JP2005208254A - Multi-channel optical path converting device and manufacturing method therefor - Google Patents

Multi-channel optical path converting device and manufacturing method therefor Download PDF

Info

Publication number
JP2005208254A
JP2005208254A JP2004013577A JP2004013577A JP2005208254A JP 2005208254 A JP2005208254 A JP 2005208254A JP 2004013577 A JP2004013577 A JP 2004013577A JP 2004013577 A JP2004013577 A JP 2004013577A JP 2005208254 A JP2005208254 A JP 2005208254A
Authority
JP
Japan
Prior art keywords
optical path
waveguide
substrate
path conversion
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004013577A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nanai
秀寿 七井
Hiromichi Sakamoto
浩道 坂本
Yuji Yamamoto
雄二 山本
Shigeki Sakaguchi
茂樹 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2004013577A priority Critical patent/JP2005208254A/en
Publication of JP2005208254A publication Critical patent/JP2005208254A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing, with a high positional precision, the channels and mirrors of a multi-channel optical path converting device capable of converting an optical path by using a mirror. <P>SOLUTION: The multi-channel optical path converting device is composed of a plurality of resin optical waveguides and mirrors, and converts the direction of the optical path. An L-shaped optical waveguide is formed on the surface of a first waveguide substrate. A second substrate having a waveguide material film formed on the surface thereof is stuck to the first substrate. Then the next L-shaped optical waveguide is formed so that the positional relation between the waveguides are kept with high precision. The above processes are repeated as many times as desired. Thereafter, the resultant product is made to be a chip, and the mirror surface is formed on each chip. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

光導波路デバイスの普及には素子間を効率的に接続するためには光回路の進行方向を変換する多チャンネル光路変換素子が必要とされる。本発明は損失が少なく特性の揃った多チャネルの光路変換素子、及びその有効な作製方法に関するものである。   In order to connect optical elements efficiently, a multi-channel optical path conversion element that converts the traveling direction of an optical circuit is required for the widespread use of optical waveguide devices. The present invention relates to a multi-channel optical path conversion element with low loss and uniform characteristics, and an effective manufacturing method thereof.

情報通信システムの基盤技術として光通信技術が浸透していくにつれて光導波路は、光ネットワークキーデバイスとして益々その重要性が高まると同時に、光電子回路配線基板等の分野への応用に向けて開発が進められている。光導波路デバイスの普及には低価格化と量産化が要望されており、取り扱いの容易な樹脂製光導波路がその有力な候補として開発されている。導波路用の樹脂材料としては、フッ素化ポリイミド樹脂、重水素化ポリシロキサン樹脂、エポキシ系樹脂、全フッ素化脂環式樹脂、アクリル系樹脂、シリコーン樹脂等が用いられる。   As optical communication technology has permeated as the basic technology of information communication systems, optical waveguides are becoming increasingly important as optical network key devices, and at the same time, they are being developed for applications in fields such as optoelectronic circuit wiring boards. It has been. The spread of optical waveguide devices is demanded for low cost and mass production, and resin optical waveguides that are easy to handle are being developed as promising candidates. As the resin material for the waveguide, fluorinated polyimide resin, deuterated polysiloxane resin, epoxy resin, perfluorinated alicyclic resin, acrylic resin, silicone resin and the like are used.

光導波路デバイスの普及には素子間を効率的に接続するために光回路を急激に曲げる光路変換の技術、特に、2〜16チャンネルなどの、複数の光信号をパラレルに送受信することが出来る様々な多チャネルの光路変換素子が必要とされ、さらには、損失が少なく、チャンネル間で特性の揃っていることが求められている。コア同士の位置関係の精度維持はデバイスチャンネル間の均一性に直接影響する。一般にこの用途で用いられるマルチモードファイバとの結合においては、チャンネル間の均一性を±0.2dB以下にする必要があるとされ、そのためには導波路の断面形状が各々40×40μm角であるマルチモード光導波路の複数のコア同士の位置関係を±2.5μm以下の高い精度で形成しなければならない。   The spread of optical waveguide devices is an optical path changing technique that bends an optical circuit abruptly in order to connect elements efficiently, especially various optical signals such as 2-16 channels can be transmitted and received in parallel. Such a multi-channel optical path conversion element is required, and further, there is a demand for low loss and uniform characteristics between channels. Maintaining the accuracy of the positional relationship between cores directly affects the uniformity between device channels. In general, in coupling with the multimode fiber used in this application, it is necessary to make the uniformity between channels ± 0.2 dB or less, and for this purpose, the cross-sectional shape of the waveguide is 40 × 40 μm square. The positional relationship between the multiple cores of the multimode optical waveguide must be formed with high accuracy of ± 2.5 μm or less.

