JPH05107427A - Method of processing end face of optic fiber and parallel transmission optic module - Google Patents

Method of processing end face of optic fiber and parallel transmission optic module

Info

Publication number
JPH05107427A
JPH05107427A JP3296212A JP29621291A JPH05107427A JP H05107427 A JPH05107427 A JP H05107427A JP 3296212 A JP3296212 A JP 3296212A JP 29621291 A JP29621291 A JP 29621291A JP H05107427 A JPH05107427 A JP H05107427A
Authority
JP
Japan
Prior art keywords
face
resin
optical fiber
optical
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3296212A
Other languages
Japanese (ja)
Inventor
Masayoshi Kato
正良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3296212A priority Critical patent/JPH05107427A/en
Publication of JPH05107427A publication Critical patent/JPH05107427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To enhance the productivity and to reduce the manufacturing cost by making one end face of an optic fiber into contact with photosensitive resin, and by irradiating light to the resin after the fiber is pulled up so as to cure the resin. CONSTITUTION:After a flat end face 1 is formed by cutting an optic fiber 2, the end face 1 of the optic fiber 1 is made into contact with a photo-setting type rein, perpendicular thereto. If necessary, the end face 1a of the optic fiber may be beforehand subjected to a precoating process with highly adhesive photo-setting type resin. After it is made into contact with the resin, the fiber is slowly lifted up so that a small volume of the resin is attached in a spherical shape to the end face 1 of the optical fiber due to the physical factor such as the surface tension. In this condition, ultraviolet radiation is irradiated from an high pressure mercury lamp so as to cure and stabilize the resin. At this time, the shape of the end face is controlled by the interaction between the optic fiber surface and the interface of the resin, and the physical characteristics of the resin, and the manufacturing condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、光ファイバ端面加工方法及び並
列伝送光モジュールに関し、より詳細には、半導体光素
子に結合する光ファイバ端末の加工方法と光通信用の並
列伝送光モジュールに関する。例えば、光通信に適用さ
れるものである。
TECHNICAL FIELD The present invention relates to an optical fiber end face processing method and a parallel transmission optical module, and more particularly to a processing method of an optical fiber terminal coupled to a semiconductor optical device and a parallel transmission optical module for optical communication. For example, it is applied to optical communication.

【0002】[0002]

【従来技術】一般に、先球ファイバを用いるレーザダイ
オードモジュールは、他のレンズを用いるモジュールと
比較して光学系が極めてシンプルであるため、小型化あ
るいは経済性に適している。しかし、特性の向上を追求
するため複雑な加工を必要とするものが多い。先球ファ
イバの加工方法については、例えば、吉野 薫 外2名
「エッチング加工した先球ファイバとレーザダイオード
との結合特性」(昭和60年度電子通信学会総合全国大
会 予稿集10−328)に記載されている。
2. Description of the Related Art Generally, a laser diode module using a front spherical fiber has an extremely simple optical system as compared with a module using other lenses, and is suitable for downsizing or economy. However, many require complicated processing in order to improve the characteristics. The method of processing the spherical fiber is described in, for example, Kaoru Yoshino, 2 persons, “Coupling characteristics of the etched spherical fiber and laser diode” (Proceedings 10-328, General Conference of The Institute of Electronics, Information and Communication Engineers, 1985). ing.

【0003】図5は、上記文献に記載されているレーザ
ダイオードと先球ファイバの構成図である。半導体レー
ザ(LD)はBH形(Buried heterostructure;埋込み
ヘテロ形)で、光ファイバはGI形(多モードグレーデ
ット形)である。この方法によれば、緩衝ふっ酸を用
い、ファイバのドーパントによるエッチング速度の違い
を利用してコア部を球状に加工する。しかし、図5のよ
うなエッチング加工法による先球加工では、作製に時間
がかかるだけではなく、ステップインデックス型の光フ
ァイバには適用が困難である。また、プラスチッククラ
ッドの光ファイバにはクラッドを除去する必要があるな
ど生産性に問題が残る。
FIG. 5 is a block diagram of the laser diode and the spherical fiber described in the above document. The semiconductor laser (LD) is a BH type (Buried heterostructure), and the optical fiber is a GI type (multimode graded type). According to this method, buffered hydrofluoric acid is used to process the core portion into a spherical shape by utilizing the difference in etching rate depending on the dopant of the fiber. However, in the processing of the front sphere by the etching processing method as shown in FIG. 5, not only is it time-consuming to manufacture, but it is difficult to apply it to a step index type optical fiber. Further, the plastic clad optical fiber has a problem in productivity such as the need to remove the clad.

【0004】また、光通信において、光ファイバ,半導
体レーザ(LD),発光ダイオード(LED),フォト
ダイオード(PD)等の受動,能動素子の高性能化,高
機能化が進んでおり、より多くの情報伝達のために、デ
ータ伝送を実時間で並列に伝送することが要求されてい
る。この機能のものとして、複数の発光素子あるいは受
光素子と複数の光ファイバとを一体化した並列伝送光モ
ジュールがある。この並列伝送光モジュールについて
は、例えば、特開平2−28980号公報がある。
In optical communication, passive and active devices such as optical fibers, semiconductor lasers (LDs), light emitting diodes (LEDs), and photodiodes (PDs) have been advanced in performance and function, and more. In order to transmit information, it is required to transmit data transmission in parallel in real time. As a module having this function, there is a parallel transmission optical module in which a plurality of light emitting elements or light receiving elements and a plurality of optical fibers are integrated. Regarding this parallel transmission optical module, there is, for example, JP-A-2-28980.

【0005】図6は、上記公報に記載されている並列伝
送光モジュールを示す図で、図中、20はファイバ支持
部、21はベース、22はガイド、23はLDアレイ、
24は電極パターン、25はSiO2(絶縁層)、26
は光ファイバである。この並列伝送光モジュールは、ア
レイ状に複数個配列した端面発光光素子23を有するベ
ース21と、前記光素子23と光軸を一致させて、各々
同一のアレイピッチで配列したアレイ状光ファイバ26
を有する光ファイバ支持部20とを、ガイド22および
これらの部材上に設けたガイドを填め合わせるガイド溝
とにより、ベース部材と光ファイバ支持部材とを重畳し
て一定方向に一体に結合させることにより並列伝送光モ
ジュールを構成したものである。しかしながら、並列伝
送光モジュールでは、レンズ系を介さず直接発光素子と
ファイバを結合させているため、LEDなどを発光素子
に用いたときなどは特に結合効率が低くなってしまう等
の問題点がある。
FIG. 6 is a diagram showing the parallel transmission optical module described in the above publication. In the figure, 20 is a fiber support portion, 21 is a base, 22 is a guide, 23 is an LD array,
24 is an electrode pattern, 25 is SiO 2 (insulating layer), 26
Is an optical fiber. This parallel transmission optical module has a base 21 having a plurality of edge emitting optical elements 23 arranged in an array, and an arrayed optical fiber 26 in which the optical axes of the optical elements 23 are aligned and are arranged at the same array pitch.
And the optical fiber support portion 20 having the guide groove and the guide groove for fitting the guides provided on these members, the base member and the optical fiber support member are superposed and integrally coupled in a fixed direction. This is a configuration of a parallel transmission optical module. However, in the parallel transmission optical module, since the light emitting element and the fiber are directly coupled without passing through the lens system, there is a problem that the coupling efficiency becomes particularly low when an LED or the like is used as the light emitting element. ..

【0006】[0006]

【目的】本発明は、上述のごとき実情に鑑みてなされた
もので、安価で生産性に富み、光学特性の制御性の良い
新規の先球ファイバの加工法を提供するとともに、小型
で生産性に優れ、低コストな並列伝送光モジュールを提
供することを目的としてなされたものである。
[Object] The present invention has been made in view of the above-mentioned circumstances, and provides a new processing method of a front spherical fiber which is inexpensive, rich in productivity, and excellent in controllability of optical characteristics, and also small in size and productivity. The object of the present invention is to provide a parallel transmission optical module which is excellent in cost and low in cost.

【0007】[0007]

【構成】本発明は、上記目的を達成するために、(1)
平坦な端面を有する光ファイバの端面にレンズ効果を付
与する球面加工方法において、光ファイバ端面を感光性
樹脂に接触させ、引き上げた後に光照射を行い、前記感
光性樹脂を硬化させることにより前記ファイバ端面に球
面加工すること、或いは、(2)アレイ状に複数個配列
した光素子を有するベース部材と、前記光素子と光軸を
一致させて各々同一のアレイピッチで配列したアレイ状
光ファイバを有する光ファイバ支持部材との組合せから
なり、前記ベース部材と前記光ファイバ支持部材とを重
畳して一定方向に一体に結合させるガイドと、該ガイド
を填め合わせるガイド溝とを有する並列伝送光モジュー
ルにおいて、前記先球光ファイバを用いて前記光ファイ
バ支持部材を構成するとともに、複数のガイドと該ガイ
ドを填め合わせるガイド溝とを重畳して一定方向に一体
に結合させたことを特徴としたものである。以下,本発
明の実施例に基づいて説明する。
In order to achieve the above object, the present invention provides (1)
In a spherical surface processing method for imparting a lens effect to an end face of an optical fiber having a flat end face, the end face of the optical fiber is brought into contact with a photosensitive resin, and light is irradiated after pulling up, and the fiber is obtained by curing the photosensitive resin. Spherical processing on the end surface, or (2) a base member having a plurality of optical elements arranged in an array, and an arrayed optical fiber in which the optical axes are aligned with the optical elements and arranged at the same array pitch. A parallel transmission optical module comprising a combination with an optical fiber supporting member having, a guide for superposing the base member and the optical fiber supporting member to integrally combine them in a fixed direction, and a guide groove for fitting the guide. , Configuring the optical fiber support member using the spherical optical fiber, and fitting a plurality of guides with the guides By superimposing the id groove in a predetermined direction is obtained and wherein the conjugated together. Hereinafter, description will be given based on examples of the present invention.

【0008】図1は本発明による先球ファイバの構成図
で、図2(a)〜(c)は作製方法を示す工程図であ
る。図中、1は光ファイバ端面、2は光ファイバ、3は
光硬化性樹脂、4は高圧水銀ランプ、5は発光素子であ
る。本発明による先球ファイバの加工方法では、平坦な
端面を有する光ファイバ2の端面を感光性樹脂に接触さ
せ、引き上げた後、光照射により感光性樹脂を硬化させ
ることにより光ファイバ端面に球面加工する。この時、
光ファイバ表面と樹脂界面との相互作用及び樹脂の物理
的特性,作製条件などにより、その形状1をコントロー
ルする。
FIG. 1 is a constitutional view of a spherical fiber according to the present invention, and FIGS. 2A to 2C are process drawings showing a manufacturing method. In the figure, 1 is an end face of an optical fiber, 2 is an optical fiber, 3 is a photocurable resin, 4 is a high pressure mercury lamp, and 5 is a light emitting element. In the method for processing a spherical fiber according to the present invention, the end face of the optical fiber 2 having a flat end face is brought into contact with the photosensitive resin, and after pulling up, the photosensitive resin is cured by light irradiation to spherically process the end face of the optical fiber. To do. At this time,
The shape 1 is controlled by the interaction between the surface of the optical fiber and the resin interface, the physical characteristics of the resin, the manufacturing conditions, and the like.

【0009】より具体的な作製方法について、図2
(a)〜(c)を用いて説明する。本発明の実施例で
は、まず、光ファイバ2をカット(必要ならば研磨)し
て平坦な端面を作製後、光ファイバ端面を光硬化性樹脂
3(例えば2P樹脂など)に垂直に端面を接触させる
(図(a))。この時、必要ならば樹脂と光ファイバの
密着性を良くするために、光ファイバ端面に前もって密
着性の良い光硬化性樹脂のプレコート処理などを行って
もよい。樹脂に接触させた後、ゆっくりと引き上げると
微小量の樹脂1が光ファイバ端面に、その表面張力など
の物理的要因により球面状に付着する(図(b))。こ
の状態で高圧水銀ランプ4を用いて紫外線を照射し、硬
化・安定させる(図(c))。この時、その先端形状は
光ファイバ表面と樹脂界面との相互作用及び樹脂の物理
的特性,作製条件などによりコントロールできる。具体
的には、光ファイバ端面へのプレコート処理や樹脂の粘
性,作製時の温度や引き上げ時の速度などを制御すれば
よい。本発明の実施例による加工方法により作製された
先球ファイバをLDモジュール等の光回路に用いれば、
結合効率のよい光モジュールを生産性よく作製すること
が可能である。
FIG. 2 shows a more specific manufacturing method.
A description will be given using (a) to (c). In the embodiment of the present invention, first, the optical fiber 2 is cut (polished if necessary) to produce a flat end face, and then the end face of the optical fiber is vertically contacted with the photocurable resin 3 (for example, 2P resin). (Fig. (A)). At this time, if necessary, in order to improve the adhesion between the resin and the optical fiber, the end face of the optical fiber may be pre-coated with a photo-curable resin having good adhesion. When the resin 1 is brought into contact with the resin and then slowly pulled up, a minute amount of the resin 1 adheres to the end face of the optical fiber in a spherical shape due to physical factors such as the surface tension thereof (FIG. (B)). In this state, ultraviolet rays are radiated using the high pressure mercury lamp 4 to cure and stabilize it (Fig. (C)). At this time, the shape of the tip can be controlled by the interaction between the optical fiber surface and the resin interface, the physical characteristics of the resin, the manufacturing conditions, and the like. Specifically, the precoating treatment on the end face of the optical fiber, the viscosity of the resin, the temperature at the time of production, the speed at the time of pulling, etc. may be controlled. If the spherical fiber manufactured by the processing method according to the embodiment of the present invention is used for an optical circuit such as an LD module,
It is possible to produce an optical module with high coupling efficiency with high productivity.

【0010】図3,図4は、並列伝送光モジュールの構
成図で、図中、5は発光素子(アレイ)、6は光ファイ
バアレイ、7はガイド、8は電極パターン、9はガイド
溝、10はV溝、11はベース部材、12はSi基板、
13,14はSiO2薄膜、15はV溝である。Si基
板11,12をそれぞれの支持部材に用い、発光素子ア
レイ5(ここでは、LEDアレイもしくはLDアレイ)
を実装するベース部材11にはSiO2からなる薄膜1
3を熱酸化もしくはスパッタ等の通常の薄膜形成技術に
より絶縁層を形成後、フォトリソグラフィの技術により
所望の形状にパターニングしてSiO2をマスクとしK
OH等をエッチング液に用い、Siの異方性エッチング
によりガイド用のV溝15を形成する。
3 and 4 are block diagrams of a parallel transmission optical module. In the drawings, 5 is a light emitting element (array), 6 is an optical fiber array, 7 is a guide, 8 is an electrode pattern, 9 is a guide groove, 10 is a V groove, 11 is a base member, 12 is a Si substrate,
Reference numerals 13 and 14 are SiO 2 thin films, and 15 is a V groove. The Si substrates 11 and 12 are used as the respective supporting members, and the light emitting element array 5 (here, an LED array or an LD array) is used.
The base member 11 for mounting the thin film 1 made of SiO 2
3 is formed into an insulating layer by a usual thin film forming technique such as thermal oxidation or sputtering, and then patterned into a desired shape by a photolithography technique, and SiO 2 is used as a mask for K.
The V groove 15 for guide is formed by anisotropic etching of Si using OH or the like as an etching solution.

【0011】この後、発光素子駆動用の電極パターン8
も同様に金属膜の真空蒸着などの通常の薄膜形成法およ
びフォトリソグラフィの技術により所望の形状にパター
ニングしてSiO2薄膜13上に形成して、ワイヤボン
ディングで発光素子アレイが電極パターン8に電気的に
接続されて固定されている。そして、前記先球ファイバ
からなる光ファイバアレイ6を保持する保持部材12に
も同様の技術を用いて、光ファイバ固定用10およびガ
イド用9(ここでは、ベース部材との光軸上での相対的
な位置合わせが可能となるように光ファイバ固定用と同
形状)のV溝が所定の間隔に精度よく形成され、各溝に
前記先球ファイバアレイ6が接着剤や半田により固定さ
れている。
Thereafter, the electrode pattern 8 for driving the light emitting element
Similarly, by patterning into a desired shape by a normal thin film forming method such as vacuum deposition of a metal film and a photolithography technique to form on the SiO 2 thin film 13, the light emitting element array is electrically connected to the electrode pattern 8 by wire bonding. Connected and fixed. Then, the same technique is used for the holding member 12 that holds the optical fiber array 6 made of the above-mentioned spherical fiber, and the optical fiber fixing 10 and the guiding member 9 (here, relative to the base member on the optical axis). V-grooves having the same shape as those for fixing the optical fiber) are formed at predetermined intervals with high precision so as to be aligned with each other, and the front-end fiber array 6 is fixed to each groove by an adhesive or solder. ..

【0012】これら光ファイバ支持部材12とベース部
材11とは、図4に示すように、4つのガイド7(ここ
ではガラス球)および6つのガイド溝15,9によりそ
のガイド7を挟持するように積層されている。この時、
光ファイバ6の配列ピッチと発光素子アレイ5およびガ
イド溝15,9の間隔はフォトリソグラフィで用いるマ
スク精度で正確に設定されているので、ガイド7の大き
さ(ここでは、ガイド球の直径)およびベース部材11
と光ファイバ保持部材12との光軸上での相対的な位置
合わせ(y軸およびz軸方向)により組み付け調整し
て、接着剤などにより固定することにより作製される。
この時、ガイド7の大きさはすべて同じであるが、作製
時の基板の反りなどを補正するために適当な大きさのも
のを個別に用いてもよい。
As shown in FIG. 4, the optical fiber supporting member 12 and the base member 11 sandwich the guide 7 with four guides 7 (here, glass balls) and six guide grooves 15 and 9. It is stacked. At this time,
Since the arrangement pitch of the optical fibers 6 and the distance between the light emitting element array 5 and the guide grooves 15 and 9 are accurately set by the mask accuracy used in photolithography, the size of the guide 7 (here, the diameter of the guide ball) and Base member 11
The optical fiber holding member 12 and the optical fiber holding member 12 are assembled and adjusted by relative alignment (y-axis and z-axis directions) on the optical axis, and fixed by an adhesive or the like.
At this time, all of the guides 7 have the same size, but those having an appropriate size may be used individually in order to correct the warp of the substrate during manufacturing.

【0013】本発明の実施例における並列伝送光モジュ
ールは、本発明による先球ファイバを用いることで端面
直接結合の場合の結合効率数%に比べ、数十%と高効率
の結合効率が得られる。本発明による先球ファイバの加
工方法は、種々の光ファイバに適用可能であるのは言う
までもなく、また、並列伝送光モジュールのアレイ数は
上記のものに限らない。また、光素子にPDアレイ等を
用いて受信光モジュール等も構成できる。
In the parallel transmission optical module according to the embodiment of the present invention, by using the front spherical fiber according to the present invention, a coupling efficiency as high as several tens of percent can be obtained as compared with the coupling efficiency of several percent in the case of direct end face coupling. .. Needless to say, the method for processing a spherical fiber according to the present invention is applicable to various optical fibers, and the number of arrays of parallel transmission optical modules is not limited to the above. Also, a receiving optical module or the like can be configured by using a PD array or the like as the optical element.

【0014】[0014]

【効果】以上の説明から明らかなように、本発明による
と、以下のような効果がある。 (1)請求項1に対する効果:安価で生産性に富み、光
学特性の制御性の良い新規の先球ファイバの加工法を提
供することが可能であり、種々の光ファイバにも適用可
能である。 (2)請求項2に対する効果:小型で生産性に優れ、低
コストな並列伝送光モジュールを提供することが可能で
ある。
As is apparent from the above description, the present invention has the following effects. (1) Effect on claim 1: It is possible to provide a novel method for processing a spherical fiber which is inexpensive, has high productivity, and has good controllability of optical characteristics, and is also applicable to various optical fibers. .. (2) Effect on Claim 2: It is possible to provide a parallel transmission optical module that is small in size, excellent in productivity, and low in cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による先球ファイバの構成図である。FIG. 1 is a configuration diagram of a front spherical fiber according to the present invention.

【図2】 先球ファイバの作製方法を示す工程図であ
る。
FIG. 2 is a process chart showing a method of manufacturing a spherical fiber.

【図3】 並列伝送光モジュールを示す図である。FIG. 3 is a diagram showing a parallel transmission optical module.

【図4】 並列伝送光モジュールを示す断面図である。FIG. 4 is a sectional view showing a parallel transmission optical module.

【図5】 従来の先球ファイバの加工方法を示す図であ
る。
FIG. 5 is a diagram showing a conventional method for processing a spherical fiber.

【図6】 従来の並列伝送光モジュールを示す図であ
る。
FIG. 6 is a diagram showing a conventional parallel transmission optical module.

【符号の説明】[Explanation of symbols]

1…光ファイバ端面、2…光ファイバ、3…光硬化性樹
脂、4…高圧水銀ランプ、5…発光素子。
1 ... Optical fiber end face, 2 ... Optical fiber, 3 ... Photocurable resin, 4 ... High pressure mercury lamp, 5 ... Light emitting element.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平坦な端面を有する光ファイバの端面に
レンズ効果を付与する球面加工方法において、光ファイ
バ端面を感光性樹脂に接触させ、引き上げた後に光照射
を行い、前記感光性樹脂を硬化させることにより前記フ
ァイバ端面に球面加工することを特徴とする光ファイバ
端面加工方法。
1. In a spherical surface processing method for imparting a lens effect to an end face of an optical fiber having a flat end face, the end face of the optical fiber is brought into contact with a photosensitive resin, and after pulling up, light irradiation is performed to cure the photosensitive resin. A method for processing an end surface of an optical fiber, characterized in that the end surface of the fiber is spherically processed.
【請求項2】 アレイ状に複数個配列した光素子を有す
るベース部材と、前記光素子と光軸を一致させて各々同
一のアレイピッチで配列したアレイ状光ファイバを有す
る光ファイバ支持部材との組合せからなり、前記ベース
部材と前記光ファイバ支持部材とを重畳して一定方向に
一体に結合させるガイドと、該ガイドを填め合わせるガ
イド溝とを有する並列伝送光モジュールにおいて、前記
先球光ファイバを用いて前記光ファイバ支持部材を構成
するとともに、複数のガイドと該ガイドを填め合わせる
ガイド溝とを重畳して一定方向に一体に結合させたこと
を特徴とする並列伝送光モジュール。
2. A base member having a plurality of optical elements arranged in an array, and an optical fiber support member having an array of optical fibers arranged with the same optical element and the optical axis aligned at the same array pitch. In a parallel transmission optical module comprising a combination, a guide for superposing the base member and the optical fiber supporting member and integrally coupling them in a fixed direction, and a guide groove for fitting the guide, the front optical fiber is A parallel transmission optical module, wherein the optical fiber support member is constructed by using the optical fiber support member, and a plurality of guides and guide grooves for fitting the guides are overlapped and integrally coupled in a fixed direction.
JP3296212A 1991-10-15 1991-10-15 Method of processing end face of optic fiber and parallel transmission optic module Pending JPH05107427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3296212A JPH05107427A (en) 1991-10-15 1991-10-15 Method of processing end face of optic fiber and parallel transmission optic module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3296212A JPH05107427A (en) 1991-10-15 1991-10-15 Method of processing end face of optic fiber and parallel transmission optic module

Publications (1)

Publication Number Publication Date
JPH05107427A true JPH05107427A (en) 1993-04-30

Family

ID=17830629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3296212A Pending JPH05107427A (en) 1991-10-15 1991-10-15 Method of processing end face of optic fiber and parallel transmission optic module

Country Status (1)

Country Link
JP (1) JPH05107427A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6671432B2 (en) 2000-04-05 2003-12-30 Canon Kabushiki Kaisha Plastic optical fiber with a lens portion, optical fiber connector, and connecting structures and methods between optical fibers and between optical fiber and light emitting/receiving device
US6826329B2 (en) 2000-04-05 2004-11-30 Canon Kabushiki Kaisha Plastic optical fiber with a lens, light-emitting/receiving apparatus with the plastic optical fiber with a lens, and method of fabricating the plastic optical fiber with a lens
JP2019533834A (en) * 2016-11-02 2019-11-21 カールスルーエ インスティテュート フュア テクノロジ Method for manufacturing an optical system and optical system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6671432B2 (en) 2000-04-05 2003-12-30 Canon Kabushiki Kaisha Plastic optical fiber with a lens portion, optical fiber connector, and connecting structures and methods between optical fibers and between optical fiber and light emitting/receiving device
US6826329B2 (en) 2000-04-05 2004-11-30 Canon Kabushiki Kaisha Plastic optical fiber with a lens, light-emitting/receiving apparatus with the plastic optical fiber with a lens, and method of fabricating the plastic optical fiber with a lens
JP2019533834A (en) * 2016-11-02 2019-11-21 カールスルーエ インスティテュート フュア テクノロジ Method for manufacturing an optical system and optical system
JP2022180575A (en) * 2016-11-02 2022-12-06 カールスルーエ インスティテュート フュア テクノロジ Optical system manufacturing method and optical system

Similar Documents

Publication Publication Date Title
US5566262A (en) Optical fiber array and a method of producing the same
USRE40416E1 (en) Multilayer optical fiber coupler
US10761279B2 (en) Method of producing a device for adiabatic coupling between waveguide arrays, corresponding device, and system
US6907173B2 (en) Optical path changing device
US8442362B2 (en) Method for manufacturing optical coupling element, optical transmission substrate, optical coupling component, coupling method, and optical interconnect system
US7455462B2 (en) Zone two fiber optic cable
JP2823044B2 (en) Optical coupling circuit and method of manufacturing the same
US6381386B1 (en) V-shaped optical coupling structure
US20100172620A1 (en) Optical Axis Converting Element and Method for Manufacturing the Same
JPH08179155A (en) Method for coupling lens with optical fiber and production of lens substrate
US7407595B2 (en) Optical member, manufacturing method of the optical member, waveguide substrate, and photo-electric integrated substrate
JP2002350673A (en) Optical module and its assembling method
JP4886112B2 (en) Device having planar optical element and optical fiber
JPH07151940A (en) Optical coupling structure and its production
JPH05107427A (en) Method of processing end face of optic fiber and parallel transmission optic module
JP2008164943A (en) Multichannel optical path conversion element and its manufacturing method
JP2000214340A (en) Optical waveguide, light beam spot converter and optical transmission module
US5545359A (en) Method of making a plastic molded optoelectronic interface
JP3136205B2 (en) Optical module and method of manufacturing lens array thereof
JP2008076795A (en) Optical fiber array
JP2002311260A (en) Plastic optical fiber, production method therefor, optical package using the same and optical wiring device
JPH11258455A (en) Optical waveguide component and optical waveguide module using the component
JP3121093B2 (en) Manufacturing method of parallel optical transmission module
JP2019124725A (en) Optical waveguide and method for manufacturing optical waveguide
JP2005189605A (en) Optical semiconductor module and manufacturing method therefor