPEb−HDPEa <12 (1) ′
13 <HDPEb + HDPEa <27 (2) ′
It is necessary to satisfy.
If the above relationship is not satisfied, the intermediate layer will be less flexible than the inner layer, the balance between flexibility and heat resistance will be poor, the laminate will not be flexible enough, the transparency will deteriorate due to poor heat resistance, and the piercing strength will be insufficient Etc. are not preferable.

(7)エチレン・α−オレフィン共重合体組成物(b)の調整方法
エチレン・α−オレフィン共重合体組成物(b)は、成分(B)及び成分(C)を通常の樹脂組成物の製造方法に従って配合し、必要に応じて溶融混練することにより調整することができる。
詳しくは、前記エチレン・α−オレフィン共重合体組成物(a)の場合と同様である。
(7) Preparation Method of Ethylene / α-Olefin Copolymer Composition (b) The ethylene / α-olefin copolymer composition (b) is obtained by mixing the component (B) and the component (C) with an ordinary resin composition. It can mix | blend according to a manufacturing method and can adjust by melt-kneading as needed.
Specifically, it is the same as in the case of the ethylene / α-olefin copolymer composition (a).

4.積層体
本発明の積層体は、少なくとも上記外層、中間層及び内層をこの順で積層したものであればよいが、上記外層、中間及び内層のほかに、かかる積層体に一般的に使用される各種の層を適宜必要に応じて設けることができる。具体的には、各種の層間に接着層やEVOH等のガスバリアー層を設けることができる。
4). Laminate The laminate of the present invention may be any laminate as long as at least the outer layer, the intermediate layer, and the inner layer are laminated in this order. In addition to the outer layer, the intermediate layer, and the inner layer, the laminate is generally used for such a laminate. Various layers can be provided as necessary. Specifically, an adhesive layer or a gas barrier layer such as EVOH can be provided between various layers.

また、外層、中間層及び内層を構成する樹脂材料または組成物のオルゼン曲げこわさが下記式(4)の関係を満たすことが好ましい。
中間層<内層<外層 ・・・(4)
上記関係を満たすことにより、柔軟性、耐熱性、シール特性等の物性のバランスを高度に保つことが可能である。
なお、オルゼン曲げこわさは、JIS−K7106−1995により、次の条件で作製した各樹脂の2mmシートを用いて行う。
サンプルを160℃で3分間予熱し、160℃、150kgf/cmにて1分間加圧した。その後14℃/minにて室温まで冷却し、厚さ2mmのプレスシートを得、試験片とした。
Moreover, it is preferable that the Olsen bending stiffness of the resin material or composition constituting the outer layer, the intermediate layer, and the inner layer satisfy the relationship of the following formula (4).
Intermediate layer <Inner layer <Outer layer (4)
By satisfying the above relationship, it is possible to maintain a high balance of physical properties such as flexibility, heat resistance, and sealing properties.
In addition, Olsen bending stiffness is performed according to JIS-K7106-1995 using a 2 mm sheet of each resin produced under the following conditions.
The sample was preheated at 160 ° C. for 3 minutes and pressurized at 160 ° C. and 150 kgf / cm 2 for 1 minute. Then, it cooled to room temperature at 14 degreeC / min, the 2 mm-thick press sheet was obtained, and it was set as the test piece.

また、本発明の積層体のヘーズ(HAZE)は、115℃処理後に、30%以下が好ましく、より好ましくは25%以下である。HAZEが30%を超えると内容物が鮮明に見えないなど、商品価値に劣り、好ましくない。   Further, the haze (HAZE) of the laminate of the present invention is preferably 30% or less, more preferably 25% or less after 115 ° C. treatment. If the value of HAZE exceeds 30%, the contents are not clearly visible, such as the contents are not clearly visible.

さらに、本発明の積層体の厚みは、100〜700μmが好ましい。上記範囲内であれば透明性に優れるフィルムが安定的に成形できるので好ましい。さらに、本発明で得られた積層体に対し、通常工業的に利用されている方法によってコロナ放電処理、あるいは火炎処理等の表面処理を施すこともできる。   Furthermore, as for the thickness of the laminated body of this invention, 100-700 micrometers is preferable. If it is in the said range, since the film excellent in transparency can be shape | molded stably, it is preferable. Furthermore, the laminate obtained in the present invention can be subjected to a surface treatment such as a corona discharge treatment or a flame treatment by a method usually used industrially.

本発明の積層体の製造方法は、特に制限はなく、公知の方法で行うことができるが、水冷インフレーション法により製造するのが好ましい。
具体的には、上述の外層、中間層、内層用樹脂材料をそれぞれ押出機及び円形ダイスを用いて共押出し、溶融チューブ内に空気を入れ膨張させつつ水槽に導入し、急冷する水冷インフレーション成形法により製膜される。なお、水冷 インフレーション法の条件は特に限定しないが、下向きにブローし、内部に閉じこめた水で冷却したり、サイジングリンクや水槽式の水冷リングなどを用いて水冷する方式が挙げられる。成形温度は160〜280℃、好ましくは170〜230℃で、水冷する水温は10〜60℃、好ましくは15〜50℃である。
There is no restriction | limiting in particular in the manufacturing method of the laminated body of this invention, Although it can carry out by a well-known method, manufacturing by a water cooling inflation method is preferable.
Specifically, the water-cooled inflation molding method in which the resin material for the outer layer, the intermediate layer, and the inner layer described above is coextruded using an extruder and a circular die, introduced into a water tank while being expanded by introducing air into a molten tube, and rapidly cooled. Is formed into a film. The conditions of the water-cooled inflation method are not particularly limited, but examples include a method of blowing downward and cooling with water confined inside, or using a sizing link or a water tank-type water cooling ring. The molding temperature is 160 to 280 ° C, preferably 170 to 230 ° C, and the water temperature for water cooling is 10 to 60 ° C, preferably 15 to 50 ° C.

