JP2005214352A - Fluid sealed type vibration isolating mount - Google Patents

Fluid sealed type vibration isolating mount Download PDF

Info

Publication number
JP2005214352A
JP2005214352A JP2004024348A JP2004024348A JP2005214352A JP 2005214352 A JP2005214352 A JP 2005214352A JP 2004024348 A JP2004024348 A JP 2004024348A JP 2004024348 A JP2004024348 A JP 2004024348A JP 2005214352 A JP2005214352 A JP 2005214352A
Authority
JP
Japan
Prior art keywords
vibration
fluid
axial direction
mount
mounting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004024348A
Other languages
Japanese (ja)
Inventor
Satoshi Umemura
聡 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2004024348A priority Critical patent/JP2005214352A/en
Publication of JP2005214352A publication Critical patent/JP2005214352A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid sealed type vibration isolating mount, securing the basic performance to enough efficiently exhibit pressure variation in a pressure receiving chamber, advantageously securing the axial spring rigidity to stably support an object member to be vibration-isolated, and advantageously obtaining the effect based on right-angled intended low spring characteristic by setting the right-angled spring characteristic to be soft. <P>SOLUTION: In a position deviated from the elastic center axis of a rubber elastic body 16, a first bore hole 58 opened in an inner surface facing to a pressure receiving chamber 36 and a second bore hole 62 opened in an outer surface exposed to the outside are respectively provided extending in the substantially axial direction. The first bore hole 58 and the second bore hole 62 are positioned opposite to each other at a space in the right-angled direction, with such a depth that one bottom 60 (64) is extended in the axial direction to exceed the other bottom 64 (60), whereby an elastic vertical wall 66 extended in the substantially axial direction is formed between the opposite surfaces in the right-angled direction of the first bore hole 58 and the second bore hole 62. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内部に封入された非圧縮性流体の流動作用に基づいて発揮される防振特性を利用して防振効果を得るようにした流体封入式防振マウントに係り、例えば、自動車用エンジンマウントやボデーマウント、デフマウント等に適用される流体封入式防振マウントに関するものである。   The present invention relates to a fluid-filled vibration-proof mount that obtains a vibration-proof effect by utilizing a vibration-proof characteristic that is exhibited based on the flow action of an incompressible fluid sealed inside. The present invention relates to a fluid-filled vibration-proof mount applied to an engine mount, a body mount, a differential mount, and the like.

従来から、振動伝達系を構成する部材間に介装される防振支持体や防振連結体等の防振マウントの一種として、内部に封入された非圧縮性流体の共振作用等の流動作用に基づいて防振効果を得るようにした流体封入式の防振マウントが知られている。かかる防振マウントは、例えば、特許文献1にも示されているように、第一の取付部材と該第一の取付部材と離隔配置した筒状の第二の取付部材を本体ゴム弾性体で連結して第二の取付部材の一方の開口部を流体密に覆蓋すると共に、第二の取付部材の他方の開口部を可撓性膜で流体密に覆蓋し、更にそれら本体ゴム弾性体と可撓性膜の間に仕切部材を配設して、該仕切部材を挟んだ両側において、それぞれ非圧縮性流体が封入される、振動が入力される受圧室と可撓性膜によって容積変化が容易に許容される平衡室を形成して、それら両室をオリフィス通路で連通させた構造とされている。   Conventionally, as a type of anti-vibration mount such as an anti-vibration support and an anti-vibration coupling body interposed between members constituting the vibration transmission system, fluid action such as resonance action of incompressible fluid enclosed inside There is known a fluid-filled vibration-proof mount that achieves a vibration-proof effect based on the above. Such an anti-vibration mount is, for example, as shown in Patent Document 1, in which a first mounting member and a cylindrical second mounting member spaced apart from the first mounting member are made of a main rubber elastic body. The second mounting member is connected to fluidly cover one opening of the second mounting member, and the other opening of the second mounting member is fluid-tightly covered with a flexible film. A partition member is disposed between the flexible membranes, and on both sides of the partition member, incompressible fluid is sealed, and the volume change is caused by the pressure receiving chamber to which vibration is input and the flexible membrane. An easily allowed equilibrium chamber is formed, and both the chambers are communicated with each other through an orifice passage.

ところで、このような防振マウントにおいては、振動が入力される各種の方向で相違するばね特性が要求される場合がある。例えば自動車では、走行安定性と乗り心地を両立して高度に達成させる目的で、車両の略上下方向となるマウントの軸方向に比して車両の略前後方向となるマウントの軸直角方向で低ばね特性が要求される場合がある。   By the way, such an anti-vibration mount may require different spring characteristics in various directions in which vibration is input. For example, in an automobile, for the purpose of achieving both high driving stability and a high level of comfort, it is lower in the direction perpendicular to the axis of the mount, which is substantially the longitudinal direction of the vehicle, compared to the axial direction of the mount, which is substantially the vertical direction of the vehicle. Spring characteristics may be required.

そこで、従来では、このような要求に対処するために、例えば、(a)本体ゴム弾性体の軸直角方向寸法に対する軸方向寸法の比を大きくしたり、或いは、特許文献1, 2にも示されているように、(b)本体ゴム弾性体に凹部や溝等を形成したりすること等によって、防振マウントの軸直角方向のばね定数を軸方向のそれよりも低くさせることが提案されている。   Therefore, conventionally, in order to cope with such a demand, for example, (a) the ratio of the axial dimension to the axial perpendicular direction dimension of the main rubber elastic body is increased or disclosed in Patent Documents 1 and 2. (B) It is proposed that the spring constant in the direction perpendicular to the axis of the anti-vibration mount is made lower than that in the axial direction by, for example, forming a recess or groove in the main rubber elastic body. ing.

しかしながら、前者(a)の方策では、本体ゴム弾性体の自由表面積が大きくなって有効ピストン面積が小さくなり、オリフィス通路を通じての流体流動作用に基づく防振効果が十分に発揮され難くなるという問題があった。また、後者(b)の方策では、マウント軸方向とマウント軸直角方向のばね比を十分に得ることが難しいという問題があり、マウント軸直角方向で十分な低ばね特性を得ようとすると、凹部や溝等が形成される部分のゴム弾性体の厚さ寸法が小さくなって、軸方向のばね剛性も低下してしまうという問題を内在していた。加えて、後者(b)の特許文献1に係る防振マウントに示されているように、第一の取付部材と第二の取付部材の間に介装された本体ゴム弾性体に略全長に亘って肉厚寸法が小さくされた薄肉部を形成すると、オリフィス通路のチューニング周波数域の振動が入力された場合等において、受圧室の圧力変動が薄肉部の変形で吸収されてしまい、受圧室と平衡室の間に相対的な圧力変動が効率的に生ぜしめられ難くなるという問題があった。その結果、オリフィス通路を通じての流体流動量が十分に確保され難くなって、当該オリフィス通路を流動せしめられる流体の流動作用に基づくマウント本来の防振特性が有効に発揮され難くなるという問題があったのである。   However, in the former method (a), there is a problem that the free surface area of the main rubber elastic body is increased, the effective piston area is reduced, and the vibration isolation effect based on the fluid flow action through the orifice passage is not sufficiently exhibited. there were. In the latter method (b), there is a problem that it is difficult to obtain a sufficient spring ratio between the mount axis direction and the mount axis perpendicular direction. There is a problem that the thickness of the rubber elastic body in the portion where the groove or the like is formed becomes small, and the spring rigidity in the axial direction also decreases. In addition, as shown in the anti-vibration mount according to Patent Document 1 of the latter (b), the main rubber elastic body interposed between the first mounting member and the second mounting member has a substantially full length. If a thin wall portion with a reduced wall thickness is formed, the pressure fluctuation in the pressure receiving chamber is absorbed by the deformation of the thin wall portion when vibration in the tuning frequency range of the orifice passage is input, and the pressure receiving chamber There has been a problem that relative pressure fluctuations cannot be efficiently generated between the equilibrium chambers. As a result, a sufficient amount of fluid flow through the orifice passage is difficult to be ensured, and there is a problem that it is difficult to effectively exhibit the vibration isolation characteristics inherent to the mount based on the fluid action of the fluid flowing through the orifice passage. It is.

特開平10−339348号公報JP 10-339348 A 実公平3−2749号公報Japanese Utility Model Publication No. 3-2749

ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、受圧室の圧力変動が十分に効率的に発揮されるように基本性能を確保しつつ、軸方向のばね剛性が有利に確保されることによって防振対象部材が安定して支持されると共に、軸直角方向のばね特性が柔らかく設定されることに伴い当該方向の目的とする低ばね特性に基づく効果が有利に得られる新規な構造の流体封入式防振マウントを提供することにある。   Here, the present invention has been made in the background as described above, and the solution is to ensure basic performance so that pressure fluctuations in the pressure receiving chamber are sufficiently efficiently exhibited. However, the object of vibration isolation is stably supported by advantageously securing the spring stiffness in the axial direction, and the spring characteristic in the direction perpendicular to the axis is set soft, so that the target low in that direction is achieved. An object of the present invention is to provide a fluid-filled vibration-proof mount having a novel structure that can advantageously obtain an effect based on spring characteristics.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

(本発明の態様1)
本発明の態様1の特徴とするところは、第一の取付部材を筒状の第二の取付部材の軸方向一方の開口部側に離隔配置してそれら第一の取付部材と第二の取付部材を本体ゴム弾性体で連結せしめて該第二の取付部材の軸方向一方の開口部を流体密に覆蓋すると共に、該第二の取付部材の軸方向他方の開口部を可撓性膜で流体密に覆蓋し、更にそれら本体ゴム弾性体と可撓性膜の間に仕切部材を配設して該第二の取付部材に支持させることにより、該仕切部材を挟んだ両側に壁部の一部が該本体ゴム弾性体で構成されて振動が入力される受圧室と、壁部の一部が該可撓性膜で構成されて容積変化が容易に許容される平衡室を形成して、該受圧室と該平衡室に非圧縮性流体を封入すると共に、それら両室を連通させるオリフィス通路を形成した流体封入式防振マウントであって、前記本体ゴム弾性体の弾性中心軸から外れた位置において、前記受圧室に面した内面に開口する第一のすぐり穴と、外部に露出した外面に開口する第二のすぐり穴を、それぞれ略軸方向に延びるように設けると共に、それら第一のすぐり穴と第二のすぐり穴における一方の底部が他方の底部を越えて軸方向に延びる深さ形態で軸直角方向で離隔して対向位置せしめることにより、該第一のすぐり穴と該第二のすぐり穴の軸直角方向対向面間において略軸方向に延びる弾性竪壁を形成した流体封入式防振マウントにある。
(Aspect 1 of the present invention)
A feature of the first aspect of the present invention is that the first mounting member and the second mounting member are separated from each other on the side of one opening in the axial direction of the cylindrical second mounting member. The members are connected by a rubber elastic body to cover one axial opening of the second mounting member in a fluid-tight manner, and the other axial opening of the second mounting member is covered with a flexible membrane. Cover the fluid tightly, and further dispose a partition member between the main rubber elastic body and the flexible membrane and support it on the second mounting member, so that the wall portion is sandwiched between the both sides of the partition member. A pressure receiving chamber, part of which is made of the rubber elastic body, receives vibrations, and a part of the wall is made of the flexible film to form an equilibrium chamber in which volume change is easily allowed. A fluid in which an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber, and an orifice passage is formed for communicating the two chambers. A first anti-vibration mount that is open to an inner surface facing the pressure-receiving chamber and an outer surface exposed to the outside at a position deviating from an elastic central axis of the main rubber elastic body; Two counterbore holes are provided so as to extend substantially in the axial direction, respectively, and one bottom part of the first and second counterbore holes is perpendicular to the axis in a depth configuration extending in the axial direction beyond the other bottom part. The fluid-filled vibration-proof mount has an elastic flange wall extending in a substantially axial direction between the first vertical hole and the second vertical hole facing each other in the direction perpendicular to the axial direction. is there.

