JP5198387B2 - Laminated film and use thereof - Google Patents

Laminated film and use thereof Download PDF

Info

Publication number
JP5198387B2
JP5198387B2 JP2009189648A JP2009189648A JP5198387B2 JP 5198387 B2 JP5198387 B2 JP 5198387B2 JP 2009189648 A JP2009189648 A JP 2009189648A JP 2009189648 A JP2009189648 A JP 2009189648A JP 5198387 B2 JP5198387 B2 JP 5198387B2
Authority
JP
Japan
Prior art keywords
weight
resin
ethylene
rice
olefin copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009189648A
Other languages
Japanese (ja)
Other versions
JP2011042032A (en
Inventor
珠美 尾中
清麿 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
Original Assignee
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyethylene Corp filed Critical Japan Polyethylene Corp
Priority to JP2009189648A priority Critical patent/JP5198387B2/en
Publication of JP2011042032A publication Critical patent/JP2011042032A/en
Application granted granted Critical
Publication of JP5198387B2 publication Critical patent/JP5198387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、積層フィルムおよびその用途に関し、詳しくは、余剰米を有効活用する強度の優れた積層フィルムおよびその用途のゴミ袋、レジ袋または肥料袋に関する。   The present invention relates to a laminated film and use thereof, and more particularly, to a laminated film having excellent strength for effectively utilizing surplus rice and a garbage bag, a plastic bag or a fertilizer bag for the use.

食用として生産された農産物のうち余剰分は、一定期間、備蓄することが可能であるが、賞味期限を経過したものについては廃棄せざるを得ない。現在、生産されている米に関しても供給過剰状態となっており、わが国が保有する余剰米は年々増加の一途をたどっている。このような、廃棄または備蓄の在庫を減らすために、食用の用途以外にも余剰米を有効利用する用途が模索されている。   Of the agricultural products produced for edible use, the surplus can be stored for a certain period of time, but those whose expiration date has passed must be discarded. Currently, the rice being produced is also oversupplied, and surplus rice held by Japan continues to increase year by year. In order to reduce the stock of waste or stockpile, the use of surplus rice is being sought in addition to the use for food.

余剰米の有効利用としては、従来から、ポリオレフィン樹脂に配合したポリオレフィン樹脂組成物の成形が行われている(例えば、特許文献1、2参照。)。これは、このようなバイオマス原料を配合することにより、化石燃料から製造される熱可塑性樹脂の使用量を低減させ、燃焼時の二酸化炭素発生量を減少(オレフィン樹脂との比較:約20%)させることができるので、地球環境に配慮する観点からも好ましい。   As an effective use of surplus rice, conventionally, molding of a polyolefin resin composition blended with a polyolefin resin has been performed (for example, see Patent Documents 1 and 2). This is because, by blending such biomass raw materials, the amount of thermoplastic resin produced from fossil fuel is reduced, and the amount of carbon dioxide generated during combustion is reduced (compared with olefin resin: about 20%). From the viewpoint of considering the global environment, it is preferable.

特に、近年では世界的にも環境に対する感心が高まり、より良い品質よりも、まずは環境に対する影響が考慮されるようになっている。
このような観点に基づき、余剰米を配合したポリオレフィン樹脂の成形品に対する期待は高まっている。
In particular, in recent years, environmental awareness has increased worldwide, and the impact on the environment has been taken into consideration first, rather than better quality.
Based on such a viewpoint, the expectation for the molded article of the polyolefin resin blended with surplus rice is increasing.

特開2005−330402JP-A-2005-330402 特開2007−169615JP2007-169615

しかし、米を配合したポリオレフィン樹脂は、従来のポリオレフィン樹脂に比べ強度の低下が懸念されている。米の配合量が増えるほど、環境影響性の少ない樹脂ができるが、強度、取り分け突き刺し強度の低下が大きい。
本発明は、以上の問題点を解決することを目的としてなされたものであり、ポリオレフィン樹脂に大量に配合米を混入しても、突き刺し強度が低下せず、高ヒートシール強度、高剛性を保持した積層フィルムおよびその用途を提供することを目的とするものである。
However, there is a concern that the strength of a polyolefin resin containing rice is lower than that of a conventional polyolefin resin. As the amount of rice increases, a resin with less environmental impact can be produced, but the strength and, particularly, the piercing strength is greatly reduced.
The present invention was made for the purpose of solving the above problems, and even when a large amount of blended rice is mixed into a polyolefin resin, the piercing strength does not decrease, and high heat seal strength and high rigidity are maintained. An object of the present invention is to provide a laminated film and a use thereof.

本発明者らは、上記問題点の解決のために鋭意検討した結果、特定のエチレン・α−オレフィン共重合体と特定のプロピレン系樹脂を特定の割合で配合した樹脂混合物に米を配合した樹脂組成物からなる中間層と、熱可塑性樹脂または、熱可塑性樹脂に米を特定量配合した樹脂組成物からなる内層及び、外層からなる積層フィルムとすることにより、米を添加することによる品質の低下を抑えられたフィルム成形品が得られることを見出し、本発明に至った。   As a result of intensive studies for solving the above problems, the present inventors have formulated a resin in which rice is mixed with a resin mixture in which a specific ethylene / α-olefin copolymer and a specific propylene resin are mixed at a specific ratio. Lowering the quality due to the addition of rice by forming a laminated film consisting of an intermediate layer composed of the composition, a thermoplastic resin or a resin composition in which a specific amount of rice is blended in a thermoplastic resin, and an outer layer. The present inventors have found that a film-molded product with reduced resistance can be obtained, and have reached the present invention.

すなわち、本発明の第1の発明によれば、内層、中間層、外層をこの順に含む積層フィルムであって、内層及び外層が熱可塑性樹脂100〜70重量部と米0〜30重量部からなる樹脂組成物(I)からなり、中間層がエチレン・α−オレフィン共重合体30〜90重量%とプロピレン系樹脂70〜10重量%からなる樹脂成分100重量部に対し、米12〜150重量部を含有する樹脂組成物(II)からなることを特徴とする積層フィルムが提供される。   That is, according to 1st invention of this invention, it is a laminated film containing an inner layer, an intermediate | middle layer, and an outer layer in this order, Comprising: An inner layer and an outer layer consist of 100-70 weight part of thermoplastic resins, and 0-30 weight part of rice. 12 to 150 parts by weight of rice with respect to 100 parts by weight of resin component consisting of resin composition (I) and having an intermediate layer of 30 to 90% by weight of ethylene / α-olefin copolymer and 70 to 10% by weight of propylene resin There is provided a laminated film comprising a resin composition (II) containing

また、本発明の第2の発明によれば、第1の発明において、内層及び/又は外層の熱可塑性樹脂が、下記性状(a−1)〜(a−3)を有するエチレン・α−オレフィン共重合体(A)であることを特徴とする積層フィルムが提供される。
エチレン・α−オレフィン共重合体(A)
(a−1)密度が0.900〜0.928g/cm
(a−2)MFRが0.5〜8.0 g/10分
(a−3)Mw/Mnが1.5〜3.5
According to the second invention of the present invention, in the first invention, the thermoplastic resin of the inner layer and / or outer layer has the following properties (a-1) to (a-3): ethylene / α-olefin A laminated film characterized by being a copolymer (A) is provided.
Ethylene / α-olefin copolymer (A)
(A-1) Density is 0.900 to 0.928 g / cm 3
(A-2) MFR is 0.5 to 8.0 g / 10 minutes (a-3) Mw / Mn is 1.5 to 3.5

また、本発明の第3の発明によれば、第1又は2の発明において、中間層のエチレン・α−オレフィン共重合体が、下記性状(b-1)〜(b−3)を有する、メタロセン触媒によって得られたエチレン・α−オレフィン共重合体(B)であり、プロピレン系樹脂が、下記性状(c−1)〜(c−3)を有する、メタロセン触媒によって得られたプロピレン系樹脂(C)であることを特徴とする積層フィルムが提供される。
エチレン・α−オレフィン共重合体(B)
(b−1)密度が0.880〜0.920g/cm
(b−2)MFRが0.5〜8.0 g/10分
(b−3)Mw/Mnが1.5〜3.5
プロピレン系樹脂(C)
(c−1)プロピレン単位を85〜100モル%、エチレン及び/又はブテン構造単位を0〜15モル%含む
(c−2)Mw/Mnが5.0以下
(c−3)昇温溶離分別(TREF)法で測定した40℃以下の可溶分が4.0重量%以下
According to the third invention of the present invention, in the first or second invention, the intermediate layer ethylene / α-olefin copolymer has the following properties (b-1) to (b-3): Propylene resin obtained by a metallocene catalyst, which is an ethylene / α-olefin copolymer (B) obtained by a metallocene catalyst, and the propylene resin has the following properties (c-1) to (c-3) A laminated film characterized by being (C) is provided.
Ethylene / α-olefin copolymer (B)
(B-1) Density is 0.880 to 0.920 g / cm 3
(B-2) MFR is 0.5 to 8.0 g / 10 minutes (b-3) Mw / Mn is 1.5 to 3.5
Propylene resin (C)
(C-1) 85-100 mol% of propylene units and 0-15 mol% of ethylene and / or butene structural units (c-2) Mw / Mn is 5.0 or less (c-3) Temperature rising elution fractionation Soluble content of 40 ° C. or less measured by (TREF) method is 4.0% by weight or less

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、前記プロピレン系樹脂(C)は、融点(Tp)が110〜150℃であることを特徴とする積層フィルムが提供される。   According to a fourth invention of the present invention, in any one of the first to third inventions, the propylene-based resin (C) has a melting point (Tp) of 110 to 150 ° C. A film is provided.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、前記米は、澱粉の構造が非晶構造(α構造)であることを特徴とする積層フィルムが提供される。   According to a fifth aspect of the present invention, there is provided the laminated film according to any one of the first to fourth aspects, wherein the rice has a non-crystalline structure (α structure). Is done.

また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、全体の厚みに対する、中間層の厚みが50〜80%であることを特徴とする積層フィルムが提供される。   According to a sixth aspect of the present invention, there is provided the laminated film according to any one of the first to fifth aspects, wherein the intermediate layer has a thickness of 50 to 80% with respect to the total thickness. The

また、本発明の第7の発明によれば、第1〜6のいずれかの積層フィルムを袋状に加工してなるゴミ袋、レジ袋または肥料袋が提供される。   In addition, according to the seventh aspect of the present invention, there is provided a garbage bag, a plastic bag or a fertilizer bag obtained by processing any one of the first to sixth laminated films into a bag shape.

本発明の積層フィルムは、中間層がエチレン・α−オレフィン共重合体とプロピレン系樹脂からなる樹脂成分に特定量の米を含有する樹脂組成物からなり、内層及び外層が熱可塑性樹脂と米からなる樹脂組成物からなり、特に最適なポリエチレン樹脂と、最適なポリプロピレン樹脂を選択的に用い、最適な積層構成を取ることにより米の平均添加濃度を同一とした単層フィルムに比べ突き刺し強度、フィルムの剛性、低温ヒートシール強度等の優れたフィルムが得られものであり、剛性の向上からフィルムの薄肉化(減容化)を行うことも可能となった。   The laminated film of the present invention comprises a resin composition containing a specific amount of rice in a resin component comprising an ethylene / α-olefin copolymer and a propylene resin as an intermediate layer, and an inner layer and an outer layer from a thermoplastic resin and rice. The piercing strength, film, compared to a single layer film with the same average added concentration of rice by selectively using the most suitable polyethylene resin and the most suitable polypropylene resin and taking the optimum layered structure The film has excellent rigidity, low-temperature heat seal strength, etc., and it has become possible to reduce the thickness of the film (reduction in volume) due to the improved rigidity.

本発明は、内層、中間層、外層をこの順に含む積層フィルムであって、内層及び外層が熱可塑性樹脂、好ましくはエチレン・α−オレフィン共重合体(A)と米からなる樹脂組成物(I)からなり、中間層がエチレン・α−オレフィン共重合体、好ましくはエチレン・α−オレフィン共重合体(B)、プロピレン系樹脂、好ましくはプロピレン系樹脂(C)からなる樹脂成分と米、さらに必要に応じて相溶化剤(D)を含有する樹脂組成物(II)からなる積層フィルム、それから得られる成形品である。以下に、本発明について詳細に説明する。   The present invention is a laminated film comprising an inner layer, an intermediate layer, and an outer layer in this order, wherein the inner layer and the outer layer are thermoplastic resins, preferably a resin composition (I) comprising an ethylene / α-olefin copolymer (A) and rice (I And the intermediate layer is an ethylene / α-olefin copolymer, preferably an ethylene / α-olefin copolymer (B), a propylene-based resin, preferably a propylene-based resin (C), and a rice component, A laminated film composed of the resin composition (II) containing the compatibilizer (D) as necessary, and a molded product obtained therefrom. The present invention is described in detail below.