光路変換部品として、光導波路を形成された基板同士を張り合わせて、その後ミラーを形成する方法が提案されている。(特許文献1参照)
しかし、導波路が形成された基板同士の貼り合わせは厚さ方向の導波路間の精度と、L字型の張り合わせの位置精度を同時に制御する必要があり、複雑で精密な作業を必要とする。この方法でデバイスとして必要な±2.5μm以下の精度を維持するためには高価な装置が必要であり、スループットも十分なものを得ることが困難であった。
特開2003−315578号公報
As an optical path conversion component, there has been proposed a method in which substrates on which optical waveguides are formed are bonded together and then a mirror is formed. (See Patent Document 1)
However, it is necessary to control the accuracy between the waveguides in the thickness direction and the position accuracy of the L-shaped bonding at the same time, which requires complicated and precise work. . In order to maintain the accuracy of ± 2.5 μm or less required as a device by this method, an expensive apparatus is required, and it is difficult to obtain a device with sufficient throughput.
JP 2003-315578 A

複数の光路をミラーを用いて変換する多チャンネル光路変換素子において、低損失でチャンネル間の特性の揃った光路変換素子と、作製の容易性、低コスト性を兼ね備えた製造方法を提供することを課題とする。   In a multi-channel optical path conversion element that converts a plurality of optical paths using a mirror, an optical path conversion element with low loss and uniform characteristics between channels, and a manufacturing method that combines ease of manufacture and low cost are provided. Let it be an issue.

本発明は、複数の、樹脂光導波路とミラーによって構成され、光路の方向を変換する多チャンネルの光路変換素子において、ミラー前後のコアを一体的に形成した第一の導波路基板に第二の基板を貼り合わせ、その後第一の基板の導波路と位置関係を維持するように、第二の基板の表面に導波路を形成する方法を含むことを特徴とするものである。
すなわち、本発明は、
1)基板上に光導波路を形成し、
2)クラッド材が成膜された次の基板を張り合わせ、
3)この基板上に光導波路を形成し、
4)必要なチャンネル数を満足するまで2)、3)の工程を繰り返した後、クラッド樹脂をコートした後、
5)個々の多チャンネル光路変換素子のチップを切り出し、
6)各々のチップにミラーを形成する。
少なくとも、6つの工程を含むことを特徴とし、これらの方法により高性能の多チャンネル光路変換素子を提供するものである。
The present invention relates to a multi-channel optical path conversion element configured by a plurality of resin optical waveguides and mirrors and converting the direction of an optical path. The method includes forming a waveguide on the surface of the second substrate so that the substrates are bonded together and then maintained in positional relation with the waveguide of the first substrate.
That is, the present invention
1) An optical waveguide is formed on the substrate,
2) Laminate the next substrate on which the cladding material is formed,
3) An optical waveguide is formed on this substrate,
4) After repeating steps 2) and 3) until the required number of channels is satisfied, after coating the clad resin,
5) Cut out the chip of each multi-channel optical path conversion element,
6) A mirror is formed on each chip.
The method includes at least six steps, and provides a high-performance multi-channel optical path conversion element by these methods.

