JP4059835B2 - Multi-channel optical path conversion element - Google Patents

Multi-channel optical path conversion element Download PDF

Info

Publication number
JP4059835B2
JP4059835B2 JP2003355423A JP2003355423A JP4059835B2 JP 4059835 B2 JP4059835 B2 JP 4059835B2 JP 2003355423 A JP2003355423 A JP 2003355423A JP 2003355423 A JP2003355423 A JP 2003355423A JP 4059835 B2 JP4059835 B2 JP 4059835B2
Authority
JP
Japan
Prior art keywords
core
resin
optical path
path conversion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003355423A
Other languages
Japanese (ja)
Other versions
JP2005121818A (en
Inventor
徹 田中
秀寿 七井
雄二 山本
元康 西村
茂樹 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2003355423A priority Critical patent/JP4059835B2/en
Priority to KR1020067007116A priority patent/KR100802520B1/en
Priority to EP04792303A priority patent/EP1674902A4/en
Priority to US10/575,564 priority patent/US7333704B2/en
Priority to PCT/JP2004/015062 priority patent/WO2005038502A1/en
Publication of JP2005121818A publication Critical patent/JP2005121818A/en
Application granted granted Critical
Publication of JP4059835B2 publication Critical patent/JP4059835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

光導波路デバイスの普及には素子間を効率的に接続するためには光回路の進行方向を変換する多チャンネル光路変換素子が必要とされる。本発明は損失が少なく特性の揃った多チャネルの光路変換素子、及びその有効な作製方法に関するものである。    In order to connect optical elements efficiently, a multi-channel optical path conversion element that converts the traveling direction of an optical circuit is required for the widespread use of optical waveguide devices. The present invention relates to a multi-channel optical path conversion element with low loss and uniform characteristics, and an effective manufacturing method thereof.

情報通信システムの基盤技術として光通信技術が浸透していくにつれて光導波路は、光ネットワークキーデバイスとして益々その重要性が高まると同時に、光電子回路配線基板等の分野への応用に向けて開発が進められている。光導波路デバイスの普及には低価格化と量産化が要望されており、取り扱いの容易な樹脂製光導波路がその有力な候補として開発されている。導波路用の樹脂材料としては、フッ素化ポリイミド樹脂、重水素化ポリシロキサン樹脂、エポキシ系樹脂、全フッ素化脂環式樹脂、アクリル系樹脂、シリコーン樹脂等が用いられる。   As optical communication technology has permeated as the fundamental technology of information communication systems, optical waveguides are becoming increasingly important as optical network key devices, and at the same time, development is progressing toward applications in fields such as optoelectronic circuit wiring boards. It has been. The spread of optical waveguide devices is demanded for low cost and mass production, and resin optical waveguides that are easy to handle are being developed as promising candidates. As the resin material for the waveguide, fluorinated polyimide resin, deuterated polysiloxane resin, epoxy resin, perfluorinated alicyclic resin, acrylic resin, silicone resin and the like are used.

光導波路デバイスの普及には素子間を効率的に接続するために光回路を急激に曲げる光路変換の技術、特に、2〜16チャンネルなどの、複数の光信号をパラレルに送受信することが出来る様々な多チャネルの光路変換素子が必要とされ、さらには、損失が少なく、チャンネル間で特性の揃った、低コストの光路変換素子が求められている。   The spread of optical waveguide devices is an optical path changing technique that bends an optical circuit abruptly in order to connect elements efficiently, especially various optical signals such as 2-16 channels can be transmitted and received in parallel. Therefore, there is a need for a low-cost optical path conversion element that has low loss and uniform characteristics between channels.