1.樹脂組成物(I)の構成成分
本発明の積層フィルムの内層および外層に用いる熱可塑性樹脂としては、特に限定されず、ポリアミド樹脂、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂等が挙げられるが、ポリオレフィン樹脂が好ましく、特に下記性状(a−1)〜(a−3)を有するエチレン・α−オレフィン共重合体(A)が好ましい。
1. Component of Resin Composition (I) The thermoplastic resin used for the inner layer and outer layer of the laminated film of the present invention is not particularly limited, and is a polyolefin resin such as polyamide resin, polypropylene, polyethylene, polystyrene resin, polyester resin, polycarbonate resin. The polyolefin resin is preferable, and the ethylene / α-olefin copolymer (A) having the following properties (a-1) to (a-3) is particularly preferable.

(1)エチレン・α−オレフィン共重合体(A)
本発明の樹脂組成物(I)に好ましく用いるエチレン・α−オレフィン共重合体(A)は、メタロセン触媒によって得られるエチレンと炭素数3〜20、より好ましくは4〜12のα−オレフィンとの共重合体である。炭素数3〜20のα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−オクタデセン、1−エイコセンなどが挙げられる。
(1) Ethylene / α-olefin copolymer (A)
The ethylene / α-olefin copolymer (A) preferably used for the resin composition (I) of the present invention comprises ethylene obtained by a metallocene catalyst and an α-olefin having 3 to 20 carbon atoms, more preferably 4 to 12 carbon atoms. It is a copolymer. Examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene, 1-eicosene and the like can be mentioned.

(a−1)密度
本発明に用いるエチレン・α−オレフィン共重合体(A)の密度は、好ましくは0.900〜0.928g/cmであり、より好ましくは0.903〜0.920g/cmであり、さらに好ましくは0.905〜0.915g/cmである。上記範囲であれば、密度が低くて、フィルム表面にベタツキを生じ開口性が悪くなることに加えフィルムの剛性も低下し製袋適性等フィルムの二次加工性が悪くなることも、また密度が高くて、フィルムの衝撃強度が劣ると共に低温シール性も悪化し問題となることもない。
ここで、密度は、JIS K7112−1999の「プラスチック−非発泡プラスチックの密度及び比重の測定方法」のD法(密度こうばい管法)に準拠して測定する値である。
(A-1) Density The density of the ethylene / α-olefin copolymer (A) used in the present invention is preferably 0.900 to 0.928 g / cm 3 , more preferably 0.903 to 0.920 g. / Cm 3 , more preferably 0.905 to 0.915 g / cm 3 . If it is in the above range, the density is low, the film surface becomes sticky and the opening property becomes worse, the film rigidity is also lowered, and the secondary processability of the film such as bag aptitude is deteriorated. It is high and the impact strength of the film is inferior, and the low-temperature sealing property is not deteriorated.
Here, the density is a value measured according to JIS K7112-1999 “Method for measuring density and specific gravity of non-foamed plastic and density” according to method D (density-pipe method).

(a−2)メルトフローレイト(MFR)
本発明に用いるエチレン・α−オレフィン共重合体(A)のMFRは、好ましくは0.5〜8.0g/10分であり、より好ましくは0.7〜4.0g/10分であり、さらに好ましくは1.0〜3.5g/10分である。上記範囲であれば、MFRが低くて、フィルム成形加工時に、樹脂圧が上昇し押出し加工性が悪くなることと樹脂の過大な発熱によりフィルムに発泡等を生じ問題となったり、また、配合米など他成分との分散性が悪くなり、フィルム外観が悪化するとともにフィルムの強度も低下したりすることも、一方、MFRが高くて、機械的強度の低下及びフィルム成形加工時のバブル安定性等の加工性が劣り問題となることもない。
ここで、MFRは、JIS K7210−1999の「プラスチック−熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」に準拠して、試験条件:190℃、21.18N(2.16kg)荷重で測定する値である。
(A-2) Melt flow rate (MFR)
The MFR of the ethylene / α-olefin copolymer (A) used in the present invention is preferably 0.5 to 8.0 g / 10 min, more preferably 0.7 to 4.0 g / 10 min. More preferably, it is 1.0-3.5 g / 10min. If it is in the above range, the MFR is low, and during the film forming process, the resin pressure increases and the extrusion processability deteriorates, and excessive heat generation of the resin causes problems such as foaming in the film. The dispersibility with other components deteriorates and the film appearance deteriorates and the strength of the film also decreases. On the other hand, the MFR is high, the mechanical strength is decreased, and the bubble stability during film forming processing, etc. Inferior processability is not a problem.
Here, MFR is in accordance with JIS K7210-1999 “Testing Method for Melt Mass Flow Rate (MFR) and Melt Volume Flow Rate (MVR) of Plastic-Thermoplastic Plastics”: Test conditions: 190 ° C., 21.18 N (2.16 kg) A value measured with a load.

(a−3)Mw/Mn
本発明に用いるエチレン・α−オレフィン共重合体(A)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、好ましくは1.5〜3.5、より好ましくは1.8〜3.3、さらに好ましくは2.1〜3である。上記範囲であれば、Mw/Mnが小さくて、押出負荷が増大し、加工性が劣ることも、Mw/Mnが大きくて、衝撃強度が低下することもない。
(A-3) Mw / Mn
The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the ethylene / α-olefin copolymer (A) used in the present invention is preferably 1.5 to 3.5. Preferably it is 1.8-3.3, More preferably, it is 2.1-3. If it is the said range, Mw / Mn will be small, extrusion load will increase, workability will be inferior, and Mw / Mn will be large, and impact strength will not fall.

ここで、エチレン・α−オレフィン共重合体のMw/Mnは、以下の方法(以下、「分子量分布の測定方法」と言うこともある。)で測定したときの値をいう。Mw/Mnは、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で定義されるものである。   Here, Mw / Mn of the ethylene / α-olefin copolymer is a value measured by the following method (hereinafter, also referred to as “method for measuring molecular weight distribution”). Mw / Mn is defined by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography (GPC).

装置:ウオーターズ社製GPC
150C型検出器:MIRAN 1A赤外分光光度計(測定波長、3.42μm)
カラム:昭和電工社製AD806M/S 3本
[カラムの較正は、東ソー製単分散ポリスチレン(A500,A2500,F1,F2,F4,F10,F20,F40,F288の各0.5mg/ml溶液)の測定を行い、溶出体積と分子量の対数値を2次式で近似した。また、試料の分子量は、ポリスチレンとポリエチレンの粘度式を用いてポリエチレンに換算した。ここでポリスチレンの粘度式の係数は、α=0.723、logK=−3.967であり、ポリエチレンは、α=0.707、logK=−3.407である。]
測定温度:140℃
注入量:0.2ml
濃度:20mg/10mL
溶媒:オルソジクロロベンゼン
流速:1.0ml/min
Apparatus: GPC manufactured by Waters
150C type detector: MIRAN 1A infrared spectrophotometer (measurement wavelength: 3.42 μm)
Column: AD806M / S manufactured by Showa Denko Co., Ltd. (column calibration is performed by Tosoh monodisperse polystyrene (0.5 mg / ml solution of each of A500, A2500, F1, F2, F4, F10, F20, F40, and F288) Measurement was performed, and the logarithm of the elution volume and the molecular weight was approximated by a quadratic equation. The molecular weight of the sample was converted to polyethylene using the viscosity formula of polystyrene and polyethylene. Here, the coefficients of the viscosity formula of polystyrene are α = 0.723 and log K = −3.767, and polyethylene has α = 0.707 and log K = −3.407. ]
Measurement temperature: 140 ° C
Injection volume: 0.2ml
Concentration: 20 mg / 10 mL
Solvent: Orthodichlorobenzene Flow rate: 1.0 ml / min

本発明で用いるエチレン・α−オレフィン共重合体(A)は、メタロセン触媒によって得られる。メタロセン系触媒とは、シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物と、助触媒、必要により有機金属化合物と、担体の各触媒成分を含む触媒である。   The ethylene / α-olefin copolymer (A) used in the present invention is obtained by a metallocene catalyst. A metallocene-based catalyst is a catalyst containing a transition metal compound of Group IV of the Periodic Table containing a ligand having a cyclopentadienyl skeleton, a cocatalyst, if necessary, an organometallic compound, and each catalyst component of the carrier. .

ここで、シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、そのシクロペンタジエニル骨格とは、シクロペンタジエニル基、置換シクロペンタジエニル基等である。置換シクロペンタジエニル基としては、炭素数1〜30の炭化水素基、シリル基、シリル置換アルキル基、シリル置換アリール基、シアノ基、シアノアルキル基、シアノアリール基、ハロゲン基、ハロアルキル基、ハロシリル基等から選ばれた少なくとも一種の置換基を有するものである。その置換シクロペンタジエニル基の置換基は2個以上有していてもよく、また係る置換基同士が互いに結合して環を形成し、インデニル環、フルオレニル環、アズレニル環、その水添体等を形成してもよい。置換基同士が互いに結合し形成された環がさらに互いに置換基を有していてもよい。   Here, in the group IV transition metal compound containing a ligand having a cyclopentadienyl skeleton, the cyclopentadienyl skeleton is a cyclopentadienyl group, a substituted cyclopentadienyl group, or the like. is there. Examples of substituted cyclopentadienyl groups include hydrocarbon groups having 1 to 30 carbon atoms, silyl groups, silyl substituted alkyl groups, silyl substituted aryl groups, cyano groups, cyanoalkyl groups, cyanoaryl groups, halogen groups, haloalkyl groups, halosilyl groups. It has at least one kind of substituent selected from a group and the like. The substituted cyclopentadienyl group may have two or more substituents, and such substituents are bonded to each other to form a ring, such as an indenyl ring, a fluorenyl ring, an azulenyl ring, a hydrogenated product thereof, etc. May be formed. Rings formed by bonding substituents to each other may further have substituents.

シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、その遷移金属としては、ジルコニウム、チタン、ハフニウム等が挙げられ、特にジルコニウム、ハフニウムが好ましい。該遷移金属化合物は、シクロペンタジエニル骨格を有する配位子としては通常2個を有し、各々のシクロペンタジエニル骨格を有する配位子は架橋基により互いに結合しているものが好ましい。尚、係る架橋基としては炭素数1〜4のアルキレン基、シリレン基、ジアルキルシリレン基、ジアリールシリレン基等の置換シリレン基、ジアルキルゲルミレン基、ジアリールゲルミレン基等の置換ゲルミレン基などが挙げられる。好ましくは、置換シリレン基である。   In the group IV transition metal compound containing a ligand having a cyclopentadienyl skeleton, examples of the transition metal include zirconium, titanium, hafnium, and zirconium and hafnium are particularly preferable. The transition metal compound usually has two ligands having a cyclopentadienyl skeleton, and each ligand having a cyclopentadienyl skeleton is preferably bonded to each other via a bridging group. Examples of the cross-linking group include substituted silylene groups such as alkylene groups having 1 to 4 carbon atoms, silylene groups, dialkylsilylene groups, and diarylsilylene groups, and substituted germylene groups such as dialkylgermylene groups and diarylgermylene groups. . Preferably, it is a substituted silylene group.

周期律表第IV族の遷移金属化合物において、シクロペンタジエニル骨格を有する配位子以外の配位子としては、代表的なものとして、水素、炭素数1〜20の炭化水素基(アルキル基、アルケニル基、アリール基、アルキルアリール基、アラルキル基、ポリエニル基等)、ハロゲン、メタアルキル基、メタアリール基などが挙げられる。   In the transition metal compound of Group IV of the periodic table, as a ligand other than a ligand having a cyclopentadienyl skeleton, hydrogen, a hydrocarbon group having 1 to 20 carbon atoms (an alkyl group) is typical. Alkenyl group, aryl group, alkylaryl group, aralkyl group, polyenyl group, etc.), halogen, metaalkyl group, metaaryl group and the like.

上記シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、一種又は二種以上の混合物を触媒成分とすることができる。   The transition metal compound of Group IV of the Periodic Table containing a ligand having a cyclopentadienyl skeleton can use one kind or a mixture of two or more kinds as a catalyst component.

