JP2005216363A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2005216363A
JP2005216363A JP2004020490A JP2004020490A JP2005216363A JP 2005216363 A JP2005216363 A JP 2005216363A JP 2004020490 A JP2004020490 A JP 2004020490A JP 2004020490 A JP2004020490 A JP 2004020490A JP 2005216363 A JP2005216363 A JP 2005216363A
Authority
JP
Japan
Prior art keywords
time
voltage
ferroelectric
write
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020490A
Other languages
English (en)
Inventor
Takayoshi Yamada
隆善 山田
Takehisa Kato
剛久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004020490A priority Critical patent/JP2005216363A/ja
Priority to US11/041,251 priority patent/US6992913B2/en
Publication of JP2005216363A publication Critical patent/JP2005216363A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5657Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using ferroelectric storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

【課題】 強誘電体メモリの書き換え時間の短縮を図りつつ、データの信頼性を向上させる。
【解決手段】 時刻t01に、ワード線WLをVppレベルにする。時刻t02に、メモリセルプレート線CPをVcpwとして電圧V111、V113をVcpwに昇圧する。メモリセルプレート線CPをVcpwとする時間Tw1は30ナノ秒である。時刻t03に、メモリセルプレート線CPをグランド電位として電圧V111、V113を0ボルトに降圧する。時刻t04に、リセット制御線/RSTをVrstレベルとして電圧V113を−Vrstに降圧する。リセット制御線/RSTをVrstとする時間Tw0は150ナノ秒である。時刻t05に、リセット制御線/RSTをローレベルとして電圧V113を0ボルトに昇圧する。時刻t06に、ワード線WLをローレベルとして動作を終了する。
【選択図】 図2

Description

本願発明は、強誘電体を用いた半導体記憶装置に関し、特に、データの書き換えの信頼性を向上させる技術に関する。
近年、強誘電体メモリを用いた半導体記憶装置である強誘電体メモリ(FeRAM: ferroelectric random access memory)の開発が盛んに進められている。強誘電体メモリは、データの不揮発性を有し、高速な書き換えが可能であるという特徴を有している。一方、データの書き換えを繰り返すと強誘電体膜の疲労劣化が進行するため、その書き換え回数には制限がある。
この疲労劣化は、書き換えに伴う分極の反転に起因するものであるので、データ「1」を正の飽和分極とし、データ「0」を分極ゼロ近傍の状態とする非対称駆動方式が開発されている(例えば、特許文献1を参照されたい。)。このようにすれば、データ書き換え時の分極の変化量を低減できるので強誘電体膜の疲労劣化を抑制することができる。したがって、強誘電体メモリの書き換え回数の制限を緩和することができる。
特開2001−308291号公報
このような、非対称駆動方式の強誘電体メモリにおいて、データ書き換えを高速化するためには、書き換え時間を短縮する必要がある。
しかしながら、書き換え時間を短縮するとデータを正しく書き換えることができない場合があり、強誘電体メモリの信頼性が低下するという問題がある。
本願発明は、強誘電体メモリの書き換え時間の短縮を図りつつ、データの信頼性を向上させることを目的とする。
上記目的を達成するため、本願発明に係る半導体記憶装置は、分極状態の差異によりデータを記憶する強誘電体キャパシタと、前記強誘電体キャパシタに書き込み電圧を印加する書き込み電圧印加手段と、前記強誘電体キャパシタに書き込み電圧を印加する時間長を制御する書き込み時間制御手段とを備え、前記書き込み時間制御手段は、書き込むデータの値によって前記時間長を変化させることを特徴とする。