このような本態様に従う構造とされた流体封入式防振マウントにおいては、第一のすぐり穴と第二のすぐり穴が、マウントの軸直角方向で離隔して対向位置せしめられていると共に、軸方向で互いに異なる側に開口されており、更に両すぐり穴における各一方の底部が他方の底部を越える深さ形態で、マウントの略軸方向に延びている。即ち、第一のすぐり穴と第二のすぐり穴が、軸直角方向で互いにオーバーラップされた(重なり合わされた)形態で本体ゴム弾性体に形成されている。これにより、流体封入式であるために、本体ゴム弾性体におけるすぐり穴の深さ寸法が制限される防振マウントにあっても、軸直角方向の低ばね特性が有利に実現され得る。   In the fluid-filled vibration isolating mount having the structure according to this aspect, the first counterbore and the second hoisthole are opposed to each other in the direction perpendicular to the axis of the mount, and the shaft Are opened on different sides in the direction, and each bottom of each of the counterbore holes extends substantially in the axial direction of the mount in a depth form exceeding the other bottom. That is, the first and second straight holes are formed in the main rubber elastic body so as to overlap each other in the direction perpendicular to the axis. Thereby, since it is a fluid-filled type, low spring characteristics in the direction perpendicular to the axis can be advantageously realized even in the vibration-proof mount in which the depth dimension of the straight hole in the main rubber elastic body is limited.

ここにおいて、本態様では、第一のすぐり穴と第二のすぐり穴の形成に伴い、両すぐり穴の軸直角方向対向面間に略軸方向に延びる弾性竪壁が形成されていることによって、第一の取付部材と第二の取付部材の間に軸方向の振動が入力された際に、弾性竪壁には軸方向の圧縮及び/又は引張変形が生ぜしめられる。一方、第一及び第二の取付部材の間に軸直角方向の振動が入力された際には、特に弾性竪壁を挟んで軸直角方向で対向位置せしめられた一対のすぐり穴が設けられた部位の本体ゴム弾性体において、剪断変形が支配的となる。その結果、マウント軸直角方向のばね定数が、マウント軸方向のばね定数に比して低く設定される。   Here, in this aspect, with the formation of the first counterbore and the second counterbore, an elastic ridge wall extending substantially in the axial direction is formed between the axially perpendicular opposed surfaces of both the counterbore holes, When axial vibration is input between the first mounting member and the second mounting member, axial compression and / or tensile deformation occurs in the elastic wall. On the other hand, when vibration in the direction perpendicular to the axis is input between the first and second mounting members, a pair of straight holes are provided that are opposed to each other in the direction perpendicular to the axis, particularly with the elastic flange wall in between. In the main rubber elastic body at the site, shear deformation is dominant. As a result, the spring constant in the direction perpendicular to the mount axis is set lower than the spring constant in the mount axis direction.

従って、かかる流体封入式防振マウントにおいては、軸方向と軸直角方向のばね比が大きくされることによって、振動伝達系の部材間に配設される際に、マウント軸方向が防振対象部材の支持荷重等が入力される方向に設定されると共に、弾性竪壁を挟んで第一のすぐり穴と第二のすぐり穴が対向位置せしめられたマウント軸直角方向が防振すべき振動の一つが入力される方向に設定されることにより、各方向のばね特性に基づく目的とする効果が有利に得られる。具体的には、例えば、該マウントが自動車用防振マウント等に適用されるに際して、マウント軸方向が車両上下方向に、第一及び第二のすぐり穴や弾性竪壁が設けられた軸直角方向が車両前後方向に設定されることによって、車両上下方向の高ばね特性に基づいて防振対象部材の支持剛性が有利に確保され得ると共に、車両前後方向の低ばね特性に基づいて優れた乗り心地が実現され得るのである。   Accordingly, in such a fluid-filled vibration-proof mount, when the spring ratio between the axial direction and the axis-perpendicular direction is increased, the mount shaft direction becomes the vibration-proof target member when disposed between the members of the vibration transmission system. One of the vibrations to be damped is the direction perpendicular to the mount axis in which the first and second holes are opposed to each other with the elastic saddle wall in between. By setting one in the input direction, the desired effect based on the spring characteristics in each direction can be advantageously obtained. Specifically, for example, when the mount is applied to an anti-vibration mount for automobiles, the mount axis direction is the vehicle vertical direction, and the direction perpendicular to the axis provided with the first and second straight holes and the elastic saddle wall Is set in the longitudinal direction of the vehicle, the support rigidity of the vibration isolation target member can be advantageously ensured based on the high spring characteristic in the vertical direction of the vehicle, and excellent ride comfort based on the low spring characteristic in the longitudinal direction of the vehicle Can be realized.

しかも、本態様の防振マウントでは、弾性竪壁が略軸方向に延びていることによって軸方向のばね剛性が有利に確保されることから、軸方向の振動入力時における本体ゴム弾性体の弾性変形に伴い受圧室に有効な圧力変動が惹起されて、受圧室と平衡室の間に相対的な圧力変動が有利に生ぜしめられる。その結果、それら両室間の相対的な圧力変動に基づいてオリフィス通路を通じての流体流動量が十分に確保されることとなり、以て、防振すべき軸方向の振動に対して、オリフィス通路を流動せしめられる流体の共振作用等の流動作用に基づく防振効果が有利に発揮され得るのである。   In addition, in the vibration-proof mount of this aspect, the elastic flange wall extends in the substantially axial direction, so that the spring stiffness in the axial direction is advantageously ensured. Therefore, the elasticity of the main rubber elastic body at the time of axial vibration input With the deformation, an effective pressure fluctuation is induced in the pressure receiving chamber, and a relative pressure fluctuation is advantageously generated between the pressure receiving chamber and the equilibrium chamber. As a result, a sufficient amount of fluid flow through the orifice passage is secured on the basis of relative pressure fluctuations between the two chambers. An anti-vibration effect based on a fluid action such as a resonance action of the fluid to be caused to flow can be advantageously exhibited.

(本発明の態様2)
本発明の態様2の特徴とするところは、本発明の前記態様1に係る流体封入式防振マウントにおいて、前記本体ゴム弾性体における前記第一の取付部材を挟んだ軸直角方向両側に各一対の前記第一のすぐり穴と前記第二のすぐり穴を設けて、前記弾性竪壁の一対を該第一の取付部材を挟んだ軸直角方向で対向位置せしめたことにある。
(Aspect 2 of the present invention)
The aspect 2 of the present invention is characterized in that, in the fluid-filled vibration isolating mount according to the aspect 1 of the present invention, each pair is provided on both sides of the main rubber elastic body in the direction perpendicular to the axis across the first mounting member. The first and second holes are provided so that the pair of elastic rib walls are opposed to each other in a direction perpendicular to the axis with the first mounting member interposed therebetween.

このような本態様においては、一対の弾性竪壁が対向位置せしめられた軸直角方向が目的とする低ばね特性が要求される方向に設定されることにより、低ばね特性が一層有利に実現され得る。また、本態様では、マウント軸方向と一対の弾性竪壁が対向位置せしめられた軸直角方向のばね比が大きくされることに加え、一対の弾性竪壁が対向位置せしめられた軸直角方向と弾性竪壁が設けられていない該軸直角方向に直交する方向とのばね比も大きく設定することが出来る。   In this aspect, the low spring characteristic is realized more advantageously by setting the direction perpendicular to the axis in which the pair of elastic flange walls are opposed to each other to the desired low spring characteristic. obtain. Further, in this aspect, in addition to increasing the spring ratio in the direction perpendicular to the axis in which the mount axial direction and the pair of elastic collar walls are opposed to each other, the axis perpendicular direction in which the pair of elastic collar walls are opposed to each other The spring ratio with respect to the direction orthogonal to the direction perpendicular to the axis where no elastic ribs are provided can also be set large.

(本発明の態様3)
本発明の態様3の特徴とするところは、本発明の前記態様1又は2に係る流体封入式防振マウントにおいて、前記第一の取付部材に軸直角方向に拡がる作用突部を一体的に設けると共に、該作用突部の軸方向下方に前記第一のすぐり穴または前記第二のすぐり穴を設けたことにある。
(Aspect 3 of the present invention)
The aspect 3 of the present invention is characterized in that in the fluid-filled vibration isolating mount according to the aspect 1 or 2 of the present invention, the first mounting member is integrally provided with an action protrusion that extends in a direction perpendicular to the axis. At the same time, the first straight hole or the second straight hole is provided below the working protrusion in the axial direction.

このような本態様においては、作用突部がすぐり穴を備えた本体ゴム弾性体の軸方向上方に設けられることによって、該すぐり穴を備えた部分の軸方向のばね剛性が有利に確保される。それ故、軸方向の振動入力時に、作用突部の下方に設けられたすぐり穴を備えた本体ゴム弾性体による、受圧室に対するピストン作用が有効に発揮されることとなり、軸方向の振動入力に際して、大きなピストン効率をもって受圧室に大きな圧力変動が生ぜしめられることから、受圧室と平衡室の間の圧力差によるオリフィス通路を通じての流体の共振作用等の流動作用に基づく防振効果が一層有利に発揮され得るのである。   In such a mode, by providing the action protrusion on the axially upper side of the main rubber elastic body having the straight hole, the spring rigidity in the axial direction of the portion having the straight hole is advantageously ensured. . Therefore, at the time of axial vibration input, the piston action against the pressure receiving chamber is effectively exerted by the main rubber elastic body provided with the straight hole provided below the action protrusion. Since a large pressure fluctuation is generated in the pressure receiving chamber with a large piston efficiency, the vibration isolation effect based on the fluid action such as the resonance action of the fluid through the orifice passage due to the pressure difference between the pressure receiving chamber and the equilibrium chamber is more advantageous. It can be demonstrated.

なお、本体ゴム弾性体における受圧室に対するピストン作用とは、軸方向の振動入力時に本体ゴム弾性体の弾性変形に基づいて受圧室に対して圧力変動を及ぼす作用をいい、ピストン効率が良いほど、第一の取付部材と第二の取付部材の軸方向での単位量の相対変位に際して大きな圧力変動が生ぜしめられることとなる。   Note that the piston action on the pressure receiving chamber in the main rubber elastic body means an action that exerts pressure fluctuations on the pressure receiving chamber based on elastic deformation of the main rubber elastic body at the time of axial vibration input. When the first mounting member and the second mounting member are displaced by a unit amount in the axial direction, a large pressure fluctuation is generated.

(本発明の態様4)
本発明の態様4の特徴とするところは、本発明の前記態様1乃至3の何れかに係る流体封入式防振マウントにおいて、前記弾性竪壁の固有振動数を、前記オリフィス通路を流動せしめられる流体の共振周波数よりも高周波数域において防振すべき振動の周波数域にチューニングしたことにある。
(Aspect 4 of the present invention)
A feature of the fourth aspect of the present invention is that in the fluid-filled vibration isolating mount according to any one of the first to third aspects of the present invention, the natural frequency of the elastic saddle wall can be caused to flow in the orifice passage. This means that tuning is performed in the frequency range of vibration to be damped in a frequency range higher than the resonance frequency of the fluid.