5.用途
本発明の積層体は、医療用袋、食品包装用袋等に使用することができる。特に、耐熱性の必要な115℃滅菌処理用途に好適に使用できる。医療用袋の具体的用途としては、輸液バッグ、体液や薬液等の注入、排出、保存用等の容器、腹膜透析バッグ、人工透析バッグ等が挙げられる。食品包装用袋としては、レトルト食品用袋等が挙げられる。
5). Applications The laminate of the present invention can be used for medical bags, food packaging bags, and the like. In particular, it can be suitably used for 115 ° C. sterilization treatment requiring heat resistance. Specific applications of the medical bag include infusion bags, containers for injecting, discharging, and storing body fluids and drug solutions, peritoneal dialysis bags, artificial dialysis bags, and the like. Examples of food packaging bags include retort food bags.

以下、本発明を実施例によって、具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例、比較例で用いた評価方法及び使用樹脂は、以下の通りである。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The evaluation methods and resins used in the examples and comparative examples are as follows.

1.樹脂物性の評価方法
(1)メルトフローレート(MFR):前述の通り、プロピレン・α−オレフィンランダム共重合体のMFRは、JIS−K6922−2:1997附属書(190℃、21.18N荷重)に準拠して測定した。
(2)ビカット軟化温度 Ta及びTb:JIS−K7206−1974に準拠して測定した。
(3)Tm及びTm:前述の通り、DSCにより測定した。
(4)Mw/Mn:前述の通り、GPCにより測定した。
(5)密度:前述の通り、JIS−K6922−2:1997附属書(23℃)に準拠して測定した。
(6)オルゼン曲げこわさ:前述の通り、JIS−K7106−1995に準拠して測定した。
(7)溶融張力:東洋精機製キャピログラフ1−Bにて、試験温度190℃、押出速度10mm/min、引き取り速度4m/minにて、樹脂フィラメントを引き取るときの応力とする。使用したダイ径は、長さ8.00mm、内径2.095mm、外径9.50mmである。
1. Evaluation method of resin physical properties (1) Melt flow rate (MFR): As described above, the MFR of the propylene / α-olefin random copolymer is JIS-K6922-2: 1997 appendix (190 ° C., 21.18 N load). Measured according to
(2) Vicat softening temperature Ta and Tb: Measured according to JIS-K7206-1974.
(3) Tm b and Tm c : As described above, measured by DSC.
(4) Mw / Mn: Measured by GPC as described above.
(5) Density: As described above, the density was measured according to JIS-K6922-2: 1997 appendix (23 ° C.).
(6) Olsen bending stiffness: As described above, measured according to JIS-K7106-1995.
(7) Melt tension: It is set as the stress at the time of taking a resin filament at the test temperature of 190 degreeC, the extrusion speed of 10 mm / min, and the take-up speed of 4 m / min in Toyo Seiki Capillograph 1-B. The die diameter used is 8.00 mm in length, 2.095 mm in inner diameter, and 9.50 mm in outer diameter.

2.積層体の成形方法
プラコー社製3種3層水冷インフレーション成形機(ダイ径;100mmφ、ダイリップ;3mm、ダイス温度;185℃)を用い、外層と内層の厚み50μm、中間層の厚み150μm、折り径;180mm、のチューブ状積層体を成形した。
2. Forming method of laminated body Three types of three-layer water-cooled inflation molding machine (die diameter: 100 mmφ, die lip: 3 mm, die temperature: 185 ° C.) manufactured by Plako Co., Ltd., outer layer and inner layer thickness of 50 μm, intermediate layer thickness of 150 μm, folding diameter A 180 mm tubular laminate was formed.