光路変換部品として、片端に傾斜端面を有し、かつ前記傾斜端面の傾斜角及び傾斜端面における光導波路コアのサイズ、配置等が概ね等しい一対の光導波路の、前記傾斜端面同士を対向させ、この傾斜端面における光導波路のコアが概ね一致するように前記傾斜端面同士を接続し、前記一対の光導波路が概ねV字型に固定され、前記V字型の光導波路の頂部を除去してコアを所定の位置まで露出させて反射面が設けられたものを所定の間隔で並列に積層し、コアより屈折率の低い物質で覆って作製する多チャネル光路変換部品が提案されている。(特許文献1参照)
しかし、傾斜面の合った導波路を作製する工程、これらを張り合わせる工程など精密な作業を必要とし工程が複雑であり、水平導波路と垂直導波路を別々に作製することで垂直導波路と水平導波路の位置ずれが起こりやすく、損失が増大する恐れがある。
As the optical path conversion component, the inclined end faces of a pair of optical waveguides having an inclined end face at one end and the inclination angle of the inclined end face and the optical waveguide core at the inclined end face being substantially equal to each other, The inclined end faces are connected to each other so that the cores of the optical waveguides on the inclined end faces are substantially coincident with each other, the pair of optical waveguides are fixed in a substantially V shape, and the tops of the V shaped optical waveguides are removed to remove the core. A multi-channel optical path conversion component has been proposed that is manufactured by stacking a plurality of parts that are exposed to a predetermined position and provided with a reflecting surface in parallel at predetermined intervals and covered with a material having a refractive index lower than that of the core. (See Patent Document 1)
However, it requires complicated operations such as a process for producing waveguides with matching inclined surfaces and a process for pasting them together, and the process is complicated. By separately producing a horizontal waveguide and a vertical waveguide, The horizontal waveguide is likely to be misaligned and the loss may increase.

また、基板上に水平に導波路を作製し、その後反射ミラーを作製し、クラッド層を成膜後、水平導波路に垂直の開口部を設け、中空部に光を通す方法が提案されている。(特許文献2参照)
この場合、コアと中空部分の境界では光の反射や散乱が発生し、損失が増大する。また、中空部をコア材で充填した場合も、水平導波路と垂直導波路を別々に作製するため垂直導波路と水平導波路の位置ずれが起こりやすく、また、別個に作った水平部分と垂直部分のコアの境界で界面が発生し、損失が増大する要因となる。
特開2001−194540 特開2000−193838
In addition, a method has been proposed in which a waveguide is horizontally formed on a substrate, a reflecting mirror is subsequently formed, a cladding layer is formed, a vertical opening is provided in the horizontal waveguide, and light is passed through the hollow portion. . (See Patent Document 2)
In this case, reflection or scattering of light occurs at the boundary between the core and the hollow portion, and loss increases. Even when the hollow portion is filled with the core material, the horizontal waveguide and the vertical waveguide are produced separately, and the vertical waveguide and the horizontal waveguide are likely to be misaligned. An interface is generated at the boundary between the cores of the portions, which causes an increase in loss.
JP 2001-194540 A JP 2000-193838 A

複数の光路をミラーを用いて変換する多チャンネル光路変換素子において、低損失でチャンネル間の特性の揃った光路変換素子と、作製の容易性、低コスト性を兼ね備えた製造方法を提供することを課題とする。   In a multi-channel optical path conversion element that converts a plurality of optical paths using a mirror, an optical path conversion element with low loss and uniform characteristics between channels, and a manufacturing method that combines ease of manufacture and low cost are provided. Let it be an issue.

