JP2005217999A - Digital data transmission circuit - Google Patents

Digital data transmission circuit Download PDF

Info

Publication number
JP2005217999A
JP2005217999A JP2004024995A JP2004024995A JP2005217999A JP 2005217999 A JP2005217999 A JP 2005217999A JP 2004024995 A JP2004024995 A JP 2004024995A JP 2004024995 A JP2004024995 A JP 2004024995A JP 2005217999 A JP2005217999 A JP 2005217999A
Authority
JP
Japan
Prior art keywords
circuit
pair
driver circuit
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004024995A
Other languages
Japanese (ja)
Inventor
Kenji Maio
健二 麻殖生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004024995A priority Critical patent/JP2005217999A/en
Publication of JP2005217999A publication Critical patent/JP2005217999A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Logic Circuits (AREA)
  • Dc Digital Transmission (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-speed data transmission circuit with a low voltage and low power operation. <P>SOLUTION: Two bridge type differential switching circuits are used as a base of a driver circuit, and one is used as a main driver and the other is used as a driver for preemphasis. The driver circuits sharing a differential output terminal, a transmission line and a terminating resistance matched to characteristic impedance of the transmission line constitute a data transmission circuit that has impedance matching to the transmission line and a preemphasis function. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、デジタルデータをシリアルで高速伝送するための伝送回路に関し、特に伝送線路での高周波信号振幅劣化を補正するプリエンファシス機能を有する出力ドライバおよびそれを具備したデジタルデータ伝送回路に関する。   The present invention relates to a transmission circuit for serially transmitting digital data at high speed, and more particularly to an output driver having a pre-emphasis function for correcting high-frequency signal amplitude deterioration in a transmission line and a digital data transmission circuit including the output driver.

近年、データを記憶するストレージ、サーバあるいはデータの送受信先を制御するルータ等におけるデータ伝送では一秒間に数ギガビットの伝送速度(以下、数Gbpsと略す)が要求され、このような高速伝送では伝送線路での信号減衰が顕著になり、受信側でデータを復元できないことが起きる。   In recent years, data transmission in a storage for storing data, a server, or a router for controlling the destination of data transmission requires a transmission rate of several gigabits per second (hereinafter abbreviated as several Gbps). Signal attenuation on the line becomes significant, and data cannot be restored on the receiving side.

図10は、この問題を解決しようとした従来の技術であるプリエンファシス機能付出力ドライバの一例である(例えば、非特許文献1等参照)。メインドライバ100およびプリエンファシス用ドライバ106から成り、両者の出力はDoPおよびDoN点で接続され、50Ωの特性インピーダンスを持つ伝送線路14を介して各50Ωの終端抵抗105をもつ受信端に伝送され、受信アンプ19で増幅される。メインドライバ100は差動トランジスタ101、負荷抵抗103、定電流源102からなり、上記トランジスタのゲートに差動入力データDiPおよびDiNが印加される。負荷抵抗103は伝送線路の特性インピーダンスとの整合をとるため、50Ωである。また、プリエンファシスドライバ106は差動トランジスタ107および定電流源108からなる。   FIG. 10 is an example of a conventional output driver with a pre-emphasis function that attempts to solve this problem (see, for example, Non-Patent Document 1). It consists of a main driver 100 and a pre-emphasis driver 106, the outputs of which are connected at DoP and DoN points, and transmitted to a receiving end having a 50Ω termination resistor 105 via a transmission line 14 having a characteristic impedance of 50Ω, Amplified by the receiving amplifier 19. The main driver 100 includes a differential transistor 101, a load resistor 103, and a constant current source 102, and differential input data DiP and DiN are applied to the gate of the transistor. The load resistor 103 is 50Ω in order to match the characteristic impedance of the transmission line. The pre-emphasis driver 106 includes a differential transistor 107 and a constant current source 108.

一方、消費電力を低減できる方式として、図11に示す回路が従来から知られている(例えば、非特許文献2等参照)。本伝送回路系は出力ドライバ110、伝送線路14、終端抵抗115、受端アンプ19からなる。出力ドライバ110はMOSスイッチ112a、112b,111aおよび111b,定電流源113からなる。112aと111bがオン(112bと111aはオフ)の場合、DoN点から負荷抵抗115を介してDoP点に電流が流れ、その逆側がオンの場合は逆方向に電流が流れる。   On the other hand, a circuit shown in FIG. 11 is conventionally known as a method capable of reducing power consumption (see, for example, Non-Patent Document 2). This transmission circuit system includes an output driver 110, a transmission line 14, a terminating resistor 115, and a receiving amplifier 19. The output driver 110 includes MOS switches 112a, 112b, 111a and 111b, and a constant current source 113. When 112a and 111b are on (112b and 111a are off), current flows from the DoN point to the DoP point via the load resistor 115, and when the opposite side is on, current flows in the reverse direction.

国際固体回路学会(ISSCC)2002ダイジェスト,セッション4,No.4.3International Solid Circuit Society (ISSCC) 2002 Digest, Session 4, No.4.3

ナショナル・セミコンダクタ社、LVDSオーナーズ・マニュアル、第2版、2000年春、P.1National Semiconductor, LVDS Owner's Manual, Second Edition, Spring 2000, P.1

図10の回路は、高速でかつ伝送線路との整合がよく、反射による信号のひずみが少ない利点を持つが、一方、出力端DoPおよびDoNからみた負荷抵抗が25Ωとなるため、例えば500mV程度の信号振幅を確保するためには定電流源に20mA(=500mV/25Ω)を必要とし、消費電力が極めて大きくなる問題があった。   The circuit of FIG. 10 has the advantage of high speed and good matching with the transmission line and less signal distortion due to reflection, but on the other hand, the load resistance viewed from the output terminals DoP and DoN is 25Ω, so that it is about 500 mV, for example. In order to ensure the signal amplitude, 20 mA (= 500 mV / 25Ω) is required for the constant current source, and there is a problem that the power consumption becomes extremely large.

また、図11の回路において、負荷抵抗115の両端には、定電流値をIout、負荷抵抗をRとすると+/-(R・Iout)の電圧が発生することになる。今、特性インピーダンスが50Ωの伝送線路との整合をとるために終端抵抗115の抵抗値を100Ω、信号振幅=500mVとすると、Iout=5mAとなり、上記図10の例に比べ、消費電力は、電源電圧を同じとすると、1/4でよい。しかしながら、本回路ではドライバ側の出力インピーダンスと伝送線路とのインピーダンス整合がとれないため、伝送信号に歪を生じる可能性があるという問題があった。さらに、定電流源および上下2段のスイッチでの電位降下、負荷での信号振幅として500mVを考慮すると電源電圧Vddとして少なくとも1.5V程度が必要で、高速伝送用に必須の微細MOSプロセスは耐圧の点で使用できないという問題があった。例えば0.1μmCMOSプロセスではトランジスタの許容耐圧は1V程度である。   In the circuit of FIG. 11, a voltage of +/− (R · Iout) is generated at both ends of the load resistor 115 when the constant current value is Iout and the load resistor is R. Now, assuming that the resistance value of the termination resistor 115 is 100Ω and the signal amplitude = 500 mV for matching with a transmission line having a characteristic impedance of 50Ω, Iout = 5 mA, and the power consumption is higher than that in the example of FIG. If the voltage is the same, 1/4 is sufficient. However, in this circuit, since impedance matching between the output impedance on the driver side and the transmission line cannot be achieved, there is a problem that distortion may occur in the transmission signal. Furthermore, considering a potential drop at the constant current source and the upper and lower two-stage switches and a signal amplitude at the load of 500 mV, the power supply voltage Vdd needs to be at least about 1.5 V. There was a problem that it could not be used. For example, in the 0.1 μm CMOS process, the allowable breakdown voltage of the transistor is about 1V.