助触媒としては、前記周期律表第IV族の遷移金属化合物を重合触媒として有効になしうる、又は触媒的に活性化された状態のイオン性電荷を均衝させうるものをいう。助触媒としては、有機アルミニウムオキシ化合物のベンゼン可溶のアルミノキサンやベンゼン不溶の有機アルミニウムオキシ化合物、イオン交換性層状珪酸塩、ホウ素化合物、活性水素基含有あるいは非含有のカチオンと非配位性アニオンからなるイオン性化合物、酸化ランタンなどのランタノイド塩、酸化スズ、フルオロ基を含有するフェノキシ化合物等が挙げられる。   The co-catalyst is one that can effectively make the transition metal compound of Group IV of the periodic table as a polymerization catalyst, or can neutralize ionic charges in a catalytically activated state. Co-catalysts include benzene-soluble aluminoxanes of organoaluminum oxy compounds, benzene-insoluble organoaluminum oxy compounds, ion-exchange layered silicates, boron compounds, active hydrogen group-containing or non-containing cations and non-coordinating anions. And lanthanoid salts such as lanthanum oxide, tin oxide, and phenoxy compounds containing a fluoro group.

シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、無機又は有機化合物の担体に担持して使用されてもよい。該担体としては無機又は有機化合物の多孔質酸化物が好ましく、具体的には、モンモリロナイト等のイオン交換性層状珪酸塩、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO等又はこれらの混合物が挙げられる。 The group IV transition metal compound containing a ligand having a cyclopentadienyl skeleton may be used by being supported on an inorganic or organic compound carrier. The support is preferably a porous oxide of an inorganic or organic compound. Specifically, an ion-exchange layered silicate such as montmorillonite, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 or the like, or a mixture thereof.

また更に必要により使用される有機金属化合物としては、有機アルミニウム化合物、有機マグネシウム化合物、有機亜鉛化合物等が例示される。このうち有機アルミニウムが好適に使用される。   Furthermore, examples of the organometallic compound used as necessary include organoaluminum compounds, organomagnesium compounds, and organozinc compounds. Of these, organic aluminum is preferably used.

また、エチレン・α−オレフィン共重合体は、単独で用いても、二種以上混合して使用してもよい。
なお、エチレン・α−オレフィン共重合体としては、市販品を利用することができ、例えば、日本ポリエチレン(株)社製カーネルシリーズから選択することができる。
The ethylene / α-olefin copolymer may be used alone or in combination of two or more.
A commercially available product can be used as the ethylene / α-olefin copolymer, and for example, it can be selected from Kernel Series manufactured by Nippon Polyethylene Co., Ltd.

(2)米
本発明で用いられる米は、特に限定されず、非晶構造(α構造)であっても、結晶構造(β構造)であってもよいが、洗浄と外皮等の澱粉を含まない部分を取り除いた後、下記の要領でα化処理がなされた非晶構造(α構造)を有することが好ましい。つまり、米を構成する澱粉は、当初において結晶構造(β構造)を有しているが、適当な量の水分の存在下で70℃以上の温度環境におくと、このβ構造が崩れて非晶構造(α構造)に変化する。このように、生の澱粉が水分を含んで加熱されることにより、β構造からα構造に変化することを糊化するという。この糊化した米のα構造を示す澱粉粒は、当初の被加熱状態(生状態)のβ構造であった場合と比較して、熱流動するオレフィン系樹脂中で澱粉の分子レベルで解れて微細に均一に分散しやすい状態になる。
(2) Rice The rice used in the present invention is not particularly limited, and may have an amorphous structure (α structure) or a crystal structure (β structure), but includes starch such as washing and hulls. After removing the non-existing portion, it is preferable to have an amorphous structure (α structure) that has been subjected to an α-treatment in the following manner. That is, the starch constituting the rice initially has a crystal structure (β structure). However, if the starch is placed in a temperature environment of 70 ° C. or higher in the presence of an appropriate amount of moisture, the β structure is not destroyed. Change to crystal structure (α structure). In this way, when raw starch is heated to contain moisture, it is gelatinized to change from a β structure to an α structure. The starch granules showing the α structure of the gelatinized rice can be broken at the molecular level of starch in the heat-flowing olefin resin as compared with the case of the β structure in the initial heated state (raw state). It becomes easy to disperse finely and uniformly.

このような、β構造を有する米をα構造にする具体的な処理としては、水に浸漬させて煮沸させたり、水蒸気で蒸して行ったりするような、一般に食用に供する際に行う熱処理を加える方法が挙げられる。   As a specific treatment for converting the rice having a β structure into an α structure, a heat treatment generally performed when the food is used, such as being immersed in water and boiled or steamed with steam, is added. A method is mentioned.

ところで、α構造の非晶状態を有する米は、水分を含んだまま低温に放置されると、時間経過とともに、もとのβ構造の結晶状態に戻る現象(老化という)が観測されることが一般に知られている。一方、α構造の非晶状態を有する澱粉から水分を取り除けば、その後、低温で長期間放置しても米はα構造を維持したままβ構造に可逆転移しない(老化しない)ことが知られている。   By the way, when a rice having an α structure in an amorphous state is left at a low temperature while containing moisture, a phenomenon (called aging) that returns to the crystal state of the original β structure is observed over time. Generally known. On the other hand, it is known that if water is removed from starch having an amorphous state of α structure, rice will not reversibly transition to β structure (do not age) while maintaining α structure even if left for a long time at low temperature. Yes.

そこで、本発明の原料として用いられるα構造を有する米は、澱粉の構造がα構造(非晶構造)であるもので、水分を含んだ状態、及び、水分を含まない(脱水された)状態の両方をも含むこととする。いずれにしても、オレフィン系樹脂に配合される米の澱粉構造がα構造(非晶構造)であれば、後記する混練処理の際、オレフィン系樹脂のマトリックスの中で澱粉の分子鎖がほぐれて、微細化して分散されやすくなる。澱粉構造がα構造(非晶構造)である米が樹脂中で微細化して分散されやすくなる効果は、澱粉構造がβ構造(結晶構造)である非加熱の米を配合した場合と比較して顕著である。   Therefore, rice having an α structure used as a raw material of the present invention has a starch structure having an α structure (amorphous structure), a state containing moisture and a state containing no moisture (dehydrated). Both are included. In any case, if the starch structure of rice blended with the olefin resin is α structure (amorphous structure), the molecular chain of the starch is loosened in the matrix of the olefin resin during the kneading process described later. , It becomes finer and easier to be dispersed. The effect that rice with starch structure α structure (amorphous structure) is easily refined and dispersed in the resin is compared with the case of adding non-heated rice with starch structure β structure (crystal structure). It is remarkable.

ところで、脱水されたα構造の米を得る方法は、具体的には、水分の存在下で加熱して糊化させた後、そのまま真空装置により雰囲気を減圧することによる。このような、脱水されたα構造の米を使用することにすれば、老化しにくいので米を単体で長期保存することが可能になり、澱粉配合樹脂組成物の製造期間短縮や製造コスト削減に寄与することとなる。   By the way, the method of obtaining dehydrated α-structured rice is specifically by heating in the presence of moisture to gelatinize, and then reducing the atmosphere with a vacuum apparatus as it is. By using such dehydrated α-structured rice, it will be difficult to age, so it will be possible to store the rice alone for a long period of time, shortening the production period of starch compounded resin composition and reducing production cost Will contribute.

なお、前記した、β構造を有する米をα構造にする際に用いられる水には、トレハロースが溶解されているとよい。このことの効果は、トレハロース水溶液が生米に含浸することにより、米の脂質成分の分解をトレハロースが抑える作用が得られ、製造された米が配合されたフィルム用樹脂組成物の経時的な劣化が抑制されることである。この理由は、トレハロースが、米成分をコーティングして、酸化分解から脂肪酸を護る作用を有するためといわれている。
このような効果は、前記したトレハロース以外に、塩、ショ糖、酸化防止剤、たんぱく質分解促進剤、セルロース分解促進剤等が挙げられる。なお、これらのものを水に添加してα構造にした澱粉系物質を配合することにより、製造された澱粉配合樹脂組成物の特有の臭気、焦げ、色付を防止する効果も得られる。
It should be noted that trehalose is preferably dissolved in the water used for converting the rice having a β structure into an α structure. The effect of this is that the trehalose aqueous solution impregnates raw rice, so that the action of trehalose to suppress the decomposition of the lipid components of rice is obtained, and the deterioration of the resin composition for films containing the produced rice over time Is to be suppressed. The reason for this is said that trehalose has the effect of coating the rice component and protecting the fatty acid from oxidative degradation.
Such effects include salts, sucrose, antioxidants, protein degradation accelerators, cellulose degradation accelerators and the like in addition to the trehalose described above. In addition, the effect which prevents the characteristic odor, scorching, and coloring of the manufactured starch compounded resin composition is also acquired by mix | blending the starch-type substance which made these things into water and was made into (alpha) structure.

さて、これまで原料として配合される米として、すでにα化処理が施されたものを用いることについて説明してきたが、後記する製造方法により、β構造を有する米が水分を含むものである場合も用いることができる。
具体的には、生米を水に所定時間だけ浸漬させ、水切りを行ってから、混練機に、樹脂と共に投入し、樹脂の熱流動温度で混練する。この熱流動温度(通常は100〜170℃)は、生米の澱粉構造をβ構造からα構造に転移させるのに充分な温度であるため、混練の過程において生米はα化処理されることになる。このように、生米がα構造に変化した後に関しては、既に前記したように、澱粉の分子鎖がほぐれて、微細化して樹脂のマトリックス中に分散していく。
So far, rice used as a raw material has been described as having been subjected to a pre-gelatinization treatment. However, by using the production method described later, rice having a β structure is also used when it contains water. Can do.
Specifically, raw rice is immersed in water for a predetermined time, drained, and then charged into a kneader together with the resin and kneaded at the heat flow temperature of the resin. This heat flow temperature (usually 100 to 170 ° C.) is sufficient to transfer the starch structure of raw rice from the β structure to the α structure. become. As described above, after the raw rice is changed to the α structure, the starch molecular chains are loosened, refined, and dispersed in the resin matrix.

ここで、β構造の生米が加熱されてα化構造になるのには、水分含有量が17%以上であることが望まれ、このためには水への浸漬時間を5分以上にするとよい。   Here, in order for the raw rice having a β structure to be heated to become an α-ized structure, it is desirable that the water content is 17% or more. For this purpose, if the immersion time in water is 5 minutes or more, Good.

(3)各成分の配合比
本発明で用いる樹脂組成物(I)における、各成分の配合量は、熱可塑性樹脂100〜70重量部と米が0〜30重量部であり、好ましくは熱可塑性樹脂100〜75重量部と米が0〜25重量部である。米の添加量が30重量部を超えるとフィルムの突き刺し強度が悪くなる。また、熱可塑性樹脂としては、エチレン・α−オレフィン共重合体(A)を用いることが強度向上により好ましい。
(3) Blending ratio of each component The blending amount of each component in the resin composition (I) used in the present invention is 100 to 70 parts by weight of a thermoplastic resin and 0 to 30 parts by weight of rice, preferably thermoplastic. 100-75 parts by weight of resin and 0-25 parts by weight of rice. When the added amount of rice exceeds 30 parts by weight, the piercing strength of the film is deteriorated. Further, as the thermoplastic resin, it is preferable to use an ethylene / α-olefin copolymer (A) for improving the strength.

2.樹脂組成物(II)の構成成分
本発明の積層フィルムの中間層に用いるエチレン・α−オレフィン共重合体、ポリプロピレン系樹脂としては、特に限定されないが、特に下記性状(b−1)〜(b−3)を有するエチレン・α−オレフィン共重合体(B)、下記性状(c−1)〜(c−3)を有するプロピレン系樹脂(C)が好ましい。
2. Component of Resin Composition (II) The ethylene / α-olefin copolymer and polypropylene resin used for the intermediate layer of the laminated film of the present invention are not particularly limited, but in particular the following properties (b-1) to (b -3) is preferably an ethylene / α-olefin copolymer (B) and a propylene resin (C) having the following properties (c-1) to (c-3).

(1)エチレン・α−オレフィン共重合体(B)
本発明の樹脂組成物(II)に好ましく用いるエチレン・α−オレフィン共重合体(B)は、メタロセン触媒によって得られるエチレンと炭素数3〜20、より好ましくは4〜12のα−オレフィンとの共重合体である。炭素数3〜20のα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−オクタデセン、1−エイコセンなどが挙げられる。
(1) Ethylene / α-olefin copolymer (B)
The ethylene / α-olefin copolymer (B) preferably used for the resin composition (II) of the present invention comprises ethylene obtained by a metallocene catalyst and an α-olefin having 3 to 20 carbon atoms, more preferably 4 to 12 carbon atoms. It is a copolymer. Examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene, 1-eicosene and the like can be mentioned.