また、本発明は、樹脂製の多チャンネル光路変換光素子の製造方法であって、
1)仮基板の上に犠牲層を成膜し、
2)その上にクラッド層を成膜し、該クラッド層を選択的にエッチングすることにより、クラッド樹脂による直方体形状のブロックを形成し、
3)コア樹脂で該ブロックを蔽うコア層を成膜し、
4)該コア層と該ブロックを選択的にエッチングすることにより、上記基板に垂直なコアと平行なコアが一体的に形成した多チャンネルのコアを同時に形成し、クラッド樹脂で埋め込み、
5)コアのコーナー部にミラー面を形成するためのV溝を作製し、反射膜を成膜してミラー面とし、
6)クラッド樹脂でV溝の埋め込みを行い、その上に基盤を貼り付け、前記1)項の仮基板を除去後、多チャンネル光路変換素子に切断分離することからなる、少なくとも6つの工程を実施する上記素子の製造方法である。
Further, the present invention is a method of manufacturing a resin multi-channel optical path conversion optical element,
1) Deposit a sacrificial layer on the temporary substrate,
2) A clad layer is formed thereon, and the clad layer is selectively etched to form a rectangular parallelepiped block made of clad resin,
3) Forming a core layer covering the block with a core resin,
4) By selectively etching the core layer and the block, a multi-channel core in which a core perpendicular to the substrate and a parallel core are integrally formed is formed at the same time, and embedded with a clad resin.
5) A V-groove for forming a mirror surface at the corner of the core is prepared, and a reflective film is formed to form a mirror surface.
6) V-groove is filled with clad resin, a base is pasted thereon, and after removing the temporary substrate described in the above item 1), at least six steps are carried out by cutting and separating into multi-channel optical path conversion elements. This is a method for manufacturing the element.

ウェハープロセスにおいて導波路コアの垂直部と水平部を一体で形成し、かつ、複数のチャンネルのコアを、互いの位置関係を維持した状態で同時に形成することにより、特性が安定し、高精度と低損失、低コストを兼ね備えた多チャンネル光路変換素子を提供できる。   In the wafer process, the vertical and horizontal portions of the waveguide core are integrally formed, and the cores of a plurality of channels are formed simultaneously while maintaining the positional relationship with each other. A multi-channel optical path conversion element having both low loss and low cost can be provided.

以下、本発明について詳述する。
図1は本発明の多チャンネル光路変換素子の作製工程の一例を説明する図である。多チャンネル光路変換素子は以下のような工程で作製される。図1(a)では、仮基板1の上にマグネトロンスパッタ等の技術を用いて酸に溶ける金属膜である犠牲層2を成膜する。犠牲層2は水溶性の樹脂でもよい。
Hereinafter, the present invention will be described in detail.
FIG. 1 is a diagram for explaining an example of a manufacturing process of a multi-channel optical path conversion element of the present invention. The multi-channel optical path conversion element is manufactured by the following process. In FIG. 1A, a sacrificial layer 2 which is a metal film soluble in an acid is formed on a temporary substrate 1 using a technique such as magnetron sputtering. The sacrificial layer 2 may be a water-soluble resin.

図1(b)ではクラッド層3を成膜する。図1(c)ではフォトリソグラフィと反応性イオンエッチング(RIE:Reactive Ion Etching)の技法により、クラッドブロック4を作製する。このブロック4は直方体形状であるが、その大きさは、作成する光路変換素子が必要とする大きさを適宜選択する。また、このブロックは各素子個別に製作しても良いが、並列した複数の素子に対して連続したものを、一括してライン状に作製することも好適である。クラッドブロック4の斜視図を図2(A)に示す。この工程は直接露光法やモールド法、ダイシングソーを用いた手法でも作製可能である。  In FIG. 1B, the cladding layer 3 is formed. In FIG. 1C, the cladding block 4 is produced by a technique of photolithography and reactive ion etching (RIE). The block 4 has a rectangular parallelepiped shape, and the size thereof is appropriately selected as required by the optical path conversion element to be created. In addition, this block may be manufactured individually for each element, but it is also preferable to manufacture continuous blocks for a plurality of parallel elements in a line. A perspective view of the cladding block 4 is shown in FIG. This process can also be produced by a direct exposure method, a molding method, or a technique using a dicing saw.