特に、前記書き込み時間制御手段は、前記書き込み電圧の絶対値が小さいほど前記時間長を大きくするとすれば好適である。
従来技術においては、書き込み電圧の大きさに関わらず一律に同じ時間だけ強誘電体キャパシタに書き込み電圧を印加していたところ、このようにすれば、書き込み電圧が大きい場合には、書き込み時間を短縮しても信頼性を維持できる場合には書き込み時間を短縮して書き込み速度を向上させることができるとともに、書き込み電圧が小さい場合には十分な書き込み時間を確保することができるので、データの信頼性を向上させることができる。
また、本願発明に係る半導体記憶装置は、前記書き込み電圧印加手段は、強誘電体キャパシタに記憶させるデータ毎に書き込み電圧の絶対値を異ならせることを特徴とする。
非対称書き込み方式を採用した強誘電体メモリの場合、飽和電圧を印加することによって値「1」を記憶させ、絶対値の小さい電圧を印加することによって値「0」を記憶させるとすれば、飽和電圧を印加する場合には短時間で必要な分極状態を実現することができるが、絶対値の小さい電圧を印加させる場合には、安定した分極状態に達するまでに前記電圧の大きさに応じた時間だけ書き込み電圧を印加する必要がある。従って、本願発明によれば、非対称書き込み方式を採用した強誘電体メモリの書き込み速度を向上させ、メモリの書き換え時間の短縮を図りつつ、データの信頼性を向上させることができる。
また、本願発明に係る半導体記憶装置は、前記強誘電体キャパシタは3値以上のデータを記憶することを特徴とする。
このようにすれば、個々のメモリセルの記憶容量を高めて強誘電体メモリの高集積化を進めることができると共に、そのような強誘電体メモリの信頼性と書き込み速度とを向上させることができる。
以下、本願発明に係る半導体記憶装置の実施の形態について、強誘電体メモリを例にとり、図面を参照しながら説明する。
[1] 第1の実施の形態
本実施の形態に係る強誘電体メモリは、「1」と「0」の2値を記憶する非対称駆動方式の強誘電体メモリである。
[1−1] 強誘電体メモリの構成
図1は、本実施の形態に係る強誘電体メモリを構成するメモリセルの回路構成及びその周辺回路を示す図である。図1に示されるように、強誘電体メモリ1が備えるメモリセル11は、1ビットの情報をふたつの電界効果トランジスタ110、112とふたつの強誘電体キャパシタ111、113とによって記憶する、所謂2T2C型の回路構成を採用している。また、強誘電体メモリ1は、周辺回路として、リードライト部10、ライト部16、リード部17及びトランジスタ12〜15を備えている。
リードライト部10は、ワード線WL、メモリセルプレート線CP及び読み出し選択線REを駆動する。ライト部16は、リセット制御線RST、/RSTを駆動する。また、リード部17は、ビット線BL、/BLを駆動する。
[1−2] 強誘電体メモリ1の書き込み動作
メモリセル11へのデータの書き込み動作について説明する。
(1) 値「1」の書き込み動作
図2は、メモリセル11に値「1」を書き込む際のタイミング・チャートである。図2において、t01からt06は時刻を表しており、時刻t01から時刻t06の順に時間が経過する。また、図中、「H」は電圧がハイレベルにあることを意味し、「L」は電圧がローレベルにあることを意味する。例えば、ハイレベルを1.8ボルト、ローレベルを0.0ボルト、Vppを2.8ボルト、Vcpwを1.8ボルト、Vrstを1.0ボルトとする。
時刻t01以前において、ワード線WLはローレベルとされている。また、読み出し制御線REはVppレベル、メモリセルプレート線CP及びリセット制御線RST、/RSTは何れもローレベルとされている。また、強誘電体キャパシタ111、113に印加される電圧V111、V113はいずれも0ボルトである。
時刻t01において、強誘電体メモリ1は、ワード線WLをVppレベルにする。これにより、電界効果トランジスタ110、112がオン状態となる。時刻t02において、強誘電体メモリ1は、メモリセルプレート線CPをVcpwとする。この結果、電圧V111、V113がVcpwに昇圧される。本実施の形態においては、メモリセルプレート線CPがVcpwとされる時間、すなわち、時刻t02から時刻t03までの時間Tw1は、30ナノ秒である。
時刻t03において、強誘電体メモリ1は、メモリセルプレート線CPをグランド電位とする。これによって、電圧V111、V113が0ボルトに降圧される。時刻t04において、強誘電体メモリ1は、リセット制御線/RSTをVrstレベルにする。すると、電圧V113が更に−Vrstに降圧される。本実施の形態においては、リセット制御線/RSTがVrstレベルとされる時間、すなわち、時刻t02から時刻t03までの時間Tw0は、150ナノ秒である。