このような本態様においては、オリフィス通路のチューニング周波数よりも高周波数域の振動が軸方向に入力された際に、オリフィス通路が実質的に閉塞状態となるが、受圧室の圧力増大に伴う高動ばね化が弾性竪壁の変形により回避される。そこにおいて、本態様では、弾性竪壁の固有振動数がオリフィス通路のチューニング周波数よりも高周波数域にチューニングされていることにより、当該周波数域の振動入力における弾性竪壁の共振作用と相俟って、弾性竪壁の弾性変形が積極的に生ぜしめられることから、弾性竪壁の弾性変形に基づく受圧室の容積変化によって受圧室において有効な圧力変動の吸収機能が発揮される。従って、オリフィス通路の実質的な閉塞化による受圧室の圧力増大に伴う高動ばね化が回避されて、良好な防振性能が発揮され得る。   In such a mode, when vibration in a frequency range higher than the tuning frequency of the orifice passage is input in the axial direction, the orifice passage is substantially closed, but the higher the pressure in the pressure receiving chamber, the higher the pressure. The dynamic spring is avoided by the deformation of the elastic wall. Therefore, in this aspect, the natural frequency of the elastic saddle wall is tuned to a frequency range higher than the tuning frequency of the orifice passage, which is combined with the resonance action of the elastic saddle wall at the vibration input in the frequency range. Thus, since the elastic deformation of the elastic collar wall is positively generated, an effective pressure fluctuation absorbing function is exhibited in the pressure receiving chamber by the volume change of the pressure receiving chamber based on the elastic deformation of the elastic collar wall. Accordingly, high dynamic springs accompanying an increase in pressure in the pressure receiving chamber due to substantial obstruction of the orifice passage can be avoided, and good vibration isolation performance can be exhibited.

(本発明の態様5)
本発明の態様5の特徴とするところは、本発明の前記態様1乃至4の何れかに係る流体封入式防振マウントにおいて、前記仕切部材の内部に可動ゴム板を板厚方向に所定量だけ変位乃至は変形可能に配設して該可動ゴム板の各一方の面に前記受圧室と前記平衡室の内圧が及ぼされるようにしたことにある。
(Aspect 5 of the present invention)
A feature of the fifth aspect of the present invention is that in the fluid-filled vibration isolating mount according to any one of the first to fourth aspects of the present invention, a movable rubber plate is provided inside the partition member by a predetermined amount in the thickness direction. The displacement or deformation is arranged so that the internal pressures of the pressure receiving chamber and the equilibrium chamber are exerted on one surface of the movable rubber plate.

このような本態様においては、オリフィス通路が実質的に閉塞状態となるような高周波数域の振動入力時にも、可動ゴム板の変位乃至は変形に基づいて受圧室の圧力変動が軽減乃至は吸収され得て、著しい高動ばね化が防止されることにより、良好なる防振効果を得ることが可能となる。   In this embodiment, even when high-frequency vibration is input so that the orifice passage is substantially closed, the pressure fluctuation in the pressure receiving chamber is reduced or absorbed based on the displacement or deformation of the movable rubber plate. In addition, it is possible to obtain a good vibration-proofing effect by preventing a significant increase in the dynamic spring.

(自動車用エンジンマウントに関する本発明の態様)
自動車用エンジンマウントに関する本発明の態様の特徴とするところは、本発明の前記態様5に係る流体封入式防振マウントを用いて、前記第一の取付部材と前記第二の取付部材の一方を自動車のパワーユニットに取り付けると共に、他方を自動車のボデーに取り付けることにより、該パワーユニットを該ボデーに対して防振支持せしめるようにする一方、前記オリフィス通路を流動せしめられる流体の共振周波数をシェイク等の低周波振動数域にチューニングすると共に、前記可動ゴム板の固有振動数をアイドリング振動等の中周波振動数域にチューニングし、更に前記弾性竪壁の固有振動数を走行こもり音等の高周波振動数域にチューニングした自動車用エンジンマウントにある。
(Aspects of the present invention relating to automobile engine mounts)
A feature of the aspect of the present invention relating to an automobile engine mount is that one of the first mounting member and the second mounting member is attached using the fluid-filled vibration isolating mount according to the fifth aspect of the present invention. By attaching to the power unit of the automobile and the other to the body of the automobile, the power unit is supported to be vibration-proof with respect to the body, while the resonance frequency of the fluid that is allowed to flow through the orifice passage is reduced by a shake or the like. Tuning to the frequency frequency range, tuning the natural frequency of the movable rubber plate to a medium frequency frequency range such as idling vibration, and further adjusting the natural frequency of the elastic wall to the high frequency frequency range such as running noise It is in the car engine mount tuned to.

このような本態様に従う構造とされた自動車用エンジンマウントにおいては、シェイク等の低周波大振幅振動やアイドリング振動等の中周波中振幅振動、走行こもり音等の高周波小振幅振動の何れに対しても、有効な防振効果を発揮し得るエンジンマウントが有利に実現され得る。   In an automotive engine mount having a structure according to this embodiment, any of low frequency large amplitude vibrations such as shakes, medium frequency medium amplitude vibrations such as idling vibrations, and high frequency small amplitude vibrations such as traveling humming noises. However, an engine mount that can exhibit an effective anti-vibration effect can be advantageously realized.

上述の説明から明らかなように、本発明に従う構造とされた流体封入式防振マウントにおいては、略軸方向に延びる第一のすぐり穴と第二のすぐり穴が軸直角方向で互いにオーバーラップされて、それら両すぐり穴の間に略軸方向に延びる弾性竪壁が形成されていることによって、マウント軸直角方向とマウント軸方向のばね比が効果的に大きく設定される。それ故、例えば自動車用の防振マウント等に適用される場合に、軸方向のばね剛性が大きく確保されていることによって受圧室の圧力変動が十分に効率的に発揮されることに伴いオリフィス通路を通じての流体の流動作用に基づく防振性能が有利に発揮され得ることは勿論であり、更に、軸方向の高ばね剛性によって車両上下方向の支持ばね剛性が有利に確保され得ると共に、軸直角方向の低ばね特性による車両前後方向の低ばね化等に基づいて乗り心地が有利に向上され得るのである。   As is clear from the above description, in the fluid-filled vibration isolating mount structured according to the present invention, the first and second staking holes extending in the substantially axial direction are overlapped with each other in the direction perpendicular to the axis. In addition, the elastic flange wall extending in the substantially axial direction is formed between the two straight holes, so that the spring ratio between the direction perpendicular to the mount axis and the direction of the mount axis is effectively set large. Therefore, when applied to, for example, an anti-vibration mount for automobiles, the orifice passage is accompanied by the fact that the pressure fluctuation in the pressure receiving chamber is sufficiently efficiently exhibited by ensuring a large spring stiffness in the axial direction. Of course, the vibration isolation performance based on the fluid flow action through the vehicle can be advantageously exhibited, and further, the high spring stiffness in the axial direction can advantageously ensure the support spring stiffness in the vehicle vertical direction, and the direction perpendicular to the axis The ride comfort can be advantageously improved based on the low spring characteristic in the vehicle longitudinal direction due to the low spring characteristic.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について説明する。先ず、図1〜2には、本発明の一実施形態としての自動車用エンジンマウント10が示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が本体ゴム弾性体16で連結された構造を有している。また、エンジンマウント10は、第一の取付金具12がパワーユニット側に取り付けられる一方、第二の取付金具14がボデーに取り付けられることにより、パワーユニットをボデーに対して防振支持せしめるようになっている。また、そのような装着状態下、当該マウント10には、パワーユニット荷重の入力により本体ゴム弾性体16が弾性変形することに伴って、第一の取付金具12と第二の取付金具14が図1中の上下方向に所定量だけ相対変位せしめられると共に、防振すべき主たる振動が、第一の取付金具12と第二の取付金具14の間に対して、図1中の上下方向に入力されることとなる。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described. 1 and 2 show an automobile engine mount 10 as an embodiment of the present invention. The engine mount 10 has a structure in which a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member are connected by a main rubber elastic body 16. Further, the engine mount 10 is configured such that the first mounting bracket 12 is mounted on the power unit side while the second mounting bracket 14 is mounted on the body so that the power unit is supported in a vibration-proof manner with respect to the body. . In such a mounting state, the first mounting bracket 12 and the second mounting bracket 14 are attached to the mount 10 as the main rubber elastic body 16 is elastically deformed by the input of the power unit load. The main vibration to be vibrated is input in the vertical direction in FIG. 1 between the first mounting bracket 12 and the second mounting bracket 14 while being relatively displaced by a predetermined amount in the vertical direction. The Rukoto.

より詳細には、第一の取付金具12は、略円柱形状乃至は半球形状を呈していると共に、その中央部分には上方(図1中、上)に突出する取付ボルト18が固設されている。また、第一の取付金具12の軸方向中間部分には、軸直角方向外方に向かって略円環形状に拡がる作用突部としての環状突起20が一体形成されている。   More specifically, the first mounting member 12 has a substantially cylindrical or hemispherical shape, and a mounting bolt 18 that protrudes upward (upward in FIG. 1) is fixed to the central portion thereof. Yes. In addition, an annular protrusion 20 is integrally formed at an axially intermediate portion of the first mounting member 12 as an action protrusion that expands in a substantially annular shape outward in the direction perpendicular to the axis.

一方、第二の取付金具14は、大径の略円筒形状を有しており、第一の取付金具12と略同一中心軸上で下方(図1中、下)に離隔配置されている。また、第二の取付金具14の軸方向上端部は、径方向内方に屈曲されると共に、下方から上方に向かって円錐状に次第に径寸法が大きくなる逆テーパ形状を有するテーパ状筒部22とされている。更に、第二の取付金具14の軸方向下端部には、段差部を介して大径化されたかしめ部24が一体形成されている。   On the other hand, the second mounting bracket 14 has a large-diameter, generally cylindrical shape, and is spaced apart downward (downward in FIG. 1) on the same center axis as the first mounting bracket 12. Further, the upper end portion in the axial direction of the second mounting bracket 14 is bent inward in the radial direction, and has a tapered cylindrical portion 22 having a reverse tapered shape in which the diameter dimension gradually increases in a conical shape from the bottom to the top. It is said that. Further, a caulking portion 24 having a large diameter is integrally formed at the lower end portion in the axial direction of the second mounting member 14 through a step portion.

また、第一の取付金具12と第二の取付金具14の対向面間には、本体ゴム弾性体16が配設されている。この本体ゴム弾性体16は、大径の略円錐台形状を有しており、小径側端面に第一の取付金具12が重ね合わされて該第一の取付金具12の下端部分と環状突起20の上面を除く略全体が差し込まれた状態で加硫接着されている。また、本体ゴム弾性体16の大径側端部外周面には、第二の取付金具14のテーパ状筒部22の内周面が重ね合わされて加硫接着されている。要するに、本体ゴム弾性体16が、第一の取付金具12と第二の取付金具14を備えた一体加硫成形品として形成されている。また、このことからも明らかなように、第二の取付金具14の軸方向一方(図1中、上)の開口部が、本体ゴム弾性体16で流体密に覆蓋されている。   A main rubber elastic body 16 is disposed between the opposing surfaces of the first mounting bracket 12 and the second mounting bracket 14. The main rubber elastic body 16 has a large-diameter, generally frustoconical shape, and the first mounting bracket 12 is superimposed on the end surface on the small diameter side so that the lower end portion of the first mounting bracket 12 and the annular protrusion 20 are formed. It is vulcanized and bonded with almost the entire surface except the top surface inserted. Further, the inner peripheral surface of the tapered cylindrical portion 22 of the second mounting bracket 14 is superimposed on the outer peripheral surface of the large-diameter side end portion of the main rubber elastic body 16 and vulcanized and bonded. In short, the main rubber elastic body 16 is formed as an integrally vulcanized molded product including the first mounting bracket 12 and the second mounting bracket 14. As is clear from this, one of the openings in the axial direction (upper in FIG. 1) of the second mounting bracket 14 is covered with a main rubber elastic body 16 in a fluid-tight manner.

また、本体ゴム弾性体16の大径側端面には、下方に向かって開口する大径の円形凹所26が形成されている。それによって、パワーユニットの支持荷重の入力による引張応力が軽減乃至は回避されるようになっている。また、特に本実施形態では、図1にも示されているように、当該支持荷重の入力に伴い本体ゴム弾性体16が弾性変形された状態で、円形凹所26の底部が略平坦な円形状とされている。更に、円形凹所26の底部の外周縁部が、底部から下方に行くに従って次第に径寸法が大きくなるように湾曲されていると共に、円形凹所26における略円筒形状の周壁部に滑らかに接している。また、第二の取付金具14の内周面には、本体ゴム弾性体16と一体形成された薄肉のシールゴム層28が略全体に亘って被着されている。   A large-diameter circular recess 26 that opens downward is formed on the large-diameter side end face of the main rubber elastic body 16. Thereby, the tensile stress due to the input of the support load of the power unit is reduced or avoided. Further, particularly in the present embodiment, as shown in FIG. 1, the bottom of the circular recess 26 is a substantially flat circle in a state where the main rubber elastic body 16 is elastically deformed with the input of the support load. It is made into a shape. In addition, the outer peripheral edge of the bottom of the circular recess 26 is curved so that the diameter dimension gradually increases as it goes downward from the bottom, and is in smooth contact with the substantially cylindrical peripheral wall of the circular recess 26. Yes. Further, a thin seal rubber layer 28 integrally formed with the main rubber elastic body 16 is attached to the inner peripheral surface of the second mounting bracket 14 over substantially the whole.

さらに、第一及び第二の取付金具12,14を備えた本体ゴム弾性体16の一体加硫成形品には、第二の取付金具14の軸方向下方の開口部側から仕切部材としての仕切金具30と可撓性膜としてのダイヤフラム32が組み付けられている。仕切金具30は、略円柱形状を呈している。また、ダイヤフラム32は、変形容易な薄肉のゴム弾性膜によって構成されており、外周縁部には略円環形状の嵌着金具34が加硫接着されている。そして、仕切金具30とダイヤフラム32が第二の取付金具14に嵌め入れられて、仕切金具30の上端部が、テーパ状筒部22と接する段差部に重ね合わされていると共に、ダイヤフラム32と一体加硫成形された嵌着金具34が、かしめ部24と接する段差部に重ね合わされている。更に、かしめ部24が嵌着金具34の外周縁部にかしめ固定されると共に、第二の取付金具14の筒壁部に絞り加工が施されること等によって、仕切金具30とダイヤフラム32が本体ゴム弾性体16の一体加硫成形品に対して固定されている。これにより、該一体加硫成形品における第二の取付金具14の軸方向他方の開口部が、ダイヤフラム32で流体密に閉塞されている。   Further, in the integrally vulcanized molded product of the main rubber elastic body 16 having the first and second mounting brackets 12 and 14, a partition as a partition member is formed from the axially lower opening side of the second mounting bracket 14. A metal fitting 30 and a diaphragm 32 as a flexible film are assembled. The partition fitting 30 has a substantially cylindrical shape. The diaphragm 32 is formed of a thin rubber elastic film that can be easily deformed, and a substantially annular fitting 34 is vulcanized and bonded to the outer peripheral edge. The partition fitting 30 and the diaphragm 32 are fitted into the second mounting bracket 14, and the upper end portion of the partition fitting 30 is overlapped with the stepped portion in contact with the tapered cylindrical portion 22, and the diaphragm 32 is integrated with the diaphragm 32. The sulfur fitting fitting 34 is superimposed on the stepped portion in contact with the caulking portion 24. Further, the caulking portion 24 is caulked and fixed to the outer peripheral edge portion of the fitting 34, and the cylindrical wall portion of the second mounting bracket 14 is subjected to drawing processing. The rubber elastic body 16 is fixed to the integrally vulcanized molded product. As a result, the other opening in the axial direction of the second mounting bracket 14 in the integrally vulcanized molded product is fluid-tightly closed by the diaphragm 32.

更にまた、外部空間に対して密閉された第二の取付金具14内における本体ゴム弾性体16とダイヤフラム32の間には、非圧縮性流体が封入された流体室が形成されている。かかる封入流体としては、例えば水やアルキレングリコール, ポリアルキレングリコール, シリコーン油等が採用されるが、特に流体の共振作用に基づく防振効果を有効に得るためには、0.1Pa・s以下の低粘性流体を採用することが望ましい。また、非圧縮性流体の封入は、例えば第一及び第二の取付金具12,14を備えた本体ゴム弾性体16の一体加硫成形品に対する仕切金具30とダイヤフラム32の組み付けを非圧縮性流体中で行うこと等によって実現される。   Furthermore, a fluid chamber in which an incompressible fluid is sealed is formed between the main rubber elastic body 16 and the diaphragm 32 in the second mounting bracket 14 sealed with respect to the external space. For example, water, alkylene glycol, polyalkylene glycol, silicone oil or the like is employed as such a sealed fluid. In order to effectively obtain a vibration-proofing effect based on the resonance action of the fluid, for example, 0.1 Pa · s or less. It is desirable to employ a low viscosity fluid. The incompressible fluid is sealed by, for example, assembling the partition metal 30 and the diaphragm 32 to the integrally vulcanized molded product of the main rubber elastic body 16 including the first and second mounting brackets 12 and 14. It is realized by performing in the inside.

また、流体室は、その軸方向中間部分に仕切金具30が軸直角方向に拡がるようにして組み付けられていることによって上下に二分されている。これに伴い、仕切金具30を挟んだ軸方向一方(図1中、上)の側には、壁部の一部が本体ゴム弾性体16で構成されて、第一の取付金具12と第二の取付金具14の間への振動入力時に圧力変動が生ぜしめられる受圧室36が形成されている。一方、仕切金具30を挟んだ軸方向他方の側には、壁部の一部がダイヤフラム32で構成されて、該ダイヤフラム32の弾性変形に基づいて容積変化が許容される平衡室38が形成されている。   In addition, the fluid chamber is divided into two parts in the vertical direction by assembling the partition fitting 30 so as to expand in the direction perpendicular to the axis at the axially intermediate portion. Accordingly, a part of the wall portion is formed of the main rubber elastic body 16 on one side in the axial direction (upper side in FIG. 1) sandwiching the partition fitting 30, and the first mounting bracket 12 and the second mounting bracket 12 are arranged. A pressure receiving chamber 36 is formed in which pressure fluctuations are generated when vibration is input between the mounting brackets 14. On the other hand, on the other side in the axial direction with the partition metal fitting 30 interposed therebetween, a part of the wall portion is constituted by a diaphragm 32, and an equilibrium chamber 38 is formed in which volume change is allowed based on elastic deformation of the diaphragm 32. ing.

さらに、仕切金具30には、外周面に開口して周方向に略螺旋状に連続して延びる周溝40が形成されていると共に、該周溝40が第二の取付金具14で流体密に覆蓋されている。また、周溝40の一方の端部が、仕切金具30の上壁部等に形成された連通孔42を通じて受圧室36に接続されていると共に、周溝40の他方の端部が、仕切金具30の下壁部等に形成された連通孔44を通じて平衡室38に接続されている。それによって、仕切金具30の周溝40と第二の取付金具14が協働してオリフィス通路46が形成されており、このオリフィス通路46を通じて受圧室36と平衡室38が連通されている。従って、圧力変動が惹起される受圧室36とダイヤフラム32の変形に基づいて容積変化が許容される平衡室38の間には、相対的な圧力変動が惹起されることとなり、それら両室間36,38でオリフィス通路46を通じての流体流動が生ぜしめられる。その結果、受圧室36と平衡室38の間でオリフィス通路46を通じての流体流動が生ぜしめられて、オリフィス通路46を流動せしめられる流体の共振作用に基づく防振効果が、防振すべき軸方向の振動に対して発揮されるようになっている。なお、オリフィス通路46を流動せしめられる流体の共振周波数が、該流体の共振作用に基づいてシェイク等の10Hz程度の低周波大振幅振動に対して有効な防振効果が発揮されるようにチューニングされている。かかる共振周波数のチューニングは、例えばオリフィス通路46の流路断面積や長さ等を設定変更することにより実現される。   Further, the partition fitting 30 is formed with a circumferential groove 40 that is open to the outer peripheral surface and continuously extends in a substantially spiral shape in the circumferential direction, and the circumferential groove 40 is fluid-tight with the second mounting fitting 14. Covered. In addition, one end of the circumferential groove 40 is connected to the pressure receiving chamber 36 through a communication hole 42 formed in the upper wall portion or the like of the partition fitting 30 and the other end of the circumferential groove 40 is connected to the partition fitting. 30 is connected to the equilibration chamber 38 through a communication hole 44 formed in the lower wall portion and the like. As a result, the circumferential groove 40 of the partition member 30 and the second mounting member 14 cooperate to form an orifice passage 46, and the pressure receiving chamber 36 and the equilibrium chamber 38 are communicated with each other through the orifice passage 46. Therefore, a relative pressure fluctuation is caused between the pressure receiving chamber 36 in which the pressure fluctuation is caused and the equilibrium chamber 38 in which the volume change is allowed based on the deformation of the diaphragm 32. 38, fluid flow through the orifice passage 46 is produced. As a result, the fluid flow through the orifice passage 46 is generated between the pressure receiving chamber 36 and the equilibrium chamber 38, and the vibration isolation effect based on the resonance action of the fluid that flows through the orifice passage 46 has the axial direction to be vibration-proof. It is designed to be effective against vibrations. The resonance frequency of the fluid flowing through the orifice passage 46 is tuned so as to exhibit an effective vibration-proofing effect against low-frequency large-amplitude vibration of about 10 Hz such as a shake based on the resonance action of the fluid. ing. Such tuning of the resonance frequency is realized, for example, by changing the setting of the cross-sectional area and length of the orifice passage 46.

更にまた、仕切金具30の中央部分には、上方に開口する円形の中央凹部48が形成されており、この中央凹部48内に可動ゴム板50が収容配置されている。可動ゴム板50は、中央凹部48の底壁と該中央凹部48の開口部に嵌入固定された略円環形状の支持蓋金具52の間で軸方向等に変位可能に配設されている。また、そのような組み付け状態下で、可動ゴム板50の上面が、支持蓋金具52に貫設された透孔54を通じて受圧室36に露呈されている一方、可動ゴム板50の下面が、中央凹部48の底壁に貫設された透孔56を通じて平衡室38に露呈されている。従って、可動ゴム板50には、受圧室36と平衡室38の内圧が上下面に及ぼされるのであり、振動入力時に受圧室36と平衡室38の圧力差に基づいて弾性変形乃至は軸方向の変位が生ぜしめられる。そして、可動ゴム板50の弾性変形乃至は軸方向の変位に基づいて支持蓋金具52や仕切金具30の透孔54,56を通じての流体流動が生ぜしめられることにより、流体の共振作用乃至は受圧室36に係る液圧吸収作用に基づいて入力振動に対する低動ばね効果が発揮されるようになっている。   Furthermore, a circular central recess 48 that opens upward is formed in the central portion of the partition member 30, and the movable rubber plate 50 is accommodated in the central recess 48. The movable rubber plate 50 is disposed so as to be displaceable in an axial direction or the like between a bottom wall of the central recess 48 and a substantially annular support lid fitting 52 fitted and fixed in the opening of the central recess 48. In such an assembled state, the upper surface of the movable rubber plate 50 is exposed to the pressure receiving chamber 36 through the through hole 54 penetrating the support lid fitting 52, while the lower surface of the movable rubber plate 50 is centered. It is exposed to the equilibrium chamber 38 through a through hole 56 penetrating the bottom wall of the recess 48. Therefore, the internal pressure of the pressure receiving chamber 36 and the equilibrium chamber 38 is exerted on the movable rubber plate 50 on the upper and lower surfaces. Based on the pressure difference between the pressure receiving chamber 36 and the equilibrium chamber 38 at the time of vibration input, elastic deformation or axial direction is achieved. Displacement is produced. Then, the fluid flow through the through holes 54 and 56 of the support lid fitting 52 and the partition fitting 30 is generated based on the elastic deformation of the movable rubber plate 50 or the displacement in the axial direction. Based on the fluid pressure absorbing action related to the chamber 36, a low dynamic spring effect with respect to the input vibration is exhibited.

なお、可動ゴム板50の固有振動数が、該可動ゴム板50の弾性変形乃至は軸方向の変位に伴う透孔54,56を通じての流体の共振作用等の流動作用に基づいて、例えばアイドリング振動等の100Hz程度の中周波中振幅振動に対して有効な防振効果が発揮されるようにチューニングされている。可動ゴム板50の固有振動数のチューニングには、例えばゴム板50の肉厚寸法や形状等の設定変更に伴いばね特性を設定変更したり、透孔54,56の断面積や長さ等を設定変更したりすること等により実現される。また、可動ゴム板50は、それ自体の弾性と可動ゴム板50の中央部分における仕切金具30や支持蓋金具52への当接によって弾性変形量が制限されるようになっており、シェイク等の低周波大振幅の振動入力時には、可動ゴム板50の弾性変形等に伴う流体流動量が制限されて、オリフィス通路46を通じての流体流動量が確保されるようになっている。   It should be noted that the natural frequency of the movable rubber plate 50 is, for example, idling vibration based on the elastic deformation of the movable rubber plate 50 or the fluid action such as the resonance action of fluid through the through holes 54 and 56 accompanying the axial displacement. It is tuned so as to exhibit an effective anti-vibration effect with respect to medium-frequency medium amplitude vibration of about 100 Hz. For tuning the natural frequency of the movable rubber plate 50, for example, the spring characteristics are changed in accordance with the setting change of the thickness and shape of the rubber plate 50, and the cross-sectional areas and lengths of the through holes 54 and 56 are changed. This is realized by changing the setting. The movable rubber plate 50 has its elastic deformation limited by its own elasticity and contact with the partition fitting 30 and the support lid fitting 52 at the center of the movable rubber plate 50. At the time of vibration input with low frequency and large amplitude, the amount of fluid flow associated with elastic deformation of the movable rubber plate 50 is limited, and the amount of fluid flow through the orifice passage 46 is ensured.

また、第一の取付金具12と第二の取付金具14の対向面間を周方向に連続して延びる本体ゴム弾性体16において第一の取付金具12を挟んだ径方向一方向(図2中、左右)には、第一のすぐり穴としての内側すぐり部58の一対が対向位置せしめられるようにして設けられている。内側すぐり部58は、軸方向の平面視において第一の取付金具12と第二の取付金具14の間を所定幅で周方向に延びる略円弧形状を呈していると共に、マウント軸方向(図1中、上下)と略平行に延びている。また、内側すぐり部58の底部60は、本体ゴム弾性体16の小径側端部付近に形成されて、第一の取付金具12における環状突起20と軸方向で離隔して対向位置せしめられており、略半球状断面で周方向に延びている。また、内側すぐり部58の開口部が、本体ゴム弾性体16の円形凹所26を貫通して受圧室36に開口せしめられている。即ち、本実施形態の内側すぐり部58は、本体ゴム弾性体16において図1中の上下方向となる主たる荷重入力方向に延びる弾性中心軸(本実施形態では、第一及び第二の取付金具12,14の中心軸であるマウント10の中心軸)から外れた位置における環状突起20の下方において、第一及び第二の取付金具12,14の対向面間に介装された本体ゴム弾性体16の径方向内側部分を軸方向に略一定の円弧断面乃至は弓形断面で略ストレートに延びている。   Further, in the main rubber elastic body 16 continuously extending in the circumferential direction between the opposing surfaces of the first mounting bracket 12 and the second mounting bracket 14, one radial direction (in FIG. 2) sandwiching the first mounting bracket 12. , Left and right) are provided in such a manner that a pair of inner straight portions 58 as the first straight holes are opposed to each other. The inner curly portion 58 has a substantially arc shape extending in the circumferential direction with a predetermined width between the first mounting bracket 12 and the second mounting bracket 14 in a plan view in the axial direction, and in the mount axial direction (FIG. 1). (Middle, top and bottom). The bottom portion 60 of the inner curly portion 58 is formed in the vicinity of the small-diameter end of the main rubber elastic body 16 and is opposed to the annular protrusion 20 of the first mounting member 12 in the axial direction. It extends in the circumferential direction with a substantially hemispherical cross section. Further, the opening of the inner straight portion 58 is opened in the pressure receiving chamber 36 through the circular recess 26 of the main rubber elastic body 16. That is, the inner straight portion 58 of the present embodiment is an elastic central axis (in this embodiment, the first and second mounting brackets 12) extending in the main load input direction which is the vertical direction in FIG. 1 in the main rubber elastic body 16. , 14, the central rubber elastic body 16 interposed between the opposing surfaces of the first and second mounting brackets 12, 14 below the annular protrusion 20 at a position deviated from the central axis of the mount 10. The radially inner portion of each of them extends substantially straight in the axial direction with a substantially constant arc cross section or arcuate cross section.

また、各内側すぐり部58の径方向外方には、第二のすぐり穴としての外側すぐり部62が形成されている。外側すぐり部62は、軸方向の平面視において上記内側すぐり部58よりも長い周方向長さをもって第一の取付金具12と第二の取付金具14の間を所定幅で周方向に延びる略円弧形状を呈していると共に、マウント軸方向(図1中、上下)と略平行に延びている。また、内側すぐり部58と同じく略半球状断面で周方向に延びる外側すぐり部62の底部64が、本体ゴム弾性体16の大径側端部付近に形成されて、該大径側端部外周面に加硫接着された第二の取付金具14の軸方向一方(図1中、上)の開口部よりも上方に位置せしめられていると共に、外側すぐり部62の開口部が、本体ゴム弾性体16の略テーパ状を有する外周面に開口せしめられている。要するに、外側すぐり部62が、本体ゴム弾性体16の弾性中心軸から外れた位置における内側すぐり部58よりも径方向外方において、第一及び第二の取付金具12,14の対向面間に介装された本体ゴム弾性体16の径方向外側部分を軸方向に略一定の円弧断面乃至は弓形断面で略ストレートに延びている。これによって、内側すぐり部58と外側すぐり部62が、第一の取付金具12と第二の取付金具14の間の軸直角方向で離隔して対向位置せしめられていると共に、内側すぐり部58及び外側すぐり部62における各一方の底部60(64)が他方の底部64(60)を越える深さ寸法でマウントの軸方向に略ストレートに延びている。   Further, an outer straight portion 62 as a second straight hole is formed on the outer side in the radial direction of each inner straight portion 58. The outer curving portion 62 has a circumferential length longer than the inner curling portion 58 in a plan view in the axial direction, and is a substantially arc extending in the circumferential direction with a predetermined width between the first mounting bracket 12 and the second mounting bracket 14. It has a shape and extends substantially parallel to the mount axis direction (up and down in FIG. 1). Further, the bottom 64 of the outer straight portion 62 extending in the circumferential direction with a substantially hemispherical cross section is formed in the vicinity of the large-diameter side end of the main rubber elastic body 16 in the same manner as the inner straight portion 58, and the large-diameter side end portion outer periphery. The second mounting bracket 14 vulcanized and bonded to the surface is positioned above the opening of one axial direction (upper in FIG. 1), and the opening of the outer straight portion 62 is elastic on the main body. The body 16 is opened on the outer peripheral surface having a substantially tapered shape. In short, the outer straight portion 62 is located between the opposing surfaces of the first and second mounting brackets 12 and 14 at a position radially outward from the inner straight portion 58 at a position deviated from the elastic central axis of the main rubber elastic body 16. The radially outer portion of the interposed main rubber elastic body 16 extends substantially straight in the axial direction with a substantially constant arc cross section or arcuate cross section. As a result, the inner straight portion 58 and the outer straight portion 62 are opposed to each other in the direction perpendicular to the axis between the first mounting bracket 12 and the second mounting bracket 14, and the inner curling portion 58 and Each one of the bottom portions 60 (64) of the outer straight portion 62 extends substantially straight in the axial direction of the mount with a depth that exceeds the other bottom portion 64 (60).

さらに、内側すぐり部58と外側すぐり部62の軸直角方向対向面間には、弾性竪壁としての竪壁部66が設けられている。竪壁部66は、軸方向の平面視において内側すぐり部58よりも長く且つ外側すぐり部62よりも短い周方向長さをもって、第一の取付金具12と第二の取付金具14の間を所定幅で周方向に延びる略円弧形状を呈していると共に、本体ゴム弾性体16の径方向中間部分をマウント軸方向と略平行に略一定の円弧断面乃至は弓形断面で略ストレートに延びている。即ち、本実施形態では、内側すぐり部58と外側すぐり部62の軸直角方向対向面間に形成された竪壁部66の一対が、本体ゴム弾性体16の弾性中心軸から外れた位置における第一の取付金具12を挟んだ径方向一方向(図2中、左右)で、離隔して対向位置せしめられているのである。その結果、一対の竪壁部66,66が対向位置せしめられた軸直角方向(図2中、左右)のばね定数が、該軸直角方向に直交する竪壁部66を備えていない一対の中実のゴム部が対向位置せしめられた軸直角方向(図2中、上下)のばね定数よりも低くされている。   Further, a heel wall portion 66 as an elastic heel wall is provided between the axially perpendicular facing surfaces of the inner straight portion 58 and the outer straight portion 62. The flange wall portion 66 has a circumferential length longer than the inner straight portion 58 and shorter than the outer straight portion 62 in a plan view in the axial direction, and has a predetermined distance between the first mounting bracket 12 and the second mounting bracket 14. While having a substantially arc shape extending in the circumferential direction with a width, a radially intermediate portion of the main rubber elastic body 16 extends substantially straight with a substantially constant arc cross section or arcuate cross section substantially parallel to the mount axis direction. In other words, in the present embodiment, the pair of flange wall portions 66 formed between the surfaces facing the axially perpendicular direction of the inner straight portion 58 and the outer straight portion 62 is the first at a position deviated from the elastic central axis of the main rubber elastic body 16. In one radial direction (left and right in FIG. 2) sandwiching one mounting bracket 12, they are spaced apart and opposed to each other. As a result, the spring constant in the direction perpendicular to the axis (left and right in FIG. 2) in which the pair of ribs 66, 66 are opposed to each other is not provided with the rib 66 that is orthogonal to the direction perpendicular to the axis. It is made lower than the spring constant in the direction perpendicular to the axis (up and down in FIG. 2) in which the actual rubber part is positioned opposite.

更にまた、竪壁部66は、内側すぐり部58を介して受圧室36の壁部の一部として構成されている。そこにおいて、竪壁部66の固有振動数が、オリフィス通路46を流動せしめられる流体の共振周波数や可動ゴム板50の固有振動数よりも高周波数域において、竪壁部66の弾性変形に基づいて、例えば走行こもり音等の300Hz程度の高周波小振幅振動に対して有効な防振効果が発揮されるようにチューニングされている。   Furthermore, the collar wall portion 66 is configured as a part of the wall portion of the pressure receiving chamber 36 via the inner straight portion 58. Therefore, the natural frequency of the wall 66 is based on elastic deformation of the wall 66 in a higher frequency range than the resonance frequency of the fluid flowing through the orifice passage 46 and the natural frequency of the movable rubber plate 50. For example, it is tuned so as to exhibit an effective anti-vibration effect against high-frequency small-amplitude vibrations of about 300 Hz such as traveling noise.

また、竪壁部66の拡張ばね剛性は、平衡室38の壁部の一部を構成するダイヤフラム32の拡張ばね剛性よりも大きくされている。ここにおいて、拡張ばね剛性は、壁部の膨出変形のし易さを表すものであって、壁部の弾性変形に基づいて受圧室36や平衡室38等の容積が単位量だけ変化せしめられるのに必要とされる、内圧変化量に対応する値として把握され得る。   Further, the expansion spring rigidity of the flange wall portion 66 is made larger than the expansion spring rigidity of the diaphragm 32 constituting a part of the wall portion of the equilibrium chamber 38. Here, the expansion spring rigidity represents the ease of bulging deformation of the wall portion, and the volume of the pressure receiving chamber 36, the equilibrium chamber 38, etc. is changed by a unit amount based on the elastic deformation of the wall portion. It can be grasped as a value corresponding to the amount of change in internal pressure required for the above.

なお、竪壁部66の形状や大きさ、構造等は、何等限定されるものでないが、本実施形態では、例えば竪壁部66の厚さ寸法:Tと竪壁部66の軸方向寸法:Lの比の値:L/Tが、望ましくはL/T≧1.5に、より望ましくはL/T≧2に設定されている。   The shape, size, structure, and the like of the ridge wall portion 66 are not limited in any way, but in this embodiment, for example, the thickness dimension of the heel wall portion 66: T and the axial dimension of the ridge wall portion 66: L ratio value: L / T is preferably set to L / T ≧ 1.5, more preferably L / T ≧ 2.

また、このような構造とされたエンジンマウント10には、ブラケット金具68が取り付けられている。ブラケット金具68は、大径の略円筒形状を有する支持筒部70と該支持筒部70の外周面に固着された3つの固定用脚部72,72,72を含んで構成されている。そして、マウント10における第二の取付金具12が、支持筒部70に圧入固定されていると共に、各固定用脚部72が、該脚部に貫設された固定用孔74を介して図示しない自動車ボデーにボルト固定されている。また、第一の取付金具12が、取付ボルト18を介して図示しない自動車パワーユニットに取り付けられている。これによって、エンジンマウント10が、取付ボルト18を介してパワーユニットに取り付けられていると共に、ブラケット金具68を介して自動車ボデーに取り付けられており、以て、パワーユニットをボデーに対して防振支持せしめるようになっている。   A bracket fitting 68 is attached to the engine mount 10 having such a structure. The bracket fitting 68 includes a support cylinder portion 70 having a large-diameter, generally cylindrical shape, and three fixing legs 72, 72, 72 fixed to the outer peripheral surface of the support cylinder portion 70. The second mounting bracket 12 of the mount 10 is press-fitted and fixed to the support cylinder 70, and each fixing leg 72 is not shown through a fixing hole 74 penetrating the leg. It is bolted to the car body. Further, the first mounting bracket 12 is attached to an automobile power unit (not shown) via a mounting bolt 18. As a result, the engine mount 10 is attached to the power unit via the mounting bolts 18 and is also attached to the vehicle body via the bracket fitting 68, so that the power unit is supported by the body against vibration. It has become.

特に本実施形態では、マウント10の軸方向(図1中、上下)が車両上下方向に設定されると共に、各一対の内側すぐり部58、外側すぐり部62および竪壁部66が第一の取付金具12を挟んで対向位置せしめられた軸直角方向(図2中、左右)が車両前後方向に設定され、更に各一対の内外すぐり部58,62および竪壁部66が対向位置せしめられた軸直角方向に直交する方向(図2中、上下)が車両左右方向に設定された形態で、マウント10が自動車に装着されている。   In particular, in the present embodiment, the axial direction of the mount 10 (up and down in FIG. 1) is set in the vehicle vertical direction, and each pair of the inner straight portion 58, the outer straight portion 62, and the saddle wall portion 66 is the first attachment. A direction perpendicular to the axis (left and right in FIG. 2) positioned opposite to each other with the metal fitting 12 interposed therebetween is set in the vehicle longitudinal direction, and a pair of inner and outer straight portions 58 and 62 and a collar wall 66 are positioned opposite to each other. The mount 10 is mounted on the automobile in a form in which the direction perpendicular to the perpendicular direction (up and down in FIG. 2) is set in the vehicle lateral direction.

上述の如き構造とされた自動車用エンジンマウント10においては、シェイク等の低周波大振幅振動が第一の取付金具12と第二の取付金具14の間に軸方向に入力された際に、本体ゴム弾性体16における受圧室36に対するピストン作用により、受圧室36に大きな圧力変動が生ぜしめられて、受圧室36と平衡室38の間に相対的な圧力変動が効率的に及ぼされることから、オリフィス通路46を通じての流体の流動量が十分に確保され得る。それ故、受圧室36と平衡室38の間でのオリフィス通路46を流動せしめられる流体の共振作用等の流動作用に基づいて、防振効果(振動減衰効果)が有効に発揮され得る。   In the engine mount 10 for an automobile having the above-described structure, when a low-frequency large-amplitude vibration such as a shake is input between the first mounting bracket 12 and the second mounting bracket 14 in the axial direction, the main body The piston action of the rubber elastic body 16 on the pressure receiving chamber 36 causes a large pressure fluctuation in the pressure receiving chamber 36, and the relative pressure fluctuation is efficiently exerted between the pressure receiving chamber 36 and the equilibrium chamber 38. A sufficient amount of fluid flow through the orifice passage 46 can be ensured. Therefore, an anti-vibration effect (vibration damping effect) can be effectively exhibited based on a fluid action such as a resonance action of a fluid that is caused to flow through the orifice passage 46 between the pressure receiving chamber 36 and the equilibrium chamber 38.

また、オリフィス通路46のチューニング周波数よりも高周波数域にあるアイドリング振動等の中周波中振幅振動が第一の取付金具12と第二の取付金具14の間に入力された際には、オリフィス通路46が実質的に閉塞状態となるが、受圧室36と平衡室38の間に配設された可動ゴム板50の弾性変形乃至は軸方向の変位に伴う透孔54,56を通じての流体の共振作用等の流動作用に基づいて、防振効果(振動絶縁効果)が有効に発揮され得る。   Further, when medium-frequency medium amplitude vibration such as idling vibration in a frequency range higher than the tuning frequency of the orifice passage 46 is input between the first mounting bracket 12 and the second mounting bracket 14, the orifice passage 46 is substantially closed, but the fluid resonates through the through holes 54 and 56 due to elastic deformation or axial displacement of the movable rubber plate 50 disposed between the pressure receiving chamber 36 and the equilibrium chamber 38. An anti-vibration effect (vibration insulation effect) can be effectively exhibited based on a fluid action such as an action.

さらに、オリフィス通路46や可動ゴム板50のチューニング周波数よりも高周波数域にある走行こもり音等の高周波小振幅振動が第一の取付金具12と第二の取付金具14の間に入力された際には、オリフィス通路46が実質的に閉塞状態となると共に、可動ゴム板50の弾性変形等が有効に生ぜしめられないこと等に基因して透孔54,56も実質的に閉塞状態にあるが、受圧室36においては、その壁部の一部が竪壁部66を含んで構成されていることによって、圧力変動が竪壁部66の変形により回避される。特に本実施形態では、竪壁部66の固有振動数がオリフィス通路46や可動ゴム板50のチューニング周波数よりも高周波数域にチューニングされていることにより、当該周波数域の振動入力における竪壁部66の共振作用と相俟って、竪壁部66の弾性変形が積極的に生ぜしめられることから、竪壁部66の弾性変形に基づく受圧室36の容積変化によって受圧室36において有効な圧力変動の吸収機能が発揮される。それ故、オリフィス通路46や透孔54,56の実質的な閉塞化等による受圧室36の圧力増大に伴う高動ばね化が回避されて、防振効果(振動絶縁効果)が有効に発揮され得るのである。   Further, when high-frequency small amplitude vibration such as traveling boom noise that is in a frequency range higher than the tuning frequency of the orifice passage 46 or the movable rubber plate 50 is input between the first mounting bracket 12 and the second mounting bracket 14. In addition, the orifice passage 46 is substantially closed, and the through holes 54 and 56 are also substantially closed due to the fact that elastic deformation or the like of the movable rubber plate 50 is not effectively generated. However, in the pressure receiving chamber 36, a part of the wall portion includes the heel wall portion 66, so that pressure fluctuation is avoided by deformation of the heel wall portion 66. In particular, in the present embodiment, the natural frequency of the heel wall portion 66 is tuned to a higher frequency range than the tuning frequency of the orifice passage 46 and the movable rubber plate 50, so that the heel wall portion 66 in the vibration input of the frequency range. Since the elastic deformation of the flange wall portion 66 is positively generated in combination with the resonance action, effective pressure fluctuation in the pressure receiving chamber 36 due to the volume change of the pressure receiving chamber 36 based on the elastic deformation of the flange wall portion 66. Absorption function is demonstrated. Therefore, the high dynamic spring accompanying the pressure increase in the pressure receiving chamber 36 due to the substantial closure of the orifice passage 46 and the through holes 54 and 56 is avoided, and the vibration isolation effect (vibration insulation effect) is effectively exhibited. To get.

特に、それぞれ、異なる周波数域にチューニングされたオリフィス通路46や可動ゴム板50、竪壁部66が何れも有効に機能し得ることから、オリフィス通路46のチューニング周波数を超えた高周波数域においてオリフィス通路46が実質的に閉塞化してしまうことに起因する反共振作用による著しい高動ばね化を、反共振作用が問題となる周波数域に可動ゴム板50のチューニング周波数を設定することにより、該可動ゴム板50の共振作用に伴う弾性変形に基づいて抑えることが出来る。これと同様に、可動ゴム板50のチューニング周波数を超えた高周波数域において可動ゴム板50の軸方向両側に位置せしめられた透孔54,56が実質的に閉塞化してしまうことに起因する反共振作用による著しい高動ばね化を、反共振作用が問題となる周波数域に竪壁部66のチューニング周波数を設定することにより、該竪壁部66の共振作用に伴う弾性変形に基づいて抑えることが出来る。それ故、複数の乃至は広い周波数域の振動に対して優れた防振効果を得ることが可能となるのである。   In particular, since the orifice passage 46, the movable rubber plate 50, and the flange wall portion 66 tuned to different frequency ranges can function effectively, the orifice passage in a high frequency range exceeding the tuning frequency of the orifice passage 46. When the tuning frequency of the movable rubber plate 50 is set in a frequency range where the anti-resonance action is a problem, the movable rubber plate 50 is made to have a significantly high dynamic spring due to the anti-resonance action due to the fact that 46 is substantially blocked. It can suppress based on the elastic deformation accompanying the resonance effect | action of the board 50. FIG. Similarly, in the high frequency range exceeding the tuning frequency of the movable rubber plate 50, the through holes 54 and 56 located on both sides in the axial direction of the movable rubber plate 50 are substantially blocked. Remarkably high dynamic spring due to the resonance action is suppressed based on elastic deformation accompanying the resonance action of the wall part 66 by setting the tuning frequency of the wall part 66 in the frequency region where the anti-resonance action is a problem. I can do it. Therefore, it is possible to obtain an excellent anti-vibration effect against a plurality of vibrations in a wide frequency range.

そこにおいて、本実施形態では、本体ゴム弾性体16における第一の取付金具12を挟んだ軸直角方向一方向で、各一対の内側すぐり部58と外側すぐり部62が対向位置せしめられるように設けられていると共に、各内外すぐり部58, 62の軸直角方向対向面間に略軸方向に延びる竪壁部66が設けられていることによって、これら一対の竪壁部66, 66が設けられた部位の軸方向のばね剛性が十分に確保されつつ、当該部位の軸直角方向の低ばね特性が有利に実現され得る。即ち、各一対の内外すぐり部58,62や竪壁部66が設けられた部分における軸直角方向と軸方向のばね比が効果的に大きくされる。   Therefore, in the present embodiment, the pair of inner curling portions 58 and the outer curling portions 62 are disposed so as to face each other in one direction perpendicular to the axis across the first mounting bracket 12 in the main rubber elastic body 16. In addition, a pair of ridge wall portions 66, 66 are provided by providing a ridge wall portion 66 extending substantially in the axial direction between the opposing surfaces in the direction perpendicular to the axis of the inner and outer straight portions 58, 62. A low spring characteristic in the direction perpendicular to the axis of the part can be advantageously realized while sufficiently ensuring the rigidity of the part in the axial direction. That is, the spring ratio in the direction perpendicular to the axis and in the axial direction is effectively increased in the portion where each pair of the inner and outer straight portions 58 and 62 and the wall portion 66 is provided.

従って、本実施形態の自動車用エンジンマウント10においては、内外すぐり部58,62や竪壁部66と略平行に延びるマウント軸方向が、パワーユニット荷重等が入力される車両上下方向に設定されると共に、各一対の内側すぐり部58や外側すぐり部62、竪壁部66が対向位置せしめられたマウント軸直角方向が、車両前後方向に設定された形態で、パワーユニットと自動車ボデーの間に装着されていることにより、パワーユニットの支持剛性の確保と車両前後方向の低ばね特性に基づく乗り心地が、両立して高度に達成され得るのである。   Accordingly, in the automobile engine mount 10 of the present embodiment, the mount axis direction extending substantially parallel to the inner and outer curb portions 58 and 62 and the saddle wall portion 66 is set to the vehicle vertical direction to which a power unit load or the like is input. Mounted between the power unit and the vehicle body in such a manner that the mount axis perpendicular direction in which each pair of the inner curly portion 58, the outer curly portion 62, and the collar wall portion 66 are opposed to each other is set in the vehicle front-rear direction. As a result, it is possible to achieve a high degree of compatibility between the securing of the support rigidity of the power unit and the riding comfort based on the low spring characteristic in the longitudinal direction of the vehicle.

加えて、本実施形態では、本体ゴム弾性体16の各一対の内外すぐり部58,62や竪壁部66が対向位置せしめられた方向と直交する軸直角方向に両すぐり部58,62や竪壁部66が設けられておらず、当該竪壁部66等が設けられていない部分の軸直角方向が車両左右方向とされていることから、かかる車両左右方向の高ばね特性に基づいて優れた操向安定性が得られるのである。   In addition, in the present embodiment, the two straightened portions 58, 62 and the flanges in the direction perpendicular to the axis perpendicular to the direction in which the pair of inner and outer straightened portions 58, 62 and the flange wall portion 66 of the main rubber elastic body 16 are opposed to each other. Since the wall portion 66 is not provided, and the direction perpendicular to the axis of the portion where the wall portion 66 or the like is not provided is the left-right direction of the vehicle, it is excellent based on the high spring characteristics in the left-right direction of the vehicle. Steering stability is obtained.

また、本実施形態では、竪壁部66が略軸方向にストレートに延びていることによって、軸方向で略圧縮変形されることから、第一の取付金具12と第二の取付金具14の間に軸方向の振動が入力された際に、竪壁部66の圧縮変形に伴う有効なピストン作用が受圧室36に及ぼされる。その結果、受圧室36に圧力変動がより有効に惹起されることに伴い、受圧室36と平衡室38の間でのオリフィス通路46を通じての流体流動作用に基づく防振効果が、一層有利に発揮され得るのである。   Further, in the present embodiment, since the flange wall portion 66 extends straight in the substantially axial direction, it is substantially compressed and deformed in the axial direction, and therefore, between the first mounting bracket 12 and the second mounting bracket 14. When an axial vibration is input to the pressure receiving chamber 36, an effective piston action accompanying the compression deformation of the flange wall portion 66 is exerted on the pressure receiving chamber 36. As a result, as the pressure fluctuation is more effectively induced in the pressure receiving chamber 36, the vibration isolation effect based on the fluid flow action through the orifice passage 46 between the pressure receiving chamber 36 and the equilibrium chamber 38 is more advantageously exhibited. It can be done.

さらに、本実施形態では、竪壁部66の拡張ばね剛性がダイヤフラム32の拡張ばね剛性よりも大きくされていることによって、受圧室36に有効な圧力変動が惹起されることとなり、その結果、オリフィス通路46の流体流動量の確保に伴い防振効果がより有利に発揮され得る。   Furthermore, in the present embodiment, the expansion spring rigidity of the flange wall portion 66 is made larger than the expansion spring rigidity of the diaphragm 32, so that an effective pressure fluctuation is induced in the pressure receiving chamber 36. As a result, the orifice As the fluid flow amount in the passage 46 is ensured, the vibration isolation effect can be exhibited more advantageously.

因みに、上述の実施形態に従う構造とされた自動車用エンジンマウント10について、その防振性能の周波数特性を測定した結果を図3に示す。なお、かかる測定結果は、第一の取付金具12と第二の取付金具14の間に軸方向の加振力を及ぼした場合の入力側と出力(伝達)側の振動をセンサで検出したものであり、加振周波数を次第に変化させて周波数スイープ加振した場合の振動伝達特性を実測した。また、図3中の実線は、本実施形態に従う構造とされたエンジンマウント10に係る振動伝達特性を測定した結果を示すグラフであると共に、図3中の破線は、本実施形態のエンジンマウント10に内側すぐり部58や外側すぐり部62、竪壁部66を設けていない構造とされた比較例としてのエンジンマウントに係る振動伝達特性を測定した結果を示すグラフである。   Incidentally, FIG. 3 shows the result of measuring the frequency characteristics of the vibration proof performance of the automobile engine mount 10 having the structure according to the above-described embodiment. This measurement result is obtained by detecting vibration on the input side and output (transmission) side with a sensor when an axial excitation force is applied between the first mounting bracket 12 and the second mounting bracket 14. The vibration transfer characteristics were measured when the excitation frequency was gradually changed and the frequency sweep was applied. Further, the solid line in FIG. 3 is a graph showing the result of measuring the vibration transfer characteristics of the engine mount 10 having the structure according to the present embodiment, and the broken line in FIG. 3 indicates the engine mount 10 of the present embodiment. 6 is a graph showing the results of measuring the vibration transfer characteristics according to the engine mount as a comparative example in which the inner straight portion 58, the outer straight portion 62, and the collar wall portion 66 are not provided.

図3の結果からも、例えばアイドリング振動等の100Hz程度の中周波振動の入力時に、本実施形態の自動車用エンジンマウント10と比較例のエンジンマウントは、何れも可動ゴム板50の弾性変形等に伴う透孔54,56を通じての流体の共振作用等の流動作用に基づいて、低動ばね効果が有効に発揮され得ることが認められる。   From the results shown in FIG. 3, for example, when an intermediate frequency vibration of about 100 Hz such as idling vibration is input, the automobile engine mount 10 of the present embodiment and the engine mount of the comparative example both cause elastic deformation of the movable rubber plate 50. It is recognized that the low dynamic spring effect can be effectively exhibited based on the flow action such as the resonance action of the fluid through the associated through holes 54 and 56.

この点において、例えば走行こもり音等の300Hz程度の高周波振動の入力時には、比較例のエンジンマウントにあって、オリフィス通路46や透孔54,56の反共振的作用に伴う著しい高動ばね化が惹起されているのに対し、本実施形態に係るエンジンマウント10においては、当該振動周波数域での低動ばね作用が発揮されていることが認められる。なお、図3中の鉛直下方に向かう矢印は、かかる走行こもり音等の高周波数域の振動入力に際して、実施例の動ばね定数が比較例に比して有利に低減される効果を視覚的に表したものである。   In this regard, for example, when high frequency vibration of about 300 Hz such as traveling noise is input, in the engine mount of the comparative example, there is a significant increase in dynamic spring due to the anti-resonant action of the orifice passage 46 and the through holes 54 and 56. In contrast, in the engine mount 10 according to the present embodiment, it is recognized that the low dynamic spring action is exhibited in the vibration frequency range. Note that the arrow pointing downward in FIG. 3 visually indicates that the dynamic spring constant of the embodiment is advantageously reduced as compared to the comparative example when inputting vibrations in a high frequency range such as a traveling noise. It is a representation.

従って、上述の結果からも、竪壁部66の共振作用に伴う弾性変形に基づいて、走行こもり音等の高周波振動数域での低動ばね作用が発揮されており、これによって、オリフィス通路46や透孔54,56の反共振に起因する著しい高動ばね化が有利に抑えられていることが推考される。   Therefore, also from the above-mentioned results, the low dynamic spring action in the high-frequency frequency range such as traveling noise is exerted based on the elastic deformation accompanying the resonance action of the flange wall portion 66, thereby the orifice passage 46. It is presumed that the remarkably high dynamic spring due to the anti-resonance of the through holes 54 and 56 is advantageously suppressed.

以上、本発明の実施形態について詳述してきたが、これはあくまでも例示であり、かかる実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様で実施可能であり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   The embodiment of the present invention has been described in detail above, but this is merely an example, and the present invention is not limited to a specific description in the embodiment, and is based on the knowledge of those skilled in the art. The present invention can be implemented with various changes, modifications, improvements, and the like, and any such embodiments are included in the scope of the present invention without departing from the spirit of the present invention. Needless to say.

例えば、前記実施形態では、内側すぐり部58や外側すぐり部62、竪壁部66が軸方向に略一定の断面形状でストレートに延びていたが、目的とする軸方向のばね剛性や軸直角方向の低ばね特性が得られる範囲内であれば、軸方向に対して傾斜せしめられたり、或いは軸方向に変化する断面形状で延びていても良い。   For example, in the above-described embodiment, the inner straight portion 58, the outer straight portion 62, and the flange wall portion 66 extend straight with a substantially constant cross-sectional shape in the axial direction. As long as the low spring characteristic is within the range, the cross-sectional shape may be inclined with respect to the axial direction or changed in the axial direction.

また、前記実施形態では、内側すぐり部58が受圧室36に面した本体ゴム弾性体16の内面に開口されていると共に、外側すぐり部62が外部に露出した本体ゴム弾性体16の外面に開口されていたが、内側すぐり部58が本体ゴム弾性体16の外面に、外側すぐり部62が本体ゴム弾性体16の内面に開口されることも勿論可能である。   In the above-described embodiment, the inner straight portion 58 is opened on the inner surface of the main rubber elastic body 16 facing the pressure receiving chamber 36, and the outer straight portion 62 is opened on the outer surface of the main rubber elastic body 16 exposed to the outside. However, it is of course possible that the inner straight portion 58 is opened on the outer surface of the main rubber elastic body 16 and the outer straight portion 62 is opened on the inner surface of the main rubber elastic body 16.

さらに、前記実施形態に係る本体ゴム弾性体16の一部には、内側すぐり部58または外側すぐり部62の一方だけ設けても良い。   Furthermore, you may provide only one of the inner side straight part 58 or the outer side straight part 62 in some main rubber elastic bodies 16 which concern on the said embodiment.

更にまた、前記実施形態では、内側すぐり部58や外側すぐり部62、竪壁部66の各一対が、第一の取付金具12を挟んだ本体ゴム弾性体16の径方向一方向で対向位置せしめるように設けられており、換言すれば、本体ゴム弾性体16の周方向に部分的に設けられていたが、それら内外すぐり部58,62や竪壁部66を本体ゴム弾性体16の周方向の全周に亘って連続して延びるように設けることも可能である。   Furthermore, in the above-described embodiment, each pair of the inner straight portion 58, the outer straight portion 62, and the collar wall portion 66 is opposed to each other in one radial direction of the main rubber elastic body 16 with the first mounting bracket 12 interposed therebetween. In other words, although it was partially provided in the circumferential direction of the main rubber elastic body 16, the inner and outer straight portions 58 and 62 and the flange wall 66 are arranged in the circumferential direction of the main rubber elastic body 16. It is also possible to provide it so as to extend continuously over the entire circumference.

また、外側すぐり部62の全体を所定の蓋部材で覆う等して蓋部材と竪壁部66の間に空気室を形成し、外部から空気室に空気圧を及ぼすことにより竪壁部のばね特性を調節して、防振特性やばね比を調節,設定することも可能である。   In addition, an air chamber is formed between the lid member and the heel wall portion 66 by covering the entire outer straight portion 62 with a predetermined lid member, and by applying air pressure to the air chamber from the outside, the spring characteristics of the heel wall portion It is also possible to adjust and set the anti-vibration characteristics and spring ratio.

加えて、前記実施形態では、本発明を自動車用エンジンマウント10に適用したものの具体例について説明したが、本発明は、自動車用ボデーマウントやデフマウント等の他、自動車以外の各種振動体の防振マウントに対して、何れも、適用可能であることは言うまでもない。   In addition, in the above-described embodiments, specific examples of applying the present invention to the engine mount 10 for automobiles have been described. However, the present invention can prevent various vibration bodies other than automobiles other than automobile body mounts and differential mounts. Needless to say, any of the vibration mounts can be applied.

本発明の一実施形態としての自動車用エンジンマウントを示す説明図であって、図2のI−I断面に相当する図である。It is explanatory drawing which shows the engine mount for motor vehicles as one Embodiment of this invention, Comprising: It is a figure equivalent to the II cross section of FIG. 図1における自動車用エンジンマウントを示す平面視説明図である。FIG. 2 is an explanatory plan view showing the automobile engine mount in FIG. 1. 図1における自動車用エンジンマウントにおける防振特性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the vibration proof characteristic in the engine mount for motor vehicles in FIG.

符号の説明Explanation of symbols

10 自動車用エンジンマウント
12 第一の取付金具
14 第二の取付金具
16 本体ゴム弾性体
30 仕切金具
32 ダイヤフラム
36 受圧室
38 平衡室
46 オリフィス通路
58 内側すぐり部
60 底部
62 外側すぐり部
64 底部
66 竪壁部
DESCRIPTION OF SYMBOLS 10 Automotive engine mount 12 1st attachment metal fitting 14 Second attachment metal fitting 16 Main body rubber elastic body 30 Partition metal fitting 32 Diaphragm 36 Pressure receiving chamber 38 Equilibrium chamber 46 Orifice passage 58 Inner straight part 60 Bottom part 62 Outer straight part 64 Bottom part 66 Wall

Claims (6)

第一の取付部材を筒状の第二の取付部材の軸方向一方の開口部側に離隔配置してそれら第一の取付部材と第二の取付部材を本体ゴム弾性体で連結せしめて該第二の取付部材の軸方向一方の開口部を流体密に覆蓋すると共に、該第二の取付部材の軸方向他方の開口部を可撓性膜で流体密に覆蓋し、更にそれら本体ゴム弾性体と可撓性膜の間に仕切部材を配設して該第二の取付部材に支持させることにより、該仕切部材を挟んだ両側に壁部の一部が該本体ゴム弾性体で構成されて振動が入力される受圧室と、壁部の一部が該可撓性膜で構成されて容積変化が容易に許容される平衡室を形成して、該受圧室と該平衡室に非圧縮性流体を封入すると共に、それら両室を連通させるオリフィス通路を形成した流体封入式防振マウントであって、
前記本体ゴム弾性体の弾性中心軸から外れた位置において、前記受圧室に面した内面に開口する第一のすぐり穴と、外部に露出した外面に開口する第二のすぐり穴を、それぞれ略軸方向に延びるように設けると共に、それら第一のすぐり穴と第二のすぐり穴における一方の底部が他方の底部を越えて軸方向に延びる深さ形態で軸直角方向で離隔して対向位置せしめることにより、該第一のすぐり穴と該第二のすぐり穴の軸直角方向対向面間において略軸方向に延びる弾性竪壁を形成したことを特徴とする流体封入式防振マウント。
The first mounting member is spaced apart on the one axial side opening side of the cylindrical second mounting member, and the first mounting member and the second mounting member are connected by the main rubber elastic body. The two opening members in the axial direction are covered with a fluid-tight cover, and the other opening portion in the axial direction of the second mounting member is covered with a flexible film in a fluid-tight manner. A partition member is disposed between the flexible membrane and supported by the second mounting member, so that part of the wall portion is formed of the main rubber elastic body on both sides of the partition member. A pressure receiving chamber into which vibration is input and an equilibrium chamber in which a part of the wall portion is made of the flexible film and the volume change is easily allowed are formed, and the pressure receiving chamber and the equilibrium chamber are incompressible. A fluid-filled vibration isolating mount that encloses a fluid and forms an orifice passage that communicates the two chambers.
At a position deviating from the elastic central axis of the main rubber elastic body, a first straight hole that opens to the inner surface facing the pressure receiving chamber and a second straight hole that opens to the outer surface exposed to the outside are substantially shafts, respectively. The bottom of one of the first and second counterbore holes is spaced apart in the direction perpendicular to the axis in a depth configuration extending in the axial direction beyond the other bottom. Thus, a fluid-filled vibration-proof mount is characterized in that an elastic saddle wall extending substantially in the axial direction is formed between the first and second counterbore surfaces facing each other in the direction perpendicular to the axis.
前記本体ゴム弾性体における前記第一の取付部材を挟んだ軸直角方向両側に各一対の前記第一のすぐり穴と前記第二のすぐり穴を設けて、前記弾性竪壁の一対を該第一の取付部材を挟んだ軸直角方向で対向位置せしめた請求項1に記載の流体封入式防振マウント。   A pair of the first and second straight holes are provided on both sides of the main rubber elastic body with respect to the direction perpendicular to the axis across the first attachment member, and the pair of elastic rib walls The fluid-filled vibration-proof mount according to claim 1, wherein the fluid-filled vibration-proof mount is opposed to each other in a direction perpendicular to the axis with the mounting member interposed therebetween. 前記第一の取付部材に軸直角方向に拡がる作用突部を一体的に設けると共に、該作用突部の軸方向下方に前記第一のすぐり穴または前記第二のすぐり穴を設けた請求項1又は2に記載の流体封入式防振マウント。   The first mounting member is integrally provided with an action protrusion that extends in a direction perpendicular to the axis, and the first and second straight holes are provided below the action protrusion in the axial direction. Or the fluid-filled vibration-proof mount according to 2. 前記弾性竪壁の固有振動数を、前記オリフィス通路を流動せしめられる流体の共振周波数よりも高周波数域において防振すべき振動の周波数域にチューニングした請求項1乃至3の何れかに記載の流体封入式防振マウント。   The fluid according to any one of claims 1 to 3, wherein the natural frequency of the elastic saddle wall is tuned to a frequency range of vibration to be damped in a frequency range higher than a resonance frequency of a fluid flowing through the orifice passage. Enclosed anti-vibration mount. 前記仕切部材の内部に可動ゴム板を板厚方向に所定量だけ変位乃至は変形可能に配設して該可動ゴム板の各一方の面に前記受圧室と前記平衡室の内圧が及ぼされるようにした請求項1乃至4の何れかに記載の流体封入式防振マウント。   A movable rubber plate is disposed in the partition member so as to be displaced or deformable by a predetermined amount in the thickness direction so that the internal pressures of the pressure receiving chamber and the equilibrium chamber are exerted on each surface of the movable rubber plate. The fluid-filled vibration-proof mount according to any one of claims 1 to 4. 請求項5に記載の流体封入式防振マウントを用いて、前記第一の取付部材と前記第二の取付部材の一方を自動車のパワーユニットに取り付けると共に、他方を自動車のボデーに取り付けることにより、該パワーユニットを該ボデーに対して防振支持せしめるようにする一方、前記オリフィス通路を流動せしめられる流体の共振周波数をシェイク等の低周波振動数域にチューニングすると共に、前記可動ゴム板の固有振動数をアイドリング振動等の中周波振動数域にチューニングし、更に前記弾性竪壁の固有振動数を走行こもり音等の高周波振動数域にチューニングしたことを特徴とする自動車用エンジンマウント。
Using the fluid-filled vibration-proof mount according to claim 5, one of the first mounting member and the second mounting member is attached to an automobile power unit, and the other is attached to the automobile body, While making the power unit vibration-proof and support the body, the resonance frequency of the fluid flowing through the orifice passage is tuned to a low frequency frequency region such as a shake, and the natural frequency of the movable rubber plate is adjusted. An automobile engine mount characterized by being tuned to a medium frequency frequency range such as idling vibration, and further tuned to a high frequency frequency range such as running noise from the natural frequency of the elastic wall.
JP2004024348A 2004-01-30 2004-01-30 Fluid sealed type vibration isolating mount Pending JP2005214352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024348A JP2005214352A (en) 2004-01-30 2004-01-30 Fluid sealed type vibration isolating mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024348A JP2005214352A (en) 2004-01-30 2004-01-30 Fluid sealed type vibration isolating mount

Publications (1)

Publication Number Publication Date
JP2005214352A true JP2005214352A (en) 2005-08-11

Family

ID=34907057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024348A Pending JP2005214352A (en) 2004-01-30 2004-01-30 Fluid sealed type vibration isolating mount

Country Status (1)

Country Link
JP (1) JP2005214352A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215529A (en) * 2007-03-06 2008-09-18 Tokai Rubber Ind Ltd Fluid filled vibration control device
JP2008232364A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Liquid filled vibration absorbing device
US8474800B2 (en) 2008-10-28 2013-07-02 Tokai Rubber Industries, Ltd. Fluid filled type vibration damping device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215529A (en) * 2007-03-06 2008-09-18 Tokai Rubber Ind Ltd Fluid filled vibration control device
JP2008232364A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Liquid filled vibration absorbing device
US8474800B2 (en) 2008-10-28 2013-07-02 Tokai Rubber Industries, Ltd. Fluid filled type vibration damping device

Similar Documents

Publication Publication Date Title
JP4330437B2 (en) Fluid filled vibration isolator
JP4348553B2 (en) Fluid-filled vibration isolator and manufacturing method thereof
JP4688067B2 (en) Fluid filled engine mount
JP6431795B2 (en) Fluid filled vibration isolator
JP4411659B2 (en) Fluid filled vibration isolator
JP2008002618A (en) Fluid filled vibration isolating device
JP4120510B2 (en) Fluid filled vibration isolator
WO2018180259A1 (en) Fluid-filled cylindrical vibration-damping device
JP2006064033A (en) Fluid sealed-type vibration control device
JP2009243510A (en) Fluid-filled type engine mount for automobile
JP3743304B2 (en) Fluid filled vibration isolator
JP5060846B2 (en) Fluid filled vibration isolator
JP4174827B2 (en) Series type engine mount and manufacturing method of series type engine mount
US20120248668A1 (en) Fluid-filled vibration-damping device of multidirectional vibration-damping type
JP2018001797A (en) Strut mount and suspension mechanism using the same
JP2005214352A (en) Fluid sealed type vibration isolating mount
JP5108658B2 (en) Fluid filled vibration isolator
JP2008163970A (en) Fluid-sealed vibration control device
JP2006177530A (en) Fluid sealed vibration isolator
JP4075066B2 (en) Fluid filled engine mount
JP2010007836A (en) Fluid sealed type vibration control device
JP5108659B2 (en) Fluid filled vibration isolator
JP2007051768A (en) Fluid-filled engine mount
JP2009041666A (en) Fluid filled vibration absorbing device and cover member to be used for the same
JP2000337426A (en) Fluid sealing type cylindrical mount