JP2005216974A - Method for controlling move of moving block in electronic component mounting device, and matrix board used therefor - Google Patents

Method for controlling move of moving block in electronic component mounting device, and matrix board used therefor Download PDF

Info

Publication number
JP2005216974A
JP2005216974A JP2004019083A JP2004019083A JP2005216974A JP 2005216974 A JP2005216974 A JP 2005216974A JP 2004019083 A JP2004019083 A JP 2004019083A JP 2004019083 A JP2004019083 A JP 2004019083A JP 2005216974 A JP2005216974 A JP 2005216974A
Authority
JP
Japan
Prior art keywords
component
substrate
camera
optical axis
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004019083A
Other languages
Japanese (ja)
Other versions
JP4371832B2 (en
Inventor
Yuuki Kataoka
友希 片岡
Mizuho Nozawa
瑞穂 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2004019083A priority Critical patent/JP4371832B2/en
Publication of JP2005216974A publication Critical patent/JP2005216974A/en
Application granted granted Critical
Publication of JP4371832B2 publication Critical patent/JP4371832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To correct a positional relation between a measuring camera which is used to measure a transfer error of a moving block, and a component picking part of a component transfer unit which is mounted to replace the measuring camera upon mounting a component, to mount the component picked by the component picking part accurately at a prescribed position on a board. <P>SOLUTION: The moving block 24 is moved to a prescribed position (a distance X2 and a distance Y2), where the moving block 24 is stopped to be located. As a reference gauge G is placed on the top member of a component recognizing camera, distances Xa, Ya between an optical axis O4 and a reference mark Gm are measured using the measuring camera, and distances Xb, Yb between an optical axis O2 and the reference mark Gm are measured using the component recognizing camera. Then the measuring camera is replaced with the component transfer unit 26, and distances Xc, Yc between the optical axis O2 and the center of a suction nozzle O3 are measured using the component recognizing camera 15, as the moving block is kept stationary at the prescribed position. Based on the above measured distances, a positional relation (X1, Y1) between the suction nozzle center O3 and the optical axis O4 is calculated to correct a transfer error of the moving block. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基板に電子部品を実装するための電子部品実装装置における移動台の移動制御方法およびその方法に用いられるマトリックス基板に関する。   The present invention relates to a movement control method of a moving table in an electronic component mounting apparatus for mounting electronic components on a substrate, and a matrix substrate used in the method.

電子部品実装装置において、電子部品を保持して実装する部品移載装置を交換可能とし、部品実装ラインの現場で作業者が短時間で部品移載装置を交換できるようにすることにより、生産される基板の小型電子部品と大型電子部品の割合、および部品の種類に応じた最適な部品実装ラインを構築する方法が提案されている。   Produced by making it possible to replace the component transfer device that holds and mounts the electronic component in the electronic component mounting device, and to allow the operator to replace the component transfer device in a short time at the site of the component mounting line. There has been proposed a method for constructing an optimal component mounting line according to the ratio of small electronic components to large electronic components on the board and the type of components.

この種の電子部品実装装置では、例えば図1に示すように、基台11に対しXおよびYの2方向に移動可能に支持された移動台24に部品実装ヘッド28を有する部品移載装置26および基板認識用カメラ25が設けられ、基台11には部品認識用カメラ15が固定されている。そして電子部品実装装置10は基板搬送装置12により搬入されて位置決め保持された基板S上に設けられた基板マークSmの位置を基板認識用カメラ25により検出し、この基板マークSmの位置に基づいて位置補正を行ってスライド21および移動台24をX方向およびY方向に移動して、部品供給装置13から部品実装ヘッド28の吸着ノズル29の先端に吸着した部品Pを基板S上の所定の座標位置に実装している。また吸着ノズル29の先端に吸着した部品Pを部品供給装置13から基板S上の所定の座標位置に移動する途中に、吸着ノズル29を部品認識用カメラ15で一旦停止させ、吸着ノズル29の中心線O3(以下、吸着ノズル中心線O3ともいう。)に対する部品Pの芯ずれを部品認識用カメラ15により検出し、これによってもスライド21および移動台24の移動量を補正して、部品Pが基板S上の座標位置に実装されるようにしている。   In this type of electronic component mounting apparatus, for example, as shown in FIG. 1, a component transfer apparatus 26 having a component mounting head 28 on a movable table 24 supported so as to be movable in two directions X and Y with respect to the base 11. The board recognition camera 25 is provided, and the component recognition camera 15 is fixed to the base 11. Then, the electronic component mounting apparatus 10 detects the position of the board mark Sm provided on the board S that has been carried and positioned by the board conveying apparatus 12 by the board recognition camera 25, and based on the position of the board mark Sm. The position P is corrected, the slide 21 and the moving table 24 are moved in the X direction and the Y direction, and the component P sucked to the tip of the suction nozzle 29 of the component mounting head 28 from the component supply device 13 is set to predetermined coordinates on the substrate S. Implemented in position. Further, while the component P sucked at the tip of the suction nozzle 29 is moved from the component supply device 13 to a predetermined coordinate position on the substrate S, the suction nozzle 29 is temporarily stopped by the component recognition camera 15 and the center of the suction nozzle 29 is stopped. The component misalignment of the component P with respect to the line O3 (hereinafter also referred to as the suction nozzle centerline O3) is detected by the component recognition camera 15, and this also corrects the movement amount of the slide 21 and the moving table 24, so that the component P It is designed to be mounted at a coordinate position on the substrate S.

ところが、基板マークSmの位置に基づく位置補正および部品Pの芯ずれによる移動量の補正を行ったうえで、スライド21および移動台24を移動しても基板S上の実装する位置に正確に部品が位置決めできないことがあった。   However, after the position correction based on the position of the substrate mark Sm and the correction of the movement amount due to the misalignment of the component P, the component is accurately placed at the mounting position on the substrate S even if the slide 21 and the moving table 24 are moved. Could not be positioned.

これは、スライド21および移動台24にピッチング、ヨーイングおよび直角度ずれを要因とする送り誤差があることによるものであり、この送り誤差を解消するためには、定期的に送り精度の誤差を測定して位置補正をすることが必要であった。   This is because the slide 21 and the moving table 24 have feed errors caused by pitching, yawing and perpendicularity deviation, and in order to eliminate this feed error, the error of feed accuracy is measured periodically. It was necessary to correct the position.

このため、従来では、送り誤差を測定して位置補正するのに例えば特許文献1に記載された技術が用いられていた。この特許文献1に記載された技術では、電子部品実装装置の移動台上の部品移載装置が取り付けられた位置に、部品移載装置に替えて測定カメラを取り付け、位置決め保持された座標基準用の基板の各作業位置の座標を測定カメラおよび基板認識用カメラで検出し、これら各カメラで検出された各作業位置の座標に基づいて再び移動台に部品移載装置を取り付けたときの部品移載装置の真下の作業位置の座標を補正して求め、スライドおよび移動台を移動制御している。   For this reason, conventionally, for example, the technique described in Patent Document 1 has been used to measure the feed error and correct the position. In the technique described in Patent Document 1, a measurement camera is attached in place of the component transfer device at the position where the component transfer device is mounted on the moving table of the electronic component mounting device, and the coordinate reference is held. The coordinates of each work position of the board are detected by the measurement camera and the board recognition camera, and the parts transfer when the parts transfer device is attached to the moving table again based on the coordinates of the work positions detected by these cameras. The coordinates of the work position directly under the mounting device are corrected and obtained, and the movement of the slide and the moving table is controlled.

この方法によれば、スライドおよび移動台の送り誤差に影響されることなく部品移載装置を移動できる利点が得られる。
特開平9−186489号公報(第3頁段落番号0015から0018,図2,図6)
According to this method, there is an advantage that the component transfer device can be moved without being affected by the feed error of the slide and the moving table.
Japanese Patent Laid-Open No. 9-186589 (paragraph numbers 0015 to 0018 on the third page, FIGS. 2 and 6)

しかしながら、この特許文献1に記載された方法では、部品移載装置に替えて取り付けた測定カメラで検出した各作業位置の座標に基づいて送り精度の誤差を補正した後、部品を実装するときに再び測定カメラと部品移載装置を交換するようにしている。このため、部品移載装置の吸着ノズルの中心と測定カメラの光軸とにズレが生じてしまい部品Pを正確に実装できない問題があった。   However, in the method described in Patent Document 1, when the component is mounted after correcting the error of the feeding accuracy based on the coordinates of each work position detected by the measurement camera attached instead of the component transfer device. The measurement camera and the parts transfer device are exchanged again. For this reason, there has been a problem that the center of the suction nozzle of the component transfer device and the optical axis of the measurement camera are displaced, and the component P cannot be mounted accurately.

本発明は、電子部品実装装置において、測定カメラで送り誤差を求めた後、測定カメラに替えて部品移載装置を取り付けても、吸着ノズルに吸着された部品を正確に基板の実装位置に実装できるようにするものである。   In the electronic component mounting apparatus, after the feeding error is obtained by the measurement camera, the component sucked by the suction nozzle is accurately mounted at the mounting position of the board even if the component transfer device is installed instead of the measurement camera. It is something that can be done.