本発明の目的は、上記問題点を解決すべく、低電源電圧・低消費電力で高速伝送を実現することにある。また、本発明の他の目的は、低電源電圧・低消費電力で動作し、かつ伝送線路とのインピーダンス整合およびプリエンファシス機能を有する伝送回路を提供することにある。   An object of the present invention is to realize high-speed transmission with low power supply voltage and low power consumption in order to solve the above problems. Another object of the present invention is to provide a transmission circuit that operates with a low power supply voltage and low power consumption and has impedance matching with a transmission line and a pre-emphasis function.

上記課題を解決するために、本発明では、ブリッジ形の差動スイッチ回路をドライバ回路の基本とし、それを2ケ使用し、一方をメインドライバに、他方をプリエンファシス用ドライバとし、差動出力端子を共有したドライバ回路、伝送線路、および伝送線路の特性インピーダンスに整合した終端抵抗により低電圧・低電力動作の高速データ伝送回路を実現する。   In order to solve the above problems, in the present invention, a bridge-type differential switch circuit is used as a basic driver circuit, two of them are used, one as a main driver, the other as a pre-emphasis driver, and a differential output. A high-speed data transmission circuit with low voltage and low power operation is realized by a driver circuit that shares terminals, a transmission line, and a termination resistor that matches the characteristic impedance of the transmission line.

具体的には、本発明のデジタルデータ伝送回路は、1対のデジタルデータ差動入力端子と1対の差動出力端子とを有する出力ドライバ回路と、上記1対の差動出力端子に接続された1対の伝送線路と、上記1対の伝送線路の終端の間に設けられた終端抵抗とを具備して成り、上記出力ドライバ回路は、正電源にソース端子が接続されたP型トランジスタと、接地電源にソース端子が接続されたN型トランジスタとのドレイン同士およびゲート同士が接続された回路を2組有して成る差動対と、上記差動対の2つのドレイン端子に接続された1対の抵抗とを含んで成り、上記1対のデジタルデータ差動入力端子は上記差動対のゲート端子に接続され、上記1対の差動出力端子は上記1対の抵抗の上記ドレイン端子とは反対側の端子に接続されていることを特徴とする。   Specifically, the digital data transmission circuit of the present invention is connected to an output driver circuit having a pair of digital data differential input terminals and a pair of differential output terminals, and the pair of differential output terminals. A pair of transmission lines, and a termination resistor provided between the ends of the pair of transmission lines, and the output driver circuit includes a P-type transistor having a source terminal connected to a positive power supply, A differential pair having two sets of circuits in which drains and gates are connected to an N-type transistor having a source terminal connected to a ground power supply, and two drain terminals of the differential pair. A pair of resistors, wherein the pair of digital data differential input terminals are connected to the gate terminals of the differential pair, and the pair of differential output terminals are the drain terminals of the pair of resistors. Connected to the opposite terminal And wherein the Rukoto.

上記構成において、上記出力ドライバ回路と同様の回路構成を有し、かつ、駆動能力が小さいサブドライバ回路を更に具備するものであればなお好適である。この場合、上記出力ドライバ回路と上記サブドライバ回路との出力端子同士が接続され、上記サブドライバ回路の差動入力端子に上記出力ドライバ回路の入力データの遅延信号が入力されるよう構成すればよい。また、上記入力データの少なくとも立上り時および立下り時に上記出力ドライバ回路と上記サブドライバ回路との出力信号同士が加算されるよう構成すればよい。   In the above configuration, it is more preferable if it further includes a sub-driver circuit having a circuit configuration similar to that of the output driver circuit and having a small driving capability. In this case, output terminals of the output driver circuit and the sub driver circuit may be connected to each other, and a delay signal of input data of the output driver circuit may be input to the differential input terminal of the sub driver circuit. . In addition, the output signals of the output driver circuit and the sub driver circuit may be added at least at the time of rising and falling of the input data.

上記構成において、上記出力ドライバ回路の出力端子から上記出力ドライバ回路側を見た場合のインピーダンスが、上記伝送線路の特性インピーダンスに整合したインピーダンスとなるようにすればなお好適である。   In the above configuration, it is more preferable that the impedance when the output driver circuit side is viewed from the output terminal of the output driver circuit is matched with the characteristic impedance of the transmission line.

上記構成において、上記サブドライバ回路の出力抵抗が可変であり、上記デジタルデータ伝送回路の出力信号振幅が可変であるようにすればなお好適である。
上記構成において、上記サブドライバ回路の入力端子と上記出力ドライバ回路の入力端子との間に選択回路を具備するものであればなお好適である。この場合、上記選択回路の一方の入力端子には上記出力ドライバ回路の入力端子からの入力データが入力され、上記選択回路の他方の入力端子には上記入力データを逆極性にしたデータが遅延回路を介して入力され、上記出力ドライバ回路の出力インピーダンスを変化させることなくプリエンファシス機能のオン・オフを制御できるよう構成すればよい。
In the above configuration, it is more preferable that the output resistance of the sub driver circuit is variable and the output signal amplitude of the digital data transmission circuit is variable.
In the above configuration, it is more preferable if a selection circuit is provided between the input terminal of the sub driver circuit and the input terminal of the output driver circuit. In this case, the input data from the input terminal of the output driver circuit is input to one input terminal of the selection circuit, and the data having the opposite polarity of the input data is input to the other input terminal of the selection circuit. The pre-emphasis function may be controlled on and off without changing the output impedance of the output driver circuit.

上記構成において、上記終端抵抗は分圧型であり、上記伝送線路の側から見た場合のインピーダンスを上記伝送線路の特性インピーダンスに整合させながら、受信アンプへの入力信号振幅を調整できるよう構成すればなお好適である。
上記構成において、上記終端抵抗が、1対の上記伝送線路と正電源との間に並列接続された第1の1対の抵抗と、1対の上記伝送線路と接地電源との間に並列接続された第2の1対の抵抗とを含んで成るものであればなお好適である。この場合、上記第1および第2の1対の抵抗の並列値を上記伝送線路の特性インピーダンスに整合させながら、受信アンプへの入力信号バイアス電位を調整できるよう構成すればよい。
In the above configuration, the termination resistor is a voltage dividing type, and the input signal amplitude to the reception amplifier can be adjusted while matching the impedance when viewed from the transmission line side with the characteristic impedance of the transmission line. It is preferable.
In the above configuration, the termination resistor is connected in parallel between the first pair of resistors connected in parallel between the pair of transmission lines and the positive power source, and the pair of transmission lines and the ground power source. It is still preferred if it comprises a second pair of resistors. In this case, the input signal bias potential to the reception amplifier may be adjusted while matching the parallel value of the first and second pairs of resistors with the characteristic impedance of the transmission line.