3.積層体の評価方法
(1)耐熱性:円筒状になっている積層体を210mmの大きさに切り出し、切り出した一方をヒートシールして袋状にした。ついで、その中に、純水を500ml充填し、もう一辺をヒートシールして密封した。ヒートシールとヒートシールの間の距離は180mmとなるようにシールした。このようにして得られたサンプル袋を、高温高圧調理殺菌試験機(日阪製作所製、RCS・40RTGN型)の中に入れた後加圧し、115℃まで雰囲気温度を上昇させて、その温度を30分間保持した。その後、約40℃まで冷却し、該サンプル袋を試験機から取り出した。以下、この殺菌処理をした積層体(「サンプル袋」)を「滅菌処理後積層体」と記述する。
なお、ヒートシールは、温度:200℃、圧力:2kg/cm、時間4秒の条件で行った。
サンプル袋の耐熱性の評価は、以下の基準で行った。
○:しわがほとんどない。または、まったくない。
×:しわが多い。または、透明性が低下する。
(2)ヘーズ(HAZE):前述の通り、JIS−K7136−2000に準拠して測定した。尚、HAZE測定は、成形した積層体と滅菌処理後積層体の両方について行った。滅菌処理後積層体のHAZEを測定する際には、中に充填されている水を抜いて2時間後に行った。
(3)引張弾性率(MD):ISO1184−1983に準拠し、積層体のMD方向(フィルムまたはシートの引き取り方向)の引張弾性率を測定した。この値が小さい程、柔軟性に優れていることを示す。尚、引張弾性率は滅菌処理後積層体から水を抜いたもの(水を抜いて48時間後の積層体を使用)について行った。
(4)落袋強度:滅菌処理後積層体(2個)を10℃で24時間保管後、その温度で、2mの高さから平行に鉄板の上に落下させて評価した。以下の基準で評価した。
○:滅菌処理後、積層体が1個又は2個破袋した。
×:落下試験前と様子が変わらず2個とも問題なかった。
(5)外層、上側シールバーへの付着:ヒートシール温度;160℃、シール圧力;2kg/cm、シール時間;3秒、シールバーの幅;10mmのヒートシール条件で、シールバーにて積層体の内面同士を熱融着させ、シールバーを上げたとき、積層体の外面が上側シールバーへ付着したときを×、付着しなかったときを○とした。なお、積層体の外面が、上側シールバーへ付着しないものは、最適ヒートシール温度が広くなるので、作業効率が良いだけでなく、ヒートシール不良等のトラブルが少ないので優れる。
(6)突き刺し強度:レトルトパウチ食品の日本農林規格(JAS)(農林省告示第1019号)に記載の方法を参考にして測定した。
試験片は、滅菌処理後積層体を用いた。その外層が表面にくるようにして、固定した。固定は、滅菌処理後積層体が直径55mmの円として表れるように行った。
固定した試験片の表面に対して、直径25mm、先端形状12.5mmRの棒を50mm/分の速度で突き刺し、その棒が貫通するまでの最大荷重(kg)を測定した。
同様にして内層側からも測定を行った。測定は、引張試験機を用いて行った。
(7)成形性:水冷インフレーションで成形する際、成形性を次の基準で総合的に評価した。
○:バブルが安定しており、問題なかった。
△:バブルが安定するまでに時間がかかった。
×:成形することができなかった。
3. Laminate Evaluation Method (1) Heat Resistance: A cylindrical laminate was cut into a size of 210 mm, and one of the cut out was heat sealed to form a bag. Next, 500 ml of pure water was filled therein, and the other side was heat-sealed and sealed. Sealing was performed such that the distance between the heat seal and the heat seal was 180 mm. The sample bag thus obtained is put into a high-temperature and high-pressure cooking sterilization tester (manufactured by Nisaka Manufacturing Co., Ltd., RCS / 40RTGN type) and then pressurized, the ambient temperature is increased to 115 ° C., and the temperature is adjusted. Hold for 30 minutes. Then, it cooled to about 40 degreeC and took out this sample bag from the testing machine. Hereinafter, this sterilized laminate (“sample bag”) is referred to as “sterilized laminate”.
The heat sealing was performed under the conditions of temperature: 200 ° C., pressure: 2 kg / cm 2 , and time of 4 seconds.
The heat resistance of the sample bag was evaluated according to the following criteria.
○: Almost no wrinkles. Or not at all.
X: There are many wrinkles. Or, transparency is lowered.
(2) Haze: As described above, the haze was measured according to JIS-K7136-2000. The HAZE measurement was performed for both the molded laminate and the sterilized laminate. When measuring the HAZE of the laminate after sterilization, the water filled in the laminate was taken out and 2 hours later.
(3) Tensile modulus (MD): Based on ISO1184-1983, the tensile modulus of the laminate in the MD direction (film or sheet take-up direction) was measured. It shows that it is excellent in the softness, so that this value is small. In addition, the tensile elasticity modulus was performed about what drained water from the laminated body after sterilization (use the laminated body 48 hours after draining water).
(4) Bag drop strength: After sterilization, the laminates (2 pieces) were stored at 10 ° C. for 24 hours, and then dropped at a temperature from a height of 2 m onto a steel plate in parallel for evaluation. Evaluation was made according to the following criteria.
○: One or two laminated bodies were broken after sterilization.
X: The state did not change from before the drop test, and there was no problem with the two.
(5) Adhesion to the outer layer and upper seal bar: heat seal temperature: 160 ° C., seal pressure: 2 kg / cm 2 , seal time: 3 seconds, seal bar width: laminated on the seal bar under heat seal conditions of 10 mm When the inner surfaces of the bodies were heat-sealed and the seal bar was raised, the case where the outer surface of the laminated body adhered to the upper seal bar was evaluated as x, and the case where it did not adhere was evaluated as ◯. In addition, when the outer surface of the laminate does not adhere to the upper seal bar, the optimum heat seal temperature is widened, so that not only the work efficiency is good, but also there are few troubles such as defective heat seal, which is excellent.
(6) Puncture strength: Measured with reference to the method described in Japanese Agricultural Standards (JAS) (Ministry of Agriculture and Forestry Notification No. 1019) of retort pouch foods.
As the test piece, a laminate after sterilization treatment was used. The outer layer was fixed on the surface. Fixing was performed so that the laminated body appeared as a circle having a diameter of 55 mm after sterilization.
A rod having a diameter of 25 mm and a tip shape of 12.5 mmR was pierced on the surface of the fixed test piece at a speed of 50 mm / min, and the maximum load (kg) until the rod penetrated was measured.
Similarly, measurement was performed from the inner layer side. The measurement was performed using a tensile tester.
(7) Formability: When forming by water-cooled inflation, formability was comprehensively evaluated according to the following criteria.
○: The bubble was stable and there was no problem.
Δ: It took time for the bubbles to stabilize.
X: Could not be molded.

4.使用樹脂の調製
(1)成分(B):エチレン・α−オレフィン共重合体
下記の製造例1〜2で得た(PE−1)〜(PE−2)を用いた。物性を表1に示す。
4). Preparation of Resin Used (1) Component (B): Ethylene / α-Olefin Copolymer (PE-1) to (PE-2) obtained in the following Production Examples 1-2 were used. The physical properties are shown in Table 1.