(b−1)密度
本発明に用いるエチレン・α−オレフィン共重合体(B)の密度は、好ましくは0.880〜0.920g/cmであり、より好ましくは0.885〜0.915g/cmであり、さらに好ましくは0.890〜0.910g/cmである。上記範囲であれば、密度が低くて、フィルムの剛性が低下し製袋適性等フィルムの二次加工性が悪くなることも、また密度が高くて、フィルムの衝撃強度が悪くなることもない。
ここで、密度は、JIS K7112−1999の「プラスチック−非発泡プラスチックの密度及び比重の測定方法」のD法(密度こうばい管法)に準拠して測定する値である。
(B-1) Density The density of the ethylene / α-olefin copolymer (B) used in the present invention is preferably 0.880 to 0.920 g / cm 3 , more preferably 0.885 to 0.915 g. / Cm 3 , more preferably 0.890 to 0.910 g / cm 3 . If it is the said range, a density will be low, the rigidity of a film will fall, and secondary workability of a film, such as bag-making aptitude, will not worsen, and the density will not be high and the impact strength of a film will not worsen.
Here, the density is a value measured according to JIS K7112-1999 “Method for measuring density and specific gravity of non-foamed plastic and density” according to method D (density-pipe method).

(b−2)メルトフローレイト(MFR)
本発明に用いるエチレン・α−オレフィン共重合体(B)のMFRは、好ましくは0.5〜8.0g/10分であり、より好ましくは0.7〜4.0g/10分であり、さらに好ましくは1.0〜3.5g/10分である。上記範囲であれば、MFRが低くて、フィルム成形加工時に、樹脂圧が上昇し押出し加工性が悪くなることと樹脂の過大な発熱によりフィルムに発泡等を生じ問題となったり、また、配合米など他成分との分散性が悪くなり、フィルム外観が悪化するとともにフィルムの強度も低下したりすることも、一方、MFRが高くて、機械的強度の低下及びフィルム成形加工時のバブル安定性等の加工性が劣り問題となることもない。
ここで、MFRは、JIS K7210−1999の「プラスチック−熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」に準拠して、試験条件:190℃、21.18N(2.16kg)荷重で測定する値である。
(B-2) Melt flow rate (MFR)
The MFR of the ethylene / α-olefin copolymer (B) used in the present invention is preferably 0.5 to 8.0 g / 10 min, more preferably 0.7 to 4.0 g / 10 min. More preferably, it is 1.0-3.5 g / 10min. If it is in the above range, the MFR is low, and during the film forming process, the resin pressure increases and the extrusion processability deteriorates, and excessive heat generation of the resin causes problems such as foaming in the film. The dispersibility with other components deteriorates and the film appearance deteriorates and the strength of the film also decreases. On the other hand, the MFR is high, the mechanical strength is decreased, and the bubble stability during film forming processing, etc. Inferior processability is not a problem.
Here, MFR is in accordance with JIS K7210-1999 “Testing Method for Melt Mass Flow Rate (MFR) and Melt Volume Flow Rate (MVR) of Plastic-Thermoplastic Plastics”: Test conditions: 190 ° C., 21.18 N (2.16 kg) A value measured with a load.

(b−3)Mw/Mn
本発明に用いるエチレン・α−オレフィン共重合体(B)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、好ましくは1.5〜3.5、より好ましくは1.8〜3.3、さらに好ましくは2.1〜3である。上記範囲であれば、Mw/Mnが小さくて、押出負荷が増大し、加工性が劣ることも、Mw/Mnが大きくて、衝撃強度が低下することもない。
(B-3) Mw / Mn
The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the ethylene / α-olefin copolymer (B) used in the present invention is preferably 1.5 to 3.5. Preferably it is 1.8-3.3, More preferably, it is 2.1-3. If it is the said range, Mw / Mn will be small, extrusion load will increase, workability will be inferior, and Mw / Mn will be large, and impact strength will not fall.

ここで、エチレン・α−オレフィン共重合体のMw/Mnは、上述の方法で測定したときの値をいう。   Here, Mw / Mn of the ethylene / α-olefin copolymer refers to a value measured by the above-described method.

本発明で用いるエチレン・α−オレフィン共重合体(B)は、上述のエチレン・α−オレフィン共重合体(A)と同様の製造方法で得られる共重合体である。   The ethylene / α-olefin copolymer (B) used in the present invention is a copolymer obtained by the same production method as the ethylene / α-olefin copolymer (A) described above.

(2)プロピレン系樹脂(C)
本発明の樹脂組成物(II)に用いるプロピレン系樹脂(C)は、メタロセン触媒によって得られる、プロピレン単独重合体、プロピレンとエチレン及び/又はブテンとのランダム共重合体等であり、具体的には、プロピレン単独重合体、プロピレン・エチレンランダム共重合体、プロピレン・ブテンランダム共重合体、プロピレン・エチレン・ブテン三元ランダム共重合体等が挙げられる。このうちプロピレン・エチレンランダム共重合体が好適である。
なお、上記プロピレン系樹脂(C)は、エチレン、ブテン以外のコモノマー成分がプロピレンと共重合されていてもよい。コモノマーとしては、炭素数5〜20のα−オレフィン等が挙げられる。炭素数5〜20のα−オレフィンは、例えば、ヘキセン−1、オクテン−1等を例示できる。
本発明で用いられるプロピレン系樹脂は、下記性状(c−1)〜(c−3)を有している必要があり、さらに必要に応じて(c−4)を有している。
(2) Propylene resin (C)
The propylene-based resin (C) used in the resin composition (II) of the present invention is a propylene homopolymer, a random copolymer of propylene and ethylene and / or butene obtained by a metallocene catalyst, specifically, These include propylene homopolymer, propylene / ethylene random copolymer, propylene / butene random copolymer, propylene / ethylene / butene ternary random copolymer, and the like. Of these, propylene / ethylene random copolymers are preferred.
In the propylene resin (C), comonomer components other than ethylene and butene may be copolymerized with propylene. Examples of the comonomer include an α-olefin having 5 to 20 carbon atoms. Examples of the α-olefin having 5 to 20 carbon atoms include hexene-1, octene-1, and the like.
The propylene-based resin used in the present invention needs to have the following properties (c-1) to (c-3), and further has (c-4) as necessary.

(c−1)プロピレン単位、エチレン単位及び/又はブテン単位
本発明で用いられるプロピレン系樹脂(C)は、プロピレン単位を好ましくは85〜100モル%、より好ましくは90〜99.5モル%、さらに好ましくは92〜98.5モル%、エチレン単位及び/又はブテン単位を好ましくは0〜15モル%、より好ましくは0.5〜10モル%、さらに好ましくは1.5〜8モル%を含有している。
ここで、プロピレン単位及びエチレン及び/又はブテン単位は、フーリエ変換赤外分析法によって計測される値である。
(C-1) Propylene unit, ethylene unit and / or butene unit The propylene-based resin (C) used in the present invention preferably has a propylene unit of 85 to 100 mol%, more preferably 90 to 99.5 mol%, More preferably 92 to 98.5 mol%, ethylene unit and / or butene unit is preferably 0 to 15 mol%, more preferably 0.5 to 10 mol%, still more preferably 1.5 to 8 mol% doing.
Here, the propylene unit and the ethylene and / or butene unit are values measured by Fourier transform infrared analysis.

(c−2)Mw/Mn
本発明で用いられるプロピレン系樹脂(C)は、Mw/Mnが好ましくは5.0以下のものであり、より好ましくは2〜4であり、さらに好ましくは2.3〜3.5であり、特に好ましくは2.6〜3.3である。上記範囲であれば、Mw/Mnが小さくて、成形性が悪化することも、Mw/Mnが大きくて、得られる成形品の透明性、フィルム引取方向(MD)とフィルム引取方向に対して直角方向(TD)の機械物性のバランス悪化、衝撃強度が弱くなることもない。
ここで、Mw/Mnとは、GPC測定による重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で定義されるものである。Mw/Mnの測定は、前述の方法と同様の方法で行うものである。ただし、ポリプロピレンの粘度式の係数は、α=0.707、logK=−3.616 とした。
(C-2) Mw / Mn
The propylene-based resin (C) used in the present invention preferably has a Mw / Mn of 5.0 or less, more preferably 2 to 4, still more preferably 2.3 to 3.5, Particularly preferably, it is 2.6 to 3.3. If it is the said range, Mw / Mn is small and a moldability deteriorates, Mw / Mn is large, transparency of the obtained molded product, a film taking direction (MD), and a right angle with respect to a film taking direction. The balance of mechanical properties in the direction (TD) is not deteriorated, and the impact strength is not weakened.
Here, Mw / Mn is defined by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) by GPC measurement. Mw / Mn is measured by the same method as described above. However, the coefficients of the viscosity formula of polypropylene were α = 0.707 and log K = −3.616.

(c−3)昇温溶離分別(TREF)法で測定した40℃以下の可溶分量
本発明に用いられるプロピレン系樹脂は、昇温溶離分別(TREF)法で測定した40℃以下の可溶分が好ましくは4重量%以下であり、より好ましくは3重量%以下であり、さらに好ましくは1.5重量%以下である。40℃以下の可溶分が4重量%以下では、成形品からのブリードが起こりにくく、成形時の発煙が抑制できる。また、澱粉系物質との親和性が向上する。
40℃以下の可溶分には、オリゴマーのような分子量の低い成分、アタクチックポリプロピレンのような立体規則性の低い成分、コモノマー含量が極端に高い成分等いわゆる低結晶成分を含む。ここでアタクチックポリプロピレンのような立体規則性の低い成分、コモノマー含量が極端に高い低結晶性成分は分子量が高いものであっても可溶分になりうる。したがって、本発明に好ましく用いられるプロピレン系重合体を得るためには、立体規則性の低いポリプロピレンや、コモノマー含量が極端に高い低結晶性成分を含むことになる組成分布の広いポリプロピレンが得られる触媒の使用や重合方法を採用することは避けるべきである。
(C-3) Soluble content of 40 ° C. or lower measured by temperature rising elution fractionation (TREF) method The propylene-based resin used in the present invention has a solubility of 40 ° C. or lower measured by temperature rising elution fractionation (TREF) method. The content is preferably 4% by weight or less, more preferably 3% by weight or less, and still more preferably 1.5% by weight or less. When the soluble content at 40 ° C. or less is 4% by weight or less, bleeding from the molded product hardly occurs, and smoke generation during molding can be suppressed. In addition, the affinity with starch-based substances is improved.
Soluble components at 40 ° C. or lower include so-called low crystalline components such as low molecular weight components such as oligomers, low stereoregularity components such as atactic polypropylene, and extremely high comonomer content. Here, a component having low stereoregularity such as atactic polypropylene and a low crystallinity component having an extremely high comonomer content can be soluble even if they have a high molecular weight. Therefore, in order to obtain a propylene-based polymer preferably used in the present invention, a catalyst capable of obtaining a polypropylene having a low stereoregularity or a polypropylene having a wide composition distribution containing a low crystalline component having an extremely high comonomer content. And the use of polymerization methods should be avoided.

ここで、昇温溶離分別(TREF)法により可溶分を求める方法は、具体的には以下の手順に従って行なわれる。
試料を140℃でオルトジクロロベンゼンに溶解し溶液とする。これを、下記の条件で、140℃のTREFカラムに導入した後8℃/分の降温速度で100℃まで冷却し、引き続き4℃/分の降温速度で40℃まで冷却後、10分間保持する。その後、溶媒であるオルトジクロロベンゼンを1mL/分の流速でカラムに流し、TREFカラム中で40℃のオルトジクロロベンゼンに溶解している成分を10分間溶出させ、次に昇温速度100℃/時間にてカラムを140℃までリニアに昇温し、溶出曲線を得る。
カラムサイズ:4.3mmφ×150mm
カラム充填材:100μm表面不活性処理ガラスビーズ
溶媒:オルトジクロロベンゼン
試料濃度:5mg/mL
試料注入量:0.2mL
溶媒流速:1mL/分
検出器:波長固定型赤外検出器 FOXBORO社製 MIRAN 1A
測定波長:3.42μm
上記条件に従って得た溶出曲線から40℃で溶出する成分の全量に対する割合(重量%)を算出する。
Here, the method for obtaining the soluble content by the temperature rising elution fractionation (TREF) method is specifically performed according to the following procedure.
A sample is dissolved in orthodichlorobenzene at 140 ° C. to obtain a solution. This was introduced into a TREF column at 140 ° C. under the following conditions, then cooled to 100 ° C. at a temperature decrease rate of 8 ° C./min, then cooled to 40 ° C. at a temperature decrease rate of 4 ° C./min, and held for 10 minutes. . Thereafter, orthodichlorobenzene as a solvent is caused to flow through the column at a flow rate of 1 mL / min, and components dissolved in 40 ° C orthodichlorobenzene are eluted in the TREF column for 10 minutes, and then the heating rate is 100 ° C / hour. The column is linearly heated to 140 ° C. to obtain an elution curve.
Column size: 4.3mmφ × 150mm
Column packing material: 100 μm surface inert treatment glass beads Solvent: Orthodichlorobenzene Sample concentration: 5 mg / mL
Sample injection volume: 0.2 mL
Solvent flow rate: 1 mL / min Detector: Fixed wavelength infrared detector MIOX 1A manufactured by FOXBORO
Measurement wavelength: 3.42 μm
From the elution curve obtained according to the above conditions, the ratio (% by weight) to the total amount of components eluted at 40 ° C. is calculated.