上記構成において、上記サブドライバ回路を構成する4つのトランジスタのゲートが、それぞれ独立の入力端子に接続され、上記出力ドライバ回路の入力端子からの入力データの立上り時および立下り時にトランジスタがオンするよう構成すればなお好適である。   In the above configuration, the gates of the four transistors constituting the sub-driver circuit are connected to independent input terminals so that the transistors are turned on when the input data from the input terminal of the output driver circuit rises and falls. If constituted, it is more preferable.

本発明によれば、1V程度の低電源電圧動作が可能となり、消費電力の低減を図ることが可能となる。また、本発明によれば、高速のCMOS微細プロセスが適用でき、例えば、数Gbpsを超える高速伝送が可能となる。   According to the present invention, a low power supply voltage operation of about 1 V is possible, and power consumption can be reduced. Further, according to the present invention, a high-speed CMOS fine process can be applied, and, for example, high-speed transmission exceeding several Gbps is possible.

本発明は、ブリッジ形の差動スイッチ回路をドライバ回路の基本とし、それを2ケ使用し、一方をメインドライバに、他方をプリエンファシス用ドライバとし、差動出力端子を共有したドライバ回路、伝送線路、および伝送線路の特性インピーダンスに整合した終端抵抗からなる高速データ伝送回路を主たる構成とする。以下、本発明の実施例を、対応する図面を用いて説明する。   The present invention uses a bridge-type differential switch circuit as a basic driver circuit, uses two of them, one as a main driver, the other as a pre-emphasis driver, and a driver circuit that shares a differential output terminal and transmission A main configuration is a high-speed data transmission circuit including a line and a termination resistor matched to the characteristic impedance of the transmission line. Embodiments of the present invention will be described below with reference to the corresponding drawings.

図3に本発明の第1の実施例である基本的な出力ドライバ回路を示す。同図において、出力ドライバ30はP型電界効果トランジスタ(以下、PMOSと略す)32aおよび32b、N型電界効果トランジスタ(以下、NMOSと略す)31aおよび31b、出力抵抗33aおよび33bから成り、差動入力データDiPおよびその逆極性のDiNにより駆動され、差動出力DoNおよびDoPに出力される。出力信号は伝送ライン14を通して送信され、受信側の終端抵抗35の両端に受信信号が得られ、アンプ39により増幅される。出力ドライバ30の動作は、DiPが“0”、DiNが“1”のとき、32aと31bがオン、32bと31aがオフし、電源Vddからの電流は32a⇒33a⇒14⇒35⇒14⇒33b⇒31bに流れ、終端抵抗35の両端には上側が+の電圧が出力される。また、DiPが“1”、DiNが“0”のときはその逆で、32b⇒33b⇒14⇒35⇒14⇒33a⇒31aに流れ、終端抵抗35の両端には下側が+の電圧が出力される。   FIG. 3 shows a basic output driver circuit according to the first embodiment of the present invention. In the figure, an output driver 30 comprises P-type field effect transistors (hereinafter abbreviated as PMOS) 32a and 32b, N-type field effect transistors (hereinafter abbreviated as NMOS) 31a and 31b, and output resistors 33a and 33b. It is driven by input data DiP and DiN having the opposite polarity, and is output to differential outputs DoN and DoP. The output signal is transmitted through the transmission line 14, and the received signal is obtained at both ends of the terminating resistor 35 on the receiving side and is amplified by the amplifier 39. The operation of the output driver 30 is as follows. When DiP is “0” and DiN is “1”, 32a and 31b are on, 32b and 31a are off, and the current from the power supply Vdd is 32a⇒33a⇒14⇒35⇒14⇒ 33b⇒31b, and a positive voltage is output to both ends of the termination resistor 35. When DiP is “1” and DiN is “0”, the opposite is true, and 32b⇒33b⇒14⇒35⇒14⇒33a⇒31a flows, and a positive voltage is output at both ends of the termination resistor 35. Is done.

抵抗33a、33bおよび35のそれぞれの値RsおよびRo、とPMOSおよびNMOSのオン抵抗は、伝送線路の特性インピーダンスをZo、PMOSおよびNMOSのオン抵抗をRpおよびRnとすると、インピーダンス整合の点から、次式の関係が成り立つように設定される。
(数1) Rp=Rn
(数2) Rs+Rp=Zo
(数3) Ro=2*Zo
たとえば、Zo=50Ω、Rp=Rn=30Ωとすると、Rs=20Ω、Ro=100Ωとなる。勿論、データの周波数、伝送距離、伝送品質等により、これらの関係は厳密ではなくなり、かなりの偏差が許容される。
The respective values Rs and Ro of the resistors 33a, 33b, and 35, and the on-resistances of the PMOS and NMOS are, from the point of impedance matching, assuming that the transmission line characteristic impedance is Zo and the on-resistances of the PMOS and NMOS are Rp and Rn. The following relationship is established.
(Equation 1) Rp = Rn
(Expression 2) Rs + Rp = Zo
(Equation 3) Ro = 2 * Zo
For example, if Zo = 50Ω and Rp = Rn = 30Ω, then Rs = 20Ω and Ro = 100Ω. Of course, depending on the frequency of the data, the transmission distance, the transmission quality, etc., these relationships are not strict and a considerable deviation is allowed.

本実施例によれば、Roの両端には電源電圧の1/2の振幅がえられるため、電源電圧が1V程度の低電圧でも信号振幅として500mVがえられる。このように、電源電圧を低減できることにより、CMOS微細プロセスが使えるため、IC(集積回路)のチップサイズを低減でき、かつ高速で低電力動作を実現でき、従来技術の課題を解決できる。   According to the present embodiment, since an amplitude of 1/2 of the power supply voltage is obtained at both ends of Ro, a signal amplitude of 500 mV is obtained even when the power supply voltage is a low voltage of about 1V. In this way, since the power supply voltage can be reduced, a CMOS fine process can be used, so that the chip size of an IC (integrated circuit) can be reduced, and high-speed and low-power operation can be realized, thereby solving the problems of the prior art.

次に、他の実施例として、プリエンファシス機能を付加したドライバ回路を図1に、データ入出力タイミングを図2に示す。図1において、10はメインドライバ、16はプリエンファシス用のサブドライバで、それぞれの回路構成は上記実施例1(図3)と同じである。ただし、上記実施例にくらべ、ドライバ30の代わりにドライバ10と16で駆動するため、各ドライバのトランジスタサイズは小さくてよい。伝送線路とのインピーダンス整合をとるために、メインドライバ側の出力抵抗Rmoとサブドライバ側の出力抵抗RsoとZoとの間に次式の関係が必要である。   Next, as another embodiment, a driver circuit to which a pre-emphasis function is added is shown in FIG. 1, and data input / output timing is shown in FIG. In FIG. 1, 10 is a main driver, 16 is a sub-driver for pre-emphasis, and each circuit configuration is the same as in the first embodiment (FIG. 3). However, since the drivers 10 and 16 are used instead of the driver 30 in comparison with the above embodiment, the transistor size of each driver may be small. In order to achieve impedance matching with the transmission line, the following relationship is necessary between the output resistance Rmo on the main driver side and the output resistances Rso and Zo on the sub driver side.