図1(d)ではクラッドブロック4を蔽うコア層5を成膜する。図1(e)ではフォトリソグラフィと反応性イオンエッチングの技法により、水平部と垂直部が一体で形成されたコア6を作製する。多チャンネルのコア6の斜視図を図2(B)に示す。この工程は直接露光法やモールド法、ダイシングソーを用いた手法でも作製可能である。図1(f)ではクラッド層7を全面に充填する。   In FIG. 1D, a core layer 5 covering the cladding block 4 is formed. In FIG. 1E, a core 6 in which a horizontal portion and a vertical portion are integrally formed is produced by a technique of photolithography and reactive ion etching. A perspective view of the multi-channel core 6 is shown in FIG. This process can also be produced by a direct exposure method, a molding method, or a technique using a dicing saw. In FIG. 1 (f), the entire cladding layer 7 is filled.

図1(g)ではダイシングソーによりV溝8を作製し、マグネトロンスパッタ等の技術を用いて反射膜9を成膜しミラーを形成する。反射膜には金属膜や誘電体多層膜等を用いる。ミラー面の形成には、反射膜を成膜したプリズムをV溝に配置し、接着剤等で固定する方法も好適である。また、ダイシングソーで45度の切込みを入れ、反射膜を成膜したフィルムを差し込み、接着剤で固定することもできる。図1(h)ではクラッド樹脂10でV溝の埋め込みを行い、素子表面の平坦化を行う。図1(i)では、基板11を導波路に貼り付ける。基板は硝子基板やシリコン基板、樹脂基板等が使用できる。図1(j)では酸等を用いて犠牲層2を除去し仮基板1を除き、ダイソーで多チャンネル光路変換素子に切断分離する。本方法により、ミラーを挟み光路の方向が変化したコアを一体的に形成し、かつ、複数のチャンネルのコアを、互いの位置関係を維持した状態で同時に形成することにより、特性の安定した多数の多チャンネル光路変換素子を精度良く一括して作製することが出来る。
以下、実施例により本発明を具体的に説明する。
In FIG. 1G, a V-groove 8 is produced by a dicing saw, and a reflection film 9 is formed using a technique such as magnetron sputtering to form a mirror. A metal film, a dielectric multilayer film, or the like is used as the reflection film. For forming the mirror surface, a method in which a prism formed with a reflective film is disposed in the V-groove and fixed with an adhesive or the like is also suitable. Also, a 45 ° cut can be made with a dicing saw, a film on which a reflective film is formed can be inserted, and fixed with an adhesive. In FIG. 1H, the V groove is filled with the clad resin 10 to flatten the element surface. In FIG. 1I, the substrate 11 is attached to the waveguide. As the substrate, a glass substrate, a silicon substrate, a resin substrate, or the like can be used. In FIG. 1 (j), the sacrificial layer 2 is removed using acid or the like, the temporary substrate 1 is removed, and the multi-channel optical path conversion element is cut and separated by a DAISO. By this method, cores with the mirrors sandwiched in the direction of the optical path are integrally formed, and a plurality of channel cores are formed simultaneously while maintaining the mutual positional relationship. The multi-channel optical path conversion element can be manufactured at once with high accuracy.
Hereinafter, the present invention will be described specifically by way of examples.

4チャンネル光路変換素子を作製した。コア断面(図3E−E視)の大きさは40μm×40μmの正方形でありチャンネル間のコアピッチは0.25mmとする。   A 4-channel optical path conversion element was produced. The size of the core cross section (viewed in FIG. 3E-E) is a square of 40 μm × 40 μm, and the core pitch between channels is 0.25 mm.