時刻t05において、強誘電体メモリ1は、リセット制御線/RSTをローレベルに戻す。すると、強誘電体キャパシタ113にはもはや電圧が印加されなくなる。すなわち、電圧V113が0ボルトに昇圧される。最後に、時刻t06において、ワード線WLがローレベルとされて、一連の書き込み動作が終了する。
(2) 値「0」の書き込み動作
図3は、メモリセル11に値「0」を書き込む際のタイミング・チャートである。図3においても、図2と同様に、時刻t11から時刻t16の順に時間が経過する。また、「H」は電圧がハイレベルにあることを、「L」は電圧がローレベルにあることを意味し、例えば、ハイレベルを1.8ボルト、ローレベルを0.0ボルト、Vppを2.8ボルト、Vcpwを1.8ボルト、Vrstを1.0ボルトとする。また、時刻t11以前における各電圧状態は図2の時刻t01以前の各電圧状態と同様である。
時刻t11において、強誘電体メモリ1は、ワード線WLをVppレベルにして、電界効果トランジスタ110、112をオン状態とする。時刻t12において、強誘電体メモリ1は、メモリセルプレート線CPをVcpwとして、電圧V111、V113をVcpwに昇圧する。メモリセルプレート線CPがVcpwとされる時間Tw1は、上記と同様に30ナノ秒である。
時刻t13において、強誘電体メモリ1は、メモリセルプレート線CPをグランド電位として、電圧V111、V113を0ボルトに降圧する。時刻t14において、強誘電体メモリ1は、リセット制御線RSTをVrstレベルにする。すると、電圧V111が更に−Vrstに降圧される。リセット制御線RSTがVrstレベルとされる時間Tw0は、150ナノ秒である。
時刻t15において、強誘電体メモリ1は、リセット制御線RSTをローレベルに戻す。すると、強誘電体キャパシタ111にはもはや電圧が印加されなくなる。すなわち、電圧V113が0ボルトに昇圧される。最後に、時刻t16において、ワード線WLがローレベルとされて、一連の書き込み動作が終了する。
[1−3] 強誘電体キャパシタの分極状態の制御
次に、本実施の形態において、強誘電体キャパシタ111、113の分極状態がどのように制御されるかについて説明する。
図4は、本実施の形態に係る強誘電体キャパシタ111、113のヒステリシス曲線を示すグラフである。図4において、実線20は本実施の形態に係る強誘電体キャパシタ111、113のヒステリシス曲線を表すグラフである。また、点線21は、対称駆動方式に係る強誘電体キャパシタのヒステリシス曲線を表すグラフである。
図4に示されるように、ヒステリシス曲線21は点201によって表される分極状態から分極状態202、203、211、212を経由して分極状態201に戻る経路を辿る曲線である。当該ヒステリシス曲線21に係る強誘電体キャパシタは、電圧Vcpwを印加されると分極状態201をとり、その後に分極状態202に至る。この分極状態202によって、値「1」が表される。また、これと大きさの等しい逆電圧−Vcpwを印加されると分極状態211をとり、その後に分極状態212に至る。この分極状態212によって値「0」が表される。
一方、本実施の形態に係る強誘電体メモリ111、113のヒステリシス曲線20は、分極状態201から分極状態202、203、204を経由して分極状態201に戻る経路を辿る曲線である。強誘電体キャパシタ111、113は、電圧Vcpwを印加されると分極状態201をとり、その後に分極状態202に至る。この分極状態202によって値「1」を表す点においては、対称駆動方式の場合と同じである。一方、電圧−Vrstを印加されると分極状態203をとり、その後に分極状態204に至る。
また、対称駆動方式の場合には、電圧Vcpwを印加する時間と電圧−Vcpwを印加する時間とはほぼ同じであり、従って、分極状態201にとどまる時間と分極状態211にとどまる時間とはほぼ同じである。一方、本実施の形態においては、前述のように、分極状態201にとどまる時間と分極状態203にとどまる時間とが異なっている。
[1−4] 電圧印加時間とデータ保持特性の関係
次に、本実施の形態に係る強誘電体メモリ1における電圧印加時間とデータ保持特性の関係に関する実験データについて説明する。図5は、強誘電体メモリ1に値「1」を書き込むための書き込み電圧印加時間を変化させた場合の読み出し不良ビットの割合を表すグラフである。この実験は、0.18μmプロセスの2T2C型強誘電体メモリを用いて行った。また、電源電圧は1.8V、値「1」を書き込む電圧Vcpwは1.8V、値「0」を書き込む電圧Vrstは1.3Vとした。そして、224ビットのメモリセルに対して値を書き込んだ後、85℃の雰囲気下で1時間高温保存した後に、室温、標準電圧下で値を読み出して、読み出し不良ビットの割合を調べた。