(数4) Zo=(Rmo*Rso)/(Rmo+Rso)
ここで、
(数5) Rmo=Rsm+Rpm
(数6) Rpm=Rnm
(数7) Rso=Rss+Rps
(数8) Rps=Rns
ただし、Rsm、RpmおよびRnmはメインドライバ10の出力部抵抗13の値、PMOS12およびNMOS11のオン抵抗であり、Rss、RpsおよびRnsはサブドライバ16の出力部抵抗19の値、PMOS18およびNMOS17のオン抵抗である。
このようにメインとサブの並列抵抗をZoに整合させればよいため、各ドライバのトランジスタサイズ和は、図3のようなメインドライバのみの場合と同じでよい。
(Expression 4) Zo = (Rmo * Rso) / (Rmo + Rso)
here,
(Equation 5) Rmo = Rsm + Rpm
(Expression 6) Rpm = Rnm
(Equation 7) Rso = Rss + Rps
(Equation 8) Rps = Rns
However, Rsm, Rpm, and Rnm are the values of the output section resistor 13 of the main driver 10 and the on resistances of the PMOS 12 and the NMOS 11, and Rss, Rps, and Rns are the values of the output section resistance 19 of the sub driver 16, and the PMOS 18 and the NMOS 17 are on. Resistance.
Since the main and sub parallel resistors need only be matched to Zo in this way, the transistor size sum of each driver may be the same as that of the main driver alone as shown in FIG.

本回路のプリエンファシス動作を図1および図2に示すタイミング図を併用して説明する。各信号名のPとNは逆極性を意味し、EmNはDiPから時間△tだけ遅延した信号である。t=t0において、DiP=EmN=”0“(DiN=EmP=”1“)の場合、12a、11b、18b、17aがオン状態になるため、12aからの電流の大部分は受信端抵抗15に流れるが、一部の電流はDoN点からサブドライバ16内の17aに流れる。すなはち抵抗15にはメインドライバからの電流とサブドライバへの電流との差電流が正方向にながれ、その結果DoNの電位はV3となる。次に、t=t1においてDiPが”0“から”1“に反転すると、11a、12bがオンになるため、上記とは逆に12b側に電流が流れ、18bからの電流と加算されて抵抗15に負方向の電流が流れ、DoNの電位はV1となる。さらにt=t2になって、EmNも”0“から”1“に反転すると、17bがオンするため、12bからの電流の一部はDoP点で17b側に流れ、メインとサブの差電流が抵抗15に負方向に流れ、DoNの電位はV2となる。以下同様なプロセスにより、図2のDoNやDoPの波形が得られる。この波形からわかるように、DoN(あるいはDoP)波形の立上りおよび立下り点においてエッジが強調(エンファサイズ)された波形となる。   The pre-emphasis operation of this circuit will be described with reference to the timing charts shown in FIGS. P and N of each signal name mean reverse polarity, and EmN is a signal delayed from DiP by time Δt. At t = t0, when DiP = EmN = “0” (DiN = EmP = “1”), 12a, 11b, 18b, and 17a are turned on, so that most of the current from 12a has a receiving end resistance 15 However, a part of the current flows from the DoN point to 17a in the sub driver 16. That is, a difference current between the current from the main driver and the current to the sub driver flows in the positive direction in the resistor 15, and as a result, the potential of DoN becomes V3. Next, when DiP is inverted from “0” to “1” at t = t1, 11a and 12b are turned on, so that current flows to the side of 12b contrary to the above, and the current from 18b is added to the resistance. 15, a negative current flows, and the potential of DoN becomes V1. Further, when t = t2 and EmN is inverted from “0” to “1”, 17b is turned on. Therefore, a part of the current from 12b flows to the 17b side at the DoP point, and the difference current between the main and sub is The resistance 15 flows in the negative direction, and the potential of DoN becomes V2. Thereafter, the DoN and DoP waveforms of FIG. 2 are obtained by a similar process. As can be seen from this waveform, the edge is emphasized (emphasized) at the rising and falling points of the DoN (or DoP) waveform.

このように、エンファサイズする期間△tはDiPとEmNとの差、すなはちDiPからの遅延量できまる。また、エンファサイズの振幅差△Vは、メインとサブドライバの電流差で決まる。
本実施例によれば、消費電力、トランジスタサイズおよびインピーダンス整合を損なうことなくプリエンファシス機能を達成できるという効果を奏する。
Thus, the emphasizing period Δt is determined by the difference between DiP and EmN, that is, the delay amount from DiP. Also, the amplitude difference ΔV of the emphasize is determined by the current difference between the main and sub drivers.
According to the present embodiment, the pre-emphasis function can be achieved without impairing power consumption, transistor size, and impedance matching.

次に、エンファサイズの振幅差△Vを制御できる実施例を図4により説明する。回路動作は上記図1と同じである。ただし、出力部抵抗43および49を可変(プログラマブル)とすることにより、エンファサイズ量△Vを制御できるようにしたものである。このとき、抵抗43および49の抵抗値をそれぞれVRsmおよびVRssとすると、上記(数4)〜(数8)のRsmとRssをVRsmとVRssに置き換えて、これらの式を満足するように変化させるのが好ましい。
本実施例によれば、抵抗値をプログラマブルに容易に変化させることができるため、種々の伝送線路長に対応できるという効果を奏する。
Next, an embodiment capable of controlling the amplitude difference ΔV of the emphasize will be described with reference to FIG. The circuit operation is the same as in FIG. However, the emphasize amount ΔV can be controlled by making the output resistors 43 and 49 variable (programmable). At this time, assuming that the resistance values of the resistors 43 and 49 are VRsm and VRss, respectively, Rsm and Rss in the above (Equation 4) to (Equation 8) are replaced with VRsm and VRss so that these equations are satisfied. Is preferred.
According to the present embodiment, since the resistance value can be easily changed in a programmable manner, it is possible to cope with various transmission line lengths.

図5は図1の実施例におけるサブドライバの入力データEmPおよびEmNの発生法の一例を示したものであり、同図の遅延回路51および選択回路52がその部分に当たる。入力制御信号Ectl=“1”のときはDiP=EmP,DiN=EmNとなり、エンファシス機能は非動作状態だが、Ectl=”0“の場合は、DiP信号は遅延回路51を通り、選択回路を介してEmNとなる。遅延回路51の遅延量△tがエンファシス期間となる。
本実施例によれば、簡単な回路構成でプリエンファシス回路の適切なオン・オフにより、高速伝送時に問題となる伝送線路での高周波損失を補償する効果を適切に持たせることができ、データ伝送の信頼度を高めることができるという効果を奏する。
FIG. 5 shows an example of a method for generating the input data EmP and EmN of the sub-driver in the embodiment of FIG. 1, and the delay circuit 51 and the selection circuit 52 of FIG. When the input control signal Ectl = “1”, DiP = EmP and DiN = EmN, and the emphasis function is inactive. However, when Ectl = “0”, the DiP signal passes through the delay circuit 51 and passes through the selection circuit. To become EmN. The delay amount Δt of the delay circuit 51 is an emphasis period.
According to the present embodiment, by appropriately turning on and off the pre-emphasis circuit with a simple circuit configuration, it is possible to appropriately have an effect of compensating for high-frequency loss in a transmission line that is a problem at high-speed transmission, and data transmission There is an effect that the reliability of the can be increased.

他の発明の実施例を図6および図7に示す。両図は終端抵抗の構成についての実施例である。伝送系では規格によって受信端での信号振幅が所定の範囲に規定されている場合がある。図6はこれに対応できる回路で、抵抗65aおよび65bから成る分圧回路である。電源電圧で決まる送信端の信号振幅を抵抗値R1とR2/2の分圧比で低減できる。このため、電源電圧が大きい場合にも対応できる利点を持つ。ここで、(R1+R2/2)を伝送線路のZoに等しくしてインピーダンス整合をとることが好ましい。また、図7の実施例は抵抗75aおよび75bの調整により、受信端の電位を調整できるようにした回路である。これにより、後段のアンプ19の入力バイアスレベルに合わせることが可能である。この場合も伝送線路14との整合をとるため、R3とR4の並列抵抗値をZoに等しくすることが好ましい。
本実施例によれば、簡単な終端抵抗の構成により、入力アンプの種々の条件に対応できるという効果を奏する。
Another embodiment of the invention is shown in FIGS. Both figures are examples of the configuration of the termination resistor. In the transmission system, the signal amplitude at the receiving end may be defined within a predetermined range by a standard. FIG. 6 is a circuit that can cope with this, and is a voltage dividing circuit composed of resistors 65a and 65b. The signal amplitude at the transmitting end determined by the power supply voltage can be reduced by the voltage dividing ratio between the resistance values R1 and R2 / 2. For this reason, there is an advantage that it can cope with a case where the power supply voltage is large. Here, it is preferable to make impedance matching by making (R1 + R2 / 2) equal to Zo of the transmission line. The embodiment of FIG. 7 is a circuit in which the potential at the receiving end can be adjusted by adjusting the resistors 75a and 75b. Thereby, it is possible to match the input bias level of the amplifier 19 at the subsequent stage. Also in this case, in order to achieve matching with the transmission line 14, it is preferable to make the parallel resistance value of R3 and R4 equal to Zo.
According to the present embodiment, there is an effect that it is possible to cope with various conditions of the input amplifier with a simple configuration of the terminating resistor.

他の実施例を図8に、また信号のタイミング図を図9に示す。図8のメインドライバ80およびサブドライバ86の構成は、ほとんど図1の実施例と同じであるが、サブドライバのデータ入力部が一部異なる。すなはち、サブドライバ86内の4ケのトランジスタを個別に制御するようにしたものである。制御信号EmRN,EmRP,EmFNおよびEmFPは、例えば図9のタイミングで入力される。EmRPおよびEmRNはデータDiPの立上り時に被制御トランジスタをオンさせ、それ以外のときはオフ状態にする。また、EmFNおよびEmFPは、上記と逆にDiPの立下り時に動作する。この制御により、出力DoNおよびDoPとして、図9の波形のように立上りおよび立下りエッジが強調された波形が得られる。   FIG. 8 shows another embodiment, and FIG. 9 shows a timing diagram of signals. The configuration of the main driver 80 and the sub driver 86 of FIG. 8 is almost the same as that of the embodiment of FIG. 1, but the data input part of the sub driver is partially different. That is, four transistors in the sub-driver 86 are individually controlled. The control signals EmRN, EmRP, EmFN and EmFP are input, for example, at the timing shown in FIG. EmRP and EmRN turn on the controlled transistor when the data DiP rises, and turn it off otherwise. Further, EmFN and EmFP operate when DiP falls, contrary to the above. By this control, as the outputs DoN and DoP, a waveform in which rising and falling edges are emphasized as in the waveform of FIG. 9 is obtained.

本実施例によれば、サブドライバが入力データの立上りおよび立下りエッジの短い瞬間に動作し、それ以外のときにはオフ状態とすることができるため、消費電力を低減できるという効果を奏する。   According to the present embodiment, the sub-driver operates at the moment when the rising and falling edges of the input data are short, and can be turned off at other times, so that the power consumption can be reduced.

本発明によれば、微細CMOSによる低電圧・低電力動作が可能で、また、簡単な回路校正の高速データ伝送回路が実現できる。よって、本発明は、一つの集積回路内に多数の上記回路を実装し、数Gbpsクラスのデータ伝送システムを経済的に構築することが要求されるような、例えば、近年、需要が急増しているストレージ、サーバ、あるいはルータ等への産業上の利用可能性を有する。   According to the present invention, a low-voltage and low-power operation by a fine CMOS is possible, and a high-speed data transmission circuit with simple circuit calibration can be realized. Therefore, the present invention is required to mount a large number of the above circuits in one integrated circuit and economically construct a data transmission system of several Gbps class. Industrial applicability to storage, servers, routers, etc.

本発明の実施例2のプリエンファシス機能付データ伝送回路を示す図。The figure which shows the data transmission circuit with a pre-emphasis function of Example 2 of this invention. 図1のデータ伝送回路の各部の信号波形を示す図。The figure which shows the signal waveform of each part of the data transmission circuit of FIG. 本発明の実施例1のブリッジ型出力ドライバによる伝送回路を示す図。The figure which shows the transmission circuit by the bridge type output driver of Example 1 of this invention. 本発明の実施例3のプリエンファシス機能付データ伝送回路を示す図。The figure which shows the data transmission circuit with a pre-emphasis function of Example 3 of this invention. 本発明の実施例4のプリエンファシス機能付データ伝送回路を示す図。The figure which shows the data transmission circuit with a pre-emphasis function of Example 4 of this invention. 本発明の実施例5の終端抵抗の第1の設置例を示す図。The figure which shows the 1st example of installation of the termination resistance of Example 5 of this invention. 本発明の実施例5の終端抵抗の第2の設置例を示す図。The figure which shows the 2nd example of installation of the termination resistance of Example 5 of this invention. 本発明の実施例6のプリエンファシス機能付データ伝送回路を示す図。The figure which shows the data transmission circuit with a pre-emphasis function of Example 6 of this invention. 図8のデータ伝送回路の各部の信号波形を示す図。The figure which shows the signal waveform of each part of the data transmission circuit of FIG. 従来のプリエンファシス機能付データ伝送回路を示す図。The figure which shows the conventional data transmission circuit with a pre-emphasis function. 従来のブリッジ型出力ドライバによる伝送回路を示す図。The figure which shows the transmission circuit by the conventional bridge type output driver.

符号の説明Explanation of symbols

10、30、40、80、100、110:メインドライバ回路
16、46、66、106:プリエンファシス用サブドライバ回路
14:伝送線路
15、35、65a、65b、75a、75b、105、115:終端抵抗
19、39:受信用アンプ
11a、11b、12a、12b、17a、17b、18a、18b、31a、31b、32a、32b、41、42、47、48、81、82、87、88、:MOSトランジスタ
13、19、33a、33b、83、89:抵抗
43、49:可変抵抗
51:遅延回路
52:選択回路
101、107:差動トランジスタ
102、108、113:定電流源
103:ドライバの負荷抵抗。
10, 30, 40, 80, 100, 110: Main driver circuit 16, 46, 66, 106: Sub-driver circuit for pre-emphasis 14: Transmission line 15, 35, 65a, 65b, 75a, 75b, 105, 115: Termination Resistors 19, 39: Receiving amplifiers 11a, 11b, 12a, 12b, 17a, 17b, 18a, 18b, 31a, 31b, 32a, 32b, 41, 42, 47, 48, 81, 82, 87, 88: MOS Transistors 13, 19, 33a, 33b, 83, 89: Resistors 43, 49: Variable resistors 51: Delay circuit 52: Selection circuit 101, 107: Differential transistors 102, 108, 113: Constant current source 103: Load resistance of driver .

Claims (8)

1対のデジタルデータ差動入力端子と1対の差動出力端子とを有する出力ドライバ回路と、
上記1対の差動出力端子に接続された1対の伝送線路と、
上記1対の伝送線路の終端の間に設けられた終端抵抗とを具備して成り、
上記出力ドライバ回路は、
正電源にソース端子が接続されたP型トランジスタと、接地電源にソース端子が接続されたN型トランジスタとのドレイン同士およびゲート同士が接続された回路を2組有して成る差動対と、
上記差動対の2つのドレイン端子に接続された1対の抵抗とを含んで成り、
上記1対のデジタルデータ差動入力端子は上記差動対のゲート端子に接続され、上記1対の差動出力端子は上記1対の抵抗の上記ドレイン端子とは反対側の端子に接続されていることを特徴とするデジタルデータ伝送回路。
An output driver circuit having a pair of digital data differential input terminals and a pair of differential output terminals;
A pair of transmission lines connected to the pair of differential output terminals;
A termination resistor provided between the terminations of the pair of transmission lines,
The output driver circuit is
A differential pair comprising two sets of circuits in which drains and gates of a P-type transistor having a source terminal connected to a positive power supply and an N-type transistor having a source terminal connected to a ground power supply are connected;
A pair of resistors connected to the two drain terminals of the differential pair,
The pair of digital data differential input terminals are connected to gate terminals of the differential pair, and the pair of differential output terminals are connected to terminals opposite to the drain terminals of the pair of resistors. A digital data transmission circuit characterized by comprising:
請求項1において、
上記出力ドライバ回路と同様の回路構成を有し、かつ、駆動能力が小さいサブドライバ回路を更に具備して成り、
上記出力ドライバ回路と上記サブドライバ回路との出力端子同士が接続され、
上記サブドライバ回路の差動入力端子に上記出力ドライバ回路の入力データの遅延信号が入力されるよう構成され、
上記入力データの少なくとも立上り時および立下り時に上記出力ドライバ回路と上記サブドライバ回路との出力信号同士が加算されるよう構成されていることを特徴とするデジタルデータ伝送回路。
In claim 1,
Further comprising a sub-driver circuit having a circuit configuration similar to that of the output driver circuit and having a small driving capability,
The output terminals of the output driver circuit and the sub driver circuit are connected to each other,
A delay signal of input data of the output driver circuit is input to the differential input terminal of the sub driver circuit,
A digital data transmission circuit configured to add output signals of the output driver circuit and the sub-driver circuit at least at the time of rising and falling of the input data.
請求項1または2のいずれかにおいて、
上記出力ドライバ回路の出力端子から上記出力ドライバ回路側を見た場合のインピーダンスが、上記伝送線路の特性インピーダンスに整合したインピーダンスとなっていることを特徴とするデジタルデータ伝送回路。
In either claim 1 or 2,
The digital data transmission circuit, wherein an impedance when the output driver circuit side is viewed from an output terminal of the output driver circuit is an impedance matched with a characteristic impedance of the transmission line.
請求項2において、
上記サブドライバ回路の出力抵抗が可変であり、上記デジタルデータ伝送回路の出力信号振幅が可変であることを特徴とするデジタルデータ伝送回路。
In claim 2,
An output resistance of the sub driver circuit is variable, and an output signal amplitude of the digital data transmission circuit is variable.
請求項2において、
上記サブドライバ回路の入力端子と上記出力ドライバ回路の入力端子との間に選択回路を具備して成り、
上記選択回路の一方の入力端子には上記出力ドライバ回路の入力端子からの入力データが入力され、上記選択回路の他方の入力端子には上記入力データを逆極性にしたデータが遅延回路を介して入力され、
上記出力ドライバ回路の出力インピーダンスを変化させることなくプリエンファシス機能のオン・オフを制御できるよう構成されていることを特徴とするデジタルデータ伝送回路。
In claim 2,
Comprising a selection circuit between the input terminal of the sub-driver circuit and the input terminal of the output driver circuit;
The input data from the input terminal of the output driver circuit is input to one input terminal of the selection circuit, and the data having the reverse polarity of the input data is input to the other input terminal of the selection circuit via the delay circuit. Entered,
A digital data transmission circuit configured to control on / off of a pre-emphasis function without changing an output impedance of the output driver circuit.
請求項1において、
上記終端抵抗は分圧型であり、上記伝送線路の側から見た場合のインピーダンスを上記伝送線路の特性インピーダンスに整合させながら、受信アンプへの入力信号振幅を調整できるよう構成されていることを特徴とするデジタルデータ伝送回路。
In claim 1,
The termination resistor is a voltage dividing type, and is configured to adjust the amplitude of the input signal to the reception amplifier while matching the impedance when viewed from the transmission line side with the characteristic impedance of the transmission line. Digital data transmission circuit.
請求項1において、
上記終端抵抗は、1対の上記伝送線路と正電源との間に並列接続された第1の1対の抵抗と、1対の上記伝送線路と接地電源との間に並列接続された第2の1対の抵抗とを含んで成り、
上記第1および第2の1対の抵抗の並列値を上記伝送線路の特性インピーダンスに整合させながら、受信アンプへの入力信号バイアス電位を調整できるよう構成されていることを特徴とするデジタルデータ伝送回路。
In claim 1,
The termination resistor includes a first pair of resistors connected in parallel between the pair of transmission lines and the positive power source, and a second pair connected in parallel between the pair of transmission lines and the ground power source. A pair of resistors,
Digital data transmission characterized in that the input signal bias potential to the receiving amplifier can be adjusted while matching the parallel value of the first and second pair of resistors with the characteristic impedance of the transmission line. circuit.
請求項2において、
上記サブドライバ回路を構成する4つのトランジスタのゲートは、それぞれ独立の入力端子に接続され、上記出力ドライバ回路の入力端子からの入力データの立上り時および立下り時にトランジスタがオンするよう構成されていることを特徴とするデジタルデータ伝送回路。
In claim 2,
The gates of the four transistors constituting the sub driver circuit are connected to independent input terminals, respectively, so that the transistors are turned on at the time of rising and falling of input data from the input terminal of the output driver circuit. A digital data transmission circuit characterized by that.
JP2004024995A 2004-02-02 2004-02-02 Digital data transmission circuit Pending JP2005217999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024995A JP2005217999A (en) 2004-02-02 2004-02-02 Digital data transmission circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024995A JP2005217999A (en) 2004-02-02 2004-02-02 Digital data transmission circuit

Publications (1)

Publication Number Publication Date
JP2005217999A true JP2005217999A (en) 2005-08-11

Family

ID=34907499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024995A Pending JP2005217999A (en) 2004-02-02 2004-02-02 Digital data transmission circuit

Country Status (1)