まず、4インチの仮硝子基板上にマグネトロンスパッタを用いて犠牲層を成膜した。犠牲層はAl(厚さ1μm程度)を用いた。次にクラッド層を成膜した。クラッドにはエポキシ系樹脂を用い、成膜はスピンコート法を用いた。成膜後、研削、研磨により平坦化処理を行いクラッド層の厚さを70μmとした。次に、クラッド層の上にマスク材を成膜し、フォトリソグラフィでパターニングを行った。マスク材にはAlを使用し、Oガスを流入させてマスク層に保護されていないクラッド層の不要部分をエッチングにより除去(O―RIE)し、クラッドの直方体ブロックを作製した。クラッドブロックの高さは、70μm(図3のA)、幅は1mm(図3のB)であり、図3の紙面に垂直方向へは、直列に並ぶ複数の素子のクラッドブロックを一体化してライン状に作成した。 First, a sacrificial layer was formed on a 4-inch temporary glass substrate using magnetron sputtering. Al (thickness of about 1 μm) was used for the sacrificial layer. Next, a clad layer was formed. Epoxy resin was used for the cladding, and spin coating was used for film formation. After the film formation, planarization was performed by grinding and polishing, and the thickness of the clad layer was set to 70 μm. Next, a mask material was formed on the clad layer and patterned by photolithography. Al was used as the mask material, and unnecessary portions of the cladding layer that was not protected by the mask layer were removed by inflowing O 2 gas by etching (O 2 -RIE), thereby producing a rectangular parallelepiped block of the cladding. The height of the cladding block is 70 μm (A in FIG. 3), the width is 1 mm (B in FIG. 3), and the cladding blocks of a plurality of elements arranged in series are integrated in the direction perpendicular to the paper surface of FIG. Created in line.

その上にコア層の成膜をスピンコート法で行った。コア層にはエポキシ系樹脂を用いた。成膜後、コア層上面を研削、研磨し、表面の平坦化処理を実施し、コア層厚さはクラッドブロック上部から40μmとした。次に、コア層の上にAlのマスク材を成膜しフォトリソグラフィでパターニングを行い、その後、O―RIEによりコア層とクラッドブロックの不要部分を除去し、クラッドブロックに沿って直角に曲がったコアを作製した(図3)。コアの大きさは40μm×40μm(図3E−E視)であり、水平部も垂直部も同じ大きさである。コア垂直部の長さは、コア水平部の上端から110μm(図3のC)、コア水平部の長さは、コア垂直部の外端から1,040μm(図3のD)である。次に、クラッド樹脂を全面に充填し、成膜後、クラッド樹脂の上面を研削、研磨し平坦化処理を行った。クラッド樹脂の充填にはスピンコート法を使用した。 A core layer was formed thereon by a spin coating method. An epoxy resin was used for the core layer. After the film formation, the top surface of the core layer was ground and polished, and the surface was flattened. The core layer thickness was 40 μm from the top of the cladding block. Next, an Al mask material is formed on the core layer and patterned by photolithography. Thereafter, unnecessary portions of the core layer and the cladding block are removed by O 2 -RIE, and bent at a right angle along the cladding block. A core was prepared (FIG. 3). The size of the core is 40 μm × 40 μm (see FIG. 3E-E), and the horizontal part and the vertical part have the same size. The length of the core vertical portion is 110 μm (C in FIG. 3) from the upper end of the core horizontal portion, and the length of the core horizontal portion is 1,040 μm (D in FIG. 3) from the outer end of the core vertical portion. Next, the entire surface was filled with a clad resin, and after film formation, the upper surface of the clad resin was ground and polished to perform a flattening process. A spin coat method was used for filling the clad resin.