なお、本実験では同一のメモリセルに対して書き込み時間を種々変化させて書き込みを行ったのだが、書き込み時間を変化させる前後でエンデュランスを1000回程度行って、次の実験が前の実験の影響を被らないようにしている。ここで、エンデュランスとは値「1」と値「0」とを交互に書き込むことで、強誘電体のヒステリシスの偏りを解消する処理である。
図5に示されるように、Tw0を100ナノ秒に固定してTw1を変化させた場合、Tw1が60ナノ秒以下ならば読み出し不良ビットの割合が5%以下となっており、十分な歩留まりが期待できる。
また、図6は、強誘電体メモリ1に値「0」を書き込むための書き込み電圧印加時間を変化させた場合の読み出し不良ビットの割合を表すグラフである。
図3はTw1を60ナノ秒とした場合に、Tw0を変化させた結果を示している。図4はTw0を100ナノ秒とした場合に、Tw1を変化させた結果を示している。図3に示すようにTw1が60ナノ秒に対してTw0が200ナノ秒以上で不良ビットがほぼ0%になっている。また、図4に示すようにTw0が100ナノ秒に対してTw1が60ナノ秒以下で不良ビットがほぼ5%以下になっている。このようにTw1が60ナノ秒に対してTw0は200ナノ秒が最適となる。
なお、不良ビットの割合と書き込みの高速化とのみを考慮すれば、Tw1が短いほど好適であることになるが、長期の信頼性の観点からすれば、Tw1は長いほうが好ましいので60ナノ秒が最適と考える。
[2] 第2の実施の形態
本実施の形態に係る強誘電体メモリは、4値を記憶する非対称駆動方式の強誘電体メモリである。
[2−1] 強誘電体メモリの構成
図7は、本実施の形態に係る強誘電体メモリを構成するメモリセルの回路構成及びその周辺回路を示す図である。図7に示されるように、強誘電体メモリ3が備えるメモリセル31は、2ビットの情報を電界効果トランジスタ310と強誘電体キャパシタ311とによって記憶する、所謂1T1C型の回路構成を採用している。本実施の形態においては、強誘電体キャパシタ311がとる「a」、「b」、「c」及び「d」の4つの分極状態によって2ビットの情報が記憶される。
また、強誘電体メモリ3は、周辺回路として、リードライト部30、リード部34、ライト部35及びトランジスタ32、33を備えている。リードライト部30は、ワード線WL、メモリセルプレート線CP及び読み出し選択線REを駆動する。リード部34はビット線BLを、また、ライト部35はリセット制御線RSTをそれぞれ駆動する。
[2−2] 強誘電体メモリ3の書き込み動作
メモリセル31へのデータの書き込み動作について説明する。図8は、メモリセル31に値「a」、「b」を書き込む際のタイミング・チャートである。また、図9は、メモリセル31に値「c」、「d」を書き込む際のタイミング・チャートである。図8、9において、t21〜t25、t31〜t35、t41〜t45、t51〜t55は時刻を表す。また、「H」、「L」は電圧レベルがハイ又はローであることを意味する。例えば、ハイレベルを1.8ボルト、ローレベルを0.0ボルトとし、Vcpwa、Vcpwb、Vrstc、Vrstdはそれぞれ1.8ボルト、1.3ボルト、1.3ボルト、1.8ボルトとする。
(1) 値「a」の書き込み動作
図8(a)は、メモリセル31に値「a」を書き込む際のタイミング・チャートである。
時刻t21以前において、ワード線WLはローレベルとされている。また、読み出し制御線REはハイレベル(Vppレベル)、メモリセルプレート線CP及びリセット制御線RSTはローレベルとされている。また、強誘電体キャパシタ311に印加される電圧V311は0ボルトである。
時刻t21において、強誘電体メモリ1は、ワード線WLをVppレベルにして、電界効果トランジスタ310をオン状態とする。時刻t22において、強誘電体メモリ3は、メモリセルプレート線CPをVcpwaとして、電圧V311をVcpwaとする。ここで、時刻t22から時刻t23までの時間Twaは、30ナノ秒である。
時刻t23において、強誘電体メモリ3は、メモリセルプレート線CPをグランド電位として、電圧V311を0ボルトとする。時刻t24において、ワード線WLがローレベルとされて、一連の書き込み動作が終了する。
(2) 値「b」の書き込み動作
図8(b)は、メモリセル31に値「b」を書き込む際のタイミング・チャートである。時刻t31以前における各電圧状態は図8(a)の時刻t21以前の各電圧状態と同様である。