Country Link
JP (1) JP2005217999A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060808A (en) * 2004-08-16 2006-03-02 Samsung Electronics Co Ltd Method for loopbacking adaptive preemphasis data transmission and transmitter
JP2006279268A (en) * 2005-03-28 2006-10-12 Nec Corp Output buffer circuit
JP2006311446A (en) * 2005-05-02 2006-11-09 Thine Electronics Inc Transmitter
JP2007081608A (en) * 2005-09-13 2007-03-29 Nec Electronics Corp Output buffer circuit
KR100729209B1 (en) * 2006-06-28 2007-06-19 한국과학기술원 Transmitter with passive pre-emphasis circuit
JP2007158677A (en) * 2005-12-05 2007-06-21 Ricoh Co Ltd Electric signal output apparatus, semiconductor laser modulation drive unit, and image forming apparatus
JP2007158513A (en) * 2005-12-01 2007-06-21 Ricoh Co Ltd Electric signal output apparatus, semiconductor laser modulation drive unit, and image forming apparatus
JP2007251469A (en) * 2006-03-15 2007-09-27 Hitachi Ltd Output buffer circuit and differential output buffer circuit, and transmission method
JP2007325272A (en) * 2006-06-01 2007-12-13 Fujitsu Ltd Low-voltage differential signal driver, and method and system for driving low-voltage differential signal
WO2008023615A1 (en) * 2006-08-24 2008-02-28 Advantest Corporation Testing apparatus and device manufacturing method using the testing apparatus
JP2008054034A (en) * 2006-08-24 2008-03-06 Sony Corp Driving circuit
WO2009013814A1 (en) * 2007-07-24 2009-01-29 Fujitsu Limited Semiconductor device
JP2009021705A (en) * 2007-07-10 2009-01-29 Elpida Memory Inc Calibration circuit and semiconductor device having same, and memory module
JP2009093179A (en) * 2007-10-10 2009-04-30 Anapass Inc Display drive device capable of reducing distortion of signal and/or power consumption, and display device including the same
US7538573B2 (en) 2006-02-28 2009-05-26 Samsung Electronics Co., Ltd. Dynamic output buffer circuit
JP2009147512A (en) * 2007-12-12 2009-07-02 Yokogawa Electric Corp Pre-emphasis circuit
JP2009164718A (en) * 2007-12-28 2009-07-23 Hitachi Ltd Output buffer circuit, differential output buffer circuit, adjustment circuit, output buffer circuit with adjustment function, and transmission method
JP2010120300A (en) * 2008-11-20 2010-06-03 Canon Inc Image forming device
JP2010157786A (en) * 2008-12-26 2010-07-15 Sorbus Memory Inc Multi-valued logical driver
JP2010283453A (en) * 2009-06-02 2010-12-16 Renesas Electronics Corp Output circuit having pre-emphasis function
US7902872B2 (en) 2006-08-23 2011-03-08 Samsung Electronics Co., Ltd. Data transmitters and methods thereof
JP2011166260A (en) * 2010-02-05 2011-08-25 Hitachi Ltd Output driver circuit
JP2011199822A (en) * 2010-03-17 2011-10-06 Lsi Corp Automatic de-emphasis setting for driving capacitive backplane
JP2011239467A (en) * 2011-07-29 2011-11-24 Hitachi Ltd Output buffer circuit
JP2012034417A (en) * 2006-06-20 2012-02-16 Panasonic Corp Pulse modulation circuit and pulse modulation method
JP2012060214A (en) * 2010-09-06 2012-03-22 Sony Corp Driver amplifier circuit and communication system
KR101139633B1 (en) * 2010-08-04 2012-05-15 성균관대학교산학협력단 Voltage regulator for impedance matching and pre-emphasis, method of regulating voltage for impedance matching and pre-emphasis, voltage mode driver including the voltage regulator and voltage-mode driver using the method
KR101160410B1 (en) * 2009-04-22 2012-06-28 가부시키가이샤 어드밴티스트 Driver comparator circuit and test apparatus using thesame
EP2521265A1 (en) * 2011-05-06 2012-11-07 Altera Corporation Apparatus and methods of reducing pre-emphasis voltage jitter
JP2013046332A (en) * 2011-08-26 2013-03-04 Renesas Electronics Corp Semiconductor device
CN103262420A (en) * 2010-12-14 2013-08-21 高通股份有限公司 Pre-emphasis technique for on-hip voltage-driven single-ended-termination drivers
US8599944B2 (en) 2006-06-20 2013-12-03 Panasonic Corporation Pulse modulation circuit and pulse modulation method
US8786323B2 (en) 2012-04-03 2014-07-22 Samsung Electronics Co., Ltd. Driver with resistance calibration capability
JP2016072366A (en) * 2014-09-29 2016-05-09 沖電気工業株式会社 driver
JP2016139987A (en) * 2015-01-28 2016-08-04 株式会社東芝 Transmission circuit and communication system
WO2016185847A1 (en) * 2015-05-18 2016-11-24 長瀬産業株式会社 Input/output interface circuit
WO2018063517A1 (en) * 2016-09-28 2018-04-05 Intel Corporation High speed driver with adaptive termination impedance
JP2018082504A (en) * 2013-08-08 2018-05-24 クアルコム,インコーポレイテッド N-phase signal transition alignment
US10289600B2 (en) 2013-08-08 2019-05-14 Qualcomm Incorporated Reducing transmitter encoding jitter in a C-PHY interface using multiple clock phases to launch symbols
JP2019114944A (en) * 2017-12-25 2019-07-11 株式会社メガチップス Transmission circuit and control method of transmission circuit
JP2019114943A (en) * 2017-12-25 2019-07-11 株式会社メガチップス Transmission circuit and control method of transmission circuit
JP2020039172A (en) * 2014-03-25 2020-03-12 ソニー株式会社 Transmission device and communication system