この方法によれば、基板を張り合わせる工程とコアのパターニングを行う工程を別個に実施することで各チャンネルの位置精度を保つことができる。すなわち、チャンネル間のコアピッチに相当する張り合わせの厚さ方向の精度は研削装置で一定に保ち、またチャンネル間のL字型導波路の位置精度はフォトリソグラフィでのマスクアライメントで実施し、特別な装置を必要としないで精度良く多チャンネル光路変換素子を製造することができる。   According to this method, the positional accuracy of each channel can be maintained by separately performing the step of bonding the substrates and the step of patterning the core. That is, the accuracy in the thickness direction of the lamination corresponding to the core pitch between the channels is kept constant by a grinding apparatus, and the position accuracy of the L-shaped waveguide between channels is implemented by mask alignment in photolithography. The multi-channel optical path conversion element can be manufactured with high accuracy without the necessity of

一層ごとに順次導波路を作製することで、特性が安定し、高精度と低損失、低コストを兼ね備えた多チャンネル光路変換素子を提供できる。   By sequentially producing waveguides for each layer, it is possible to provide a multi-channel optical path conversion element that has stable characteristics, high accuracy, low loss, and low cost.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

図1は本発明の多チャンネル光路変換素子の製造工程の一例を説明する図であり、4チャンネル光路変換素子について説明する。他のチャンネル数の場合も同様な方法で製造できる。製造工程の実際はウエハーの状態で行なわれるが、図1ではデバイス部分を拡大して示している。まず図1(a)では、基板1の上に、クラッド材料の樹脂材料2を成膜する。位置の基準となる基板1は位置ずれを防ぐため、吸水率が0.1%以下で、線熱膨張係数がプロセス温度範囲内で20ppm以下の、例えばガラスやシリコンなどの無機材料を用いることが好ましい。   FIG. 1 is a diagram for explaining an example of the manufacturing process of the multi-channel optical path conversion element of the present invention, and the 4-channel optical path conversion element will be described. Other channel numbers can be manufactured in the same manner. Although the actual manufacturing process is performed in the state of a wafer, FIG. 1 shows the device portion in an enlarged manner. First, in FIG. 1A, a resin material 2 of a clad material is formed on a substrate 1. In order to prevent positional displacement, the substrate 1 serving as a position reference should use an inorganic material such as glass or silicon having a water absorption rate of 0.1% or less and a linear thermal expansion coefficient of 20 ppm or less within the process temperature range. preferable.

(b)ではリソグラフィと反応性イオンエッチング(RIE:Reactive Ion Etching)の技法により、トレンチ型の導波路パターンを形成後、コアの樹脂材料をスピンコートによりコアパターンを埋め込み、余分なコア材料をエッチバックにより除去しL字導波路3を形成する。(c)ではクラッドの樹脂材料2が予め成膜された貼り付け用基板4をクラッド樹脂材料で張り合わせ(d)として、クラッドの樹脂材料2を研削装置で研削してチャンネル間のピッチを所定の膜厚にする。(b)の導波路を蔽うクラッド樹脂材料は張り合わせ用樹脂材料の厚さで調整しても良いが、貼り付け用基板4上に、あらかじめクラッド樹脂材料が成膜されたものを使用することが簡便で有り、精度上好ましい。また、クラッド樹脂材料が両面に成膜されたものを使用すれば、基板のそりを防ぐことができるため、さらに好ましい。
(e)では(b)のコアパターンと同一の位置関係を維持するように(b)と同様な方法で導波路5を形成する。
In (b), after forming a trench type waveguide pattern by lithography and reactive ion etching (RIE) technique, the core resin material is embedded by spin coating, and the excess core material is etched. The L-shaped waveguide 3 is formed by removing by back. In (c), the bonding substrate 4 on which the clad resin material 2 is formed in advance is bonded with the clad resin material (d), and the clad resin material 2 is ground with a grinding device so that the pitch between the channels is predetermined. Make the film thickness. The clad resin material that covers the waveguide of (b) may be adjusted by the thickness of the resin material for lamination, but it is possible to use a material in which the clad resin material is previously formed on the bonding substrate 4. It is simple and preferable in terms of accuracy. In addition, it is more preferable to use a clad resin material formed on both surfaces because warpage of the substrate can be prevented.
In (e), the waveguide 5 is formed by the same method as in (b) so as to maintain the same positional relationship as the core pattern in (b).

