JP2005205312A - Decomposition catalyst - Google Patents

Decomposition catalyst Download PDF

Info

Publication number
JP2005205312A
JP2005205312A JP2004014482A JP2004014482A JP2005205312A JP 2005205312 A JP2005205312 A JP 2005205312A JP 2004014482 A JP2004014482 A JP 2004014482A JP 2004014482 A JP2004014482 A JP 2004014482A JP 2005205312 A JP2005205312 A JP 2005205312A
Authority
JP
Japan
Prior art keywords
catalyst
weight
decomposition
efficiency
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004014482A
Other languages
Japanese (ja)
Other versions
JP4848479B2 (en
Inventor
Hideharu Osada
秀晴 長田
Hironobu Shibamoto
博信 芝本
Shoma Osada
尚磨 長田
Tatsuo Kitamura
辰雄 北村
Itsushi Kashimoto
逸志 樫本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osada Giken Co Ltd
Kusatsu Electric Co Ltd
Original Assignee
Osada Giken Co Ltd
Kusatsu Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osada Giken Co Ltd, Kusatsu Electric Co Ltd filed Critical Osada Giken Co Ltd
Priority to JP2004014482A priority Critical patent/JP4848479B2/en
Publication of JP2005205312A publication Critical patent/JP2005205312A/en
Application granted granted Critical
Publication of JP4848479B2 publication Critical patent/JP4848479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that the treatment of plastics is a big problem and there is a method for decomposing plastics by using a decomposition catalyst and heat or light as an energy source, namely, mixing plastic fragments with powder of the catalyst to decompose plastics comparatively more easily however this method has such a weak point that the catalyst soars and goes to the outside together with decomposed products when the catalyst is made smaller to increase the surface area in consideration of the catalyst efficiency and even if the catalyst efficiency is made excellent, there is no guarantee that the decomposition efficiency of the catalyst is made excellent as a whole. <P>SOLUTION: This decomposition catalyst has such a particle size distribution that particles having ≥1.2 mm particle size are in the range of 1-50 wt.%, particles having 0.5-1.2 mm particle size are in the range of 40-90 wt.% and particles having ≤0.5 mm are in the range of 1-20 wt.%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、分解触媒に関するものである。   The present invention relates to a cracking catalyst.

分解触媒とは、化合物、特に有機物を分解するための触媒であって、熱分解触媒、酸化分解触媒、光触媒その他どのようなものでもよい。触媒自体の材質も金属、金属酸化物、セラミック、その他どのようなものでもよい。   The decomposition catalyst is a catalyst for decomposing a compound, particularly an organic substance, and may be a thermal decomposition catalyst, an oxidative decomposition catalyst, a photocatalyst, or the like. The material of the catalyst itself may be metal, metal oxide, ceramic, or any other material.

最近、プラスチック等の有機物の処理が大きな社会問題となっている。これはプラスチックがそのままでは分解しないため、埋め立てでは解決しないこと、またその埋め立て場所もなくなりつつあるということが大きな原因である。   Recently, the treatment of organic substances such as plastics has become a major social problem. This is mainly because plastic does not decompose as it is, it cannot be solved by landfill, and the landfill site is disappearing.

このようなプラスチック等の処理は、従来から焼却法であった。焼却は炉内で高温で燃焼させ、二酸化炭素、その他の酸化物にすることである。しかしながら、燃焼方法では完全燃焼しない限り有毒ガスが発生する危険性がある。よって、どうしても高温で燃料を使用して燃焼させることとなる。よって、不要な燃料も焼却しているため、周囲環境を加熱し、二酸化炭素を不必要に発生していることとなる。更に、燃焼灰が残り、その中に有毒成分が残留することも指摘されている。   Such processing of plastics and the like has conventionally been an incineration method. Incineration is burning at high temperature in a furnace to produce carbon dioxide and other oxides. However, in the combustion method, there is a risk that toxic gas is generated unless complete combustion is performed. Therefore, the fuel is inevitably burned at a high temperature. Therefore, since unnecessary fuel is also incinerated, the surrounding environment is heated and carbon dioxide is unnecessarily generated. Furthermore, it has been pointed out that combustion ash remains and toxic components remain therein.