その後、コアの直角曲がり部にダイシングソーでV溝を形成しミラー膜を形成した。ミラーはマグネトロンスパッタでV溝部分にのみAu膜が形成されるように実施した。ミラー面を成膜後、V溝にクラッド樹脂を充填すると共に、クラッド層を成膜し、表面を研削、研磨して平坦化処理を行った。次に、硝子基板をクラッド層上面にエポキシ系の接着剤を用いて貼り付け、次に犠牲層を溶解して仮基板を除去した。犠牲層の除去には硫酸銅、塩化第二鉄、水の混合液を用いた。次に各素子を2mm×2mmの正方形に切断分離し、803個の4チャンネル光路変換素子が得られた。波長1.3ミクロンの光を通し、挿入損失を測定したところ、素子内の導波路の挿入損失3dB以下で、さらに素子内での挿入損失のばらつきが0.1dB以下のものが、667個(83%)にのぼり、一度に均質な4チャンネル光路変換素子を歩留まり良く製造することができた。   Thereafter, a V-groove was formed with a dicing saw at a right-angled bent portion of the core to form a mirror film. The mirror was formed by magnetron sputtering so that an Au film was formed only in the V-groove portion. After forming the mirror surface, the V-groove was filled with a clad resin, a clad layer was formed, and the surface was ground and polished to perform a flattening process. Next, the glass substrate was attached to the upper surface of the clad layer using an epoxy adhesive, and then the sacrificial layer was dissolved to remove the temporary substrate. For the removal of the sacrificial layer, a mixed solution of copper sulfate, ferric chloride, and water was used. Next, each element was cut and separated into a 2 mm × 2 mm square to obtain 803 four-channel optical path conversion elements. When insertion loss was measured by passing light having a wavelength of 1.3 microns, there were 667 waveguides having an insertion loss of 3 dB or less in the waveguide in the element and a variation in insertion loss of 0.1 dB or less in the element ( 83%), and a homogeneous four-channel optical path conversion element could be manufactured at a high yield at a time.

図1は本発明による多チャンネル光路変換素子の作製工程の一例を示す図である。FIG. 1 is a diagram showing an example of a manufacturing process of a multi-channel optical path conversion element according to the present invention. 図2は、多チャンネル光路変換素子の作製工程において、(a)はクラッドブロックを示し、(b)は、水平部と垂直部が一体的に形成された、コアを示すものである。FIG. 2A shows a cladding block and FIG. 2B shows a core in which a horizontal portion and a vertical portion are integrally formed in a manufacturing process of a multi-channel optical path conversion element. 図3は、実施例における、コアブロックと、コアの関係を示す図である。FIG. 3 is a diagram illustrating a relationship between the core block and the core in the embodiment.

符号の説明Explanation of symbols

1、仮基板
2、犠牲層
3、犠牲層の上に成膜したクラッド層
4、クラッドブロック
5、コア層
6、水平部と垂直部が一体的に作製されたコア
7、多チャンネルのコアを蔽ったクラッド層
8、V溝
9、反射膜
10、クラッド樹脂
11、基板
1, provisional substrate 2, sacrificial layer 3, clad layer 4 formed on the sacrificial layer, clad block 5, core layer 6, core 7 in which horizontal and vertical portions are integrally formed, multi-channel core Covered clad layer 8, V-groove 9, reflective film 10, clad resin 11, substrate

Claims (1)

樹脂製の多チャンネル光路変換光素子の製造方法であって、
1)仮基板の上に犠牲層を成膜し、
2)その上にクラッド層を成膜し、該クラッド層を選択的にエッチングすることにより、クラッド樹脂による直方体形状のブロックを形成し、
3)コア樹脂で該ブロックを蔽うコア層を成膜し、
4)該コア層と該ブロックを選択的にエッチングすることにより、上記基板に垂直なコアと平行なコアが一体的に形成された多チャンネルのコアを同時に形成し、クラッド樹脂で埋め込み、
5)コアのコーナー部にミラー面を形成するためのV溝を作製し、反射膜を成膜してミラー面とし、
6)クラッド樹脂でV溝の埋め込みを行い、その上に基盤を貼り付け、前記1)項の仮基板を除去後、多チャンネル光路変換素子に切断分離することからなる、6つの工程を含むことを特徴とする樹脂製の多チャンネル光路変換素子の作製方法。
A method of manufacturing a resin-made multi-channel optical path conversion optical element,
1) Deposit a sacrificial layer on the temporary substrate,
2) A clad layer is formed thereon, and the clad layer is selectively etched to form a rectangular parallelepiped block made of clad resin,
3) Forming a core layer covering the block with a core resin,
4) By selectively etching the core layer and the block, a multi-channel core in which a core perpendicular to the substrate and a core parallel to the substrate are integrally formed is formed at the same time, and embedded with a clad resin;
5) A V-groove for forming a mirror surface at the corner of the core is prepared, and a reflective film is formed to form a mirror surface.
6) It includes six steps consisting of embedding the V-groove with clad resin, pasting the substrate thereon, removing the temporary substrate of the above item 1), and then cutting and separating into multi-channel optical path conversion elements. A method for producing a multi-channel optical path conversion element made of resin.
JP2003355423A 2003-10-15 2003-10-15 Multi-channel optical path conversion element Expired - Fee Related JP4059835B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003355423A JP4059835B2 (en) 2003-10-15 2003-10-15 Multi-channel optical path conversion element
KR1020067007116A KR100802520B1 (en) 2003-10-15 2004-10-13 Production method for multichannel optical path changing device
EP04792303A EP1674902A4 (en) 2003-10-15 2004-10-13 Multichannel optical path changing device and its production method
US10/575,564 US7333704B2 (en) 2003-10-15 2004-10-13 Multichannel optical path changing device and its production method
PCT/JP2004/015062 WO2005038502A1 (en) 2003-10-15 2004-10-13 Multichannel optical path changing device and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355423A JP4059835B2 (en) 2003-10-15 2003-10-15 Multi-channel optical path conversion element