(f)ではさらに、(c)、(d)、(e)と同様な工程を2回繰り返し、最後にクラッド樹脂材料を成膜することにより、4チャンネルの導波路を形成し、ウエハーをダイソーで各チップに切断し、(g)の4チャンネルの導波路を得る。ミラー面6はウエハーを各チップに切断後、斜めにダイシングされた面を研摩し、金や誘電体膜をスパッタリングしたり、あるいは、ミラー面が形成されたブロックを貼り付けることによりミラーを形成することができる。   In (f), the same steps as in (c), (d), and (e) are repeated twice, and finally a clad resin material is deposited to form a 4-channel waveguide, and the wafer is diced. (4) to obtain a 4-channel waveguide (g). Mirror surface 6 forms a mirror by cutting the wafer into chips and then polishing the obliquely diced surface, sputtering gold or a dielectric film, or attaching a block on which the mirror surface is formed. be able to.

〔実施例1〕
水平導波路と垂直導波路の、ミラー面中点よりの長さが各々、3.5mm、1.6mmの4チャンネル光路変換素子を製造した。クラッド材、コア材はエポキシ樹脂を使用した。チャンネル間のコアピッチは250μmである。
まず、厚さ1mm、100mmφのガラス基板上にクラッド材を成膜した。成膜はスピンコート法を用い、クラッド層の厚さは50μmである。その後、クラッド材の上にマスク材を成膜し、フォトリソグラフィでパターニングを行った。マスク材にはAl(アルミニウム)を使用し、Oガスを流入させてマスク層に保護されていないクラッド部分をエッチング(O―RIE)し、クラッド層へL字のトレンチ型コアパターンを作製し、スピンコート法でトレンチ型コアパターンへコア材を充填した。過剰のコア材はエッチバックにより除去(O―RIE)し、断面40×40μm角のコアを作製した。
[Example 1]
A four-channel optical path conversion element in which the length from the midpoint of the mirror surface of the horizontal waveguide and the vertical waveguide was 3.5 mm and 1.6 mm, respectively, was manufactured. The clad material and core material used epoxy resin. The core pitch between the channels is 250 μm.
First, a clad material was formed on a glass substrate having a thickness of 1 mm and a diameter of 100 mm. The film is formed by spin coating, and the thickness of the cladding layer is 50 μm. Thereafter, a mask material was formed on the clad material and patterned by photolithography. Al (aluminum) is used as the mask material, and O 2 gas is introduced to etch the cladding part that is not protected by the mask layer (O 2 -RIE), thereby forming an L-shaped trench core pattern on the cladding layer. Then, the core material was filled into the trench type core pattern by spin coating. Excess core material was removed by etchback (O 2 -RIE) to produce a 40 × 40 μm square core.

そこへ厚さ140μmのガラス基板にクラッド材を表裏面それぞれ50μm成膜された基板(板厚全体で240μm)をクラッド材で張り合わせた(接着層10μm)。その後、研削装置で全体の厚さを1300μm±2.5μmとした。その後、クラッド材上にマスク材を成膜し、マスクアライナで一層目のL字型コア位置と二層目のコア位置が一致するようにフォトリソグラフィで二層目のコアのパターニングを行った。そこへ一層目と同様にコア材を充填、エッチバックを行い二層目のコアを作製した。さらに二層目のコア層を作製した手順を二回繰り返し、最後にクラッド材を50μm成膜することでL字型のコアが4層積層された光導波路基板を作製した。  Then, a substrate (a total thickness of 240 μm) on which a clad material was formed on a glass substrate having a thickness of 140 μm was bonded to the clad material (adhesion layer 10 μm). Thereafter, the overall thickness was set to 1300 μm ± 2.5 μm with a grinding apparatus. Thereafter, a mask material was formed on the clad material, and the second-layer core was patterned by photolithography so that the L-shaped core position of the first layer and the core position of the second layer coincided with each other with a mask aligner. The core material was filled there in the same way as in the first layer, and etched back to produce a second layer core. Further, the procedure for producing the second core layer was repeated twice, and finally an optical waveguide substrate in which four layers of L-shaped cores were laminated was formed by forming a clad material of 50 μm.