(c−4)融点(Tp)
本発明で用いられるプロピレン系樹脂(C)は、示差走査熱量計(DSC)法で測定した融点(Tp)が、好ましくは110〜150℃であり、より好ましくは115〜145℃であり、さらに好ましくは120〜140℃である。Tpが150℃より高い場合には、成形温度を高く設定する必要が生じ、高い温度で澱粉配合樹脂組成物を成形すると澱粉が変色や臭気を発生し易くなり、成形性や製品の品質が損なわれる場合がある。
ここで、Tpは示差走査型熱量計(DSC)により測定した値である。セイコー社製示差走査型熱量計を用い、サンプル約5mgを採り、200℃で5分間保持した後、40℃まで10℃/分の降温スピードで冷却した。続いて10℃/分の昇温スピードで融解させた時に得られる融解熱量曲線からTpを得る。すなわち、融解熱量曲線の最大ピーク温度をTpとした。
(C-4) Melting point (Tp)
The propylene resin (C) used in the present invention has a melting point (Tp) measured by a differential scanning calorimeter (DSC) method of preferably 110 to 150 ° C, more preferably 115 to 145 ° C, Preferably it is 120-140 degreeC. When Tp is higher than 150 ° C., it is necessary to set the molding temperature high. When the starch-containing resin composition is molded at a high temperature, the starch is likely to cause discoloration and odor, and the moldability and product quality are impaired. May be.
Here, Tp is a value measured by a differential scanning calorimeter (DSC). About 5 mg of a sample was taken using a differential scanning calorimeter manufactured by Seiko Co., Ltd., held at 200 ° C. for 5 minutes, and then cooled to 40 ° C. at a temperature lowering speed of 10 ° C./min. Subsequently, Tp is obtained from the heat of fusion curve obtained when melting at a heating rate of 10 ° C./min. That is, the maximum peak temperature of the heat of fusion curve was Tp.

本発明で用いるプロピレン系樹脂(C)は、メタロセン触媒によって得られる。メタロセン系触媒とは、シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物と、助触媒、必要により有機金属化合物と、担体の各触媒成分を含む触媒であり、各触媒成分は前述のものが使用できる。   The propylene-based resin (C) used in the present invention is obtained by a metallocene catalyst. A metallocene-based catalyst is a catalyst that contains a transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton, a promoter, an organometallic compound as required, and each catalyst component of the carrier. The aforementioned catalyst components can be used.

本発明で用いるプロピレン系樹脂(C)は、二種以上混合して使用してもよい。
なお、プロピレン系樹脂としては、市販品を利用することができ、例えば、日本ポリプロ(株)社製WINTECシリーズから選択することができる。
Two or more of the propylene resins (C) used in the present invention may be mixed and used.
In addition, as a propylene-type resin, a commercial item can be utilized, For example, it can select from Nippon Polypro Co., Ltd. WINTEC series.

(3)米
樹脂組成物(II)で用いられる米は、前述の樹脂組成物(I)で用いた米と同様のものを用いることができる。
(3) Rice The same rice as the rice used in the resin composition (I) can be used as the rice used in the resin composition (II).

(4)相溶化剤(D)
本発明の樹脂組成物(I)および(II)には、相溶化剤(D)が添加されていてもよい。相溶化剤の添加により、樹脂成分と米との親和性が向上する。
相溶化剤(D)としては、飽和カルボン酸、不飽和カルボン酸又はそれらの誘導体、不飽和カルボン酸又はその誘導体で変性された熱可塑性樹脂、並びに不飽和カルボン酸又はその誘導体で変性された澱粉系物質が挙げられる。さらに、油変性アルキッド樹脂又はそれらの誘導体、加工澱粉又はそれらの誘導体を用いることもできる。
(4) Compatibilizer (D)
A compatibilizer (D) may be added to the resin compositions (I) and (II) of the present invention. Addition of a compatibilizer improves the affinity between the resin component and rice.
Compatibilizer (D) includes saturated carboxylic acid, unsaturated carboxylic acid or derivative thereof, thermoplastic resin modified with unsaturated carboxylic acid or derivative thereof, and starch modified with unsaturated carboxylic acid or derivative thereof System materials. Furthermore, oil-modified alkyd resins or their derivatives, modified starches or their derivatives can also be used.

飽和カルボン酸としては、無水コハク酸、コハク酸、無水フタル酸、フタル酸、無水テトラヒドロフタル酸、無水アジピン酸等が挙げられる。不飽和カルボン酸としては、無水マレイン酸、マレイン酸、無水ナジック酸、無水イタコン酸、イタコン酸、無水シトラコン酸、シトラコン酸、クロトン酸、イソクロトン酸、メサコン酸、アンゲリカ酸、ソルビン酸、アクリル酸等が挙げられる。飽和カルボン酸又は不飽和カルボン酸の誘導体としては、飽和カルボン酸又は不飽和カルボン酸の金属塩、アミド、イミド、エステル等を使用することができる。   Examples of the saturated carboxylic acid include succinic anhydride, succinic acid, phthalic anhydride, phthalic acid, tetrahydrophthalic anhydride, and adipic anhydride. As unsaturated carboxylic acid, maleic anhydride, maleic acid, nadic anhydride, itaconic anhydride, itaconic acid, citraconic anhydride, citraconic acid, crotonic acid, isocrotonic acid, mesaconic acid, angelic acid, sorbic acid, acrylic acid, etc. Is mentioned. As the derivative of the saturated carboxylic acid or unsaturated carboxylic acid, a metal salt, amide, imide, ester or the like of the saturated carboxylic acid or unsaturated carboxylic acid can be used.

また、不飽和カルボン酸又はその誘導体で変性された熱可塑性樹脂、並びに不飽和カルボン酸又はその誘導体で変性された澱粉系物質を使用することができる。熱可塑性樹脂としては、具体的には、低密度ポリエチレン、エチレン−α−オレフィン共重合体、高密度ポリエチレン、ポリプロピレン、プロピレンブロック共重合体、プロピレンランダム共重合体を挙げることができる。   In addition, a thermoplastic resin modified with an unsaturated carboxylic acid or a derivative thereof, and a starch-based material modified with an unsaturated carboxylic acid or a derivative thereof can be used. Specific examples of the thermoplastic resin include low density polyethylene, ethylene-α-olefin copolymer, high density polyethylene, polypropylene, propylene block copolymer, and propylene random copolymer.

これらは、熱可塑性樹脂又は澱粉系物質と不飽和カルボン酸又はその誘導体と、ラジカル発生剤とを溶媒の存在下又は不存在下に加熱混合することにより得られる。不飽和カルボン酸又はその誘導体の付加量は、0.1〜15重量%、特に1〜10重量%が好ましい。本発明で使用される相溶化としては、臭気が無く、酸性度が小さい不飽和カルボン酸、又はその誘導体で変性した熱可塑性樹脂、並びにその誘導体で変性した澱粉系物質が好ましい。   These can be obtained by heating and mixing a thermoplastic resin or starch-based substance, an unsaturated carboxylic acid or derivative thereof, and a radical generator in the presence or absence of a solvent. The addition amount of the unsaturated carboxylic acid or derivative thereof is preferably 0.1 to 15% by weight, particularly 1 to 10% by weight. The compatibilization used in the present invention is preferably an unsaturated carboxylic acid having no odor and low acidity, or a thermoplastic resin modified with a derivative thereof, and a starch-based substance modified with the derivative.

(5)その他の成分
本発明の樹脂組成物(I)および(II)には、本発明の目的が損なわれない範囲で、各種添加剤、例えば、造核剤、耐熱安定剤、酸化防止剤、耐候安定剤、帯電防止剤、スリップ剤、抗ブロッキング剤、防曇剤、着色剤、充填剤、エラストマー、木質系材料などを配合することができる。
(5) Other components In the resin compositions (I) and (II) of the present invention, various additives such as a nucleating agent, a heat-resistant stabilizer, and an antioxidant can be used without departing from the object of the present invention. , Weathering stabilizers, antistatic agents, slip agents, antiblocking agents, antifogging agents, colorants, fillers, elastomers, wood-based materials and the like can be blended.

(6)各成分の配合比
本発明の積層フィルムの中間層を形成する樹脂組成物(II)における、エチレン・α−オレフィン共重合体(B)とプロピレン系樹脂(C)の配合比は、それぞれエチレン・α−オレフィン共重合体(B)30〜90重量%、好ましくは40〜85重量%、より好ましくは55〜80重量%であり、プロピレン系樹脂10〜70重量%、好ましくは15〜60重量%、より好ましくは20〜45重量%である。この範囲よりプロピレン系樹脂(C)が多い場合或いはこの範囲よりエチレン・α−オレフィン共重合体(B)が多い場合の何れもダート衝撃強度が低下し好ましくない。
米の添加量は、エチレン・α−オレフィン共重合体(B)とプロピレン系樹脂(C)の合計量100重量部に対して、12〜150重量部、好ましくは20〜130重量部、より好ましくは30〜100重量部である。米の添加量が150重量部を超えるとフィルムの延展性が悪化し成形時にフィルムの膜切れを生じたり、発泡を生じたりする問題があり、得られるフィルムもフィルムの機械強度低下が大きく包装フィルムとしての機能が保持されない。また、米の添加量が12重量部より少ないと、本来の目的である化石燃料から製造される熱可塑性樹脂の使用量低減或いは、燃焼時の二酸化炭素発生量の低減効果が減じられることはもちろんであるが、米添加効果であるMFRの低下、即ち溶融張力の増大効果が減じられ成膜安定性が悪くなる。
相溶化剤の添加量は、エチレン・α−オレフィン共重合体(B)とプロピレン系樹脂(C)の合計量100重量部に対して0〜30重量部、好ましくは0〜20重量部、より好ましくは0.2〜10重量部である。
(6) Blending ratio of each component The blending ratio of the ethylene / α-olefin copolymer (B) and the propylene resin (C) in the resin composition (II) forming the intermediate layer of the laminated film of the present invention is as follows: Each of the ethylene / α-olefin copolymer (B) is 30 to 90% by weight, preferably 40 to 85% by weight, more preferably 55 to 80% by weight, and propylene-based resin 10 to 70% by weight, preferably 15 to 60% by weight, more preferably 20 to 45% by weight. In the case where the amount of the propylene resin (C) is larger than this range or the case where the amount of the ethylene / α-olefin copolymer (B) is larger than this range, the dart impact strength is unfavorably lowered.
The amount of rice added is 12 to 150 parts by weight, preferably 20 to 130 parts by weight, more preferably 100 parts by weight of the total amount of ethylene / α-olefin copolymer (B) and propylene resin (C). Is 30 to 100 parts by weight. If the amount of rice added exceeds 150 parts by weight, the spreadability of the film deteriorates, causing problems such as film breakage or foaming at the time of molding, and the resulting film also greatly reduces the mechanical strength of the film and is a packaging film. The function as is not retained. In addition, if the amount of rice added is less than 12 parts by weight, the effect of reducing the amount of thermoplastic resin produced from fossil fuel, which is the original purpose, or reducing the amount of carbon dioxide generated during combustion is naturally reduced. However, the reduction in MFR, which is the effect of adding rice, that is, the effect of increasing the melt tension is reduced, resulting in poor film formation stability.
The addition amount of the compatibilizer is 0 to 30 parts by weight, preferably 0 to 20 parts by weight, based on 100 parts by weight of the total amount of the ethylene / α-olefin copolymer (B) and the propylene-based resin (C). Preferably it is 0.2-10 weight part.