また、プラスチックを分解触媒によって、熱や光をエネルギー源として分解させる方法もある。これは、プラスチック砕片を触媒粉体と混合するものであり、比較的簡単にプラスチックが分解できる方法である。   There is also a method in which plastic is decomposed with a decomposition catalyst using heat or light as an energy source. In this method, plastic fragments are mixed with catalyst powder, and the plastic can be decomposed relatively easily.

しかしながら、この方法では、触媒効率の点からは触媒は小さくて表面積が大きいほどよいが、単に小さいだけでは、舞い上がり、分解物に同伴され系外に出るという欠点がある。また、触媒効率はよいが、全体としての分解効率がよいとは限らないことも分かった。
即ち、従来では触媒はほぼ単一で、すべてがほぼ同じサイズであり、わざわざ篩等でサイズを合わせていた。これが逆効果であったのである。
However, in this method, from the viewpoint of catalyst efficiency, the smaller the catalyst and the larger the surface area, the better. However, when the catalyst is simply small, it has a drawback that it rises and is entrained by the decomposition product and goes out of the system. It was also found that the catalyst efficiency is good, but the overall decomposition efficiency is not always good.
That is, conventionally, the catalyst is almost single and all have the same size, and the size is conventionally adjusted by a sieve or the like. This was counterproductive.

そこで、物質の全体としての分解効率のよい触媒を提供する。   Therefore, a catalyst having a high decomposition efficiency as a whole substance is provided.

以上のような現状に鑑み、本発明者は鋭意研究の結果本発明触媒を完成したものであり、その特徴とするところは、分解触媒であって、その粒度分布が次の範囲に入る点にある。
1.2mm以上が、1〜50重量%、
0.5〜1.2mmが、40〜90重量%
0.5mm以下が、1〜20重量%。
In view of the current situation as described above, the present inventors have completed the catalyst of the present invention as a result of intensive research, and the feature thereof is a cracking catalyst, and its particle size distribution falls within the following range. is there.
1.2 mm or more is 1 to 50% by weight,
0.5-1.2mm is 40-90% by weight
0.5 mm or less is 1 to 20% by weight.

本発明者等は、触媒は混合攪拌して使用することが多いという点に着目し、攪拌効率や触媒自体による被分解物の物理的分解という触媒効果以外の要素を種々研究することによって完成させたのである。   The present inventors paid attention to the fact that the catalyst is often used with mixing and stirring, and completed it by studying various factors other than the catalytic effect such as stirring efficiency and physical decomposition of the substance to be decomposed by the catalyst itself. It was.

被分解物としては、通常は有機物である。例えば、プラスチック、ゴム、植物等である。勿論、これらは分解できる触媒との関係であり、その触媒が分解できればどのようなものでもよい。   The substance to be decomposed is usually an organic substance. For example, plastic, rubber, plant and the like. Of course, these are related to a catalyst that can be decomposed, and any catalyst that can be decomposed may be used.

まず、触媒はその粒度分布が重要であり、触媒効率だけでなく、種々の物理的要素を考慮した結果、請求項1記載の範囲が最適であることが分かった。
ここで、触媒とは、化合物の分解を助けるものであり、熱分解触媒、光分解触媒、その他種々の分解触媒でよい。材質も前記した通り、酸化チタン等どのようなものでもよい。
First, the particle size distribution of the catalyst is important. As a result of considering not only the catalyst efficiency but also various physical factors, it was found that the range described in claim 1 is optimal.
Here, the catalyst assists the decomposition of the compound, and may be a thermal decomposition catalyst, a photodecomposition catalyst, or other various decomposition catalysts. As described above, any material such as titanium oxide may be used.

ここで、この触媒サイズは、触媒そのもののサイズでも、触媒粉体を造粒したものでも、また再度それを粉砕したものでもよい。形状も球状、単なる粉砕形状でもどのようなものでもよい。   Here, the catalyst size may be the size of the catalyst itself, granulated catalyst powder, or pulverized again. The shape may be spherical or any pulverized shape.