次にL字部分をダイシングソーで切断しミラー部を作製後、チップ状に切り出した。切り出したチップのミラー部を研摩した後、誘電体膜が成膜されたガラスブロックをクラッド材で張り合わせた。入射面および出射面を研摩することにより、水平および垂直導波路を4チャンネル備えた130個の光路変換素子が得られた。   Next, the L-shaped portion was cut with a dicing saw to produce a mirror portion, and then cut into a chip shape. After polishing the mirror part of the cut-out chip, the glass block on which the dielectric film was formed was laminated with a clad material. By polishing the entrance surface and the exit surface, 130 optical path conversion elements having four channels of horizontal and vertical waveguides were obtained.

得られた直角光路変換導波路のコア配列の精度はすべてのチャンネル間で2.0μm以下であった。またマルチモードファイバーの4芯ファイバーアレイ(コアピッチ250μm)により波長1.3μmの光を直角光路変換導波路へ挿入し、4芯マルチモードファイバーアレイで受光したところ挿入損失3dB以下で、さらに各素子内でのチャンネル間の挿入損失のばらつきが0.1dB以下のものが、79個(60%)にのぼり、低損失で均質な4チャンネル光路変換素子を良好な歩留りで製造することができた。
〔実施例2〕
二層目以降の張り合わせる基板の材料をガラスからフッ素化ポリイミドへ変更する以外、実施例1と同様に実施し、4層積層されたL字型コアの間がエポキシ樹脂とフッ素化ポリイミドである光導波路基板を作製した。次にL字部分をダイシングソーで切断しミラー部を作製後、チップ状に切り出した。切り出したチップのミラー部を研摩した後、そこへ誘電体膜が成膜されたガラスブロックをクラッド材で張り合わせた。入射面および出射面を研摩することにより、L字型導波路を4チャンネル備えた130個の光路変換素子を得た。
The accuracy of the core arrangement of the obtained right-angle optical path conversion waveguide was 2.0 μm or less between all the channels. In addition, light with a wavelength of 1.3 μm is inserted into a right-angle optical path conversion waveguide by a 4-mode fiber array of multimode fibers (core pitch 250 μm) and received by the 4-core multimode fiber array. The variation in insertion loss between channels at 0.1 dB or less was 79 (60%), and a low-loss and uniform four-channel optical path conversion element could be manufactured with a good yield.
[Example 2]
Except for changing the material for the second and subsequent layers from glass to fluorinated polyimide, the same procedure as in Example 1 was carried out, and the L-shaped core between the four layers was an epoxy resin and a fluorinated polyimide. An optical waveguide substrate was produced. Next, the L-shaped portion was cut with a dicing saw to produce a mirror portion, and then cut into a chip shape. After polishing the mirror part of the cut-out chip, a glass block on which a dielectric film was formed was laminated with a clad material. By polishing the entrance surface and the exit surface, 130 optical path conversion elements having four channels of L-shaped waveguides were obtained.

得られた直角光路変換導波路のコア配列の精度はすべてのチャンネル間で2.5μm以下であった。またマルチモードファイバーの4芯ファイバーアレイ(コアピッチ250μm)により波長1.3μmの光を直角光路変換導波路へ挿入し、4芯マルチモードファイバーアレイで受光したところ、挿入損失3dB以下で、さらに各素子内でのチャンネル間の挿入損失のばらつきが0.1dB以下のものが、68個(52%)にのぼり、低損失で均質な4チャンネル光路変換素子を良好な歩留りで製造することができた。
〔比較例1〕
厚さ190μmのフッ素化ポリイミド基板4枚にクラッド材であるエポキシ樹脂をそれぞれ成膜した。成膜はスピンコート法で用い、実施したクラッド材の厚さは50μmである。その後、クラッド材上にマスク材を成膜し、フォトリソグラフィでパターニングを行った。マスク材にはAlを使用し、Oガスを流入させてマスク層に保護されていない部分をエッチング(O―RIE)し、クラッド材へトレンチ型でL字型のコアパターンを作製した。スピンコート法でトレンチ型コアパターンへコア材を充填した。過剰のコア材をエッチバックにより除去(O―RIE)し、フッ素化ポリイミド基板上にL字型の断面40×40μmのコアパターンが形成された基板を4枚作製し、端面で使用するその内の一枚は、クラッド材をオーバーコートした。それらを基板張り合わせ装置を用いてクラッド材で張り合わせL字型コアが4層積層された光導波路基板を作製した。
The accuracy of the core arrangement of the obtained right-angle optical path conversion waveguide was 2.5 μm or less between all the channels. In addition, when a light with a wavelength of 1.3 μm is inserted into a right-angle optical path conversion waveguide using a 4-mode fiber array of multimode fibers (core pitch 250 μm) and received by the 4-core multimode fiber array, each element has an insertion loss of 3 dB or less. The variation of insertion loss between channels within 0.1 dB was as high as 68 (52%), and a low-loss and uniform four-channel optical path conversion element could be manufactured with good yield.
[Comparative Example 1]
An epoxy resin as a clad material was formed on each of four fluorinated polyimide substrates having a thickness of 190 μm. The film was formed by spin coating, and the thickness of the clad material was 50 μm. Thereafter, a mask material was formed on the clad material and patterned by photolithography. Al was used for the mask material, and O 2 gas was introduced to etch the portion not protected by the mask layer (O 2 -RIE), thereby producing a trench-shaped and L-shaped core pattern on the cladding material. The core material was filled into the trench type core pattern by spin coating. Excess core material was removed by etch back (O 2 -RIE), and four substrates with an L-shaped core pattern of 40 × 40 μm formed on a fluorinated polyimide substrate were prepared and used at the end face One of them was overcoated with a clad material. These were laminated with a clad material using a substrate laminating apparatus to produce an optical waveguide substrate in which four L-shaped cores were laminated.

次にL字の交点部分をダイシングソーで切断しミラー部を作製し、引き続きチップ状に切り出した。切り出したチップのミラー部を研摩した後、そこへ誘電体膜が成膜されたガラスブロックをクラッド材で張り合わせた。入射面および出射面を研摩することにより、水平および垂直導波路を4チャンネル備えた直角光路変換導波路130個を得た。   Next, the intersection part of the L-shape was cut with a dicing saw to produce a mirror part, and then cut into a chip shape. After polishing the mirror part of the cut-out chip, a glass block on which a dielectric film was formed was laminated with a clad material. By polishing the entrance surface and the exit surface, 130 right-angle optical path conversion waveguides having four horizontal and vertical waveguides were obtained.

得られた直角光路変換導波路のコアピッチは250±20μmであった。またマルチモードファイバーの4芯ファイバーアレイ(コアピッチ250±0.5μm)により波長1.3μmの光を直角光路変換導波路へ挿入し、4芯マルチモードファイバーアレイで受光したところ、単チャンネルの光挿入損失は3dB程度であったがコア配列の誤差が大きいため単チャンネルのみしかファイバーアレイと光結合しないため、多チャンネル光路変換素子としては、すべて不適であった。   The core pitch of the obtained right-angle optical path conversion waveguide was 250 ± 20 μm. In addition, when a 4-mode fiber array with a multimode fiber (core pitch 250 ± 0.5 μm) is used, light with a wavelength of 1.3 μm is inserted into a right-angle optical path conversion waveguide and received by a 4-core multimode fiber array. Although the loss was about 3 dB, the error in the core arrangement was so large that only a single channel was optically coupled to the fiber array, so that they were all unsuitable as multichannel optical path conversion elements.

図1は本発明による多チャンネル光路変換素子の作製工程の一例を示す図である。FIG. 1 is a diagram showing an example of a manufacturing process of a multichannel optical path conversion element according to the present invention.

符号の説明Explanation of symbols

1 ガラスまたはシリコン基板
2 クラッド材
3 L字型導波路
4 貼り付け用基板
5 第二のL字型導波路
6 ミラー面
DESCRIPTION OF SYMBOLS 1 Glass or silicon substrate 2 Cladding material 3 L-shaped waveguide 4 Pasting substrate 5 Second L-shaped waveguide 6 Mirror surface

Claims (3)

複数の、樹脂製光導波路とミラーによって構成される多チャンネル光路変換光導波路において、ミラー前後のコアを一体的に形成した第一の導波路基板に第二の基板を貼り合わせ、その後、第一の基板の導波路と位置関係を維持するように、第二の基板の表面に導波路を形成する方法を含むことを特徴とし、これを複数回繰り返す多チャンネル光路変換素子の製造方法。 In a multi-channel optical path conversion optical waveguide composed of a plurality of resin optical waveguides and mirrors, the second substrate is bonded to the first waveguide substrate in which the cores before and after the mirror are integrally formed, and then the first A method for producing a multi-channel optical path conversion element, comprising a method of forming a waveguide on the surface of a second substrate so as to maintain a positional relationship with the waveguide of the substrate, and repeating this multiple times. 複数の、樹脂光導波路とミラーによって構成され、光路の方向を変換する多チャンネルの光路変換素子の製造法であって、
1)基板上に光導波路を形成し、
2)クラッド材が成膜された次の基板を張り合わせ、
3)この基板上に光導波路を形成し、
4)必要なチャンネル数を満足するまで2)、3)の工程を繰り返した後、最後の基板を張り合わせ、
5)多チャンネルのチップ状に切り出し、
6)各々のチップにミラーを形成する。
少なくとも、6つの工程を含むことを特徴とする請求項1記載の樹脂製の多チャンネル光路変換素子の製造方法。
A method of manufacturing a multi-channel optical path conversion element configured by a plurality of resin optical waveguides and mirrors and converting the direction of an optical path,
1) An optical waveguide is formed on the substrate,
2) Laminate the next substrate on which the cladding material is formed,
3) An optical waveguide is formed on this substrate,
4) Repeat steps 2) and 3) until the required number of channels is satisfied.
5) Cut out into multi-channel chips,
6) A mirror is formed on each chip.
The method for producing a resin-made multichannel optical path conversion element according to claim 1, comprising at least six steps.
請求項1、2のいずれかに記載された方法で製造された樹脂製の多チャンネル光路変換素子。 A resin-made multi-channel optical path conversion element manufactured by the method according to claim 1.
JP2004013577A 2004-01-21 2004-01-21 Multi-channel optical path converting device and manufacturing method therefor Pending JP2005208254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004013577A JP2005208254A (en) 2004-01-21 2004-01-21 Multi-channel optical path converting device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004013577A JP2005208254A (en) 2004-01-21 2004-01-21 Multi-channel optical path converting device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005208254A true JP2005208254A (en) 2005-08-04

Family

ID=34899595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013577A Pending JP2005208254A (en) 2004-01-21 2004-01-21 Multi-channel optical path converting device and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005208254A (en)

Similar Documents

Publication Publication Date Title
US9031373B2 (en) Lightwave circuit and method for manufacturing same
US6810160B2 (en) Optical wiring substrate, method of manufacturing optical wiring substrate and multilayer optical wiring
JP3302458B2 (en) Integrated optical device and manufacturing method
WO1992021047A1 (en) Method of connecting optical waveguide to optical fiber
KR20040015286A (en) Post-formation feature optimization
JP2823044B2 (en) Optical coupling circuit and method of manufacturing the same
JP2008298934A (en) Optical axis transformation element and method of manufacturing the same
JP2006251046A (en) Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method
KR100802520B1 (en) Production method for multichannel optical path changing device
JPH07151940A (en) Optical coupling structure and its production
JP2008164943A (en) Multichannel optical path conversion element and its manufacturing method
JP2005208254A (en) Multi-channel optical path converting device and manufacturing method therefor
JP2001350051A (en) Optical waveguide module and its manufacturing method
JP4059835B2 (en) Multi-channel optical path conversion element
JP2009300562A (en) Multi-channel right-angled optical path converting element
KR20010022120A (en) Method of fabricating an optical component and optical component made thereby
JP2009098485A (en) Device with adhered mirror for converting optical path and method of manufacturing the same
JP2005189747A (en) Manufacturing method of multi-channel optical path transducer
US20220413220A1 (en) Optical waveguides and methods for producing
JP2002311276A (en) Method for forming resin optical waveguide
JPH05107427A (en) Method of processing end face of optic fiber and parallel transmission optic module
JP2009098432A (en) Device for converting laminated multi-channel optical path and method of manufacturing the same
JP2008197380A (en) Multichannel optical path converting element and its manufacturing method
JP2004021005A (en) Optical waveguide substrate
JP2003185873A (en) Two-dimensional optical member array, two-dimensional waveguide device and method for manufacturing them

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028