3.樹脂組成物の製造
本発明の樹脂組成物(I)および(II)は、上記の熱可塑性樹脂、好ましくはエチレン・α−オレフィン共重合体(A)、エチレン・α−オレフィン共重合体(B)、プロピレン系樹脂、好ましくはプロピレン系樹脂(C)、および、米、必要に応じて、相溶化剤(D)、他の添加剤を、上記配合割合にて、ヘンシェルミキサー、vブレンダー、リボンブレンダー、タンブラーブレンダー等で混合後、単軸押出機、多軸押出機、ニーダー、バンバリミキサー等の混練機により混練する方法により得られる。
3. Production of Resin Composition Resin compositions (I) and (II) of the present invention are the above thermoplastic resins, preferably ethylene / α-olefin copolymer (A), ethylene / α-olefin copolymer (B ), Propylene-based resin, preferably propylene-based resin (C), and rice, if necessary, compatibilizer (D) and other additives in the above blending ratio, Henschel mixer, v blender, ribbon After mixing with a blender, tumbler blender or the like, it is obtained by a method of kneading with a kneader such as a single-screw extruder, a multi-screw extruder, a kneader, or a Banbury mixer.

4.積層フィルム
本発明の積層フィルムは、内層、中間層、外層をこの順に含む積層フィルムであり、上記樹脂組成物(I)および(II)を用い、公知の方法、例えば、インフレーション多層フィルム成形、Tダイ多層フィルム成形等で得ることができる。
なお、積層フィルムは、外層/中間層/内層の三層を基本とするが、必要に応じて更に保護層を追加で設けることができる。
また、積層フィルムとする場合の積層構成比率は、全体の厚みに対する中間層の厚みが50〜80%であることが好ましい。例えば三層フィルムの場合、外層:中間層:内層の比率は1:2:1〜1:8:1であり、中間層の比率は高ければ高い程、化石燃料から製造される熱可塑性樹脂の使用量低減或いは、燃焼時の二酸化炭素発生量の低減効果が大きく好ましいが1:8:1を超えると強度の低下が起こることと成形機押出機の押出し効率上好ましくない。
4). Laminated film The laminated film of the present invention is a laminated film comprising an inner layer, an intermediate layer, and an outer layer in this order. Using the resin compositions (I) and (II), known methods such as inflation multilayer film molding, T It can be obtained by die multilayer film molding or the like.
The laminated film is basically composed of three layers of outer layer / intermediate layer / inner layer, but a protective layer can be additionally provided as necessary.
Moreover, it is preferable that the thickness of the intermediate | middle layer is 50 to 80% with respect to the whole thickness as a lamination | stacking structure ratio in setting it as a laminated | multilayer film. For example, in the case of a three-layer film, the ratio of outer layer: intermediate layer: inner layer is 1: 2: 1 to 1: 8: 1, and the higher the ratio of intermediate layer, the higher the thermoplastic resin produced from fossil fuel. The effect of reducing the amount of carbon dioxide used or reducing the amount of carbon dioxide generated during combustion is preferable, but if it exceeds 1: 8: 1, the strength is lowered and the extrusion efficiency of the molding machine extruder is not preferable.

本発明の積層フィルムは、ゴミ袋、レジ袋、肥料袋等に用いることができ、それぞれの用途に応じ、例えばゴミ袋、レジ袋で有ればフィルム厚みは20〜35μm、肥料袋等セミ重袋で有れば、80〜130μm程度が好ましい。   The laminated film of the present invention can be used for garbage bags, plastic bags, fertilizer bags, etc., and depending on the respective use, for example, if it is a garbage bag, plastic bags, the film thickness is 20-35 μm, semi-heavy such as fertilizer bags, etc. If it is a bag, about 80-130 micrometers is preferable.

以下に、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、各実施例、比較例で用いた物性測定法、原材料は以下の通りである。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. In addition, the physical-property measuring method and raw material which were used by each Example and the comparative example are as follows.

1.物性測定法
(1)メルトフローレート(MFR):JIS K−7210に従い、温度190℃、荷重21.18Nの条件で測定した。なお、ポリプロピレン系樹脂については測定温度を230℃で行った。
(2)密度:JIS K−7112に従い測定した。
(3)融点:示差走査熱量計を用いて測定した。
(4)ダート落下衝撃強度:JIS−K7124−1 A法に準拠して測定した。
(5)突き刺し強度:内径25mmφの金属ホルダーにフィルム試料を取り付け、先端0.6mmRの金属針を50mm/minの速度でフィルムに突き刺し、その時の抵抗力を測定した。
(6)ヒートシール強度:40μm厚のインフレーション成形フィルムを2枚重ね、温度:120℃、圧力:1.5kg/cm、時間:0.5秒の条件で、ヒートシールを行い、15mm幅の180度剥離強度を測定した。
(7)引張弾性率:JIS−K7127を参考にフィルムの単位伸び率当たりの引張強度を測定した。数値が大きい程フィルムの剛性が高い。
1. Physical property measurement method (1) Melt flow rate (MFR): Measured in accordance with JIS K-7210 under conditions of a temperature of 190 ° C. and a load of 21.18N. In addition, about polypropylene resin, the measurement temperature was performed at 230 degreeC.
(2) Density: Measured according to JIS K-7112.
(3) Melting point: measured using a differential scanning calorimeter.
(4) Dirt drop impact strength: Measured according to JIS-K7124-1 A method.
(5) Puncture strength: A film sample was attached to a metal holder having an inner diameter of 25 mmφ, a metal needle having a tip of 0.6 mmR was pierced into the film at a speed of 50 mm / min, and the resistance force at that time was measured.
(6) Heat seal strength: Two 40 μm-thick inflation molded films are stacked, heat sealed under the conditions of temperature: 120 ° C., pressure: 1.5 kg / cm 2 , time: 0.5 seconds, 180 degree peel strength was measured.
(7) Tensile elastic modulus: The tensile strength per unit elongation of the film was measured with reference to JIS-K7127. The larger the value, the higher the rigidity of the film.

2.原材料
(1)エチレン・α−オレフィン共重合体(A)
(A−1):メタロセン触媒を用い製造されたエチレン・α−オレフィン共重合体(日本ポリエチレン(株)製、カーネルKF270、MFR2.0g/10分、密度0.907g/cm、Mw/Mn 2.4 )
(A−2):メタロセン触媒を用い製造されたエチレン・α−オレフィン共重合体(日本ポリエチレン(株)製、カーネルKF282、MFR2.2g/10分、密度0.915g/cm、Mw/Mn2.6 )
(2)エチレン・α−オレフィン共重合体(B)
(B−1):メタロセン触媒を用い製造されたエチレン・α−オレフィン共重合体(日本ポリエチレン(株)製、カーネルKF360T、MFR3.5g/10分、密度0.0.898g/cm、Mw/Mn 2.3 )
(B−2)チーグラー触媒を用い製造されたエチレン・α−オレフィン共重合体(日本ポリエチレン(株)製、ノバテックLL X729、MFR2.0g/10分、密度0.917g/cm、Mw/Mn 3.8)
(B−3):メタロセン触媒を用い製造されたエチレン・α−オレフィン共重合体(日本ポリエチレン(株)製、カーネルKF260T、MFR2.0g/10分、密度0.901g/cm、Mw/Mn2.5 )
(3)プロピレン系樹脂(C)
(C−1):メタロセン触媒を用い製造されたプロピレン・α−オレフィン共重合体(日本ポリプロ(株)製、WINTEC「WFX6」、MFR2.0g/10分、密度0.90g/cm、融点125℃、プロピレン単位96.6モル%、エチレン単位3.4モル%、Mw/Mn2.9、40℃以下可溶分1.0重量%)
(4)米
精米を15℃水道水に60分間浸漬したものを用いた。
2. Raw material (1) Ethylene / α-olefin copolymer (A)
(A-1): Ethylene / α-olefin copolymer produced using a metallocene catalyst (manufactured by Nippon Polyethylene Co., Ltd., Kernel KF270, MFR 2.0 g / 10 min, density 0.907 g / cm 3 , Mw / Mn 2.4)
(A-2): ethylene / α-olefin copolymer produced using a metallocene catalyst (manufactured by Nippon Polyethylene Co., Ltd., Kernel KF282, MFR 2.2 g / 10 min, density 0.915 g / cm 3 , Mw / Mn 2 .6)
(2) Ethylene / α-olefin copolymer (B)
(B-1): Ethylene / α-olefin copolymer produced using a metallocene catalyst (manufactured by Nippon Polyethylene Co., Ltd., Kernel KF360T, MFR 3.5 g / 10 min, density 0.0.898 g / cm 3 , Mw / Mn 2.3)
(B-2) Ethylene / α-olefin copolymer produced using a Ziegler catalyst (Nippon Polyethylene Co., Ltd., Novatec LL X729, MFR 2.0 g / 10 min, density 0.917 g / cm 3 , Mw / Mn 3.8)
(B-3): ethylene / α-olefin copolymer produced using a metallocene catalyst (manufactured by Nippon Polyethylene Co., Ltd., Kernel KF260T, MFR 2.0 g / 10 min, density 0.901 g / cm 3 , Mw / Mn 2 .5)
(3) Propylene resin (C)
(C-1): Propylene / α-olefin copolymer produced using a metallocene catalyst (manufactured by Nippon Polypro Co., Ltd., WINTEC “WFX6”, MFR 2.0 g / 10 min, density 0.90 g / cm 3 , melting point 125 ° C., propylene unit 96.6 mol%, ethylene unit 3.4 mol%, Mw / Mn 2.9, 40 ° C. or less soluble content 1.0 wt%)
(4) Rice Rice that had been soaked in 15 ° C. tap water for 60 minutes was used.

(実施例1)
中間層樹脂として、エチレン・α−オレフィン共重合体(B−1)を65重量部、ポリプロピレン系樹脂(C−1)を35重量部用い、この両樹脂の合計量100重量部に対し、米を55重量部、相溶化剤として無水コハク酸(新日本製薬(株)製、顆粒状)5重量部からなる米配合樹脂組成物を攪拌、混合した後、160℃に設定した2軸押出機に投入し、途中充分に水蒸気の脱気・吸引をしながら混練押出しを行い樹脂組成物(II)のペレットを得た。また、内外層樹脂としてエチレン・α−オレフィン共重合体(A−1)75重量部、米を25重量部、相溶化剤として無水コハク酸(新日本製薬(株)製、顆粒状)3重量部からなる米配合樹脂組成物を攪拌、混合した後、160℃に設定した2軸押出機に投入し、途中充分に水蒸気の脱気・吸引をしながら混練押出しを行い樹脂組成物(I)のペレットを得た。
得られたペレットを用い、内層及び外層用として口径40mmφの押出機を用い、中間層用として口径50mmφの押出機を用い、ダイ口径200mmφ、リップ巾3mmの三層マルチマニホールドダイを取り付け、押出機及び、ダイの温度を150〜160℃に設定した条件下で、ブロー比2.0、引き取り速度15m/分でインフレーションフィルム成形を行い、内層:中間層:外層の層比が1:8:1、坪量が30g/mの米配合の積層フィルムを得た。得られたフィルムの米の平均添加率は33重量%であり、そのフィルムの物性を表1に示す。
Example 1
As the intermediate layer resin, 65 parts by weight of ethylene / α-olefin copolymer (B-1) and 35 parts by weight of polypropylene resin (C-1) were used, and the total amount of both resins was 100 parts by weight. A biaxial extruder set at 160 ° C. after stirring and mixing a rice blended resin composition consisting of 55 parts by weight of succinic anhydride (manufactured by Shin Nippon Pharmaceutical Co., Ltd., granular) as a compatibilizing agent The mixture was kneaded and extruded while sufficiently degassing and sucking water vapor in the middle to obtain pellets of the resin composition (II). Further, 75 parts by weight of an ethylene / α-olefin copolymer (A-1) as an inner / outer layer resin, 25 parts by weight of rice, and 3% by weight of succinic anhydride (manufactured by Shin Nippon Pharmaceutical Co., Ltd., granular) as a compatibilizing agent After mixing and mixing the rice-blended resin composition consisting of parts, the mixture was put into a twin-screw extruder set at 160 ° C., and kneaded and extruded while fully degassing and sucking water vapor along the way. Resin composition (I) Pellets were obtained.
Using the obtained pellets, using an extruder with a diameter of 40 mmφ for the inner layer and the outer layer, using an extruder with a diameter of 50 mmφ for the intermediate layer, attaching a three-layer multi-manifold die with a die diameter of 200 mmφ and a lip width of 3 mm, And under the conditions where the temperature of the die is set to 150 to 160 ° C., blown film molding is performed at a blow ratio of 2.0 and a take-off speed of 15 m / min, and the layer ratio of inner layer: intermediate layer: outer layer is 1: 8: 1. A laminated film containing rice with a basis weight of 30 g / m 2 was obtained. The average addition rate of rice in the obtained film was 33% by weight, and the physical properties of the film are shown in Table 1.