時刻t31において、ワード線WLがVppレベルとされ、電界効果トランジスタ310がオン状態とされる。時刻t32には、リセット制御線RSTがVrstdとされ、電圧V311が−Vrstdとされる。時刻t33に、リセット制御線RSTがグランド電位とされ、電圧V311が0ボルトに戻される。時刻t34には、メモリセルプレート線CPがVcpwaとされ、電圧V311がVcpwaとされる。ここで、時刻t34から時刻t35までの時間Twbは、150ナノ秒である。
時刻t35において、メモリセルプレート線CPがグランド電位とされ、電圧V311が0ボルトとされる。時刻t36において、ワード線WLがローレベルとされて、一連の書き込み動作が終了する。
(3) 値「c」の書き込み動作
図9(a)は、メモリセル31に値「b」を書き込む際のタイミング・チャートである。時刻t41以前における各電圧状態は図8(a)の時刻t21以前の各電圧状態と同様である。時刻t41に、ワード線WLがVppレベルとされ、電界効果トランジスタ310がオン状態とされる。時刻t42には、メモリセルプレート線CPがVcpwaとされ、電圧V311がVcpwaとされる。時刻t43に、メモリセルプレート線CPがグランド電位とされ、電圧V311が0ボルトに戻される。時刻t44に、リセット制御線RSTがVrstcとされ、電圧V311が−Vrstcとされる。リセット制御線RSTが−Vrstcとされる時間は、150ナノ秒である。時刻t45に、リセット制御線RSTがグランド電位とされ、電圧V311が0ボルトに戻される。時刻t46には、ワード線WLがローレベルとされて、一連の書き込み動作が終了する。
(4) 値「d」の書き込み動作
図9(b)は、メモリセル31に値「d」を書き込む際のタイミング・チャートである。時刻t51以前における各電圧状態は図8(a)の時刻t21以前の各電圧状態と同様である。時刻t51に、ワード線WLをVppレベルにして、電界効果トランジスタ310をオン状態とする。時刻t52に、リセット制御線RSTがVrstdとされ、電圧V311が−Vrstdとされる。リセット制御線RSTが−Vrstdとされる時間は、30ナノ秒である。時刻t53に、リセット制御線RSTがグランド電位とされ、電圧V311が0ボルトに戻される。時刻t54に、ワード線WLがローレベルとされて、一連の書き込み動作が終了する。
[2−3] 強誘電体キャパシタの分極状態の制御
次に、本実施の形態において、強誘電体キャパシタ311の分極状態の制御について説明する。
図10は、本実施の形態に係る強誘電体キャパシタ311のヒステリシス曲線を示すグラフである。図10において、グラフ40は本実施の形態に係る強誘電体キャパシタ311のヒステリシス曲線を表す。
図10に示されるように、強誘電体キャパシタ311は、分極状態405又は分極状態408にあるときに電圧Vcpwaを30ナノ秒間、印加されると分極状態401をとり、その後、印加電圧がグランド電圧とされると分極状態402となる。この分極状態402により値「a」が表される。
また、分極状態405にあるときに電圧Vcpwbを150ナノ秒間、印加されると分極状態406をとり、その後、印加電圧がグランド電圧とされると分極状態407となる。この分極状態407により値「b」が表される。
また、分極状態402にあるときに電圧−Vrstcを150ナノ秒間、印加されると分極状態403をとり、その後、印加電圧がグランド電圧とされると分極状態408をとる。この分極状態408により値「c」が表される。
また、分極状態402、407にあるときに電圧−Vrstdを30ナノ秒間、印加されると分極状態404をとり、その後、印加電圧がグランド電圧とされると分極状態405となる。この分極状態405により値「d」が表される。
このように、強誘電体キャパシタに印加する電圧とその印加時間を変えることで、分極状態を制御することができる。すなわち、電圧印時間を調節することによって飽和分極に至る手前で分極変化を止めることができる。これによれば、ひとつの強誘電体メモリセルに複数の値を記憶することができる。
[3] 変形例
以上、本願発明を実施の形態に基づいて説明してきたが、本願発明が上述の実施の形態に限定されないのは勿論であり、以下のような変形例を実施することができる。
(1) 上記第1の実施の形態においては、特に言及しなかったが、印加電圧Vcpwは強誘電体キャパシタ111、113の抗電圧の2倍以上が望ましく、時間Tw1は強誘電体膜を飽和分極させるに足る時間であることが望ましい。また、Vrstは強誘電体キャパシタの抗電圧の2倍以内が望ましく、時間Tw0は分極を中立状態にする時間であることが望ましい。例えば、電源電圧1.8V駆動の強誘電体デバイスにおいて、Vcpwは約1.8V、Vrstは1.0〜1.2V、Tw1は30〜100ナノ秒、Tw0は150〜500ナノ秒であることが望ましい。なお、抗電圧とは、分極状態をキャパシタ外部から変更するために必要な電圧をいう。