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060808A (en) * 2004-08-16 2006-03-02 Samsung Electronics Co Ltd Method for loopbacking adaptive preemphasis data transmission and transmitter
JP2006279268A (en) * 2005-03-28 2006-10-12 Nec Corp Output buffer circuit
JP2006311446A (en) * 2005-05-02 2006-11-09 Thine Electronics Inc Transmitter
JP4578316B2 (en) * 2005-05-02 2010-11-10 ザインエレクトロニクス株式会社 Transmitter
JP2007081608A (en) * 2005-09-13 2007-03-29 Nec Electronics Corp Output buffer circuit
JP2007158513A (en) * 2005-12-01 2007-06-21 Ricoh Co Ltd Electric signal output apparatus, semiconductor laser modulation drive unit, and image forming apparatus
JP2007158677A (en) * 2005-12-05 2007-06-21 Ricoh Co Ltd Electric signal output apparatus, semiconductor laser modulation drive unit, and image forming apparatus
US7538573B2 (en) 2006-02-28 2009-05-26 Samsung Electronics Co., Ltd. Dynamic output buffer circuit
US8324925B2 (en) 2006-03-15 2012-12-04 Hitachi, Ltd. Output buffer circuit and differential output buffer circuit, and transmission method
JP2007251469A (en) * 2006-03-15 2007-09-27 Hitachi Ltd Output buffer circuit and differential output buffer circuit, and transmission method
JP2007325272A (en) * 2006-06-01 2007-12-13 Fujitsu Ltd Low-voltage differential signal driver, and method and system for driving low-voltage differential signal
JP2012034417A (en) * 2006-06-20 2012-02-16 Panasonic Corp Pulse modulation circuit and pulse modulation method
US8599944B2 (en) 2006-06-20 2013-12-03 Panasonic Corporation Pulse modulation circuit and pulse modulation method
KR100729209B1 (en) * 2006-06-28 2007-06-19 한국과학기술원 Transmitter with passive pre-emphasis circuit
US7902872B2 (en) 2006-08-23 2011-03-08 Samsung Electronics Co., Ltd. Data transmitters and methods thereof
KR101216405B1 (en) 2006-08-24 2012-12-28 가부시키가이샤 어드밴티스트 Testing apparatus and device manufacturing method using the testing apparatus
JPWO2008023615A1 (en) * 2006-08-24 2010-01-07 株式会社アドバンテスト Test apparatus and device manufacturing method using the test apparatus
US8239147B2 (en) * 2006-08-24 2012-08-07 Advantest Corporation Test apparatus and manufacturing method
JP2008054034A (en) * 2006-08-24 2008-03-06 Sony Corp Driving circuit
WO2008023615A1 (en) * 2006-08-24 2008-02-28 Advantest Corporation Testing apparatus and device manufacturing method using the testing apparatus
JP2009021705A (en) * 2007-07-10 2009-01-29 Elpida Memory Inc Calibration circuit and semiconductor device having same, and memory module
WO2009013814A1 (en) * 2007-07-24 2009-01-29 Fujitsu Limited Semiconductor device
JP2009093179A (en) * 2007-10-10 2009-04-30 Anapass Inc Display drive device capable of reducing distortion of signal and/or power consumption, and display device including the same
JP2009147512A (en) * 2007-12-12 2009-07-02 Yokogawa Electric Corp Pre-emphasis circuit
JP2009164718A (en) * 2007-12-28 2009-07-23 Hitachi Ltd Output buffer circuit, differential output buffer circuit, adjustment circuit, output buffer circuit with adjustment function, and transmission method
US8477170B2 (en) 2008-11-20 2013-07-02 Canon Kabushiki Kaisha Image forming apparatus with shared line for horizontal synchronization signal
JP2010120300A (en) * 2008-11-20 2010-06-03 Canon Inc Image forming device
JP2010157786A (en) * 2008-12-26 2010-07-15 Sorbus Memory Inc Multi-valued logical driver
KR101160410B1 (en) * 2009-04-22 2012-06-28 가부시키가이샤 어드밴티스트 Driver comparator circuit and test apparatus using thesame
JP2010283453A (en) * 2009-06-02 2010-12-16 Renesas Electronics Corp Output circuit having pre-emphasis function
JP2011166260A (en) * 2010-02-05 2011-08-25 Hitachi Ltd Output driver circuit
JP2011199822A (en) * 2010-03-17 2011-10-06 Lsi Corp Automatic de-emphasis setting for driving capacitive backplane
KR101139633B1 (en) * 2010-08-04 2012-05-15 성균관대학교산학협력단 Voltage regulator for impedance matching and pre-emphasis, method of regulating voltage for impedance matching and pre-emphasis, voltage mode driver including the voltage regulator and voltage-mode driver using the method
JP2012060214A (en) * 2010-09-06 2012-03-22 Sony Corp Driver amplifier circuit and communication system
CN103262420A (en) * 2010-12-14 2013-08-21 高通股份有限公司 Pre-emphasis technique for on-hip voltage-driven single-ended-termination drivers
JP2015062296A (en) * 2010-12-14 2015-04-02 クゥアルコム・インコーポレイテッドQualcomm Incorporated Pre-emphasis technique for on-chip voltage-driven single-ended-termination drivers
EP2521265A1 (en) * 2011-05-06 2012-11-07 Altera Corporation Apparatus and methods of reducing pre-emphasis voltage jitter
JP2011239467A (en) * 2011-07-29 2011-11-24 Hitachi Ltd Output buffer circuit
CN102957420B (en) * 2011-08-26 2017-03-01 瑞萨电子株式会社 Semiconductor device
JP2013046332A (en) * 2011-08-26 2013-03-04 Renesas Electronics Corp Semiconductor device
CN102957420A (en) * 2011-08-26 2013-03-06 瑞萨电子株式会社 Semiconductor device
US8786323B2 (en) 2012-04-03 2014-07-22 Samsung Electronics Co., Ltd. Driver with resistance calibration capability
KR101874584B1 (en) 2012-04-03 2018-07-04 삼성전자주식회사 Voltage Mode Driver
JP2018082504A (en) * 2013-08-08 2018-05-24 クアルコム,インコーポレイテッド N-phase signal transition alignment
US10289600B2 (en) 2013-08-08 2019-05-14 Qualcomm Incorporated Reducing transmitter encoding jitter in a C-PHY interface using multiple clock phases to launch symbols
US11096174B2 (en) 2014-03-25 2021-08-17 Sony Corporation Transmitter and communication system
JP2020039172A (en) * 2014-03-25 2020-03-12 ソニー株式会社 Transmission device and communication system
JP2016072366A (en) * 2014-09-29 2016-05-09 沖電気工業株式会社 driver
JP2016139987A (en) * 2015-01-28 2016-08-04 株式会社東芝 Transmission circuit and communication system
JP2016219948A (en) * 2015-05-18 2016-12-22 長瀬産業株式会社 I/o interface circuit
WO2016185847A1 (en) * 2015-05-18 2016-11-24 長瀬産業株式会社 Input/output interface circuit
WO2018063517A1 (en) * 2016-09-28 2018-04-05 Intel Corporation High speed driver with adaptive termination impedance
US10355690B2 (en) 2016-09-28 2019-07-16 Intel Corporation High speed driver with adaptive termination impedance
JP2019114944A (en) * 2017-12-25 2019-07-11 株式会社メガチップス Transmission circuit and control method of transmission circuit
JP2019114943A (en) * 2017-12-25 2019-07-11 株式会社メガチップス Transmission circuit and control method of transmission circuit
JP7049826B2 (en) 2017-12-25 2022-04-07 株式会社メガチップス Transmission circuit and control method of the transmission circuit
JP7051425B2 (en) 2017-12-25 2022-04-11 株式会社メガチップス Transmission circuit and control method of the transmission circuit

Similar Documents

Publication Publication Date Title
JP2005217999A (en) Digital data transmission circuit
JP5235083B2 (en) Emphasis / de-emphasis method and output driver circuit
US9746864B1 (en) Fast transient low drop-out voltage regulator for a voltage-mode driver
US8258813B2 (en) Circuit and method for driving at least one differential line
US20070057702A1 (en) Output buffer circuit
JP4206731B2 (en) Transceiver and high-speed operation interface system having the same
US8487700B2 (en) Pre-driver and digital transmitter using the same
JPH07297678A (en) Cmos termination resistance circuit
US7339421B2 (en) Differential circuit and receiver with same
US20110163791A1 (en) Output circuit and semiconductor device including pre-emphasis function
US7583752B2 (en) Transmitter for outputting differential signals of different voltage levels
US8674725B2 (en) Transmitter circuit
KR20180042396A (en) Transmitter circuit and method for generating a modulated signal at a transmitter
US6522174B2 (en) Differential cascode current mode driver
JP5184670B2 (en) Differential output buffer
US6646482B2 (en) Variable drive current driver circuit
US8427204B2 (en) Mixed-mode input buffer
JP4237402B2 (en) Output buffer for symmetric transmission line drive
JP4097149B2 (en) Differential drive circuit and electronic device incorporating the same
US20180102921A1 (en) Transmitter and system including the same
US20080136465A1 (en) Semiconductor integrated circuit
JP2009171403A (en) Differential transmitter
US20070252624A1 (en) Output driver having pre-emphasis capability
US7148726B2 (en) Digital signal buffer circuit
JP4775308B2 (en) Semiconductor device having circuit block transmission / reception circuit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424