(実施例2)
中間層樹脂として、エチレン・α−オレフィン共重合体(B−1)を60重量部、ポリプロピレン系樹脂(C−1)を40重量部用い、この両樹脂の合計量100重量部に対し、米を100重量部、相溶化剤として無水コハク酸5重量部からなる米配合樹脂組成物を用いた以外は実施例1と同様に混練押出し、フィルム成形を行い、内層:中間層:外層の層比が1:8:1、坪量が30g/mの米配合の積層フィルムを得た。得られたフィルムの米の平均添加率は45重量%であり、そのフィルムの物性を表1に示す。
(Example 2)
As the intermediate layer resin, 60 parts by weight of ethylene / α-olefin copolymer (B-1) and 40 parts by weight of polypropylene resin (C-1) were used. Was mixed and extruded in the same manner as in Example 1 except that a rice compounded resin composition consisting of 100 parts by weight of succinic anhydride as a compatibilizing agent was used, and film forming was carried out. Layer ratio of inner layer: intermediate layer: outer layer 1: 8: 1 and a basis weight of 30 g / m 2 was obtained. The average addition rate of rice in the obtained film was 45% by weight, and the physical properties of the film are shown in Table 1.

(実施例3)
中間層樹脂として、エチレン・α−オレフィン共重合体(B−1)を65重量部、ポリプロピレン系樹脂(C−1)を35重量部用い、この両樹脂の合計量100重量部に対し、米を72重量部用い、相溶化剤として無水コハク酸5重量部を添加し、内外層樹脂としてエチレン・α−オレフィン共重合体(A−1)を100重量部を用いた以外は実施例1と同様に混練押出し、フィルム成形を行い、内層:中間層:外層の層比が1:8:1、坪量が30g/mの米配合の積層フィルムを得た。得られたフィルムの米の平均添加率は33重量%であり、そのフィルムの物性を表1に示す。
(Example 3)
As the intermediate layer resin, 65 parts by weight of ethylene / α-olefin copolymer (B-1) and 35 parts by weight of polypropylene resin (C-1) were used, and the total amount of both resins was 100 parts by weight. Example 1 except that 5 parts by weight of succinic anhydride was added as a compatibilizing agent and 100 parts by weight of ethylene / α-olefin copolymer (A-1) was used as the inner / outer layer resin. Similarly, kneading and extrusion were performed, and film formation was performed to obtain a laminated film containing rice having an inner layer: intermediate layer: outer layer ratio of 1: 8: 1 and a basis weight of 30 g / m 2 . The average addition rate of rice in the obtained film was 33% by weight, and the physical properties of the film are shown in Table 1.

(実施例4)
中間層樹脂として、エチレン・α−オレフィン共重合体(B−3)を65重量部、ポリプロピレン系樹脂(C−1)を35重量部用い、この両樹脂の合計量100重量部に対し、米を55重量部用い、相溶化剤として無水コハク酸5重量部を添加し、内外層樹脂としてエチレン・α−オレフィン共重合体(A−2)を75重量部、米を25重量部を用いた以外は実施例1と同様に混練押出し、フィルム成形を行い、内層:中間層:外層の層比が1:8:1、坪量が30g/mの米配合の積層フィルムを得た。得られたフィルムの米の平均添加率は33重量%であり、そのフィルムの物性を表1に示す。
Example 4
As the intermediate layer resin, 65 parts by weight of ethylene / α-olefin copolymer (B-3) and 35 parts by weight of polypropylene resin (C-1) were used, and the total amount of both resins was 100 parts by weight. 55 parts by weight, 5 parts by weight of succinic anhydride as a compatibilizer, 75 parts by weight of ethylene / α-olefin copolymer (A-2) and 25 parts by weight of rice were used as inner and outer layer resins. Except for the above, kneading and extrusion were carried out in the same manner as in Example 1, and film formation was carried out to obtain a laminated film containing rice having an inner layer: intermediate layer: outer layer ratio of 1: 8: 1 and a basis weight of 30 g / m 2 . The average addition rate of rice in the obtained film was 33% by weight, and the physical properties of the film are shown in Table 1.

(比較例1)
内外層及び、中間層樹脂としてエチレン・α−オレフィン共重合体(B−1)を75重量部、ポリプロピレン系樹脂(C−1)を25重量部用い、この両樹脂の合計量100重量部に対し、米を50重量部、相溶化剤として無水コハク酸5重量部からなる米配合樹脂組成物を用いた以外は実施例1と同様に混練押出し、フィルム成形を行い、坪量が30g/mの実質単層の米配合フィルムを得た。得られたフィルムの米の平均添加率は33重量%であり、そのフィルムの物性を表2に示す。
(Comparative Example 1)
75 parts by weight of the ethylene / α-olefin copolymer (B-1) and 25 parts by weight of the polypropylene resin (C-1) are used as inner and outer layer and intermediate layer resins, and the total amount of both resins is 100 parts by weight. On the other hand, kneading extrusion was carried out in the same manner as in Example 1 except that a rice compounded resin composition comprising 50 parts by weight of rice and 5 parts by weight of succinic anhydride as a compatibilizing agent was used, and the basis weight was 30 g / m. Two substantially monolayer rice-blended films were obtained. The average addition rate of rice in the obtained film was 33% by weight. Table 2 shows the physical properties of the film.

(比較例2)
内外層及び、中間層樹脂としてエチレン・α−オレフィン共重合体(B−1)を65重量部、ポリプロピレン系樹脂(C−1)を35重量部用い、この両樹脂の合計量100重量部に対し、米を80重量部、相溶化剤として無水コハク酸5重量部からなる米配合樹脂組成物を用いた以外は実施例1と同様に混練押出し、フィルム成形を行い、坪量が30g/mの実質単層の米配合フィルムを得た。得られたフィルムの米の平均添加率は44重量%であり、そのフィルムの物性を表2に示す。
(Comparative Example 2)
Using 65 parts by weight of the ethylene / α-olefin copolymer (B-1) and 35 parts by weight of the polypropylene resin (C-1) as the inner and outer layers and the intermediate layer resin, the total amount of both resins is 100 parts by weight. On the other hand, except that a rice compounded resin composition comprising 80 parts by weight of rice and 5 parts by weight of succinic anhydride as a compatibilizing agent was used, kneading and extrusion was performed in the same manner as in Example 1 to form a film, and the basis weight was 30 g / m. Two substantially monolayer rice-blended films were obtained. The average addition rate of rice in the obtained film was 44% by weight, and the physical properties of the film are shown in Table 2.

(比較例3)
内外層及び、中間層樹脂としてエチレン・α−オレフィン共重合体(B−1)を100重量部、米を50重量部、相溶化剤として無水コハク酸5重量部からなる米配合樹脂組成物を用いた以外は実施例1と同様に混練押出し、フィルム成形を行い、坪量が30g/mの実質単層の米配合フィルムを得た。得られたフィルムの米の平均添加率は33重量%であり、そのフィルムの物性を表2に示す。
(Comparative Example 3)
A rice-containing resin composition comprising 100 parts by weight of an ethylene / α-olefin copolymer (B-1) as an inner / outer layer resin and an intermediate layer resin, 50 parts by weight of rice, and 5 parts by weight of succinic anhydride as a compatibilizer. Except for the use, kneading and extrusion were carried out in the same manner as in Example 1, and film formation was carried out to obtain a substantially single-layer rice-blended film having a basis weight of 30 g / m 2 . The average addition rate of rice in the obtained film was 33% by weight. Table 2 shows the physical properties of the film.

(比較例4)
内外層及び、中間層樹脂としてエチレン・α−オレフィン共重合体(B−2)を75重量部、ポリプロピレン系樹脂(C−1)を25重量部用い、この両樹脂の合計量100重量部に対し、米を50重量部、相溶化剤として無水コハク酸5重量部からなる米配合樹脂組成物を用いた以外は実施例1と同様に混練押出し・フィルム成形を行い、坪量が30g/mの実質単層の米配合フィルムを得た。得られたフィルムの米の平均添加率は33重量%であり、そのフィルムの物性を表2に示す。
(Comparative Example 4)
75 parts by weight of ethylene / α-olefin copolymer (B-2) and 25 parts by weight of polypropylene resin (C-1) are used as inner and outer layer and intermediate layer resins, and the total amount of both resins is 100 parts by weight. On the other hand, kneading extrusion and film forming were carried out in the same manner as in Example 1 except that a rice compounded resin composition consisting of 50 parts by weight of rice and 5 parts by weight of succinic anhydride was used as a compatibilizing agent, and the basis weight was 30 g / m. Two substantially monolayer rice-blended films were obtained. The average addition rate of rice in the obtained film was 33% by weight. Table 2 shows the physical properties of the film.

(比較例5)
内外層及び、中間層樹脂としてポリプロピレン系樹脂(C−1)を100重量部、米を50重量部、相溶化剤として無水コハク酸5重量部からなる米配合樹脂組成物を用いた以外は実施例1と同様に混練押出し・フィルム成形を行い、坪量が30g/mの実質単層の米配合フィルムを得た。得られたフィルムの米の平均添加率は33重量%であり、そのフィルムの物性を表2に示す。
(Comparative Example 5)
Implementation was carried out except that 100 parts by weight of polypropylene resin (C-1), 50 parts by weight of rice, and 5 parts by weight of succinic anhydride as compatibilizer were used as inner and outer layers and intermediate layer resins. Kneading extrusion and film forming were carried out in the same manner as in Example 1 to obtain a substantially monolayer rice-blended film having a basis weight of 30 g / m 2 . The average addition rate of rice in the obtained film was 33% by weight. Table 2 shows the physical properties of the film.

(比較例6)
中間層樹脂として、エチレン・α−オレフィン共重合体(B−1)を100重量部、米を55重量部、相溶化剤として無水コハク酸5重量部からなる米配合樹脂組成物を用い、内外層樹脂としてエチレン・α−オレフィン共重合体(A−1)を75重量部、米を25重量部用いた以外は実施例1と同様に混練押出し・フィルム成形を行い、内層:中間層:外層の層比が1:8:1、坪量が30g/mの米配合の積層フィルムを得た。得られたフィルムの米の平均添加率は33重量%であり、そのフィルムの物性を表2に示す。
(Comparative Example 6)
As the intermediate layer resin, a rice compound resin composition comprising 100 parts by weight of ethylene / α-olefin copolymer (B-1), 55 parts by weight of rice, and 5 parts by weight of succinic anhydride as a compatibilizing agent was used. Except for using 75 parts by weight of ethylene / α-olefin copolymer (A-1) and 25 parts by weight of rice as the layer resin, kneading extrusion and film forming were carried out in the same manner as in Example 1, and the inner layer: intermediate layer: outer layer A layered film containing rice with a layer ratio of 1: 8: 1 and a basis weight of 30 g / m 2 was obtained. The average addition rate of rice in the obtained film was 33% by weight. Table 2 shows the physical properties of the film.

(比較例7)
中間層樹脂として、エチレン・α−オレフィン共重合体(B−1)を10重量部、ポリプロピレン系樹脂(C−1)を90重量部用い、この両樹脂組成物の合計量100重量部に対し、米を55重量部、相溶化剤として無水コハク酸5重量部からなる米配合樹脂組成物米を用い、内外層樹脂としてエチレン・α−オレフィン共重合体(A−1)を75重量部、米を25重量部用いた以外は実施例1と同様に混練押出し・フィルム成形を行い、内層:中間層:外層の層比が1:8:1、坪量が30g/mの米配合の積層フィルムを得た。得られたフィルムの米の平均添加率は33重量%であり、そのフィルムの物性を表2に示す。
(Comparative Example 7)
As the intermediate layer resin, 10 parts by weight of the ethylene / α-olefin copolymer (B-1) and 90 parts by weight of the polypropylene resin (C-1) were used, and the total amount of both resin compositions was 100 parts by weight. , 55 parts by weight of rice and 5 parts by weight of succinic anhydride as a compatibilizing agent are used, and 75 parts by weight of ethylene / α-olefin copolymer (A-1) is used as an inner / outer layer resin. Except for using 25 parts by weight of rice, kneading extrusion and film forming were performed in the same manner as in Example 1, and the ratio of the inner layer: intermediate layer: outer layer was 1: 8: 1 and the basis weight was 30 g / m 2 . A laminated film was obtained. The average addition rate of rice in the obtained film was 33% by weight. Table 2 shows the physical properties of the film.