(2) 上記第1の実施の形態においては2T2C型の回路構成を例にとって説明したが、本願発明がこれに限定されないのは言うまでも無く、1T1C型の回路構成をとるとしても良いし、或いは、これら以外の回路構成を採用するとしても良い。何れの回路構成を採用する場合であっても、本願発明を適用してその効果を得ることができる。
(3) 上記第1の実施の形態においては、専ら非対称駆動方式の場合を例にとって説明したが、本願発明がこれに限定されないのは言うまでも無く、対称駆動方式の強誘電体キャパシタに本願発明を適用するとしても良い。非対称駆動方式では従来の対称駆動方式に比べ、書き換えにおける分極の変化量が少なく、強誘電体膜の劣化が少ない。従って、書き換え回数の制約を緩和できるので、強誘電体キャパシタの書き換え寿命が長くすることができる。なお、非対称駆動方式では値「1」と「0」の信号差が小さいので、読み出し回路に工夫が必要となる。
また、本願発明に係る強誘電体メモリから情報を読み出す場合にはいわゆる破壊読み出し方式を採用しても良いし、或いは、非破壊読み出し方式を採用するとしても良い。破壊読み出し方式を採用する場合には書き換え回数や読み出し回数の制約が存するが、非破壊読み出し方式を採用する場合には読み出し時に強誘電体キャパシタの分極が反転しないため強誘電体膜の劣化を抑制でき、従って、読み出し回数の制約を緩和することができる。一方、書き換え回数については、破壊読み出し方式の場合と同様に強誘電体膜の疲労劣化を生じるので、制約が存する。非破壊読み出し方式において、強誘電体キャパシタの分極を反転させるために電極に電圧を印加する書き込み時間の最適値については、例えば、特開2001−308291号公報に開示されている。
(4) 上記第1の実施の形態においては、値「0」を記録するための書き込み電圧印加時間が値「1」の状態を記録するための書き込み電圧印加時間より長い場合について説明してきたが、本願発明がこれに限定されないのは言うまでも無く、値「1」を記録するための書き込み電圧印加時間が値「0」の状態を記録するための書き込み電圧印加時間より長いとしても良い。
図11は、値「1」を記録するための書き込み電圧印加時間が値「0」の状態を記録するための書き込み電圧印加時間より長い場合の強誘電体キャパシタのヒステリシス曲線を例示するグラフである。図11に示されるように、本変形例に係る強誘電体キャパシタは、飽和電圧を印加されると分極状態503をとり、その後、値「0」を表す分極常態504に到達する。また、飽和電圧よりも低い電圧を印加されると分極状態501をとり、その後、値「1」を表す分極常態502に至る。この場合において、飽和電圧よりも低い電圧を印加する時間は飽和電圧を印加する時間よりも長いのが好適である。
(5) 上記第2の実施の形態においては1T1C型の回路構成を例にとって説明したが、本願発明がこれに限定されないのは言うまでも無く、2T2C型の回路構成をとるとしても良いし、或いは、これら以外の回路構成を採用するとしても良い。何れの回路構成を採用する場合であっても、本願発明を適用してその効果を得ることができる。
(6) 上記第2の実施の形態においては、ひとつのメモリセルに4値を記憶する場合を例にとって説明したが、本願発明がこれに限定されないのは言うまでも無く、3値、或いは、5以上の値をひとつのメモリセルに記憶させるとしても良い。ひとつのメモリセルに記憶させる値の数によらず、本願発明を適用してその効果を得ることができる。
本願発明に係る半導体記憶装置は、書き込み速度とデータの信頼性とを共に向上させることができる強誘電体メモリとして有用である。
本願発明の第1の実施の形態に係る強誘電体メモリを構成するメモリセルの回路構成及びその周辺回路を示す図である。 本願発明の第1の実施の形態に係る強誘電体メモリを構成するメモリセル11に値「1」を書き込む際のタイミング・チャートである。 本願発明の第1の実施の形態に係る強誘電体メモリを構成するメモリセル11に値「0」を書き込む際のタイミング・チャートである。 本願発明の第1の実施の形態に係る強誘電体キャパシタ111、113のヒステリシス曲線を示すグラフである。 本願発明の第1の実施の形態に係る強誘電体メモリ1に値「1」を書き込むための書き込み電圧印加時間を変化させた場合の読み出し不良ビットの割合を表すグラフである。 本願発明の第1の実施の形態に係る強誘電体メモリ1に値「0」を書き込むための書き込み電圧印加時間を変化させた場合の読み出し不良ビットの割合を表すグラフである。 本願発明の第2の実施の形態に係る強誘電体メモリを構成するメモリセルの回路構成及びその周辺回路を示す図である。 本願発明の第2の実施の形態に係る強誘電体メモリを構成するメモリセル31に値「a」、「b」を書き込む際のタイミング・チャートである。 本願発明の第2の実施の形態に係る強誘電体メモリを構成するメモリセル31に値「c」、「d」を書き込む際のタイミング・チャートである。 本願発明の第2の実施の形態に係る強誘電体キャパシタ311のヒステリシス曲線を示すグラフである。 本願発明の変形例(4)に係る強誘電体キャパシタのヒステリシス曲線を示すグラフである。