Publications (2)

Publication Number Publication Date
JP2005121818A JP2005121818A (en) 2005-05-12
JP4059835B2 true JP4059835B2 (en) 2008-03-12

Family

ID=34613024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355423A Expired - Fee Related JP4059835B2 (en) 2003-10-15 2003-10-15 Multi-channel optical path conversion element

Country Status (1)

Country Link
JP (1) JP4059835B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309016B2 (en) * 2007-03-22 2013-10-09 日本碍子株式会社 Method for manufacturing waveguide substrate for optical surface mounting
WO2010074186A1 (en) * 2008-12-22 2010-07-01 Panasonic Electric Works Co., Ltd. Method for forming mirror-reflecting film in optical wiring board, and optical wiring board
JP5728655B2 (en) * 2010-11-05 2015-06-03 パナソニックIpマネジメント株式会社 Manufacturing method of optical waveguide

Also Published As

Publication number Publication date
JP2005121818A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
US7184630B2 (en) Optical coupling module with self-aligned etched grooves and method for fabricating the same
US7068871B2 (en) Optical wiring substrate, method of manufacturing optical wiring substrate and multilayer optical wiring
US20090080847A1 (en) Optical waveguide and method for manufacturing the same
JP2008298934A (en) Optical axis transformation element and method of manufacturing the same
JP4059835B2 (en) Multi-channel optical path conversion element
US7333704B2 (en) Multichannel optical path changing device and its production method
JP2006251046A (en) Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method
JP2008164943A (en) Multichannel optical path conversion element and its manufacturing method
JP2005189747A (en) Manufacturing method of multi-channel optical path transducer
JP2005292379A (en) Optical coupling device and manufacturing method therefor
TWI252339B (en) Self-aligned optical waveguide to optical fiber connection system
JP2009098485A (en) Device with adhered mirror for converting optical path and method of manufacturing the same
JP2016018147A (en) Optical circuit with mirror, and manufacturing method of optical circuit with mirror
JP2006126844A (en) Optical filter, method of manufacturing optical filter and planar optical waveguide element using the optical filter
JP4313772B2 (en) Manufacturing method of optical waveguide
US20220413220A1 (en) Optical waveguides and methods for producing
JP2009098432A (en) Device for converting laminated multi-channel optical path and method of manufacturing the same
JP2008197380A (en) Multichannel optical path converting element and its manufacturing method
JP2002311276A (en) Method for forming resin optical waveguide
JP2005208254A (en) Multi-channel optical path converting device and manufacturing method therefor
JP3194311B2 (en) Hybrid optical waveguide circuit
KR100581143B1 (en) Multi channel optical switch and method of manufacturing the same
JP2002311274A (en) Method for manufacturing polyimide optical waveguide
JPH09297229A (en) Production of filter type waveguide
JP2007010982A (en) Optical multiplexing/demultiplexing module

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071218

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees