JP2009098485A - Device with adhered mirror for converting optical path and method of manufacturing the same - Google Patents

Device with adhered mirror for converting optical path and method of manufacturing the same Download PDF

Info

Publication number
JP2009098485A
JP2009098485A JP2007271033A JP2007271033A JP2009098485A JP 2009098485 A JP2009098485 A JP 2009098485A JP 2007271033 A JP2007271033 A JP 2007271033A JP 2007271033 A JP2007271033 A JP 2007271033A JP 2009098485 A JP2009098485 A JP 2009098485A
Authority
JP
Japan
Prior art keywords
groove
optical path
reflective film
waveguide
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007271033A
Other languages
Japanese (ja)
Inventor
Yuji Yamamoto
雄二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2007271033A priority Critical patent/JP2009098485A/en
Publication of JP2009098485A publication Critical patent/JP2009098485A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable device for converting multi-channel optical path of low loss for converting a plurality of optical paths using a mirror, and to provide a simple method for manufacturing. <P>SOLUTION: In the method of manufacturing the device for converting the optical path, a V groove slope forming an angle of substantially 45 ° with respect to both a vertical waveguide and a horizontal waveguide is formed in the intersection of them; a reflective film is formed on a bar-like body whose edge angle substantially matches with the angle between the slopes of the V groove; the reflective film is adhered to an end of a waveguide core on the V groove slope so that the film is in contact with the end to provide a mirror. In this method, the V groove is formed of a diamond blade having average grain size between 8 μm and 20 μm; the reflective film is formed on the surface of the bar-like body whose surface roughness Ra is 10 nm or less, and the edge of the bar-like body corresponding to the tip of the V groove is chamfered by a value more than the amount of the curved section at the tip of the V groove, and is adhered and fixed to the V groove with an adhesive. Also, the device for converting multi-channel optical path manufactured by the method is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、チップ間、ボード間の光インターコネクションの間を効率的に接続するために必要な、光回路の進行方向を変換する多チャンネル光路変換素子において、損失が少なく信頼性の高い多チャネルの光路変換素子、及びその有効な作製方法に関する。   The present invention relates to a multi-channel optical path conversion element for converting the traveling direction of an optical circuit, which is necessary to efficiently connect between chips and between optical interconnections between boards. The present invention relates to an optical path conversion element and an effective manufacturing method thereof.

情報量の増大、処理速度の高速化にともない、メタル配線では対応できない状況が予想され、光を用いた光インターコネクションの開発が進められている。これらの普及には低価格化と量産化が要望されており、取り扱いの容易な樹脂製光導波路がその有力な構成部材として開発されている。 導波路用の樹脂材料としては、フッ素化ポリイミド樹脂、エポキシ系樹脂、アクリル系樹脂、シリコーン樹脂等が用いられる。光インターコネクションを安価に効率よく生産するためには光インターコネクションに使われるLD、PD等の半導体素子を平面実装できることが重要である。そのためには水平方向の樹脂製光導波路の光回路を急激に曲げる光路変換の技術、特に、2〜16チャンネルなどの、複数の光信号をパラレルに送受信することが出来る様々な多チャネルの光路変換素子が必要とされている。これらの光路変換素子では損失が少なく、チャンネル間で特性の揃った、かつコア同士の位置関係が維持されていることが求められている。特にコア同士の位置関係の維持はデバイス特性に直接影響するためその精度は±2.5μm以下にすることが求められている。   As the amount of information increases and the processing speed increases, it is expected that metal wiring will not be able to cope with it, and the development of optical interconnection using light is being promoted. For these spreads, low cost and mass production are demanded, and a resin optical waveguide that is easy to handle has been developed as an effective component. As the resin material for the waveguide, fluorinated polyimide resin, epoxy resin, acrylic resin, silicone resin, or the like is used. In order to efficiently and inexpensively produce optical interconnections, it is important that semiconductor elements such as LDs and PDs used for optical interconnections can be mounted on a plane. To that end, optical path conversion technology that sharply bends the optical circuit of the horizontal resin optical waveguide, especially various multi-channel optical path conversion capable of transmitting and receiving a plurality of optical signals in parallel such as 2 to 16 channels. A device is needed. These optical path conversion elements are required to have little loss, have uniform characteristics between channels, and maintain the positional relationship between cores. In particular, maintaining the positional relationship between the cores directly affects the device characteristics, so that the accuracy is required to be ± 2.5 μm or less.

また光路を変換するミラー部での損失も低く抑える必要がある。そのためミラー部には反射率の高い金、銀合金、アルミニウムや特定波長の反射率を高めた誘電体多層膜が使用される。   It is also necessary to keep the loss at the mirror part that converts the optical path low. For this reason, gold, silver alloy, aluminum having a high reflectance, or a dielectric multilayer film having a high reflectance at a specific wavelength is used for the mirror portion.

多チャンネルの光路変換部品として、直交する光導波路が形成された同形の基板同士を光軸が所定の相対位置をとるように貼り合わせ、その後直交する光導波路部にミラーを形成する方法が提案されている。ミラー部の形成はダイシングにより導波路の交差部の一部を切断しミラー面を形成し、平面度を高めるためには研磨をする方法が示されている(特許文献1参照)。   As a multi-channel optical path conversion component, a method has been proposed in which identical substrates on which orthogonal optical waveguides are formed are bonded together so that their optical axes take a predetermined relative position, and then a mirror is formed in the orthogonal optical waveguide portion. ing. In order to form the mirror part, a part of the intersecting part of the waveguide is cut by dicing to form a mirror surface, and a polishing method is shown to improve the flatness (see Patent Document 1).

また、二つの導波路を持ち、導波路の交差部位のミラーによって導波路の信号を接続する光電気配線基板が提案されており、ミラーの形成方法としてダイサーによる形成とRIEによる形成が示されている(特許文献2参照)。
特開2003−315578号公報 再公表特許 WO01/001176
Also, there has been proposed an opto-electric wiring board having two waveguides and connecting the signals of the waveguides by mirrors at the intersections of the waveguides. As a method of forming the mirrors, formation by dicer and formation by RIE are shown. (See Patent Document 2).
JP 2003-315578 A Republished patent WO01 / 001176

しかし、ダイサーによる形成においてはミラー面を研磨しない場合はミラー面の表面粗さが粗く反射率が低下し素子の損失が増大する。また研磨する場合は反射面の位置精度を高精度に出すのが非常に困難で、位置を確認しながら何度も研磨する必要があり作製に時間を要する。所定位置を通り越して研磨してしまうと再生が難しい。   However, in the formation by the dicer, when the mirror surface is not polished, the surface roughness of the mirror surface is rough, the reflectance is lowered, and the element loss is increased. Further, when polishing, it is very difficult to obtain the position accuracy of the reflecting surface with high accuracy, and it is necessary to polish many times while confirming the position, which takes time. It is difficult to regenerate after polishing past a predetermined position.

また、RIEによる形成においては溝深さが深いためエッチングに長時間を要する。また斜面の位置及び斜面の角度を精度良くエッチングすることは非常に困難である。   In addition, the formation by RIE requires a long time for etching because the groove depth is deep. In addition, it is very difficult to accurately etch the position of the slope and the angle of the slope.

本発明は、垂直導波路と水平導波路の交差部に両導波路と略45度の角度をなすV溝斜面を形成し、V溝の斜面間の角度と略一致する稜の角度を有する棒状体に反射膜を形成し、V溝斜面の導波路コア端部に反射膜が接するように貼り付け、ミラーとする光路変換素子の作製において、V溝を8μm以上20μm以下の平均粒径を有するダイヤモンドブレードにより形成し、表面粗さRaが10nm以下の棒状体の面に反射膜を形成し、V溝先端部に対応する棒状体の稜をV溝先端の曲面部の量以上に面取し、V溝に接着剤で接着固定した光路変換素子の作製方法である。   In the present invention, a V-shaped groove slope having an angle of about 45 degrees with both waveguides is formed at the intersection of a vertical waveguide and a horizontal waveguide, and a bar shape having a ridge angle substantially coincident with the angle between the slopes of the V-groove. A reflection film is formed on the body, and the reflection film is attached so that the reflection film is in contact with the waveguide core end portion of the V-groove slope. In the production of an optical path conversion element as a mirror, the V-groove has an average particle diameter of 8 μm or more and 20 μm or less. Formed with a diamond blade, a reflective film is formed on the surface of the rod-shaped body having a surface roughness Ra of 10 nm or less, and the ridge of the rod-shaped body corresponding to the V-groove tip is chamfered more than the amount of the curved surface of the V-groove This is a method of manufacturing an optical path conversion element that is bonded and fixed to the V groove with an adhesive.

また、上記反射膜をシリカとシリカより高屈折率の材料からなる誘電体多層膜とし且つシリカが最表面に来る構成の誘電体多層膜とした光路変換素子の作製方法である。   Further, the present invention provides a method for producing an optical path conversion element in which the reflective film is a dielectric multilayer film made of silica and a material having a higher refractive index than that of silica, and the dielectric multilayer film is configured such that silica is on the outermost surface.

また、上記のシリカより高屈折率の材料が五酸化タンタルである光路変換素子の作製方法である。   Further, the present invention is a method for manufacturing an optical path conversion element in which the material having a higher refractive index than silica is tantalum pentoxide.

また、上記反射膜を、V溝斜面の導波路コア端部面積の2倍以上且つ反射膜が形成された棒状体側面の面積の2/3以下の面積の金属反射膜とした光路変換素子の作製方法である。   Further, in the optical path conversion element, the reflective film is a metal reflective film having an area that is not less than twice the area of the end of the waveguide core on the slope of the V-groove and 2/3 or less of the area of the side surface of the rod-like body on which the reflective film is formed. This is a manufacturing method.

さらに、上記反射膜が、多数個の分離した金のミラーである多チャンネル光路変換素子の作製方法である。   Furthermore, it is a manufacturing method of a multi-channel optical path conversion element in which the reflective film is a number of separated gold mirrors.

さらにまた、上記の作製方法によって作製されたことを特徴とする多チャンネル光路変換素子である。   Furthermore, it is a multi-channel optical path conversion element manufactured by the above manufacturing method.

反射率の高い金属あるいは誘電体多層膜のミラーを表面粗さの小さい棒状体の面に形成し、垂直導波路と水平導波路の交差部に形成したV溝斜面に貼り付けることにより、反射率の高いミラーを高い位置精度で設置することが出来るため、損失の低い素子を容易に作製することが出来る。反射膜を形成する面の表面粗さを小さくすることは、平板状の表面粗さの小さいガラスやシリコンなどの基板に誘電体多層膜を成膜し、これから棒状体を切り出すことによって容易にできる。これらの面に金属膜あるいは誘電体多層膜を成膜することは従来技術により可能である。またこれらの成膜された基板を棒状体に切り出すこともダイサー等を使用すれば容易にできる。一方、V溝斜面を鏡面にし、しかも反射面の位置精度を正確に形成することは非常に高い技術を要し、工程も複雑になり多くの時間を要する。   A highly reflective metal or dielectric multilayer mirror is formed on the surface of a rod-shaped body having a small surface roughness, and is applied to the slope of the V-groove formed at the intersection of the vertical waveguide and the horizontal waveguide. Since a high mirror can be installed with high positional accuracy, an element with low loss can be easily manufactured. It is easy to reduce the surface roughness of the surface on which the reflective film is formed by forming a dielectric multilayer film on a flat plate-like substrate such as glass or silicon, and then cutting out the rod-shaped body. . A metal film or a dielectric multilayer film can be formed on these surfaces by a conventional technique. Further, it is possible to easily cut out these formed substrates into rods by using a dicer or the like. On the other hand, making the V-groove slope as a mirror surface and accurately forming the position accuracy of the reflecting surface requires very high technology, and the process becomes complicated and requires a lot of time.

本発明ではV溝を8μmから20μmの平均粒径のダイヤモンドブレードで形成するため、接着剤をV溝斜面と棒状体の間に気泡等を含まず短い時間で充填することが可能であり、またV溝の位置も必要な精度で形成できる。また、V溝を8μmから20μmの平均粒径のダイヤモンドブレードで形成するため、素子の部材がガラスのような硬い材料であってもV溝の形成に長時間要することはなく、V溝斜面に直接反射膜を形成する場合に比べて短時間である。これにより簡単に短い時間で高い反射率のミラー部を形成することが出来る。   In the present invention, since the V-groove is formed with a diamond blade having an average particle diameter of 8 μm to 20 μm, the adhesive can be filled in a short time without bubbles or the like between the slope of the V-groove and the rod-like body. The position of the V groove can also be formed with the required accuracy. In addition, since the V-groove is formed by a diamond blade having an average particle diameter of 8 μm to 20 μm, it does not take a long time to form the V-groove even if the element member is a hard material such as glass. It takes a shorter time compared to the case of forming the direct reflection film. This makes it possible to easily form a mirror part with high reflectivity in a short time.

反射膜が誘電体多層膜の場合は棒状体に形成した膜の最表面をシリカとすることにより、V溝斜面への誘電体多層膜の密着性を高くすることが可能になる。   When the reflective film is a dielectric multilayer film, the adhesion of the dielectric multilayer film to the slope of the V-groove can be enhanced by using silica as the outermost surface of the film formed in the rod-shaped body.

また反射膜が金属の場合は反射膜の面積を導波路コア端部面積の2倍以上且つ反射膜が形成された棒状体側面の2/3以下の面積とすることにより棒状体とV溝斜面の密着性を上げることにより金属反射膜とV溝斜面の密着性を補うことが可能になり、信頼性の高い素子の作製が可能になる。   When the reflective film is a metal, the area of the reflective film is at least twice the area of the waveguide core end and 2/3 or less of the side surface of the rod-shaped body on which the reflective film is formed. By increasing the adhesion, it becomes possible to supplement the adhesion between the metal reflection film and the slope of the V groove, and it is possible to manufacture a highly reliable element.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

図1は垂直導波路と水平導波路の交差部にV溝を形成した図である。   FIG. 1 is a diagram in which a V-groove is formed at the intersection of a vertical waveguide and a horizontal waveguide.

V溝は先端がV字状のブレードを用いダイサーにより形成する。ダイサー以外の方法も可能であるが、ダイサーによる方法が簡便で高精度な加工が可能である。V溝の先端角度は90°(片側45°×2)でも良いし、45°(片側45°片側垂直)でも良い。   The V groove is formed by a dicer using a V-shaped blade at the tip. A method other than a dicer is also possible, but the method using a dicer is simple and enables high-precision processing. The tip angle of the V groove may be 90 ° (one side 45 ° × 2) or 45 ° (one side 45 ° one side vertical).

片側が45°でもう片側が垂直あるいは45°以外の角度のものも可能であるが、特に設計上必要でない場合は90°あるいは45°を使用するのが、ミラーや導波路の作製精度確認の容易さ等の面から好ましい。   One side is 45 ° and the other side is vertical or an angle other than 45 ° is possible, but 90 ° or 45 ° is used to confirm the fabrication accuracy of mirrors and waveguides when it is not particularly necessary for the design. It is preferable from the aspect of ease.

図2は誘電体多層膜が形成された棒状体を示す。棒状体の作製方法は平板状の表面粗さの小さいガラスやシリコンなどの基板に金属膜あるいは誘電体多層膜をスパッタリング法などにより成膜し、ダイサーにより切り出す。表面粗さの小さいガラス基板やシリコン基板は市販されており容易に入手することができる。これらの材料の鏡面仕上げされた面は通常表面粗さRaは10nmより小さい。   FIG. 2 shows a rod-like body on which a dielectric multilayer film is formed. The rod-shaped body is produced by forming a metal film or a dielectric multilayer film on a flat substrate such as glass or silicon having a small surface roughness by sputtering or the like, and cutting out with a dicer. Glass substrates and silicon substrates having a small surface roughness are commercially available and can be easily obtained. The mirror-finished surface of these materials usually has a surface roughness Ra of less than 10 nm.

誘電体多層膜の構成は反射(あるいは透過)スペクトルの特性により変わる。膜構成は1種類のみではなく、いくつかの構成が可能である。一般的には屈折率の高い膜と低い膜を積層し、その層数と組合せ、それぞれの層の膜厚を変えることによって所望の特性を得る。反射特性を大きく損なうことなくシリカ膜を最表面にする設計は可能である。膜の材料としてはシリカ、五酸化タンタルなどの無機材料が使われる。本発明においては、作製の容易さ簡便さ及び高精度なミラー位置の確保のために反射膜を形成した棒状体を接着剤によりV溝に接着固定する構成になっており、最表面がシリカ膜の誘電体多層膜にすることにより強固な密着が得られ信頼性の高い素子が作製できる。   The configuration of the dielectric multilayer film varies depending on the characteristics of the reflection (or transmission) spectrum. The film configuration is not limited to one type, and several configurations are possible. In general, a film having a high refractive index and a film having a low refractive index are laminated, combined with the number of layers, and desired film thickness is obtained by changing the film thickness of each layer. It is possible to design the silica film as the outermost surface without greatly impairing the reflection characteristics. As the material of the film, inorganic materials such as silica and tantalum pentoxide are used. In the present invention, a rod-like body on which a reflective film is formed is bonded and fixed to a V-groove with an adhesive in order to ensure ease of manufacture and secure a highly accurate mirror position, and the outermost surface is a silica film. By using this dielectric multilayer film, it is possible to produce a highly reliable device with strong adhesion.

図3は反射膜が金の場合の棒状体を示す。金を反射膜とする場合は膜と基材の密着力が弱く、それを補うためチタンやクロムを基材に最初に成膜し、その上に金を成膜するのが望ましい。成膜法はスパッタリング、真空蒸着やその他のドライプロセスが適しているが、メッキ等のウェットプロセスの応用も可能である。   FIG. 3 shows a rod-like body when the reflective film is gold. When gold is used as the reflective film, the adhesion between the film and the substrate is weak, and in order to compensate for this, it is desirable to first form a film of titanium or chromium on the substrate and then deposit gold on the film. Sputtering, vacuum deposition, and other dry processes are suitable for the film forming method, but application of wet processes such as plating is also possible.

反射膜の厚さは反射率を確保するため1μm以上が好ましい。反射膜のパターニングは通常よく使用されているフォトリソグラフィー法とリフトオフ法によって形成できる。反射膜の形成、パターニングはウェハー状態で行い、その後、棒状体に切り出す。棒状体へ成膜しパターニングすることも可能であるが、成膜とパターニングはウェハー状態で行い、その後棒状体に切り出すのが効率的である。   The thickness of the reflective film is preferably 1 μm or more in order to ensure reflectivity. The reflective film can be patterned by a photolithography method and a lift-off method that are generally used. The reflective film is formed and patterned in a wafer state, and then cut into a rod-shaped body. Although it is possible to form a film on a rod-shaped body and pattern it, it is efficient to perform film formation and patterning in a wafer state and then cut it into a rod-shaped body.

図4はV溝に反射膜を形成した棒状体を挿入した図である。V溝の断面形状に合うように棒状体のコーナーを成形しなければならないが、90°のものが作製が容易である。45°のものも比較的容易に形成できる。その他のものは作製が難しくなり作製に時間を要するようになる。棒状体のコーナーが90°のものは断面形状が矩形のものが作製が容易であり、正方形でも長方形でも良い。   FIG. 4 is a view in which a rod-like body having a reflective film formed in the V-groove is inserted. The corner of the rod-shaped body must be formed so as to match the cross-sectional shape of the V-groove, but a 90 ° one is easy to manufacture. A 45 ° one can also be formed relatively easily. Others are difficult to manufacture and require time. A rod-shaped body with a 90 ° corner can be easily manufactured with a rectangular cross-section, and may be square or rectangular.

ダイサーブレードで形成されたV溝は底の部分が曲面になっている。従って棒状体のV溝底側の稜が直角であると、棒状体を押しつけながら接着剤で固定するとV溝斜面と反射膜の間隔が場所によって異なり正確な角度で反射膜を設置できなくなる。棒状体の対応する稜を面取りすると反射膜とV溝斜面が接し正確なセッティングが可能になる。通常V溝底部の曲面部の大きさは20μm以下である。したがって50μm程度の面取りを行えば良い。   The bottom of the V groove formed by the dicer blade is curved. Accordingly, if the ridge on the bottom side of the V-shaped groove of the rod-shaped body is a right angle, if the rod-shaped body is pressed and fixed with an adhesive, the distance between the slope of the V-groove and the reflecting film varies depending on the location, and the reflecting film cannot be installed at an accurate angle. When the corresponding ridges of the rod-like body are chamfered, the reflective film and the V-groove slope contact each other, and an accurate setting becomes possible. Usually, the size of the curved portion at the bottom of the V groove is 20 μm or less. Therefore, chamfering of about 50 μm may be performed.

面取りはウェハーから棒状体を切り出すときに、該部をV字状の先端のブレードで浅くカットし、その後先端が矩形状の通常のブレードで完全カットすることにより容易に形成できる。棒状体断面形状は1つのコーナーが面取りされた正方形でも良いし、1つのコーナーが面取りされた長方形でも良い。コーナー角度が45°のものも先端がV字形状のブレードと先端が矩形のブレードを使用することにより作製できる。   The chamfering can be easily formed by cutting the rod-shaped body from the wafer shallowly with a V-shaped tip blade and then completely cutting the tip with a normal blade having a rectangular shape. The rod-like body cross-sectional shape may be a square with one corner chamfered or a rectangle with one corner chamfered. A corner angle of 45 ° can also be produced by using a V-shaped blade and a rectangular blade at the tip.

次に接着剤を注入し棒状体をV溝に固定する。図5は棒状体をV溝に接着剤で接着固定した図である。接着剤は透明で屈折率がコアの屈折率に等しいか近い紫外線硬化剤が適している。紫外線硬化剤は硬化時間が短く効率的に作業を行える。紫外線熱併用型接着剤、熱硬化型接着剤も使用できる。接着剤を注入するときは棒状体がセッティング位置よりずれないようにするために棒状体を治具で押さえておくのがよい。樹脂の注入は気泡を咬み込まないように一方向から順次注入していくのがよい。気泡が光路の反射部に残ると反射効率が変化し特性が変化する。通常は損失が増加する。   Next, an adhesive is injected to fix the rod-shaped body in the V-groove. FIG. 5 is a view in which the rod-like body is bonded and fixed to the V groove with an adhesive. As the adhesive, an ultraviolet curing agent which is transparent and has a refractive index equal to or close to the refractive index of the core is suitable. The UV curing agent can be efficiently operated with a short curing time. An ultraviolet heat combined adhesive and a thermosetting adhesive can also be used. When injecting the adhesive, it is preferable to hold the rod-shaped body with a jig so that the rod-shaped body is not displaced from the setting position. The resin is preferably injected sequentially from one direction so as not to bite the bubbles. If bubbles remain in the reflection part of the optical path, the reflection efficiency changes and the characteristics change. Usually loss increases.

以下、実施例により説明する。   Hereinafter, an example explains.

0.5mm厚100mm径のホウケイ酸ガラス基板に最表層にシリカが来る構成のシリカと五酸化タンタルの多層膜からなる波長850nmでの反射率が98%以上となる誘電体多層膜を形成した。次に先端がV字のブレードを用いダイサーにより、幅250μmのV溝を形成した。次にブレード幅150μmの先端が略矩形の通常のブレードを用いてV溝の中央の位置を横方向に完全カットし、次に長さ20mmになるように縦方向に完全カットし反射膜パターン付の稜が面取りされた棒状体を作製した。   A dielectric multilayer film having a reflectance of 98% or more at a wavelength of 850 nm comprising a multilayer film of silica and tantalum pentoxide having a structure in which silica is the outermost layer is formed on a borosilicate glass substrate having a diameter of 0.5 mm and a thickness of 100 mm. Next, a V-groove having a width of 250 μm was formed by a dicer using a V-shaped blade. Next, using a normal blade with a blade width of 150 μm, the center position of the V-groove is completely cut in the horizontal direction and then cut in the vertical direction to a length of 20 mm, with a reflective film pattern. A rod-shaped body with chamfered ridges was prepared.

次に断面が40μm角の垂直導波路と水平導波路が交差した導波路が、導波路と垂直方向に250μmピッチで12チャンネル並び、さらにこれが4組組み込まれた導波路素子に1000番の平均ダイヤ粒度の先端がV字(角度90°)のブレードにより、垂直導波路と水平導波路の交差部にV溝斜面が来るようにV溝を形成した。V溝斜面の位置は垂直導波路と水平導波路の交差部の対角線より内側に5μm入るようにカットした。   Next, a waveguide in which a vertical waveguide having a cross section of 40 μm and a horizontal waveguide intersect with each other is arranged in 12 channels at a pitch of 250 μm in the vertical direction with respect to the waveguide, and an average diamond number 1000 is added to a waveguide element in which four sets are incorporated. A V-groove was formed with a blade having a V-shaped tip (90 ° angle) with a V-groove slope at the intersection of the vertical waveguide and the horizontal waveguide. The position of the V-groove slope was cut so as to enter 5 μm inside the diagonal line of the intersection of the vertical waveguide and the horizontal waveguide.

この溝に反射膜を形成した棒状体を反射膜パターンが導波路端に接するように設置し、棒状体を押さえながら紫外線硬化接着剤をディスペンサーを用いて注入し、紫外線を照射し硬化させた。垂直導波路の長さは略1mm、水平導波路の長さは略10mmである。850nmの光源を用いた損失測定では損失は各チャンネルとも4dB以下であった。   A rod-shaped body having a reflection film formed in the groove was placed so that the reflection film pattern was in contact with the end of the waveguide, and an ultraviolet curable adhesive was injected using a dispenser while holding the rod-shaped body, and cured by irradiation with ultraviolet rays. The length of the vertical waveguide is approximately 1 mm, and the length of the horizontal waveguide is approximately 10 mm. In the loss measurement using the light source of 850 nm, the loss was 4 dB or less for each channel.

0.5mm厚100mm径のホウケイ酸ガラス基板にスピンコーターを用いてフォトレジストを塗布しプリベーク後、100μm角のパターンが縦方向650μmピッチ、横方向250μmピッチで並んだマスクを用い露光機により紫外線を照射し、その後、現像とポストベークを行いガラス基板上にレジストパターンを形成した。次にスパッタリングによりレジストパターンを形成した基板上にチタンを100nm、次いで金を1.5μm成膜した後、レジストを剥離し、リフトオフ法により反射膜のパターンを形成した。   A photoresist is applied to a borosilicate glass substrate having a thickness of 0.5 mm and a diameter of 100 mm using a spin coater and prebaked, and then ultraviolet rays are applied by an exposure machine using a mask in which 100 μm square patterns are arranged at a pitch of 650 μm in the vertical direction and a pitch of 250 μm in the horizontal direction. After irradiation, development and post-baking were performed to form a resist pattern on the glass substrate. Next, after depositing 100 nm of titanium and then 1.5 μm of gold on a substrate on which a resist pattern was formed by sputtering, the resist was peeled off, and a reflective film pattern was formed by a lift-off method.

次に先端がV字のブレードを用いダイサーにより、横方向に反射膜パターンに沿って幅250μmのV溝を形成した。次にブレード幅150μmの先端が略矩形の通常のブレードを用いてV溝の中央の位置を横方向に完全カットし、次に長さ20mmになるように縦方向に完全カットし反射膜パターン付の稜が面取りされた棒状体を作製した。   Next, a V-shaped groove having a width of 250 μm was formed in the lateral direction along the reflective film pattern by a dicer using a V-shaped blade. Next, using a normal blade with a blade width of 150 μm, the center position of the V-groove is completely cut in the horizontal direction and then cut in the vertical direction to a length of 20 mm, with a reflective film pattern. A rod-shaped body with chamfered ridges was prepared.

次に断面が40μm角の垂直導波路と水平導波路が交差した導波路が、導波路と垂直方向に250μmピッチで12チャンネル並び、さらにこれが4組組み込まれた導波路素子に1000番の平均ダイヤ粒度の先端がV字(角度90°)のブレードにより、垂直導波路と水平導波路の交差部にV溝斜面が来るようにV溝を形成した。V溝斜面の位置は垂直導波路と水平導波路の交差部の対角線より内側に5μm入るようにカットした。   Next, a waveguide in which a vertical waveguide having a cross section of 40 μm and a horizontal waveguide intersect with each other is arranged in 12 channels at a pitch of 250 μm in the vertical direction with respect to the waveguide, and an average diamond number 1000 is added to a waveguide element in which four sets are incorporated. A V-groove was formed by a blade having a V-shaped particle tip (angle 90 °) so that the slope of the V-groove comes to the intersection of the vertical waveguide and the horizontal waveguide. The position of the V-groove slope was cut so as to enter 5 μm inside the diagonal line of the intersection of the vertical waveguide and the horizontal waveguide.

この溝に反射膜を形成した棒状体を反射膜パターンが導波路端に接するように設置し、棒状体を押さえながら紫外線硬化接着剤をディスペンサーを用いて注入し、紫外線を照射し硬化させた。垂直導波路の長さは略1mm、水平導波路の長さは略10mmである。850nmの光源を用いた損失測定では損失は各チャンネルとも4dB以下であった。   A rod-shaped body having a reflection film formed in the groove was placed so that the reflection film pattern was in contact with the end of the waveguide, and an ultraviolet curable adhesive was injected using a dispenser while holding the rod-shaped body, and cured by irradiation with ultraviolet rays. The length of the vertical waveguide is approximately 1 mm, and the length of the horizontal waveguide is approximately 10 mm. In the loss measurement using the light source of 850 nm, the loss was 4 dB or less for each channel.

0.3mm厚100mm径のホウケイ酸ガラス基板にスピンコーターを用いてフォトレジストを塗布しプリベーク後、100μm角のパターンが縦方向650μmピッチ、横方向250μmピッチで並んだマスクを用い露光機により紫外線を照射し、その後、現像とポストベークを行いガラス基板上にレジストパターンを形成した。次にスパッタリングによりレジストパターンを形成した基板上にチタンを100nm、次いで金を1.5μm成膜した後、レジストを剥離し、リフトオフ法により反射膜のパターンを形成した。   A photoresist is applied to a borosilicate glass substrate having a diameter of 0.3 mm and a diameter of 100 mm using a spin coater and prebaked, and then ultraviolet rays are applied by an exposure machine using a mask in which 100 μm square patterns are arranged at a pitch of 650 μm in the vertical direction and a pitch of 250 μm in the horizontal direction. After irradiation, development and post-baking were performed to form a resist pattern on the glass substrate. Next, after depositing 100 nm of titanium and then 1.5 μm of gold on a substrate on which a resist pattern was formed by sputtering, the resist was peeled off, and a reflective film pattern was formed by a lift-off method.

次に先端がV字のブレードを用いダイサーにより、横方向に反射膜パターンに沿って基板裏面側に幅500μmのV溝を形成した。次にブレード幅150μmの先端が略矩形の通常のブレードを用いて反射膜パターンの両側を横方向に完全カットし、次に長さ20mmになるように縦方向に完全カットし反射膜パターン付の稜が面取りされた棒状体を作製した。   Next, a V-groove having a width of 500 μm was formed on the back side of the substrate along the reflective film pattern in the lateral direction by a dicer using a V-shaped blade. Next, using a normal blade having a blade width of 150 μm, the both sides of the reflective film pattern are completely cut in the horizontal direction using a normal blade, and then the vertical direction is cut so that the length is 20 mm. A rod-like body with a chamfered ridge was produced.

次に断面が40μm角の垂直導波路と水平導波路が交差した導波路が、導波路と垂直方向に250μmピッチで12チャンネル並び、さらにこれが4組組み込まれた導波路素子に1000番の平均ダイヤ粒度の先端がV字(角度45°)のブレードにより、垂直導波路と水平導波路の交差部にV溝斜面が来るようにV溝を形成した。V溝斜面の位置は垂直導波路と水平導波路の交差部の対角線より内側に5μm入るようにカットした。   Next, a waveguide in which a vertical waveguide having a cross section of 40 μm and a horizontal waveguide intersect with each other is arranged in 12 channels at a pitch of 250 μm in the vertical direction with respect to the waveguide, and an average diamond number 1000 is added to a waveguide element in which four sets are incorporated. A V-groove was formed with a blade having a V-shaped tip (angle 45 °) so that the slope of the V-groove comes to the intersection of the vertical waveguide and the horizontal waveguide. The position of the V-groove slope was cut so as to enter 5 μm inside the diagonal line of the intersection of the vertical waveguide and the horizontal waveguide.

この溝に反射膜を形成した棒状体を反射膜パターンが導波路端に接するように設置し、棒状体を押さえながら紫外線硬化接着剤をディスペンサーを用いて注入し、紫外線を照射し硬化させた。垂直導波路の長さは略1mm、水平導波路の長さは略10mmである。850nmの光源を用いた損失測定では損失は各チャンネルとも4dB以下であった。   A rod-shaped body having a reflection film formed in the groove was placed so that the reflection film pattern was in contact with the end of the waveguide, and an ultraviolet curable adhesive was injected using a dispenser while holding the rod-shaped body, and cured by irradiation with ultraviolet rays. The length of the vertical waveguide is approximately 1 mm, and the length of the horizontal waveguide is approximately 10 mm. In the loss measurement using the light source of 850 nm, the loss was 4 dB or less for each channel.

本発明は、光通信分野における通信システムはもちろん、評価・測定など光伝送の応用分野にも利用できるものである。   The present invention can be used not only in a communication system in the field of optical communication but also in an application field of optical transmission such as evaluation and measurement.

ミラー用V溝を示す。The V groove for mirrors is shown. 誘電体多層膜反射膜付き棒状体を示す。The rod-shaped body with a dielectric multilayer film reflective film is shown. 金属反射膜付き棒状体を示す。The rod-shaped body with a metal reflective film is shown. V溝に反射膜付き棒状体を挿入した状態を示す。The state which inserted the rod-shaped body with a reflecting film in V groove is shown. 棒状体を接着剤でV溝に接着固定した状態を示す。A state where the rod-shaped body is bonded and fixed to the V-groove with an adhesive is shown.

符号の説明Explanation of symbols

1 ミラー用V溝
2 水平導波路
3 垂直導波路
4 一つの稜が面取りされた断面が矩形の棒状体
5 誘電体多層膜反射膜
6 金属反射膜
7 一つの稜が面取りされた断面が三角形の棒状体
8 接着剤
DESCRIPTION OF SYMBOLS 1 Mirror groove | channel 2 Horizontal waveguide 3 Vertical waveguide 4 A rod-shaped body with one edge chamfered in a rectangular shape 5 Dielectric multilayer film reflection film 6 Metal reflection film 7 A section with one edge chamfered in a triangle Rod
8 Adhesive

Claims (6)

垂直導波路と水平導波路の交差部に両導波路と略45度の角度をなすV溝斜面を形成し、V溝の斜面間の角度と略一致する稜の角度を有する棒状体に反射膜を形成し、V溝斜面の導波路コア端部に反射膜が接するように貼り付け、ミラーとする光路変換素子の作製において、V溝を8μm以上20μm以下の平均粒径を有するダイヤモンドブレードにより形成し、表面粗さRaが10nm以下の棒状体の面に反射膜を形成し、V溝先端部に対応する棒状体の稜をV溝先端の曲面部の量以上に面取し、V溝に接着剤で接着固定した光路変換素子の作製方法。 A V-groove inclined surface that forms an angle of approximately 45 degrees with the two waveguides is formed at the intersection of the vertical waveguide and the horizontal waveguide, and a reflective film is formed on the rod-shaped body having a ridge angle substantially coincident with the angle between the inclined surfaces of the V-groove. In the manufacture of an optical path conversion element to be used as a mirror, the V groove is formed by a diamond blade having an average particle diameter of 8 μm or more and 20 μm or less. Then, a reflective film is formed on the surface of the rod-shaped body having a surface roughness Ra of 10 nm or less, and the ridge of the rod-shaped body corresponding to the tip of the V-groove is chamfered more than the amount of the curved surface at the tip of the V-groove. A method for producing an optical path conversion element bonded and fixed with an adhesive. 反射膜をシリカとシリカより高屈折率の材料からなる誘電体多層膜とし且つシリカが最表面に来る構成の誘電体多層膜としたことを特徴とする、請求項1に記載の光路変換素子の作製方法。 2. The optical path conversion element according to claim 1, wherein the reflection film is a dielectric multilayer film made of silica and a material having a higher refractive index than silica, and the dielectric multilayer film has a configuration in which silica comes to the outermost surface. Manufacturing method. シリカより高屈折率の材料が五酸化タンタルであることを特徴とする、請求項2に記載の光路変換素子の作製方法。 The method for producing an optical path conversion element according to claim 2, wherein the material having a higher refractive index than silica is tantalum pentoxide. 反射膜を、V溝斜面の導波路コア端部面積の2倍以上且つ反射膜が形成された棒状体側面の面積の2/3以下の面積の金属反射膜としたことを特徴とする、請求項1に記載の光路変換素子の作製方法。 The reflective film is a metal reflective film having an area that is not less than twice the area of the waveguide core end portion of the slope of the V-groove and not more than 2/3 of the area of the side surface of the rod-like body on which the reflective film is formed. Item 2. A method for producing an optical path conversion element according to Item 1. 反射膜が多数個の分離した金のミラーであることを特徴とする、請求項4に記載の多チャンネル光路変換素子の作製方法。 5. The method for producing a multi-channel optical path conversion element according to claim 4, wherein the reflective film is a number of separated gold mirrors. 請求項1乃至5のいずれか1項に記載の作製方法によって作製されたことを特徴とする多チャンネル光路変換素子。 A multi-channel optical path conversion element manufactured by the manufacturing method according to claim 1.
JP2007271033A 2007-10-18 2007-10-18 Device with adhered mirror for converting optical path and method of manufacturing the same Pending JP2009098485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271033A JP2009098485A (en) 2007-10-18 2007-10-18 Device with adhered mirror for converting optical path and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271033A JP2009098485A (en) 2007-10-18 2007-10-18 Device with adhered mirror for converting optical path and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009098485A true JP2009098485A (en) 2009-05-07

Family

ID=40701533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271033A Pending JP2009098485A (en) 2007-10-18 2007-10-18 Device with adhered mirror for converting optical path and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009098485A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019435A2 (en) * 2009-05-27 2011-02-17 University Of Delaware Formation of reflective surfaces in printed circuit board waveguides
US20160341854A1 (en) * 2013-12-26 2016-11-24 3M Innovative Properties Company Methods for making reflective trays
JPWO2021130807A1 (en) * 2019-12-23 2021-07-01

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019435A2 (en) * 2009-05-27 2011-02-17 University Of Delaware Formation of reflective surfaces in printed circuit board waveguides
WO2011019435A3 (en) * 2009-05-27 2011-04-21 University Of Delaware Formation of reflective surfaces in printed circuit board waveguides
US20160341854A1 (en) * 2013-12-26 2016-11-24 3M Innovative Properties Company Methods for making reflective trays
JPWO2021130807A1 (en) * 2019-12-23 2021-07-01
WO2021130807A1 (en) * 2019-12-23 2021-07-01 日本電信電話株式会社 Method for producing monolithic mirror
JP7328582B2 (en) 2019-12-23 2023-08-17 日本電信電話株式会社 How to make a monolithic mirror

Similar Documents

Publication Publication Date Title
US8542963B2 (en) Method for manufacturing optical coupling element, optical transmission substrate, optical coupling component, coupling method, and optical interconnect system
TWI396874B (en) Optical wiring printing board manufacturing method and optical wiring printed circuit board
EP1522882A1 (en) Optical waveguide having mirror surface formed by laser beam machining
US20110084047A1 (en) Methods For Fabrication Of Large Core Hollow Waveguides
US20090245725A1 (en) Manufacturing method of optical waveguide, optical waveguide and optical reception/transmission apparatus
US9081159B2 (en) Optical waveguide and method of manufacturing the same, and optical waveguide device
US6791675B2 (en) Optical waveguide path, manufacturing method and coupling method of the same, and optical waveguide path coupling structure
JP2010113325A (en) Mirror-embedded light transmission medium and fabrication method of same
KR20060070443A (en) Processing head for formation of mirror plane of optical waveguide sheet, processing apparatus, and method of forming mirror plane of optical waveguide
JP6730801B2 (en) Method of manufacturing optical waveguide
US20050213872A1 (en) Optical waveguide interconnection board, method of manufacturing the same, precursor for use in manufacturing optical waveguide interconnection board, and photoelectric multifunction board
US8364001B2 (en) Polymer optical waveguide and method for production thereof
JP2006267502A (en) Optical waveguide module
JP2008298934A (en) Optical axis transformation element and method of manufacturing the same
JP2009098485A (en) Device with adhered mirror for converting optical path and method of manufacturing the same
JP2006267346A (en) Manufacturing method of optical member
JP2008164943A (en) Multichannel optical path conversion element and its manufacturing method
JP2006251046A (en) Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method
JP2007183467A (en) Optical waveguide with mirror and its manufacturing method
JP2005292379A (en) Optical coupling device and manufacturing method therefor
JP4288604B2 (en) Optical coupling device
KR100802520B1 (en) Production method for multichannel optical path changing device
JP2006023661A (en) Film optical waveguide and its manufacturing method, and base material for film optical waveguide
JP2009098432A (en) Device for converting laminated multi-channel optical path and method of manufacturing the same
JP2006201372A (en) Optical path conversion mirror, optical path conversion apparatus using the same, and method for manufacturing optical path conversion mirror

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326