(製造例1)
(1−1)触媒調製
触媒の調製は、特表平7−508545号公報に記載された方法で実施した。即ち、錯体ジメチルシリレンビス(4,5,6,7−テトラヒドロインデニル)ハフニウムジメチル2.0ミリモルに、トリペンタフルオロフェニルホウ素を上記錯体に対して等モル加え、トルエンで10リットルに希釈して触媒溶液を調製した。
(1−2)重合
内容積1.5リットルの撹拌式オートクレーブ型連続反応器を反応器内の圧力を130MPaに保ち、エチレンと1−ヘキセンとの混合物を1−ヘキセンの組成が55重量%となるように40kg/時の割合で原料ガスを連続的に供給した。また、上記触媒溶液を連続的に供給し、重合温度が148℃を維持するようにその供給量を調整した。1時間あたりのポリマー生産量は約2.1kgであった。反応終了後、1−ヘキセン含有量=12重量%、MFR=2.2g/10分、密度=0.905g/cm、Mw/Mn=2.3であるエチレン・1−ヘキセン共重合体(PE−1)を得た。
(Production Example 1)
(1-1) Catalyst preparation The catalyst was prepared by the method described in JP-T-7-508545. That is, 2.0 mol of complex dimethylsilylene bis (4,5,6,7-tetrahydroindenyl) hafnium dimethyl is added in an equimolar amount to the above complex, and diluted to 10 liters with toluene. A catalyst solution was prepared.
(1-2) Polymerization A stirred autoclave type continuous reactor having an internal volume of 1.5 liters was maintained at a pressure of 130 MPa, and a mixture of ethylene and 1-hexene was 55% by weight of 1-hexene. The raw material gas was continuously supplied at a rate of 40 kg / hour. The catalyst solution was continuously supplied, and the supply amount was adjusted so that the polymerization temperature was maintained at 148 ° C. The polymer production per hour was about 2.1 kg. After completion of the reaction, an ethylene / 1-hexene copolymer having a 1-hexene content of 12% by weight, MFR = 2.2 g / 10 minutes, density = 0.905 g / cm 3 , and Mw / Mn = 2.3 ( PE-1) was obtained.

(製造例2)
重合時の1−ヘキセンの組成を58重量%にし、重合温度を143℃に代えた以外は製造例1と同様の製法で触媒調整及び重合を行った。1時間あたりのポリマー生産量は約2.1kgであった。反応終了後、1−ヘキセン含有量=14重量%、MFR=2.2g/10分、密度=0.901g/cm、Mw/Mn=2.3であるエチレン・1−ヘキセン共重合体(PE−2)を得た。
(Production Example 2)
Catalyst preparation and polymerization were carried out in the same manner as in Production Example 1 except that the composition of 1-hexene at the time of polymerization was changed to 58% by weight and the polymerization temperature was changed to 143 ° C. The polymer production per hour was about 2.1 kg. After completion of the reaction, an ethylene / 1-hexene copolymer (1-hexene content = 14% by weight, MFR = 2.2 g / 10 minutes, density = 0.901 g / cm 3 , Mw / Mn = 2.3) PE-2) was obtained.

(製造例3)
重合時の1−ヘキセンの組成を50重量%にし、重合温度を156℃に代えた以外は製造例1と同様の製法で触媒調整及び重合を行った。1時間あたりのポリマー生産量は約2.6kgであった。反応終了後、1−ヘキセン含有量=11重量%、MFR=2.2g/10分、密度=0.910g/cm、Mw/Mn=2.3であるエチレン・1−ヘキセン共重合体(PE−4)を得た。
(Production Example 3)
Catalyst preparation and polymerization were carried out in the same manner as in Production Example 1, except that the composition of 1-hexene at the time of polymerization was changed to 50% by weight and the polymerization temperature was changed to 156 ° C. The polymer production per hour was about 2.6 kg. After completion of the reaction, an ethylene / 1-hexene copolymer having 1-hexene content = 11 wt%, MFR = 2.2 g / 10 min, density = 0.910 g / cm 3 , and Mw / Mn = 2.3 ( PE-4) was obtained.

(製造例4)
重合時の1−ヘキセンの組成を62重量%にし、重合温度を140℃に代えた以外は製造例1と同様の製法で触媒調整及び重合を行った。1時間あたりのポリマー生産量は約2.0kgであった。反応終了後、1−ヘキセン含有量=15重量%、MFR=2.2g/10分、密度=0.898g/cm、Mw/Mn=2.3であるエチレン・1−ヘキセン共重合体(PE−5)を得た。
(Production Example 4)
Catalyst preparation and polymerization were carried out in the same manner as in Production Example 1 except that the composition of 1-hexene at the time of polymerization was changed to 62% by weight and the polymerization temperature was changed to 140 ° C. The amount of polymer produced per hour was about 2.0 kg. After completion of the reaction, an ethylene / 1-hexene copolymer having 1-hexene content = 15 wt%, MFR = 2.2 g / 10 min, density = 0.898 g / cm 3 , and Mw / Mn = 2.3 ( PE-5) was obtained.

Figure 2005219485
Figure 2005219485

(2)成分(C):高密度ポリエチレン
高密度ポリエチレン(HD)として、市販品である、日本ポリケム社製「ノバテックHJ562」(MFR:7g/10分、密度:0.964g/cm、補外融解終了温度(Tm):136℃)を用いた。
(2) Component (C): High-density polyethylene As a high-density polyethylene (HD), a commercially available product “Novatech HJ562” (MFR: 7 g / 10 min, density: 0.964 g / cm 3 , supplementary) The outer melting end temperature (Tm c ): 136 ° C.) was used.

(実施例1)
外層に成分(A)として、高圧法低密度ポリエチレン(HP−LD)(融解ピークの補外終了温度(Tm):118℃、MFR:4g/10分、ビカット軟化温度(Ta):106℃、溶融張力:1.03g)を用いた。
また、中間層に(PE−1)95重量%に対し、成分(C)を5重量%配合した組成物を使用した。
さらに、内層に(PE−1)90重量%に対し、成分(C)の高密度ポリエチレン(HD)10重量%を配合した組成物を使用した。
これら各層の樹脂材料を、プラコー社製3種3層水冷インフレーション成形機に各々セットし、上記条件で水冷インフレーション成形を行って、外層と内層の厚み50μm、中間層の厚み150μm、折り径;180mm、のチューブ状積層体を成形した。得られた積層体の評価結果を表2に示す。
(Example 1)
As the component (A) in the outer layer, high pressure method low density polyethylene (HP-LD) (extrapolated end temperature (Tm a ) of melting peak: 118 ° C., MFR: 4 g / 10 minutes, Vicat softening temperature (Ta): 106 ° C. , Melt tension: 1.03 g) was used.
Moreover, the composition which mix | blended 5 weight% of component (C) with respect to 95 weight% of (PE-1) was used for the intermediate | middle layer.
Furthermore, the composition which mix | blended 10 weight% of high density polyethylene (HD) of a component (C) with respect to 90 weight% of (PE-1) was used for the inner layer.
The resin material of each layer is set in a three-layer, three-layer water-cooled inflation molding machine manufactured by Plako, and water-cooled inflation molding is performed under the above conditions. The thickness of the outer layer and inner layer is 50 μm, the thickness of the intermediate layer is 150 μm, the folding diameter is 180 mm A tubular laminate was formed. Table 2 shows the evaluation results of the obtained laminate.

(実施例2)
中間層に、(PE−1)92.5重量%に対し、成分(C)を7.5重量%配合した組成物を用いた以外は、実施例1と同様にして積層体を得た。評価結果を表2に示す。
(Example 2)
A laminate was obtained in the same manner as in Example 1 except that a composition in which 7.5% by weight of component (C) was blended with respect to 92.5% by weight of (PE-1) was used for the intermediate layer. The evaluation results are shown in Table 2.

(実施例3)
外層に成分(A)として、チーグラー型触媒を用いて製造されたエチレン・1−ブテン共重合体(L−LD)(密度:0.921g/cm、MFR:1.1g/10分、ビカット軟化温度:102℃、溶融張力:0.75g)(PE−3)を用いた以外は、実施例1と同様にして積層体を得た。評価結果を表2に示す。
(Example 3)
Ethylene 1-butene copolymer (L-LD) produced using Ziegler type catalyst as component (A) in the outer layer (density: 0.921 g / cm 3 , MFR: 1.1 g / 10 min, Vicat) A laminate was obtained in the same manner as in Example 1 except that softening temperature: 102 ° C., melt tension: 0.75 g) (PE-3) was used. The evaluation results are shown in Table 2.

(実施例4)
中間層に、(PE−1)90重量%に対し、成分(C)を10重量%配合した組成物を用い、内層に、(PE−1)85重量%に対し、成分(C)を15重量%配合した組成物を用いた以外は、実施例1と同様にして積層体を得た。評価結果を表2に示す。
Example 4
In the intermediate layer, a composition in which 10% by weight of component (C) was blended with 90% by weight of (PE-1) and 15% of component (C) was blended with 85% by weight of (PE-1) in the inner layer. A laminate was obtained in the same manner as in Example 1 except that the composition containing wt% was used. The evaluation results are shown in Table 2.

(実施例5)
中間層に、(PE−1)95重量%に対し、成分(C)を5重量%配合した組成物を用いた以外は、実施例4と同様にして積層体を得た。評価結果を表2に示す。
(Example 5)
A laminate was obtained in the same manner as in Example 4 except that the intermediate layer was composed of 95% by weight of (PE-1) and 5% by weight of component (C). The evaluation results are shown in Table 2.

(実施例6)
中間層に、(PE−4)45重量%に対し、(PE−5)50重量%、成分(C)を5重量%配合した組成物を用い、内層に、(PE−4)90重量%に対し、成分(C)を10重量%配合した組成物を用いた以外は、実施例1と同様にして積層体を得た。評価結果を表2に示す。
(Example 6)
A composition in which 50% by weight of (PE-5) and 5% by weight of component (C) were blended with 45% by weight of (PE-4) in the intermediate layer and 90% by weight of (PE-4) in the inner layer. On the other hand, a laminate was obtained in the same manner as in Example 1 except that a composition containing 10% by weight of the component (C) was used. The evaluation results are shown in Table 2.

(比較例1)
中間層に、(PE−2)97.5重量%に対し、成分(C)を2.5重量%配合した組成物を用いた以外は、実施例1と同様にして積層体を得た。評価結果を表3に示す。
このものは、柔軟性(滅菌処理後)、落袋強度(滅菌処理後)及びシールバーへの付着が良好であるが、耐熱性及び透明性(滅菌処理後)が劣る。
(Comparative Example 1)
A laminate was obtained in the same manner as in Example 1 except that a composition in which 2.5% by weight of the component (C) was blended with respect to 97.5% by weight of (PE-2) was used for the intermediate layer. The evaluation results are shown in Table 3.
This has good flexibility (after sterilization), drop bag strength (after sterilization) and adhesion to the seal bar, but is inferior in heat resistance and transparency (after sterilization).