符号の説明
1、3……………………………………………………………………………強誘電体メモリ
10、30………………………………………………………………………リードライト部
11、31………………………………………………………………………メモリセル
12〜15、32、33………………………………………………………トランジスタ
16、35………………………………………………………………………ライト部
17、34………………………………………………………………………リード部
110、112、310………………………………………………………電界効果トランジスタ
111、113、311………………………………………………………強誘電体キャパシタ
20、21………………………………………………………………………ヒステリシス曲線
201〜204、211、212、401〜408、501〜504…分極状態

Claims (4)

  1. 分極状態の差異によりデータを記憶する強誘電体キャパシタと、
    前記強誘電体キャパシタに書き込み電圧を印加する書き込み電圧印加手段と、
    前記強誘電体キャパシタに書き込み電圧を印加する時間長を制御する書き込み時間制御手段とを備え、
    前記書き込み時間制御手段は、書き込むデータの値によって前記時間長を変化させる
    ことを特徴とする半導体記憶装置。
  2. 前記書き込み時間制御手段は、前記書き込み電圧の絶対値が小さいほど前記時間長を大きくする
    ことを特徴とする請求項1に記載の半導体記憶装置。
  3. 前記書き込み電圧印加手段は、強誘電体キャパシタに記憶させるデータ毎に書き込み電圧の絶対値を異ならせる
    ことを特徴とする請求項1に記載の半導体記憶装置。
  4. 前記強誘電体キャパシタは3値以上のデータを記憶する
    ことを特徴とする請求項1に記載の半導体記憶装置。
JP2004020490A 2004-01-28 2004-01-28 半導体記憶装置 Pending JP2005216363A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004020490A JP2005216363A (ja) 2004-01-28 2004-01-28 半導体記憶装置
US11/041,251 US6992913B2 (en) 2004-01-28 2005-01-25 Ferroelectric storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020490A JP2005216363A (ja) 2004-01-28 2004-01-28 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2005216363A true JP2005216363A (ja) 2005-08-11

Family

ID=34792614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020490A Pending JP2005216363A (ja) 2004-01-28 2004-01-28 半導体記憶装置

Country Status (2)

Country Link
US (1) US6992913B2 (ja)
JP (1) JP2005216363A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140029326A1 (en) * 2012-07-26 2014-01-30 Texas Instruments Incorporated Ferroelectric random access memory with a non-destructive read
US10504588B2 (en) * 2015-05-12 2019-12-10 Alacrity Semiconductors, Inc. Multi-level versatile memory
US9460770B1 (en) 2015-09-01 2016-10-04 Micron Technology, Inc. Methods of operating ferroelectric memory cells, and related ferroelectric memory cells

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434811A (en) * 1987-11-19 1995-07-18 National Semiconductor Corporation Non-destructive read ferroelectric based memory circuit
US5325050A (en) * 1991-10-30 1994-06-28 Rohm Co., Ltd. Maximum voltage detecting apparatus using ferroelectric capacitors
US5541870A (en) * 1994-10-28 1996-07-30 Symetrix Corporation Ferroelectric memory and non-volatile memory cell for same
JP2001308291A (ja) 2000-02-15 2001-11-02 Matsushita Electric Ind Co Ltd 半導体記憶装置,その駆動方法及びその製造方法
US6707702B1 (en) * 2002-11-13 2004-03-16 Texas Instruments Incorporated Volatile memory with non-volatile ferroelectric capacitors
US7154768B2 (en) * 2004-02-18 2006-12-26 Symetrix Corporation Non-destructive readout of ferroelectric memories

Also Published As

Publication number Publication date
US6992913B2 (en) 2006-01-31
US20050162890A1 (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP5162276B2 (ja) 強誘電体メモリ装置
US10685709B2 (en) Nonvolatile semiconductor memory with gate insulation layer of a transistor including ferroelectric material
US7248493B2 (en) Memory system having improved random write performance
CN110326049B (zh) 不带有板线的铁电存储器单元
JP2006344289A (ja) 強誘電体記憶装置
US6118688A (en) Ferroelectric memory device and method for driving it
JP3877336B2 (ja) 強誘電体メモリ装置及びその駆動方法
JP2007073141A (ja) 強誘電体メモリ装置
JP2005092922A (ja) 強誘電体メモリ
US20060018151A1 (en) Ferroelectric memory device and its driving method
JPH10320981A (ja) 強誘電体メモリ
JP3365595B2 (ja) 半導体記憶装置及びその駆動方法
JP2004234827A (ja) 破壊読出し型メモリおよびメモリ読出方法
CN107180649B (zh) 半导体存储器元件及操作半导体存储器元件的方法
JP3717097B2 (ja) 強誘電体メモリ
KR100745938B1 (ko) 강유전체 메모리 및 그 동작 방법
JP4477629B2 (ja) 強誘電体メモリ
US6992913B2 (en) Ferroelectric storage device
US20050105354A1 (en) Bitline precharge timing scheme to improve signal margin
JP2008217937A (ja) 強誘電体記憶装置及びその制御方法
KR20050031950A (ko) 메모리
JP3597163B2 (ja) 強誘電体メモリセルの読み出し方法および読み出し回路
US7190339B2 (en) Ferroelectric memory device and display drive IC
JP2001143478A (ja) 強誘電体メモリ装置及びそのデータ読み出し方法
US7551472B2 (en) Ferroelectric semiconductor memory device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401