上記課題を解決するための請求項1に記載の発明の構成上の特徴は、基台に設けられて基板の搬入・搬出および位置決め保持を行う基板搬送装置と、前記基台に対しX方向およびY方向の2方向に移動可能に支持された移動台と、前記移動台の移動を制御する移動制御装置と、前記移動台に取り付けられて部品供給装置により供給された部品を部品採取部で採取して前記基板搬送装置上に位置決め支持された前記基板上に実装する部品移載装置と、光軸が前記部品採取部の中心線と所定間隔をおいて前記移動台に固定された基板認識用カメラと、前記基台に固定された部品認識用カメラを備えてなる電子部品実装装置において、測定カメラを部品移載装置に替えて固定し、前記所定間隔の整数分の一に細分化した間隔で互いに直交する仮想基線上の交点に割出しマークを付したマトリックス基板を前記各基線がX軸又はY軸と平行になるように前記基台に固定し、前記マトリックス基板の割出しマークに順次移動台を割り出し停止させ、各割出停止位置において前記基板認識用カメラおよび測定カメラでそれぞれ対応する割出しマークの各光軸からのX、Y誤差を測定し、これら測定されたX、Y誤差の差を前記各割出停止位置における補正値として記憶し、前記部品認識用カメラの視野内に入るように前記基台に設けられた基準マークが、前記測定カメラの視野内に入るように前記移動台を座標原点に対し所定位置に停止し、前記部品認識用カメラおよび測定カメラにより検出された各カメラの光軸と前記基準マークとの各位置関係に基づいて前記移動台が前記所定位置に位置するときの前記部品認識用カメラの光軸と前記測定カメラの光軸との位置関係を算出し、部品移載装置を前記測定カメラに替えて取り付け、前記移動台を前記所定位置に停止し、前記部品認識用カメラで前記部品認識用カメラの光軸と前記部品移載装置の部品採取部の中心線との位置関係を検出し、前記部品認識用カメラの光軸と前記測定カメラの光軸との位置関係および前記部品認識用カメラの光軸と部品採取部の中心線との位置関係から前記測定カメラの光軸と部品採取部の中心線との位置関係を算出して記憶し、前記基板搬送装置により位置決め保持された基板に対し、前記部品を前記部品採取部によって実装するとき、前記部品の実装位置を各割出停止位置における補正値および前記部品認識用カメラの光軸と部品採取部の中心線との位置関係に基づいて補正して前記移動台を移動することである。   The structural feature of the invention described in claim 1 for solving the above-described problems is that a substrate transfer device is provided on a base for carrying in / out and carrying out positioning and holding of the substrate, and in the X direction with respect to the base. The parts collection unit picks up the parts that are supported so as to be movable in two directions of the Y direction, the movement control device that controls the movement of the movements, and the parts that are attached to the parts and supplied by the parts supply device. And a component transfer device mounted on the substrate that is positioned and supported on the substrate transfer device, and a substrate recognition unit in which an optical axis is fixed to the moving table at a predetermined interval from a center line of the component sampling unit. In an electronic component mounting apparatus comprising a camera and a component recognition camera fixed to the base, the measurement camera is replaced with a component transfer device and fixed, and the interval is subdivided into an integer of the predetermined interval Virtual groups orthogonal to each other A matrix substrate with an index mark at the upper intersection is fixed to the base so that each base line is parallel to the X-axis or Y-axis, and the moving table is sequentially indexed and stopped at the index mark on the matrix substrate. Then, at each index stop position, the substrate recognition camera and the measurement camera measure the X and Y errors from the respective optical axes of the corresponding index marks, and the difference between these measured X and Y errors is measured for each index. Stored as a correction value at the exit stop position, the reference mark provided on the base so as to be within the field of view of the component recognition camera is set to the coordinate origin so that the reference mark is within the field of view of the measurement camera. On the other hand, it stops at a predetermined position, and the moving base is positioned at the predetermined position based on the positional relationship between the optical axis of each camera and the reference mark detected by the component recognition camera and the measurement camera. Calculating the positional relationship between the optical axis of the component recognition camera and the optical axis of the measurement camera, attaching a component transfer device instead of the measurement camera, stopping the moving table at the predetermined position, The component recognition camera detects the positional relationship between the optical axis of the component recognition camera and the center line of the component sampling unit of the component transfer device, and the optical axis of the component recognition camera and the optical axis of the measurement camera And the positional relationship between the optical axis of the measurement camera and the center line of the component sampling unit is calculated and stored from the positional relationship between the optical axis of the component recognition camera and the center line of the component sampling unit, and the board When the component is mounted by the component sampling unit on the substrate that is positioned and held by the conveying device, the mounting position of the component is corrected at each index stop position, the optical axis of the component recognition camera, and the component sampling unit. The position of the center line It is to move the moving table is corrected based on the relationship.

上記課題を解決するための請求項2に記載の発明の構成上の特徴は、基台に設けられて基板の搬入・搬出および位置決め保持を行う基板搬送装置と、前記基台に対しX方向およびY方向の2方向に移動可能に支持された移動台と、前記移動台の移動を制御する移動制御装置と、前記移動台に取り付けられて部品供給装置により供給された部品を部品採取部で採取して前記基板搬送装置上に位置決め支持された前記基板上に実装する部品移載装置と、光軸が前記部品採取部の中心線と所定間隔をおいて前記移動台に固定された基板認識用カメラと、前記基台に固定された部品認識用カメラを備え、測定カメラを部品移載装置に替えて固定し、細分化した間隔で互いに直交する仮想基線上の各交点に割出しマークを付したマトリックス基板を前記各基線がX軸又はY軸と平行になるように前記基台に固定し、前記マトリックス基板の各割出しマークに順次移動台を割り出し停止させ、各割出停止位置において前記基板認識用カメラおよび測定カメラでそれぞれ対応する割出しマークの各光軸からのX、Y誤差を測定し、これら各カメラで測定された各割出マークと光軸のX、Y誤差に基づいて移動台の送り誤差を補正するようにした電子部品実装装置における移動台の移動制御方法に用いられるマトリックス基板であって、前記割出しマークの間隔を前記所定間隔の整数分の一倍にしたことにある。   The structural feature of the invention described in claim 2 for solving the above-described problems is that a substrate carrying device is provided on the base for carrying in / out and carrying out positioning and holding of the substrate, and in the X direction with respect to the base. The parts collection unit picks up the parts that are supported so as to be movable in two directions of the Y direction, the movement control device that controls the movement of the movements, and the parts that are attached to the parts and supplied by the parts supply device. And a component transfer device mounted on the substrate that is positioned and supported on the substrate transfer device, and a substrate recognition unit in which an optical axis is fixed to the moving table at a predetermined interval from a center line of the component sampling unit. It is equipped with a camera and a part recognition camera fixed to the base, and the measurement camera is fixed in place of the part transfer device, and an index mark is attached to each intersection point on the virtual base line that is orthogonal to each other at subdivided intervals. The matrix substrate The base line is fixed to the base so as to be parallel to the X-axis or Y-axis, the moving base is sequentially indexed and stopped at each index mark of the matrix substrate, and the substrate recognition camera and measurement are performed at each index stop position. The X and Y errors from the respective optical axes of the corresponding index marks are measured by the cameras, and the feed error of the moving table is calculated based on the X and Y errors of the respective index marks and optical axes measured by these cameras. It is a matrix substrate used in the movement control method of the moving table in the electronic component mounting apparatus to be corrected, wherein the interval between the index marks is set to be an integral number of the predetermined interval.

上記のように構成した請求項1に係る発明によれば、移動台の送り誤差の測定時に用いられる測定カメラと、部品実装時に測定カメラに替えて取り付けられる部品移載装置の部品採取部との位置関係を校正することができるので、部品採取部に採取された部品を基板の所定位置に正確に実装できる。   According to the invention according to claim 1 configured as described above, the measurement camera used when measuring the feed error of the moving table, and the component sampling unit of the component transfer device attached in place of the measurement camera when mounting the component Since the positional relationship can be calibrated, the components collected by the component collection unit can be accurately mounted at predetermined positions on the board.

上記のように構成した請求項2に係る発明によるマトリックス基板を用いることにより、移動台を各割出停止位置に停止したとき、測定カメラと基板認識用カメラが視野内に同時に割出しマークを捉えることができ、各カメラがそれぞれ割出しマークを撮像し、これら撮像した割出しマークと各カメラの光軸との誤差を同時に検出できるので、送り誤差の補正動作の時間を短縮することができる。   By using the matrix substrate according to the invention according to claim 2 configured as described above, when the movable table is stopped at each index stop position, the measurement camera and the substrate recognition camera simultaneously capture the index mark in the field of view. In addition, each camera captures an index mark, and an error between the captured index mark and the optical axis of each camera can be detected at the same time. Therefore, it is possible to shorten the time for a feed error correction operation.

以下に、図1〜図10に基づいて実施の形態に係る電子部品実装装置における校正方法および装置について説明する。この実施の形態が適用される図1に概略全体構造を示す電子部品実装装置10は、複数台並べて配置され部品実装ラインを構成する。各電子部品実装装置10の基台11上には、それぞれ基板S,SaをY方向に搬送する2個の基板搬送装置12,12aが設けられている。図示は省略したが、各電子部品実装装置10は、それぞれの基板搬送装置12,12aがY方向に連続されるように互いに隣接して配置され、各電子部品実装装置10の基板搬送装置12,12aは互いに連動して作動されて、各基板S,Saを隣の基板搬送装置12,12a上に順次送り込んで、所定位置に位置決め保持するようになっている。   Hereinafter, a calibration method and apparatus in the electronic component mounting apparatus according to the embodiment will be described with reference to FIGS. A plurality of electronic component mounting apparatuses 10 having a schematic overall structure shown in FIG. 1 to which this embodiment is applied are arranged side by side to constitute a component mounting line. On the base 11 of each electronic component mounting apparatus 10, two board transfer apparatuses 12 and 12 a that transfer the boards S and Sa in the Y direction are provided. Although not shown in the drawings, the electronic component mounting apparatuses 10 are arranged adjacent to each other so that the respective substrate transfer apparatuses 12 and 12a are continuous in the Y direction. 12a is operated in conjunction with each other so that the substrates S and Sa are sequentially fed onto the adjacent substrate transfer devices 12 and 12a, and are positioned and held at predetermined positions.

各基板搬送装置12,12aの上側には、Y方向に細長いスライド21が、Y方向と直交するX方向に延びる固定レール20により移動可能に案内支持されたテーブル30の下面に固定され、スライド21のX方向移動はボールねじを介してサーボモータ22により制御されている。スライド21の一側面には移動台24がY方向に移動可能に案内支持されて、その移動はボールねじを介してサーボモータ31により制御されている。移動台24には、基板認識用カメラ25および着脱可能な部品移載装置26が取り付けられている。   On the upper side of each substrate transfer device 12, 12 a, a slide 21 that is elongated in the Y direction is fixed to the lower surface of a table 30 that is movably guided and supported by a fixed rail 20 that extends in the X direction perpendicular to the Y direction. The movement in the X direction is controlled by a servo motor 22 via a ball screw. A movable table 24 is guided and supported on one side surface of the slide 21 so as to be movable in the Y direction, and the movement is controlled by a servo motor 31 via a ball screw. A substrate recognition camera 25 and a detachable component transfer device 26 are attached to the moving table 24.

また以下の説明では、スライド21および移動台24などの構造および作動は基板搬送装置12側についてのみ述べる。なお本発明は、2個の基板搬送装置を備えた電子部品実装装置10に限らず、1個の基板搬送装置を備えた電子部品実装装置10にも適用可能である。
移動台24に取り付けられる部品移載装置26は、移動台24に対して図2に示す如く測定カメラ23と交換可能である。電子部品実装装置10は、このように交換可能な部品移載装置26および測定カメラ23と、それ以外の全ての部分からなる装着装置基本部の2部分よりなるものである。
In the following description, the structure and operation of the slide 21 and the moving table 24 will be described only on the substrate transfer apparatus 12 side. In addition, this invention is applicable not only to the electronic component mounting apparatus 10 provided with the two board | substrate conveyance apparatuses but also to the electronic component mounting apparatus 10 provided with the one board | substrate conveyance apparatus.
The component transfer device 26 attached to the moving table 24 can be replaced with the measurement camera 23 as shown in FIG. The electronic component mounting apparatus 10 is composed of two parts: a component transfer apparatus 26 and a measurement camera 23 that can be exchanged in this way, and a mounting apparatus basic part including all other parts.

図1に示すように、部品移載装置26は、移動台24に着脱可能に取り付けられる支持ベース27と、この支持ベース27にX方向およびY方向と直角なZ方向に昇降可能に案内支持されてボールねじを介してサーボモータ32により昇降が制御される部品実装ヘッド28と、この部品実装ヘッド28から下方に突出して設けられて下端に部品Pを吸着保持する円筒状の吸着ノズル(部品採取部)29よりなるものである。この部品実装ヘッド28および吸着ノズル29の中心線O3はZ方向と平行であり、吸着ノズル29は部品実装ヘッド28に対し中心線O3回りに回転可能に支持されて、サーボモータ(図示省略)により回転角度が制御されるようになっている。基板認識用カメラ25は移動台24に固定されて故障などの場合を除き交換されることはなく、その光軸O1はZ方向と平行である。また、図2に示すように部品移載装置26に替えて移動台24に取り付けられる測定カメラ23は、基板認識用カメラ25と同等の機能を備え、その光軸O4はZ方向と平行である。   As shown in FIG. 1, the component transfer device 26 is supported by a support base 27 that is detachably attached to the moving table 24, and is supported by the support base 27 so as to be movable up and down in the Z direction perpendicular to the X direction and the Y direction. A component mounting head 28 whose elevation is controlled by a servo motor 32 via a ball screw, and a cylindrical suction nozzle (component sampling) that protrudes downward from the component mounting head 28 and holds the component P by suction. Part) 29. The center line O3 of the component mounting head 28 and the suction nozzle 29 is parallel to the Z direction, and the suction nozzle 29 is supported so as to be rotatable around the center line O3 with respect to the component mounting head 28 and is driven by a servo motor (not shown). The rotation angle is controlled. The substrate recognition camera 25 is fixed to the moving base 24 and is not replaced except in the case of a failure, and its optical axis O1 is parallel to the Z direction. Further, as shown in FIG. 2, the measurement camera 23 attached to the moving table 24 instead of the component transfer device 26 has the same function as the board recognition camera 25, and its optical axis O4 is parallel to the Z direction. .

電子部品実装装置10の一端側には、並んで設置された複数のフィーダよりなる部品供給装置13が設けられている。基板搬送装置12と部品供給装置13の間となる基台11上には、Z方向と平行な光軸O2を有する部品認識用カメラ15が設けられている。この部品認識用カメラ15は、図3に示すように支持台16を介して基台11上に取り付けられ、その上方には上側が開いた底のない椀状の上端部材(支持部材)17が連結部16aを介して光軸O2と同軸的に取り付けられている。上端部材17の開いた上面は透明なカバーガラス18により覆われ、上端部材17の内面には多数のLEDよりなる側射光源19が設けられて、部品認識用カメラ15により認識される部品Pおよび吸着ノズル29の下端を下側から照明するようになっている。   On one end side of the electronic component mounting apparatus 10, a component supply apparatus 13 including a plurality of feeders installed side by side is provided. A component recognition camera 15 having an optical axis O2 parallel to the Z direction is provided on the base 11 between the substrate transfer device 12 and the component supply device 13. As shown in FIG. 3, the component recognition camera 15 is mounted on a base 11 via a support base 16, and has a bowl-shaped upper end member (support member) 17 having an open top and no bottom. It is coaxially attached to the optical axis O2 via the connecting portion 16a. The open upper surface of the upper end member 17 is covered with a transparent cover glass 18, and the side light source 19 made up of a number of LEDs is provided on the inner surface of the upper end member 17, and the component P and the component P recognized by the component recognition camera 15 The lower end of the suction nozzle 29 is illuminated from below.

電子部品実装装置10は、図4に示す制御装置200により制御される。制御装置200は、CPU202,ROM204,RAM206およびそれらを接続するバス208を有するコンピュータを主体とするものであり、バス208に接続された入力インタフェース210には基板認識用カメラ25、部品認識用カメラ15が接続され、また、部品移載装置26に替えて測定カメラ23が取り付けられた場合には、測定カメラ23も入力インタフェース210に接続される。バス208にはまた、出力インタフェース216が接続され、駆動回路218,220,222を介してX軸駆動用サーボモータ22、Y軸駆動用サーボモータ31、およびZ軸駆動用サーボモータ32が接続されるとともに、制御回路224を介して基板認識用カメラ25、および部品認識用カメラ15が接続され、また、部品移載装置26に替えて測定カメラ23が取り付けられた場合には、測定カメラ23も制御回路224に接続される。また、RAM206には、図5に示すように、測定値記憶エリア230、送り誤差記憶エリア232、オフセット量記憶エリア234および位置関係表記憶エリア236がワーキングエリア238と共に設けられている。さらに、ROM204には、送り誤差検出ルーチン,校正ルーチン等、種々のプログラムが記憶されている。   The electronic component mounting apparatus 10 is controlled by the control apparatus 200 shown in FIG. The control device 200 mainly includes a computer having a CPU 202, a ROM 204, a RAM 206 and a bus 208 for connecting them, and an input interface 210 connected to the bus 208 includes a board recognition camera 25 and a component recognition camera 15. And the measurement camera 23 is also connected to the input interface 210 when the measurement camera 23 is attached instead of the component transfer device 26. An output interface 216 is also connected to the bus 208, and an X-axis drive servomotor 22, a Y-axis drive servomotor 31, and a Z-axis drive servomotor 32 are connected via drive circuits 218, 220, and 222. In addition, when the substrate recognition camera 25 and the component recognition camera 15 are connected via the control circuit 224, and the measurement camera 23 is attached instead of the component transfer device 26, the measurement camera 23 is also Connected to the control circuit 224. Further, as shown in FIG. 5, the RAM 206 is provided with a measured value storage area 230, a feed error storage area 232, an offset amount storage area 234, and a positional relationship table storage area 236 together with a working area 238. Further, the ROM 204 stores various programs such as a feed error detection routine and a calibration routine.

以上のように構成された電子部品実装装置10において基板Sに部品Pを実装する場合には、基板搬送装置12により搬入されて位置決め保持された基板S上に設けられた基板マークSmの位置を基板認識用カメラ25により検出し、この基板マークSmの位置に基づいて位置補正を行ってスライド21および移動台24をX方向およびY方向に移動して、部品供給装置13から部品移載装置26の吸着ノズル29の先端に吸着保持した電子部品Pを基板S上の指令された座標位置に実装するものである。   When the component P is mounted on the substrate S in the electronic component mounting apparatus 10 configured as described above, the position of the substrate mark Sm provided on the substrate S carried and positioned by the substrate transfer device 12 is determined. The position is detected by the board recognition camera 25, the position is corrected based on the position of the board mark Sm, and the slide 21 and the moving base 24 are moved in the X direction and the Y direction. The electronic component P sucked and held at the tip of the suction nozzle 29 is mounted at the commanded coordinate position on the substrate S.

このように基板Sへの部品Pの実装は、移動台24がX方向およびY方向の2方向に送られることにより行われるのであるが、移動台24の送りに誤差があれば、部品移載装置26の吸着ノズル29は所定の実装位置からずれた位置に移動させられ、部品Pを実装することができない。そのため、本部品実装装置10には、送り誤差を補正する手段が設けられている。   In this way, the mounting of the component P on the substrate S is performed by the moving table 24 being sent in two directions, the X direction and the Y direction. If there is an error in the feeding of the moving table 24, the component transfer is performed. The suction nozzle 29 of the device 26 is moved to a position shifted from a predetermined mounting position, and the component P cannot be mounted. For this reason, the component mounting apparatus 10 is provided with means for correcting a feed error.

移動台24の送り誤差は、(I)部品Pを実装する基板S上に設けられた基板マークSmの位置を認識する際の基板認識用カメラ25の基準位置への割出し時と、(II)吸着ノズル29の実装位置への割出し時に影響を与える。
このため、送り誤差を補正するには、基板認識用カメラ25の光軸O1および吸着ノズル29の中心線O3の位置決め誤差をそれぞれ検出して求める必要がある。
The feed error of the moving table 24 is (I) when indexing to the reference position of the substrate recognition camera 25 when recognizing the position of the substrate mark Sm provided on the substrate S on which the component P is mounted, and (II ) It affects when indexing the suction nozzle 29 to the mounting position.
Therefore, in order to correct the feed error, it is necessary to detect and determine the positioning errors of the optical axis O1 of the substrate recognition camera 25 and the center line O3 of the suction nozzle 29, respectively.

この位置決め誤差の検出には、図2に示すように、複数の割出しマークQ1〜Qnが付されたマトリクス基板SPが用いられる。この割出しマークQ1〜Qnは、図2に破線で示すように互いに直交する仮想基線Lの交点に付され、特にY方向には測定カメラ23の光軸O4と基板認識用カメラ25の光軸O1の間隔Hに対して整数分の一倍の間隔(本実施の形態ではH/2等分)をもって設けられている。なお、X方向の割出しマークは等間隔に配置されていればよく、その幅寸法の規定はないがここではY方向の割出しマークの間隔と同寸法H/2とする。マトリクス基板SPは部品Pが実装される基板Sの寸法より大きい方形状を成し、割出しマークQ1〜Qnは、部品Pが実装される基板S上において、測定カメラ23の光軸O4および基板認識用カメラ25の光軸O1が移動可能な範囲の全てに渡って配置されている。   For the detection of this positioning error, as shown in FIG. 2, a matrix substrate SP with a plurality of index marks Q1 to Qn is used. The index marks Q1 to Qn are attached to intersections of virtual base lines L orthogonal to each other as shown by broken lines in FIG. 2, and in particular in the Y direction, the optical axis O4 of the measurement camera 23 and the optical axis of the substrate recognition camera 25. The interval H is set to an interval that is an integral number of the interval H of O1 (in this embodiment, equal to H / 2). The index marks in the X direction need only be arranged at equal intervals, and the width dimension is not specified, but here the dimension is H / 2 which is the same as the interval between index marks in the Y direction. The matrix substrate SP has a shape larger than the size of the substrate S on which the component P is mounted, and the index marks Q1 to Qn are arranged on the substrate S on which the component P is mounted on the optical axis O4 of the measurement camera 23 and the substrate. The optical axis O1 of the recognition camera 25 is arranged over the entire movable range.

位置決め誤差の検出は、マトリクス基板SPを基板搬送装置12上に移動台24が移動されるX軸線、Y軸線と平行となるように固定し、移動台24をそれぞれX軸方向およびY軸方向にH/2ピッチずつ移動させて割出しマークQ1〜Qnを測定カメラ23および基板認識用カメラ25でそれぞれ撮像することにより行われる。   To detect the positioning error, the matrix substrate SP is fixed on the substrate transport device 12 so as to be parallel to the X axis and Y axis along which the moving table 24 is moved, and the moving table 24 is moved in the X axis direction and the Y axis direction, respectively. This is performed by moving the index marks Q1 to Qn by H / 2 pitches and capturing images with the measurement camera 23 and the substrate recognition camera 25, respectively.

RAM206の位置関係表記憶エリア236には、移動台24の座標位置と測定カメラ23および基板認識用カメラ25でそれぞれ撮像される割出しマークQ1〜Qnの位置関係表が記憶されている、この位置関係表に基づいて移動台24が割り出され、各カメラ23,25に撮像された割出しマークQ1〜Qnと光軸O1および光軸O4の誤差がRAM206の測定値記憶エリア230にそれぞれ記憶される。   In the positional relationship table storage area 236 of the RAM 206, a positional relationship table of the coordinate position of the moving table 24 and the index marks Q1 to Qn respectively captured by the measurement camera 23 and the substrate recognition camera 25 is stored. The moving table 24 is determined based on the relation table, and the errors of the index marks Q1 to Qn and the optical axes O1 and O4 captured by the cameras 23 and 25 are stored in the measured value storage area 230 of the RAM 206, respectively. The

図6から図7を用いて誤差検出の動作を詳述する。図6に示すようにマトリックス基板に割出しマークQ1、Q2、Q3、Q4がH/2等分ごとに配置されていたとする。RAM206には、図7に示すように測定カメラ23および基板認識用カメラ25でそれぞれ撮像される割出しマークの位置関係表が記憶されている。移動台24は図7の位置関係表に基づいて図6(1)、(2)に示すようにH/2ピッチ毎に割出し停止され、各割出し位置において測定カメラ23および基板認識用カメラ25よって視野内にある割出しマークがそれぞれ撮像される。即ち、移動台24が図6(1)に示すようにK1に位置決めされたとき、図7より基板認識用カメラ25の視野内に割出しマークQ3が入り、測定カメラ23の視野内に割出マークQ1が入ることがわかることから、基板認識用カメラ25の視野内の割出しマークQ3と光軸O1の位置関係および、測定カメラ23の視野内の割出しマークQ1と光軸O4の位置関係が検出され、光軸O1と割出マークQ3の誤差(Δ1X3、Δ1Y3)および、光軸O4と割出マークQ1の誤差(Δ2X1、Δ2Y1)がRAM206の測定値記憶エリア230に記憶される。次に移動台24がH/2ピッチだけY方向に移動されK2に位置決めされる。移動台24が図6(2)に示すようにK2に位置決めされたとき、基板認識用カメラ25の視野内に割出しマークQ4が入り、測定カメラ23の視野内に割出マークQ2が入ることがわかることから、基板認識用カメラ25の視野内の割出しマークQ4と光軸O1の位置関係および、測定カメラ23の視野内の割出しマークQ2と光軸O4の位置関係が検出され、光軸O1と割出マークQ4の誤差(Δ1X4、Δ1Y4)および、光軸O4と割出マークQ2の誤差(Δ2X2、Δ2Y2)がRAM206の測定値記憶エリア230に記憶される。以上のように図7の位置関係表に従って移動台24を割出してマトリックス基板SP上の割出しマークQ1〜Qnについて基板認識用カメラ25の光軸O1および測定カメラ23の光軸O4との誤差を検出し、それぞれRAM206の測定値記憶エリア230に記憶する。   The error detection operation will be described in detail with reference to FIGS. Assume that the index marks Q1, Q2, Q3, and Q4 are arranged on the matrix substrate every H / 2 as shown in FIG. As shown in FIG. 7, the RAM 206 stores a positional relationship table of index marks respectively captured by the measurement camera 23 and the board recognition camera 25. The moving table 24 is stopped at every H / 2 pitch based on the positional relationship table of FIG. 7 as shown in FIGS. 6 (1) and 6 (2), and the measurement camera 23 and the substrate recognition camera at each indexing position. Thus, the index marks in the field of view are respectively imaged. That is, when the movable table 24 is positioned at K1 as shown in FIG. 6A, the index mark Q3 enters the field of view of the substrate recognition camera 25 from FIG. Since it can be seen that the mark Q1 enters, the positional relationship between the index mark Q3 and the optical axis O1 in the field of view of the substrate recognition camera 25 and the positional relationship between the index mark Q1 and the optical axis O4 in the field of view of the measurement camera 23. Are detected, and the errors (Δ1X3, Δ1Y3) between the optical axis O1 and the index mark Q3 and the errors (Δ2X1, Δ2Y1) between the optical axis O4 and the index mark Q1 are stored in the measured value storage area 230 of the RAM 206. Next, the moving table 24 is moved in the Y direction by H / 2 pitch and positioned at K2. When the movable table 24 is positioned at K2 as shown in FIG. 6B, the index mark Q4 is in the field of view of the substrate recognition camera 25, and the index mark Q2 is in the field of view of the measuring camera 23. Therefore, the positional relationship between the index mark Q4 in the field of view of the substrate recognition camera 25 and the optical axis O1 and the positional relationship between the index mark Q2 in the field of view of the measurement camera 23 and the optical axis O4 are detected. The errors (Δ1X4, Δ1Y4) between the axis O1 and the index mark Q4 and the errors (Δ2X2, Δ2Y2) between the optical axis O4 and the index mark Q2 are stored in the measured value storage area 230 of the RAM 206. As described above, the moving table 24 is indexed according to the positional relationship table of FIG. 7, and the errors between the optical axis O1 of the substrate recognition camera 25 and the optical axis O4 of the measurement camera 23 for the index marks Q1 to Qn on the matrix substrate SP. Are detected and stored in the measured value storage area 230 of the RAM 206, respectively.

これら、RAM206の測定値記憶エリア230に記憶された値のうち、基板認識用カメラ25の光軸O1と割出しマークQ1〜Qnとの誤差(Δ1X1、Δ1Y1)〜(Δ1Xn、Δ1Yn)は、部品Pを実装する基板S上に設けられた基板マークSmの位置を認識する際の基板認識用カメラ25の基準位置への割出し時に用いられ、測定カメラ23の光軸O4と割出しマークQ1〜Qnとの誤差(Δ2X1、Δ2Y1)〜(Δ2Xn、Δ2Yn)は、吸着ノズル29の実装位置への割出し時に用いられる。   Among these values stored in the measured value storage area 230 of the RAM 206, errors (Δ1X1, Δ1Y1) to (Δ1Xn, Δ1Yn) between the optical axis O1 of the substrate recognition camera 25 and the index marks Q1 to Qn are components. It is used when the substrate recognition camera 25 is indexed to the reference position when recognizing the position of the substrate mark Sm provided on the substrate S on which P is mounted, and the optical axis O4 of the measurement camera 23 and the index marks Q1 to Q1. Errors (Δ2X1, Δ2Y1) to (Δ2Xn, Δ2Yn) with respect to Qn are used when the suction nozzle 29 is indexed to the mounting position.

また、前述のように、この実施の形態の電子部品実装装置10は、装着装置基本部とその移動台24に交換可能に取り付けられる部品移載装置26および測定カメラ23よりなるものであるので、基板マークSmを基準とする基板S上の所定の座標位置に部品Pを正確に実装するためには、測定カメラ23の光軸O4と測定カメラ23を部品移載装置26に交換した後の吸着ノズル29の中心線O3との位置関係(図8のX方向における距離X1およびY方向における距離Y1)を正確に校正する必要がある。   Further, as described above, the electronic component mounting apparatus 10 according to this embodiment includes the mounting device basic portion and the component transfer device 26 and the measurement camera 23 that are replaceably attached to the moving table 24. In order to accurately mount the component P at a predetermined coordinate position on the substrate S with respect to the substrate mark Sm, the suction after the optical axis O4 of the measurement camera 23 and the measurement camera 23 are replaced with the component transfer device 26. It is necessary to accurately calibrate the positional relationship between the nozzle 29 and the center line O3 (distance X1 in the X direction and distance Y1 in the Y direction in FIG. 8).

次にこのような校正を行うための作動を、主として図8〜図10により説明する。この作動の開始に先立ち、図9に示すように、無色透明のガラス板上に円形、十字形など色々な形状の基準マークGmを設けた基準ゲージGを、上端部材17のカバーガラス18の上に、基準マークGmが部品認識用カメラ15の視野内に入るように載置される。移動台24は、基準マークGmが測定カメラ23の視野内に入るように所定位置に位置決めして停止される。そのときの電子部品実装装置10の座標原点に対する測定カメラ23の光軸O4の位置関係(図8の距離X2および距離Y2)は、電子部品実装装置10のスライド21および移動台24の座標原点からの移動量としてインダクトシン等の位置検出装置により検出されて制御装置200のRAM206のワーキングエリア238に記録される。   Next, the operation for performing such calibration will be described mainly with reference to FIGS. Prior to the start of this operation, as shown in FIG. 9, a reference gauge G provided with various reference marks Gm such as a circle and a cross on a colorless and transparent glass plate is provided on the cover glass 18 of the upper end member 17. The reference mark Gm is placed so as to be within the field of view of the component recognition camera 15. The moving table 24 is stopped after being positioned at a predetermined position so that the reference mark Gm is within the field of view of the measurement camera 23. The positional relationship of the optical axis O4 of the measurement camera 23 with respect to the coordinate origin of the electronic component mounting apparatus 10 at that time (distance X2 and distance Y2 in FIG. 8) is from the coordinate origin of the slide 21 and the movable table 24 of the electronic component mounting apparatus 10. Is detected by a position detection device such as induct thin and recorded in the working area 238 of the RAM 206 of the control device 200.

このように、測定カメラ23の光軸O4が座標原点から図8の距離X2および距離Y2移動するように移動台24が所定位置に位置するとき、測定カメラ23は、基準マークGmの画像の位置に基づいて測定カメラ23の光軸O4と基準マークGmとの位置関係(距離Xaおよび距離Ya)を測定する。部品認識用カメラ15は、基準マークGmの画像の位置に基づいて部品カメラ光軸O2と基準マークGmとの位置関係(距離Xbおよび距離Yb)を測定する。   In this way, when the moving base 24 is positioned at a predetermined position so that the optical axis O4 of the measurement camera 23 moves from the coordinate origin to the distance X2 and the distance Y2 in FIG. 8, the measurement camera 23 is positioned at the position of the image of the reference mark Gm. Based on the above, the positional relationship (distance Xa and distance Ya) between the optical axis O4 of the measurement camera 23 and the reference mark Gm is measured. The component recognition camera 15 measures the positional relationship (distance Xb and distance Yb) between the component camera optical axis O2 and the reference mark Gm based on the position of the image of the reference mark Gm.

次に図10に示すように、測定カメラ23を部品移載装置26に交換し、制御装置23のRAM206のワーキングエリア236に記録されたスライド21および移動台24の座標原点に対する測定カメラ23の光軸O4の位置関係(図8の距離X2および距離Y2)となる所定位置に移動台24を移動する。この所定位置での停止状態で、吸着ノズル29の先端が基準ゲージGに接近して部品認識用カメラ15の焦点深度内に入る位置(図10の二点鎖線29a参照)まで下降させる。このように、RAM206のワーキングエリア238に記録されたスライド21および移動台24の座標原点に対する測定カメラ23の光軸O4の位置関係(図8の距離X2および距離Y2)となる所定位置に移動台24が位置するとき、部品認識用カメラ15は、吸着ノズル29の先端の画像の位置に基づいて部品認識用カメラ15の光軸O2と吸着ノズル中心線O3との位置関係(距離Xcおよび距離Yc)を測定する。   Next, as shown in FIG. 10, the measurement camera 23 is replaced with the component transfer device 26, and the light of the measurement camera 23 with respect to the coordinate origin of the slide 21 and the moving table 24 recorded in the working area 236 of the RAM 206 of the control device 23. The moving base 24 is moved to a predetermined position that satisfies the positional relationship of the axis O4 (distance X2 and distance Y2 in FIG. 8). In the stop state at this predetermined position, the suction nozzle 29 is lowered to a position where the tip of the suction nozzle 29 approaches the reference gauge G and falls within the depth of focus of the component recognition camera 15 (see the two-dot chain line 29a in FIG. 10). In this way, the moving table is moved to a predetermined position that is the positional relationship of the optical axis O4 of the measuring camera 23 with respect to the coordinate origin of the slide 21 and the moving table 24 recorded in the working area 238 of the RAM 206 (distance X2 and distance Y2 in FIG. 8). When 24 is located, the component recognition camera 15 determines the positional relationship (distance Xc and distance Yc) between the optical axis O2 of the component recognition camera 15 and the suction nozzle center line O3 based on the position of the image of the tip of the suction nozzle 29. ).

測定カメラ23の光軸O4が座標原点から図8の距離X2および距離Y2移動するように移動台24が所定位置に位置するとき、測定カメラ23の光軸O4と部品認識用カメラ15の光軸O2との位置関係(X方向における距離X3およびY方向における距離Y3)の校正値は、図8から明らかなように、次の式   When the moving base 24 is located at a predetermined position so that the optical axis O4 of the measurement camera 23 moves from the coordinate origin by the distance X2 and the distance Y2 in FIG. 8, the optical axis O4 of the measurement camera 23 and the optical axis of the component recognition camera 15 As is clear from FIG. 8, the calibration values of the positional relationship with O2 (distance X3 in the X direction and distance Y3 in the Y direction) are as follows:

X3=Xa+Xb ・・・(1a)
Y3=Ya+Yb ・・・(1b)
により与えられる。
X3 = Xa + Xb (1a)
Y3 = Ya + Yb (1b)
Given by.

そして、測定カメラ23の光軸O4が座標原点から図8の距離X2および距離Y2移動するように移動台24が所定位置に位置するとき、測定カメラ23の光軸O4と測定カメラ23を部品移載装置26に交換した後の吸着ノズル29の中心線O3との位置関係(X方向における距離X1およびY方向における距離Y1)の校正値は、図8から明らかなように、上式により与えられるX3,Y3と、前述のように測定された部品カメラ光軸O2と吸着ノズル中心線O3との位置関係(距離Xcおよび距離Yc)に基づき、次の式   Then, when the moving base 24 is positioned at a predetermined position so that the optical axis O4 of the measuring camera 23 moves from the coordinate origin by the distance X2 and the distance Y2 in FIG. 8, the optical axis O4 of the measuring camera 23 and the measuring camera 23 are moved to the parts. As is apparent from FIG. 8, the calibration value of the positional relationship (distance X1 in the X direction and distance Y1 in the Y direction) with the center line O3 of the suction nozzle 29 after replacement with the mounting device 26 is given by the above equation. Based on the positional relationship (distance Xc and distance Yc) between X3 and Y3 and the component camera optical axis O2 and the suction nozzle center line O3 measured as described above,

X1=Xc−X3 ・・・(2a)
Y1=Yc−Y3 ・・・(2b)
により与えられる。
X1 = Xc−X3 (2a)
Y1 = Yc−Y3 (2b)
Given by.

これにより、測定カメラ23の光軸O4と部品移載装置26の吸着ノズル29の中心O3とのズレを求めることができ、最終的には基板認識用カメラ25および測定カメラ23を用いて求めた移動台24の送り誤差に基づき吸着ノズル29に吸着された部品Pを基板Sの所定位置に正確に実装できる。
なお上記各式における各距離Xa,Xb・・・などの正負の符号は、中心線O3、光軸O2,O4の位置関係により異なったものとなる。
As a result, the deviation between the optical axis O4 of the measurement camera 23 and the center O3 of the suction nozzle 29 of the component transfer device 26 can be obtained, and finally obtained using the substrate recognition camera 25 and the measurement camera 23. The component P sucked by the suction nozzle 29 based on the feed error of the moving table 24 can be accurately mounted at a predetermined position on the substrate S.
The positive and negative signs such as the distances Xa, Xb,... In the above equations are different depending on the positional relationship between the center line O3 and the optical axes O2, O4.

以下、移動台24の送り誤差の検出について具体的に説明する。まず、基板搬送装置12上にマトリクス基板SPを移動台24が移動されるX軸線、Y軸線と平行となるように固定する。次に制御装置200の指令によって、予めROM204に記憶されている移動台24と、測定カメラ23および基板認識用カメラ25が撮像可能な割出マークQ1〜Qnの関係基づいてに対して移動台24が順次割り出される。そして、割出しマークが割り出される毎に測定カメラ23および基板認識用カメラ25によって撮像され、マトリックス基板SP上の割出しマークQ1〜Qnについて基板認識用カメラ25の光軸O1および測定カメラ23の光軸O4との誤差をそれぞれRAM206の測定値記憶エリア230に記憶する。   Hereinafter, the detection of the feed error of the moving table 24 will be specifically described. First, the matrix substrate SP is fixed on the substrate transfer device 12 so as to be parallel to the X axis and the Y axis along which the moving table 24 is moved. Next, based on the command of the control device 200, the moving table 24 is stored based on the relationship between the moving table 24 stored in advance in the ROM 204 and the index marks Q1 to Qn that can be imaged by the measurement camera 23 and the substrate recognition camera 25. Are indexed sequentially. Each time the index mark is indexed, the image is captured by the measurement camera 23 and the substrate recognition camera 25, and the index axis Q1 to Qn on the matrix substrate SP is measured by the optical axis O1 of the substrate recognition camera 25 and the measurement camera 23. Each error from the optical axis O4 is stored in the measured value storage area 230 of the RAM 206.

次に、移動台24を前述した図8に示す所定位置(距離X2および距離Y2)に移動して位置決め停止し、部品認識用カメラ15の上端部材17上に基準ゲージGを置いた状態で、測定カメラ23により距離Xa,Yaを測定し、部品認識用カメラ15により距離Xb,Ybを測定する。次いで、測定カメラ23を部品移載装置26に替えて移動台24を所定位置に停止させた状態で部品認識用カメラ15により距離Xc,Ycを測定する。制御装置200は式(1a),(1b)により距離X3,Y3の校正値を演算し、式(2a),(2b)により距離X1,Y1の校正値を演算し、オフセット量記憶エリア234に記憶する。   Next, the moving table 24 is moved to the predetermined positions (distance X2 and distance Y2) shown in FIG. 8 to stop positioning, and the reference gauge G is placed on the upper end member 17 of the component recognition camera 15, The distances Xa and Ya are measured by the measurement camera 23, and the distances Xb and Yb are measured by the component recognition camera 15. Next, the distance Xc and Yc are measured by the component recognition camera 15 in a state where the measurement camera 23 is replaced with the component transfer device 26 and the movable table 24 is stopped at a predetermined position. The control device 200 calculates the calibration values of the distances X3 and Y3 using the equations (1a) and (1b), calculates the calibration values of the distances X1 and Y1 using the equations (2a) and (2b), and stores them in the offset amount storage area 234. Remember.

そして、測定記憶エリア230に記憶された測定カメラ23の光軸O4と割出しマークQ1〜Qnの誤差(Δ2X1、Δ2Y1)〜(Δ2Xn、Δ2Yn)に対し、オフセット量記憶エリア234に記憶された距離X1,Y1の校正値で補正を行い、実装時に吸着ノズル29を位置決めするための最終的な送り誤差(ΔX1、ΔY1)〜(ΔXn、ΔYn)としてRAM206の送り誤差記憶エリア232に記憶される。   The distance stored in the offset amount storage area 234 with respect to the errors (Δ2X1, Δ2Y1) to (Δ2Xn, Δ2Yn) between the optical axis O4 of the measurement camera 23 and the index marks Q1 to Qn stored in the measurement storage area 230 Correction is performed with the calibration values of X1 and Y1, and the final feed errors (ΔX1, ΔY1) to (ΔXn, ΔYn) for positioning the suction nozzle 29 during mounting are stored in the feed error storage area 232 of the RAM 206.

この後、部品移載装置26による部品Pの実装時に、基板搬送装置12により搬入されて位置決め保持された基板S上に設けられた基板マークSmの位置を基板認識用カメラ25により検出する。このとき、RAM206に記憶された位置関係表および、基板認識用カメラ25の光軸O1と割出しマークQ1〜Qnとの誤差(Δ1X1、Δ1Y1)〜(Δ1Xn、Δ1Yn)に基づいて基板認識用カメラ25の位置決め誤差を次のように補正する。位置関係表から基板マークSmの指令位置座標の最も近傍にある移動台24の座標が検索され、この座標に移動台24を位置決めしたときに基板認識用カメラ25によって認識される割出しマークQ1〜Qnが検出される。この検出された割出しマークQ1〜Qnの光軸O1と割出しマークQ1〜Qnとの誤差(Δ1X1、Δ1Y1)〜(Δ1Xn、Δ1Yn)に基づいて指令位置座標を補正する。この補正された指令位置座標に移動台24を移動することにより、基板認識用カメラ25の光軸O1は送り誤差のない位置に位置決めされることになる。なお、基板認識用カメラ25の送り誤差は、指令位置座標を囲むの割出しマークQ1〜Qnの送り誤差から比例配分により決定するなど、他の方法によって決定してもよい。   Thereafter, when the component transfer device 26 mounts the component P, the substrate recognition camera 25 detects the position of the substrate mark Sm provided on the substrate S that has been loaded and positioned by the substrate transfer device 12. At this time, the substrate recognition camera based on the positional relationship table stored in the RAM 206 and the errors (Δ1X1, Δ1Y1) to (Δ1Xn, Δ1Yn) between the optical axis O1 of the substrate recognition camera 25 and the index marks Q1 to Qn. The positioning error of 25 is corrected as follows. The coordinates of the moving table 24 nearest to the command position coordinates of the substrate mark Sm are retrieved from the positional relationship table, and the index marks Q1 to Q recognized by the substrate recognition camera 25 when the moving table 24 is positioned at this coordinate. Qn is detected. The command position coordinates are corrected based on the errors (Δ1X1, Δ1Y1) to (Δ1Xn, Δ1Yn) between the detected optical axes O1 of the index marks Q1 to Qn and the index marks Q1 to Qn. By moving the moving table 24 to the corrected command position coordinates, the optical axis O1 of the substrate recognition camera 25 is positioned at a position where there is no feeding error. Note that the feed error of the board recognition camera 25 may be determined by other methods such as proportional distribution from the feed errors of the index marks Q1 to Qn surrounding the command position coordinates.

そして、この送り誤差のない位置に移動された基板認識用カメラ25によって基板マークSmが撮像され、基板認識用カメラ25の光軸O1と基板マークのずれが検出されて基板Sの位置決め誤差が求められ、RAM206のワークキングエリア238に記憶される。   The substrate mark Sm is picked up by the substrate recognition camera 25 moved to a position where there is no feed error, and a deviation between the optical axis O1 of the substrate recognition camera 25 and the substrate mark is detected to determine the positioning error of the substrate S. And stored in the workking area 238 of the RAM 206.

以上のような動作によって求められた実装時に吸着ノズル29を位置決めするための最終的な送り誤差および基板Sの位置決め誤差に基づいて基板Sの実装位置に応じて送り指令値(実装位置の座標)に修正を加える等により、吸着ノズル29を精度良く実装位置に移動させることができる。   Based on the final feed error for positioning the suction nozzle 29 during mounting and the positioning error of the substrate S determined by the operation as described above, the feed command value (mounting position coordinates) according to the mounting position of the substrate S For example, the suction nozzle 29 can be moved to the mounting position with high accuracy.

例えば、送り誤差は割出しマークQ1〜Qnの各々の正規位置(X軸方向とY軸方向との移動指示データにより規定される)に対応付けて記憶されており、それら正規位置を中心とし、隣接する割出しマーク間の距離の半分の距離を1辺とする正方形の領域内においてその正規位置について算出された送り誤差が生ずるものとする。そして、部品Pの実装時には、実装位置を基板Sの位置決め誤差を補正し、この基板Sの位置決め誤差を補正した実装位置が上記正規位置を中心とする領域のいずれに属するかを求め、その正規位置について求められた送り誤差に基づいて移動台24の送り量を修正する。なお、送り量の修正値は、目的とする実装位置を囲む割出しマークQ1〜Qnの正規位置の送り誤差から比例配分により決定するなど、他の方法によって決定してもよい。   For example, the feed error is stored in association with each normal position of the index marks Q1 to Qn (specified by the movement instruction data in the X-axis direction and the Y-axis direction), with the normal position as the center, It is assumed that a feed error calculated for the normal position occurs in a square area having one side of a half distance between adjacent index marks. When the component P is mounted, the mounting position is corrected for the positioning error of the board S, and the mounting position where the positioning error of the board S is corrected is determined to belong to the region centered on the normal position. Based on the feed error obtained for the position, the feed amount of the movable table 24 is corrected. The correction value of the feed amount may be determined by other methods such as a proportional distribution based on feed errors at the normal positions of the index marks Q1 to Qn surrounding the target mounting position.

なお、上記実施の形態では、マトリックス基板SPに付した割出マークQ1~Qnの間隔を測定カメラ23の光軸O4と基板認識用カメラ25の光軸O1の間の距離Hの半分(H/2)としたが、測定カメラ23の光軸O4と基板認識用カメラ25の光軸O1に対して同時に一致させることができるように割出しマークを配置できれば、これに限られるものではない。例えば、測定カメラ23の光軸O4と基板認識用カメラ25の光軸O1の間の距離Hと同一間隔に配置する場合や測定カメラ23の光軸O4と基板認識用カメラ25の光軸O1の間の距離Hの整数分の一倍の間隔(H/3、H/4等)にすればよい。このように、測定カメラ23の光軸O4と基板認識用カメラ25の光軸O1の間の距離Hと同一間隔に配置する場合や測定カメラ23の光軸O4と基板認識用カメラ25の光軸O1の間の距離Hの整数分の一倍の間隔(H/3、H/4等)に割出しマークQ1〜Qnを配置すれば測定カメラ23の光軸O4と基板認識用カメラ25の光軸O1に対して同時に一致させることができるので、測定カメラ23の光軸O4と基板認識用カメラ25の光軸O1の割出しマークQ1〜Qnとの送り誤差による位置ずれの検出をそれぞれ別々に行わなくて済むため、送り誤差の補正動作の時間を短縮することができる。   In the above embodiment, the interval between the index marks Q1 to Qn attached to the matrix substrate SP is set to half the distance H between the optical axis O4 of the measurement camera 23 and the optical axis O1 of the substrate recognition camera 25 (H / However, the present invention is not limited to this as long as the index mark can be arranged so that it can coincide with the optical axis O4 of the measurement camera 23 and the optical axis O1 of the substrate recognition camera 25 at the same time. For example, when the optical axis O4 of the measurement camera 23 and the optical axis O1 of the substrate recognition camera 25 are arranged at the same distance as the distance H, or between the optical axis O4 of the measurement camera 23 and the optical axis O1 of the substrate recognition camera 25 The distance H may be set to an interval (H / 3, H / 4, etc.) that is an integral number of the distance H between them. As described above, the optical axis O4 of the measurement camera 23 and the optical axis O1 of the substrate recognition camera 25 are arranged at the same interval as the distance H between the optical axis O4 of the measurement camera 23 and the optical axis O1 of the substrate recognition camera 25. If the index marks Q1 to Qn are arranged at an interval (H / 3, H / 4, etc.) that is an integral fraction of the distance H between O1, the optical axis O4 of the measurement camera 23 and the light of the substrate recognition camera 25 Since it can coincide with the axis O1 at the same time, the detection of the positional deviation due to the feed error between the optical axis O4 of the measurement camera 23 and the index marks Q1 to Qn of the optical axis O1 of the substrate recognition camera 25 is separately performed. Since it is not necessary to perform this, it is possible to shorten the time for the feeding error correction operation.

実施の形態に係る電子部品実装装置の要部を示す斜視図。The perspective view which shows the principal part of the electronic component mounting apparatus which concerns on embodiment. 移動台の送り誤差を検出するための方法を説明する図。The figure explaining the method for detecting the feed error of a moving stand. 基準ゲージを支持する上端部材および部品認識用カメラの支持構造を示す側断面図。The sectional side view which shows the support structure of the upper end member which supports a reference gauge, and a component recognition camera. 実施の形態に係る電子部品実装装置の制御ブロック図。The control block diagram of the electronic component mounting apparatus which concerns on embodiment. RAMの構成を示す概念図。The conceptual diagram which shows the structure of RAM. 移動台の送り誤差を検出するための方法を説明する図。The figure explaining the method for detecting the feed error of a moving stand. RAMに記憶された位置関係表を示す図。The figure which shows the positional relationship table memorize | stored in RAM. 吸着ノズル中心と測定カメラ光軸の位置関係を校正する方法を説明する図。The figure explaining the method of calibrating the positional relationship of a suction nozzle center and a measurement camera optical axis. 測定カメラ光軸と部品認識用カメラ光軸の位置関係を検出する方法を説明する図。The figure explaining the method to detect the positional relationship of the measurement camera optical axis and the component recognition camera optical axis. 吸着ノズル中心と部品認識用カメラ光軸の位置関係を検出する方法を説明する図。The figure explaining the method to detect the positional relationship of the suction nozzle center and the camera optical axis for component recognition.

符号の説明Explanation of symbols

11…基台、12…基板搬送装置、13…部品供給装置、15…部品認識用カメラ、17…上端部材(支持部材)、23…測定カメラ、24…移動台、25…基板認識用カメラ、26…部品移載装置、29…吸着ノズル(部品採取部)、G,…基準ゲージ、Gm…基準マーク、S…基板、P…部品、O1…基板カメラ光軸、O2…部品カメラ光軸、O3…吸着ノズル中心線、O4…測定カメラ光軸
DESCRIPTION OF SYMBOLS 11 ... Base, 12 ... Board | substrate conveyance apparatus, 13 ... Component supply apparatus, 15 ... Component recognition camera, 17 ... Upper end member (supporting member), 23 ... Measurement camera, 24 ... Moving stand, 25 ... Board recognition camera, 26 ... Component transfer device, 29 ... Suction nozzle (component sampling unit), G, ... Reference gauge, Gm ... Reference mark, S ... Substrate, P ... Component, O1 ... Substrate camera optical axis, O2 ... Component camera optical axis, O3 ... Suction nozzle center line, O4 ... Optical camera optical axis

Claims (2)

基台に設けられて基板の搬入・搬出および位置決め保持を行う基板搬送装置と、前記基台に対しX方向およびY方向の2方向に移動可能に支持された移動台と、前記移動台の移動を制御する移動制御装置と、前記移動台に取り付けられて部品供給装置により供給された部品を部品採取部で採取して前記基板搬送装置上に位置決め支持された前記基板上に実装する部品移載装置と、光軸が前記部品採取部の中心線と所定間隔をおいて前記移動台に固定された基板認識用カメラと、前記基台に固定された部品認識用カメラを備えてなる電子部品実装装置において、
測定カメラを部品移載装置に替えて固定し、前記所定間隔の整数分の一倍に細分化した間隔で互いに直交する仮想基線上の各交点に割出しマークを付したマトリックス基板を前記各基線がX軸又はY軸と平行になるように前記基台に固定し、前記マトリックス基板の各割出しマークに順次移動台を割り出し停止させ、各割出停止位置において前記基板認識用カメラおよび測定カメラでそれぞれ対応する割出しマークの各光軸からのX、Y誤差を測定し、これら各カメラで測定されたX、Y誤差を前記各割出停止位置における補正値として記憶し、
前記部品認識用カメラの視野内に入るように前記基台に設けられた基準マークが、前記測定カメラの視野内に入るように前記移動台を座標原点に対し所定位置に停止し、前記部品認識用カメラおよび測定カメラにより検出された各カメラの光軸と前記基準マークとの各位置関係に基づいて前記移動台が前記所定位置に位置するときの前記部品認識用カメラの光軸と前記測定カメラの光軸との位置関係を算出し、
部品移載装置を前記測定カメラに替えて取り付け、前記移動台を前記所定位置に停止し、前記部品認識用カメラで前記部品認識用カメラの光軸と前記部品移載装置の部品採取部の中心線との位置関係を検出し、
前記部品認識用カメラの光軸と前記測定カメラの光軸との位置関係および前記部品認識用カメラの光軸と部品採取部の中心線との位置関係から前記測定カメラの光軸と部品採取部の中心線との位置関係を算出して記憶し、
前記基板搬送装置により位置決め保持された基板に対し、前記部品を前記部品採取部によって実装するとき、前記部品の実装位置を各割出停止位置における補正値および前記部品認識用カメラの光軸と部品採取部の中心線との位置関係に基づいて補正して前記移動台を移動するようにしたことを特徴とする移動台の移動制御方法。
A substrate transfer device provided on the base for carrying in / out and positioning and holding the substrate, a movable base supported so as to be movable in two directions of X and Y with respect to the base, and movement of the movable base A movement control device that controls the component, and a component transfer that is mounted on the substrate that is mounted on the substrate transporting device by picking up a component that is attached to the moving table and supplied by the component supply device by a component collecting unit Electronic component mounting comprising: an apparatus; a substrate recognition camera whose optical axis is fixed to the moving table at a predetermined interval from a center line of the component sampling unit; and a component recognition camera fixed to the base In the device
The measurement camera is replaced with a component transfer device and fixed, and a matrix substrate with index marks at each intersection point on a virtual base line orthogonal to each other at an interval that is subdivided by an integral number of the predetermined interval is used for each base line. Is fixed to the base so as to be parallel to the X-axis or Y-axis, and the moving table is sequentially indexed and stopped at each index mark of the matrix substrate, and the substrate recognition camera and measurement camera at each index stop position Measure the X and Y errors from the respective optical axes of the corresponding index marks respectively in, and store the X and Y errors measured by these cameras as correction values at the respective index stop positions.
The moving table is stopped at a predetermined position with respect to the coordinate origin so that a reference mark provided on the base so as to fall within the field of view of the component recognition camera falls within the field of view of the measurement camera, and the part recognition The optical axis of the component recognition camera and the measurement camera when the moving base is located at the predetermined position based on the positional relationship between the optical axis of each camera and the reference mark detected by the camera for measurement and the measurement camera Calculate the positional relationship with the optical axis of
A component transfer device is installed instead of the measurement camera, the moving table is stopped at the predetermined position, and the optical axis of the component recognition camera and the center of the component sampling unit of the component transfer device are detected by the component recognition camera. Detect the positional relationship with the line,
From the positional relationship between the optical axis of the component recognition camera and the optical axis of the measurement camera and the positional relationship between the optical axis of the component recognition camera and the center line of the component sampling unit, the optical axis of the measurement camera and the component sampling unit Calculate and store the positional relationship with the center line of
When the component is mounted on the substrate that is positioned and held by the substrate transporting device, the mounting position of the component is set to a correction value at each index stop position, and the optical axis and component of the component recognition camera. A moving control method for a moving table, wherein the moving table is moved after correction based on a positional relationship with a center line of a sampling unit.
基台に設けられて基板の搬入・搬出および位置決め保持を行う基板搬送装置と、前記基台に対しX方向およびY方向の2方向に移動可能に支持された移動台と、前記移動台の移動を制御する移動制御装置と、前記移動台に取り付けられて部品供給装置により供給された部品を部品採取部で採取して前記基板搬送装置上に位置決め支持された前記基板上に実装する部品移載装置と、光軸が前記部品採取部の中心線と所定間隔をおいて前記移動台に固定された基板認識用カメラと、前記基台に固定された部品認識用カメラを備え、測定カメラを部品移載装置に替えて固定し、細分化した間隔で互いに直交する仮想基線上の各交点に割出しマークを付したマトリックス基板を前記各基線がX軸又はY軸と平行になるように前記基台に固定し、前記マトリックス基板の各割出しマークに順次移動台を割り出し停止させ、各割出停止位置において前記基板認識用カメラおよび測定カメラでそれぞれ対応する割出しマークの各光軸からのX、Y誤差を測定し、これら各カメラで測定された各割出マークと光軸のX、Y誤差に基づいて移動台の送り誤差を補正するようにした電子部品実装装置の移動台の移動制御方法に用いられるマトリックス基板であって、前記割出しマークの間隔を前記所定間隔の整数分の一倍にしたことを特徴とするマトリックス基板。
A substrate transfer device provided on the base for carrying in / out and positioning and holding the substrate, a movable base supported so as to be movable in two directions of X and Y with respect to the base, and movement of the movable base A movement control device that controls the component, and a component transfer that is mounted on the substrate that is mounted on the substrate transporting device by picking up a component that is attached to the moving table and supplied by the component supply device by a component collecting unit An apparatus, a substrate recognition camera whose optical axis is fixed to the moving table at a predetermined interval from the center line of the component sampling unit, and a component recognition camera fixed to the base, and the measurement camera as a component A matrix substrate fixed in place of the transfer device and indexed at each intersection point on a virtual base line that is orthogonal to each other at subdivided intervals is arranged so that the base line is parallel to the X axis or the Y axis. Fixed to the base The moving table is sequentially indexed and stopped at each index mark on the Rix substrate, and the X and Y errors from each optical axis of the corresponding index mark are measured by the substrate recognition camera and the measurement camera at each index stop position. The matrix substrate used in the movement control method of the moving table of the electronic component mounting apparatus which corrects the feed error of the moving table based on the index marks measured by these cameras and the X and Y errors of the optical axis The matrix substrate is characterized in that the interval between the index marks is made an integral number of the predetermined interval.
JP2004019083A 2004-01-27 2004-01-27 Method for controlling movement of moving table in electronic component mounting apparatus and matrix substrate used in the method Expired - Lifetime JP4371832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019083A JP4371832B2 (en) 2004-01-27 2004-01-27 Method for controlling movement of moving table in electronic component mounting apparatus and matrix substrate used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019083A JP4371832B2 (en) 2004-01-27 2004-01-27 Method for controlling movement of moving table in electronic component mounting apparatus and matrix substrate used in the method

Publications (2)

Publication Number Publication Date
JP2005216974A true JP2005216974A (en) 2005-08-11
JP4371832B2 JP4371832B2 (en) 2009-11-25

Family

ID=34903405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019083A Expired - Lifetime JP4371832B2 (en) 2004-01-27 2004-01-27 Method for controlling movement of moving table in electronic component mounting apparatus and matrix substrate used in the method

Country Status (1)

Country Link
JP (1) JP4371832B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311487A (en) * 2007-06-15 2008-12-25 Yamaha Motor Co Ltd Component mounting apparatus
JP2012069731A (en) * 2010-09-24 2012-04-05 Hitachi High-Tech Instruments Co Ltd Die bonder and manufacturing method of semiconductor
JP2018041914A (en) * 2016-09-09 2018-03-15 ヤマハ発動機株式会社 Substrate work device
TWI659782B (en) * 2012-11-01 2019-05-21 武藏工業股份有限公司 Operating device and method with position correction function
US10765049B2 (en) 2015-08-19 2020-09-01 Fuji Corporation Measurement device
CN113811178A (en) * 2020-06-12 2021-12-17 先进装配系统有限责任两合公司 Recalibrating a pick-and-place machine in an actual pick-and-place operation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311487A (en) * 2007-06-15 2008-12-25 Yamaha Motor Co Ltd Component mounting apparatus
JP2012069731A (en) * 2010-09-24 2012-04-05 Hitachi High-Tech Instruments Co Ltd Die bonder and manufacturing method of semiconductor
TWI659782B (en) * 2012-11-01 2019-05-21 武藏工業股份有限公司 Operating device and method with position correction function
US10765049B2 (en) 2015-08-19 2020-09-01 Fuji Corporation Measurement device
JP2018041914A (en) * 2016-09-09 2018-03-15 ヤマハ発動機株式会社 Substrate work device
CN113811178A (en) * 2020-06-12 2021-12-17 先进装配系统有限责任两合公司 Recalibrating a pick-and-place machine in an actual pick-and-place operation

Also Published As

Publication number Publication date
JP4371832B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP4322092B2 (en) Calibration method and apparatus for electronic component mounting apparatus
JP6103800B2 (en) Component mounter
JP6012742B2 (en) Work equipment
JP4598157B2 (en) Electronic component mounting method and apparatus
JP6014315B2 (en) Measuring method of electronic component mounting device
JP6174677B2 (en) Component mounting apparatus and calibration method in component mounting apparatus
CN103079746A (en) Laser processing apparatus and substrate position detecting method
KR20140032888A (en) Electronic component mounting apparatus and mounting position correction data creating method
US6563530B1 (en) Camera position-correcting method and system and dummy component for use in camera position correction
JP2007142269A (en) Teaching device and teaching method
US20140347468A1 (en) Substrate working device
JP5113406B2 (en) Electronic component mounting equipment
EP2931014B1 (en) Apparatus and method for generating mounting data, and substrate manufacturing system
JP4855347B2 (en) Parts transfer device
JP6462530B2 (en) Exchange cart and surface mounter
JP4371832B2 (en) Method for controlling movement of moving table in electronic component mounting apparatus and matrix substrate used in the method
JP2005228842A (en) Method and apparatus for detecting mounting error of electronic component packaging device
JP2005101586A (en) Apparatus for correcting electronic component suction position in electronic component mounting machine
JP4921346B2 (en) Adsorption position correction method in component mounting apparatus
JP2010147401A (en) Electronic component mounting apparatus and image distortion correcting method
CN110708946B (en) Mounting device and mounting method
KR101575279B1 (en) Chip mounter laser displacement sensor established head assembly and coordinate calibration method
US10709049B2 (en) Component mounting machine and component mounting line
JP4989199B2 (en) Electronic component mounting device
JPH08148896A (en) Correction of positional deviation of mounting and mounting position measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4371832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term