Figure 0005198387
Figure 0005198387

Figure 0005198387
Figure 0005198387

表1および2より明らかなように、本発明の複合フィルムは、強度等の物性低下もない良好なフィルムである(実施例1〜4)。一方、米の平均添加量を同じにした実質単層のフィルムでは突き刺し強度が大幅に低下したフィルムしか得られない(比較例1〜5)。また、チーグラー触媒で製造されたMw/Mnが大きいエチレン・α−オレフィン共重合体を用いたフィルム、エチレン・α−オレフィン共重合体を用いないフィルム、プロピレン系樹脂を用いないフィルムでは突き刺し強度、ダート落下衝撃強度が劣るフィルムしか得られなかった(比較例3〜6)。また中間層のエチレン・α−オレフィン共重合体とポリプロピレン系樹脂の比率で何れの樹脂も多い場合は、ダート落下衝撃強度が劣るフィルムしか得られなかった(比較例7)。   As is clear from Tables 1 and 2, the composite film of the present invention is a good film that does not have a decrease in physical properties such as strength (Examples 1 to 4). On the other hand, only a film having a substantially reduced puncture strength can be obtained with a substantially monolayer film having the same average amount of rice added (Comparative Examples 1 to 5). In addition, a film using an ethylene / α-olefin copolymer having a large Mw / Mn produced by a Ziegler catalyst, a film not using an ethylene / α-olefin copolymer, and a film not using a propylene-based resin have a piercing strength, Only films with inferior dirt drop impact strength were obtained (Comparative Examples 3-6). Moreover, when there were many any resin by the ratio of the ethylene-alpha-olefin copolymer of an intermediate | middle layer, and a polypropylene resin, only the film in which dart drop impact strength was inferior was obtained (comparative example 7).

本発明の米を配合した積層フィルムは、資源米の有効利用を図ることができ、石油由来成分の含有量が減っているため環境に対する配慮の点から今後の利用価値に対する期待は大きい。また、該積層フィルムは、従来の提案では懸念されていた耐衝撃性を向上させたフィルムであるため、ごみ袋、レジ袋などの重量物を入れる用途に有効に利用できる。   The laminated film containing the rice of the present invention can be used effectively for resource rice, and since the content of petroleum-derived components is reduced, there are high expectations for future utility value from the viewpoint of consideration for the environment. Moreover, since the laminated film is a film having improved impact resistance, which has been a concern in the conventional proposals, it can be used effectively for applications such as garbage bags and plastic bags.

Claims (7)

内層、中間層、外層をこの順に含む積層フィルムであって、内層及び外層が熱可塑性樹脂100〜70重量部と米0〜30重量部からなる樹脂組成物(I)からなり、中間層がエチレン・α−オレフィン共重合体30〜90重量%とプロピレン系樹脂70〜10重量%からなる樹脂成分100重量部に対し、米12〜150重量部を含有する樹脂組成物(II)からなることを特徴とする積層フィルム。   A laminated film including an inner layer, an intermediate layer, and an outer layer in this order, wherein the inner layer and the outer layer are made of a resin composition (I) composed of 100 to 70 parts by weight of a thermoplastic resin and 0 to 30 parts by weight of rice, and the intermediate layer is made of ethylene -It consists of resin composition (II) containing 12-150 parts by weight of rice with respect to 100 parts by weight of resin component consisting of 30-90% by weight of α-olefin copolymer and 70-10% by weight of propylene-based resin. A laminated film characterized. 内層及び/又は外層の熱可塑性樹脂が、下記性状(a−1)〜(a−3)を有するエチレン・α−オレフィン共重合体(A)であることを特徴とする請求項1記載の積層フィルム。
エチレン・α−オレフィン共重合体(A)
(a−1)密度が0.900〜0.928g/cm
(a−2)MFRが0.5〜8.0 g/10分
(a−3)Mw/Mnが1.5〜3.5
The laminate according to claim 1, wherein the thermoplastic resin of the inner layer and / or the outer layer is an ethylene / α-olefin copolymer (A) having the following properties (a-1) to (a-3). the film.
Ethylene / α-olefin copolymer (A)
(A-1) Density is 0.900 to 0.928 g / cm 3
(A-2) MFR is 0.5 to 8.0 g / 10 minutes (a-3) Mw / Mn is 1.5 to 3.5
中間層のエチレン・α−オレフィン共重合体が、下記性状(b-1)〜(b−3)を有する、メタロセン触媒によって得られたエチレン・α−オレフィン共重合体(B)であり、プロピレン系樹脂が、下記性状(c−1)〜(c−3)を有する、メタロセン触媒によって得られたプロピレン系樹脂(C)であることを特徴とする請求項1又は2記載の積層フィルム。
エチレン・α−オレフィン共重合体(B)
(b−1)密度が0.880〜0.920g/cm
(b−2)MFRが0.5〜8.0 g/10分
(b−3)Mw/Mnが1.5〜3.5
プロピレン系樹脂(C)
(c−1)プロピレン単位を85〜100モル%、エチレン及び/又はブテン構造単位を0〜15モル%含む
(c−2)Mw/Mnが5.0以下
(c−3)昇温溶離分別(TREF)法で測定した40℃以下の可溶分が4.0重量%以下
The ethylene / α-olefin copolymer of the intermediate layer is an ethylene / α-olefin copolymer (B) obtained by a metallocene catalyst having the following properties (b-1) to (b-3), and propylene The laminated film according to claim 1, wherein the resin is a propylene resin (C) obtained by a metallocene catalyst having the following properties (c-1) to (c-3).
Ethylene / α-olefin copolymer (B)
(B-1) Density is 0.880 to 0.920 g / cm 3
(B-2) MFR is 0.5 to 8.0 g / 10 minutes (b-3) Mw / Mn is 1.5 to 3.5
Propylene resin (C)
(C-1) 85-100 mol% of propylene units and 0-15 mol% of ethylene and / or butene structural units (c-2) Mw / Mn is 5.0 or less (c-3) Temperature rising elution fractionation Soluble content of 40 ° C. or less measured by (TREF) method is 4.0% by weight or less
前記プロピレン系樹脂(C)は、融点(Tp)が110〜150℃であることを特徴とする請求項1〜3のいずれか一項に記載の積層フィルム。   The laminated film according to any one of claims 1 to 3, wherein the propylene-based resin (C) has a melting point (Tp) of 110 to 150 ° C. 前記米は、澱粉の構造が非晶構造(α構造)であることを特徴とする請求項1〜4のいずれか一項に記載の積層フィルム。   The laminated film according to any one of claims 1 to 4, wherein the rice has a starch structure having an amorphous structure (α structure). 全体の厚みに対する、中間層の厚みが50〜80%であることを特徴とする請求項1〜5のいずれか一項に記載の積層フィルム。   The thickness of an intermediate | middle layer is 50 to 80% with respect to the whole thickness, The laminated | multilayer film as described in any one of Claims 1-5 characterized by the above-mentioned. 請求項1〜6のいずれか一項に記載の積層フィルムを袋状に加工してなるゴミ袋、レジ袋または肥料袋。   A garbage bag, a plastic bag or a fertilizer bag obtained by processing the laminated film according to any one of claims 1 to 6 into a bag shape.
JP2009189648A 2009-08-19 2009-08-19 Laminated film and use thereof Active JP5198387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009189648A JP5198387B2 (en) 2009-08-19 2009-08-19 Laminated film and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009189648A JP5198387B2 (en) 2009-08-19 2009-08-19 Laminated film and use thereof

Publications (2)

Publication Number Publication Date
JP2011042032A JP2011042032A (en) 2011-03-03
JP5198387B2 true JP5198387B2 (en) 2013-05-15

Family

ID=43829847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009189648A Active JP5198387B2 (en) 2009-08-19 2009-08-19 Laminated film and use thereof

Country Status (1)

Country Link
JP (1) JP5198387B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752016B2 (en) 2014-05-12 2017-09-05 The Procter & Gamble Company Microtextured films with improved tactile impression and/or reduced noise perception
US11879058B2 (en) 2015-06-30 2024-01-23 Biologiq, Inc Yarn materials and fibers including starch-based polymeric materials
US11674018B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Polymer and carbohydrate-based polymeric material blends with particular particle size characteristics
US11674014B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Blending of small particle starch powder with synthetic polymers for increased strength and other properties
US11149144B2 (en) 2015-06-30 2021-10-19 BiologiQ, Inc. Marine biodegradable plastics comprising a blend of polyester and a carbohydrate-based polymeric material
US11926940B2 (en) 2015-06-30 2024-03-12 BiologiQ, Inc. Spunbond nonwoven materials and fibers including starch-based polymeric materials
US11926929B2 (en) 2015-06-30 2024-03-12 Biologiq, Inc Melt blown nonwoven materials and fibers including starch-based polymeric materials
US11111355B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Addition of biodegradability lending additives to plastic materials
US20170002184A1 (en) * 2015-06-30 2017-01-05 BiologiQ, Inc. Articles Formed with Biodegradable Materials and Strength Characteristics of Same
US10752759B2 (en) 2015-06-30 2020-08-25 BiologiQ, Inc. Methods for forming blended films including renewable carbohydrate-based polymeric materials with high blow up ratios and/or narrow die gaps for increased strength
US11359088B2 (en) 2015-06-30 2022-06-14 BiologiQ, Inc. Polymeric articles comprising blends of PBAT, PLA and a carbohydrate-based polymeric material
US10920044B2 (en) 2015-06-30 2021-02-16 BiologiQ, Inc. Carbohydrate-based plastic materials with reduced odor
US10995201B2 (en) 2015-06-30 2021-05-04 BiologiQ, Inc. Articles formed with biodegradable materials and strength characteristics of the same
US11111363B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Articles formed with renewable and/or sustainable green plastic material and carbohydrate-based polymeric materials lending increased strength and/or biodegradability
US10919203B2 (en) 2015-06-30 2021-02-16 BiologiQ, Inc. Articles formed with biodegradable materials and biodegradability characteristics thereof
US11046840B2 (en) 2015-06-30 2021-06-29 BiologiQ, Inc. Methods for lending biodegradability to non-biodegradable plastic materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4002794B2 (en) * 2002-07-03 2007-11-07 日本ポリプロ株式会社 Resin composition and film formed by molding the same
JP3878623B2 (en) * 2004-05-20 2007-02-07 アグリフューチャー・じょうえつ株式会社 Rice-blended polyolefin resin composition, production method thereof, film molded product thereof, and molding method of this molded product
JP2007169615A (en) * 2005-11-28 2007-07-05 Japan Polypropylene Corp Resin composition formulated with starch
JP5183455B2 (en) * 2008-12-24 2013-04-17 日本ポリエチレン株式会社 Resin composition for film and molded article obtained therefrom

Also Published As

Publication number Publication date
JP2011042032A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5198387B2 (en) Laminated film and use thereof
JP5183455B2 (en) Resin composition for film and molded article obtained therefrom
RU2697560C2 (en) Polyolefin-based compositions, adhesives and associated multilayer structures obtained therefrom
US20120022188A1 (en) Compositions comprising thermoplastic starch
US10457023B2 (en) Bi-axially stretched article and silage film
US20120315416A1 (en) Multilayer film
JP5915253B2 (en) Resin composition and laminate
US10059819B2 (en) Bi-axially stretched article
US20170021594A1 (en) Silage film
JPS63230757A (en) Resin composition and multi-layer structure prepared by using the same
JP2007169615A (en) Resin composition formulated with starch
JP2014188923A (en) Laminate film
US20110045265A1 (en) Polyolefin composition and film thereof
JP2022012572A (en) Resin material for biomass compound, and biomass compound using the same
JP4505321B2 (en) Laminated body and medical bag comprising the same
JPS6341945B2 (en)
JP2009138139A (en) Stretched film of olefin polymer
CN116018375A (en) Resin composition
JP2004018579A (en) Resin composition comprising inorganic compound and laminate and package using the same
JP4328244B2 (en) Propylene-based adhesive polymer composition and laminate thereof
JP2017531571A (en) Multilayer structure and thermoformed article made therefrom
JP3894822B2 (en) Resin composition and stretched molded body
WO2023190127A1 (en) Resin composition, molded body, laminate, and laminated tube
WO2011062249A1 (en) Polyethylene resin film
JPH11170454A (en) Polypropylene sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5198387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250