(比較例2)
内層に、高圧法低密度ポリエチレン(HP−LD)(融解ピークの補外終了温度(Tm):118℃、MFR:4g/10分、ビカット軟化温度(Ta):106℃)を用いた以外は、実施例1と同様にして積層体を得た。評価結果を表3に示す。
このものは、耐熱性、落袋強度(滅菌処理後)及びシールバーへの付着が良好であるが、透明性(滅菌処理後)及び柔軟性(滅菌処理後)が劣る。
(Comparative Example 2)
Except for using high-pressure low-density polyethylene (HP-LD) (extrapolated end temperature of melting peak (Tm a ): 118 ° C., MFR: 4 g / 10 min, Vicat softening temperature (Ta): 106 ° C.) for the inner layer Obtained a laminate in the same manner as in Example 1. The evaluation results are shown in Table 3.
This has good heat resistance, bag drop strength (after sterilization treatment) and adhesion to the seal bar, but is inferior in transparency (after sterilization treatment) and flexibility (after sterilization treatment).

(比較例3)
中間層に、(PE−1)90重量%と(HD)10(重量%)を配合した樹脂組成物を用いたこと以外は、実施例1と同様にして積層体を得た。評価結果を表3に示す。
このものは、耐熱性、透明性(滅菌処理後)、及びシールバーへの付着が良好であるが、柔軟性(滅菌処理後)及び落袋強度(滅菌処理後)が劣る。
(Comparative Example 3)
A laminate was obtained in the same manner as in Example 1 except that a resin composition in which 90% by weight of (PE-1) and 10% by weight (HD) were used in the intermediate layer was used. The evaluation results are shown in Table 3.
This material has good heat resistance, transparency (after sterilization treatment), and adhesion to the seal bar, but is inferior in flexibility (after sterilization treatment) and bag drop strength (after sterilization treatment).

(比較例4)
三層すべてに(PE−1)90重量%と(HD)10(重量%)を配合した樹脂組成物を用いて、積層体を得た。評価結果を表3に示す。
このものは、耐熱性、透明性(滅菌処理後)、柔軟性(滅菌処理後)及び落袋強度(滅菌処理後)が良好であるが、シールバーへの付着が劣る。
(Comparative Example 4)
A laminate was obtained using a resin composition in which 90% by weight of (PE-1) and 10% by weight of (HD) were blended in all three layers. The evaluation results are shown in Table 3.
This product has good heat resistance, transparency (after sterilization treatment), flexibility (after sterilization treatment), and bag drop strength (after sterilization treatment), but poor adhesion to the seal bar.

(比較例5)
三層すべてに高圧法低密度ポリエチレン(HP−LD)(融解ピークの補外終了温度(Tm):118℃、MFR:4g/10分、ビカット軟化温度(Ta):106℃)を用いて、積層体を得た。評価結果を表3に示す。
このものは、シールバーへの付着が良好であるが、耐熱性、透明性(滅菌処理後)、柔軟性(滅菌処理後)、落袋強度(滅菌処理後)、突き刺し強度が劣る。
(Comparative Example 5)
High pressure method low density polyethylene (HP-LD) (melting peak extrapolation end temperature (Tm a ): 118 ° C., MFR: 4 g / 10 min, Vicat softening temperature (Ta): 106 ° C.) is used for all three layers. A laminate was obtained. The evaluation results are shown in Table 3.
This material has good adhesion to the seal bar, but is inferior in heat resistance, transparency (after sterilization treatment), flexibility (after sterilization treatment), bag drop strength (after sterilization treatment), and piercing strength.

(比較例6)
中間層に、(PE−3)95.0重量%に対し、成分(C)を5.0重量%配合した組成物を用い、内層に、(PE−3)90重量%に対し、成分(C)を10重量%配合した組成物を用いた以外は、実施例1と同様にして積層体を得た。評価結果を表3に示す。
このものは、耐熱性、柔軟性(滅菌処理後)、シールバーへの付着が良好であるが、突き刺し強度、透明性(滅菌処理後)及び落袋強度(滅菌処理後)が劣る。
(Comparative Example 6)
In the intermediate layer, a composition containing 5.0% by weight of component (C) with respect to 95.0% by weight of (PE-3) was used. A laminate was obtained in the same manner as in Example 1 except that a composition containing 10% by weight of C) was used. The evaluation results are shown in Table 3.
This product has good heat resistance, flexibility (after sterilization treatment), and good adhesion to the seal bar, but is inferior in piercing strength, transparency (after sterilization treatment) and bag drop strength (after sterilization treatment).

(比較例7)
実施例1において、外層と中間層の樹脂組成物材料を入れ換え、実施例1と同様にして積層体を得た。評価結果を表3に示す。
このものは、耐熱性が良好であるが、柔軟性(滅菌処理後)、落袋強度(滅菌処理後)、シールバーへの付着、突き刺し強度が劣る。
(Comparative Example 7)
In Example 1, the resin composition materials of the outer layer and the intermediate layer were replaced, and a laminate was obtained in the same manner as in Example 1. The evaluation results are shown in Table 3.
This product has good heat resistance, but is inferior in flexibility (after sterilization treatment), drop bag strength (after sterilization treatment), adhesion to a seal bar, and puncture strength.

Figure 2005219485
Figure 2005219485

Figure 2005219485
Figure 2005219485

本発明の積層体は、衛生性が良好であるだけでなく、115℃滅菌処理後の柔軟性、透明性、突き刺し強度に著しく優れ、かつ耐熱性、輸送時、取り扱い時に問題となる落袋強度に優れている。よって、医療用袋、特に輸液バッグなどの医療分野、及び耐熱性が必要なレトルト用の食品包装分野でも利用可能である。   The laminate of the present invention not only has good hygiene, but also has excellent flexibility, transparency and puncture strength after 115 ° C. sterilization treatment, and heat resistance, bag drop strength that causes problems during transportation and handling Is excellent. Therefore, it can also be used in the medical field such as medical bags, particularly infusion bags, and the food packaging field for retorts that require heat resistance.

Claims (6)

少なくとも外層、中間層及び内層をこの順で含む積層体であって、
前記外層は、ビカット軟化温度が90〜140℃のポリオレフィン系樹脂材料(A)により形成され、
前記中間層は、メルトフローレートが0.1〜20g/10分、密度が0.880〜0.930g/cmのエチレン・α−オレフィン共重合体(B)85〜97重量%とメルトフローレートが0.1〜20g/10分、密度が0.940〜0.980g/cmの高密度ポリエチレン(C)3〜15重量%とからなるエチレン・α−オレフィン共重合体組成物(a)により形成され、
前記内層は、メルトフローレートが0.1〜20g/10分、密度が0.880〜0.930g/cmのエチレン・α−オレフィン共重合体(B)80〜95重量%とメルトフローレートが0.1〜20g/10分、密度が0.940〜0.980g/cmの高密度ポリエチレン(C)5〜20重量%からなるエチレン・α−オレフィン共重合体組成物(b)により形成され、
かつ、エチレン・α−オレフィン共重合体組成物(a)における高密度ポリエチレンの含有量[HDPEa](重量%)とエチレン・α−オレフィン共重合体組成物(b)における高密度ポリエチレンの含有量[HDPEb](重量%)とが、下記式(1)及び式(2)を満足することを特徴とする積層体。
0<[HDPEb]−[HDPEa]<15 ・・・(1)
10<[HDPEb]+[HDPEa]<30 ・・・(2)
A laminate including at least an outer layer, an intermediate layer, and an inner layer in this order,
The outer layer is formed of a polyolefin resin material (A) having a Vicat softening temperature of 90 to 140 ° C.,
The intermediate layer has a melt flow rate of 85 to 97% by weight with an ethylene / α-olefin copolymer (B) having a melt flow rate of 0.1 to 20 g / 10 min and a density of 0.880 to 0.930 g / cm 3. An ethylene / α-olefin copolymer composition (a) comprising 3 to 15% by weight of high density polyethylene (C) having a rate of 0.1 to 20 g / 10 min and a density of 0.940 to 0.980 g / cm 3 )
The inner layer has an melt flow rate of 80 to 95% by weight of an ethylene / α-olefin copolymer (B) having a melt flow rate of 0.1 to 20 g / 10 min and a density of 0.880 to 0.930 g / cm 3. Is an ethylene / α-olefin copolymer composition (b) comprising 5 to 20% by weight of high density polyethylene (C) having a density of 0.1 to 20 g / 10 min and a density of 0.940 to 0.980 g / cm 3. Formed,
And the content [HDPEa] (weight%) of the high density polyethylene in the ethylene / α-olefin copolymer composition (a) and the content of the high density polyethylene in the ethylene / α-olefin copolymer composition (b) [HDPEb] (% by weight) satisfies the following formulas (1) and (2).
0 <[HDPEb] − [HDPEa] <15 (1)
10 <[HDPEb] + [HDPEa] <30 (2)
中間層又は内層のエチレン・α−オレフィン共重合体(B)の少なくとも一方は、メタロセン触媒を用いて製造され、かつ、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.5〜4.0であることを特徴とする請求項1に記載の積層体。   At least one of the intermediate layer or inner layer ethylene / α-olefin copolymer (B) is produced using a metallocene catalyst, and the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / The laminate according to claim 1, wherein Mn) is 1.5 to 4.0. ポリオレフィン系樹脂材料(A)は、示差走査熱量測定法(DSC)によって得られる融解ピークの補外融解終了温度が110〜125℃の高圧法低密度ポリエチレンであることを特徴とする請求項1又は2に記載の積層体。   The polyolefin resin material (A) is a high pressure method low density polyethylene having an extrapolation end temperature of a melting peak of 110 to 125 ° C obtained by differential scanning calorimetry (DSC). 2. The laminate according to 2. エチレン・α−オレフィン共重合体(B)の示差走査熱量測定法(DSC)によって得られる融解ピークの補外融解終了温度(Tm)と高密度ポリエチレン(C)の補外融解終了温度(Tm)が下記式(3)を満たすことを特徴とする請求項1〜3のいずれか1項に記載の積層体。
15≦(Tm−Tm)≦50 ・・・(3)
Extrapolated melting end temperature (Tm b ) of melting peak obtained by differential scanning calorimetry (DSC) of ethylene / α-olefin copolymer (B) and extrapolated melting end temperature (Tm) of high-density polyethylene (C) c ) satisfies following formula (3), The laminated body of any one of Claims 1-3 characterized by the above-mentioned.
15 ≦ (Tm c −Tm b ) ≦ 50 (3)
前記外層、中間層及び内層を構成する樹脂組成物のオルゼン曲げこわさが下記式(4)を満たすことを特徴とする請求項1〜4のいずれか1項に記載の積層体。
中間層<内層<外層 ・・・(4)
The laminate according to any one of claims 1 to 4, wherein the resin composition constituting the outer layer, the intermediate layer, and the inner layer satisfies the following formula (4).
Intermediate layer <Inner layer <Outer layer (4)
請求項1〜5のいずれか1項に記載の積層体からなることを特徴とする医療用袋。   A medical bag comprising the laminate according to any one of claims 1 to 5.
JP2004375894A 2004-01-09 2004-12-27 Laminated body and medical bag comprising the same Active JP4505321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375894A JP4505321B2 (en) 2004-01-09 2004-12-27 Laminated body and medical bag comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004004470 2004-01-09
JP2004375894A JP4505321B2 (en) 2004-01-09 2004-12-27 Laminated body and medical bag comprising the same

Publications (2)

Publication Number Publication Date
JP2005219485A true JP2005219485A (en) 2005-08-18
JP4505321B2 JP4505321B2 (en) 2010-07-21

Family

ID=34995495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375894A Active JP4505321B2 (en) 2004-01-09 2004-12-27 Laminated body and medical bag comprising the same

Country Status (1)

Country Link
JP (1) JP4505321B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001228A (en) * 2005-06-27 2007-01-11 Sumitomo Chemical Co Ltd Multilayered film and bag
JP2008155549A (en) * 2006-12-26 2008-07-10 Hosokawa Yoko Co Ltd Polyethylene-based medical container and laminated film used for it
EP2402156A1 (en) * 2009-02-26 2012-01-04 Mitsui Chemicals, Inc. Multilayer film and bag formed of the film
JP2014180326A (en) * 2013-03-18 2014-09-29 Japan Polyethylene Corp Medical bag
JP2019131271A (en) * 2018-02-02 2019-08-08 日本ポリエチレン株式会社 Sealant film for retort food
EP2895326B1 (en) * 2012-09-13 2020-12-16 Dow Global Technologies LLC Polyolefin based films suitable for thermoforming
KR20210109652A (en) * 2013-07-17 2021-09-06 도판 인사츠 가부시키가이샤 Terminal coating resin film for secondary cell, tab member for secondary cell, and secondary cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246886A (en) * 1992-12-28 1994-09-06 Mitsui Petrochem Ind Ltd Resin laminate and use application thereof
JPH09176336A (en) * 1995-12-27 1997-07-08 Mitsui Petrochem Ind Ltd Film for easily peelable sealing and vessel using the same
JP2001162746A (en) * 1999-12-07 2001-06-19 Japan Polychem Corp Laminate and bag for medical care made of the same
JP2003237002A (en) * 2001-01-15 2003-08-26 Showa Denko Plastic Products Co Ltd Laminate and container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246886A (en) * 1992-12-28 1994-09-06 Mitsui Petrochem Ind Ltd Resin laminate and use application thereof
JPH09176336A (en) * 1995-12-27 1997-07-08 Mitsui Petrochem Ind Ltd Film for easily peelable sealing and vessel using the same
JP2001162746A (en) * 1999-12-07 2001-06-19 Japan Polychem Corp Laminate and bag for medical care made of the same
JP2003237002A (en) * 2001-01-15 2003-08-26 Showa Denko Plastic Products Co Ltd Laminate and container

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001228A (en) * 2005-06-27 2007-01-11 Sumitomo Chemical Co Ltd Multilayered film and bag
JP2008155549A (en) * 2006-12-26 2008-07-10 Hosokawa Yoko Co Ltd Polyethylene-based medical container and laminated film used for it
EP2402156A1 (en) * 2009-02-26 2012-01-04 Mitsui Chemicals, Inc. Multilayer film and bag formed of the film
EP2402156A4 (en) * 2009-02-26 2012-07-04 Mitsui Chemicals Inc Multilayer film and bag formed of the film
EP2895326B1 (en) * 2012-09-13 2020-12-16 Dow Global Technologies LLC Polyolefin based films suitable for thermoforming
US11292234B2 (en) 2012-09-13 2022-04-05 Dow Global Technologies Llc Polyolefin based films suitable for thermoforming
JP2014180326A (en) * 2013-03-18 2014-09-29 Japan Polyethylene Corp Medical bag
KR20210109652A (en) * 2013-07-17 2021-09-06 도판 인사츠 가부시키가이샤 Terminal coating resin film for secondary cell, tab member for secondary cell, and secondary cell
KR102507154B1 (en) * 2013-07-17 2023-03-08 도판 인사츠 가부시키가이샤 Terminal coating resin film for secondary cell, tab member for secondary cell, and secondary cell
JP2019131271A (en) * 2018-02-02 2019-08-08 日本ポリエチレン株式会社 Sealant film for retort food
JP7091680B2 (en) 2018-02-02 2022-06-28 日本ポリエチレン株式会社 Retort food sealant film

Also Published As

Publication number Publication date
JP4505321B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
KR100719403B1 (en) Heat-sealable laminated film and package
JP5198387B2 (en) Laminated film and use thereof
US7488777B2 (en) Resin composition and film obtained therefrom
US7985804B2 (en) Rubber toughened compositions, articles, films, and methods of making the same
JP2009154332A (en) Laminate
TW200307007A (en) Resin composition for sealant, laminate, and container obtained therefrom
MXPA02007585A (en) Multi layered polymer based moisture barrier structure for medical grade products.
EP1216824B1 (en) Sealant for polypropylene and easily openable hermetically sealed package including the same
JP4505321B2 (en) Laminated body and medical bag comprising the same
JP6717639B2 (en) Multilayer film and manufacturing method thereof
JP6485151B2 (en) Medical bag
KR100736290B1 (en) Medical Container
JP2008524414A (en) Heat-sealable polyolefin film
JP6771809B2 (en) Medical bag
JP2017105174A (en) Multilayer film
JP2002273842A (en) Multilayered film for retort packaging
JP3804183B2 (en) Coextruded multilayer film for bonding and method for producing the same
JP6822198B2 (en) Sealant adhesive and easy-to-peel film
JP4287966B2 (en) Laminated body and medical bag comprising the same
JP6717641B2 (en) Multilayer film and manufacturing method thereof
JP2004291609A (en) Stretched polyolefinic film
JP7380346B2 (en) Sealant film for retort food
JP2013203058A (en) Laminate and packaging bag for food using the same
TWI813660B (en) container
JP4906159B2 (en) Laminated body and medical bag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4505321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250