造粒の方法としては、バインダーによる粉体の固着、燒結、その他粉体を集めて大きくする方法であればよい。特にバインダーを用いる方法では、触媒と同種のバインダーで固着する方法が好適である。例えば、触媒粉体が酸化チタンの場合、バインダーとしてチタンアルコキシドを用いる等である。   As a granulation method, any method may be used as long as the powder is fixed by a binder, sintered, or other powder is collected and enlarged. In particular, in a method using a binder, a method of fixing with the same kind of binder as the catalyst is suitable. For example, when the catalyst powder is titanium oxide, titanium alkoxide is used as the binder.

本発明の粒度分布の基本は、大きく分けて3種の大きさの粒体を用いることにある。大きいものは、1.2mm以上であり、中サイズは、0.5〜1.2mmであり、小サイズは、0.5mm以下である。ここで、サイズは球状を代表としてその径であらわしたが、異形の場合にはその最大長さとする。   The basis of the particle size distribution of the present invention is to use roughly three types of size particles. The large size is 1.2 mm or more, the medium size is 0.5 to 1.2 mm, and the small size is 0.5 mm or less. Here, the size is represented by the diameter of a sphere as a representative, but in the case of an irregular shape, it is the maximum length.

まず、1.2mm以上のものは、1〜50重量%であるが、7〜12重量%が好適である。これは、この1.2mm以上という大きな粒が攪拌させることによって、被分解物を物理的に分解したり、攪拌効率を上げたりする。しかし、多過ぎると、表面積が小さくなるため、触媒効率が下がる。   First, the thickness of 1.2 mm or more is 1 to 50% by weight, but 7 to 12% by weight is preferable. This is because the large particles of 1.2 mm or more are agitated, whereby the object to be decomposed is physically decomposed or the agitation efficiency is increased. However, if the amount is too large, the surface area becomes small and the catalyst efficiency decreases.

0.5〜1.2mmのものは、40〜90重量%である。これが触媒としての主体を占めるものである。このサイズのものが、最も多く存在することによって触媒としての効率を維持している。これが少なすぎると、粗すぎて効率が下がるか、細かすぎて舞い上がるか取扱い不便になる。   The thing of 0.5-1.2 mm is 40 to 90 weight%. This occupies the main body as a catalyst. The thing of this size maintains the efficiency as a catalyst by existing most. If this is too small, it will be too coarse and the efficiency will be reduced, or it will be too fine and it will rise or it will be inconvenient to handle.

最後に、0.5mm以下が、1〜20重量%である。これは、小さいものも必要であり、被分解物が小さくなったときにも効率よく接触するためと、表面積を十分に確保するためである。これも。7〜12重量%が好適である。   Finally, 0.5 mm or less is 1 to 20% by weight. This is because a small one is also required, so that even when the object to be decomposed becomes small, it can be contacted efficiently, and a sufficient surface area can be secured. This too. 7 to 12% by weight is preferred.

この上記した粒度分布を更に細かく分けて、より厳密に区分けしてもよい。例えば、次のように分けてもよい。
1.6mm以上、0.1〜2.0重量%、
1.2〜1.6mmが、5〜15重量%、
0.7〜1.0mmが、20〜40重量%、
0.5〜0.7mmが、30〜50重量%、
0.5mm以下が、1〜15重量%。
The above particle size distribution may be further finely divided and more strictly classified. For example, it may be divided as follows.
1.6 mm or more, 0.1 to 2.0% by weight,
1.2 to 1.6 mm is 5 to 15% by weight,
0.7 to 1.0 mm is 20 to 40% by weight,
0.5 to 0.7 mm is 30 to 50% by weight,
0.5 mm or less is 1 to 15% by weight.

このようにより細かく分けてもよい。これは実験により、種々のサイズのものがある方がよいことが分かったためである。   It may be divided more finely in this way. This is because experiments have shown that it is better to have various sizes.

更に、本発明触媒は、触媒自体又は触媒粉体を造粒したものだけではなく、触媒粉体を他の担体に担持したものでもよい。   Furthermore, the catalyst of the present invention is not limited to the catalyst itself or a granulated catalyst powder, but may be a catalyst powder supported on another carrier.

担体としては、ケイ砂等どのような粒子でもよい。サイズは、上記のサイズに適合するようなものである。
担体への固着の方法は、分解されにくいフッ素系樹脂やシリコン系の樹脂で接着してもよい。また、酸化チタン触媒の場合には、前記同様接着剤としてチタンアルコキシドを使用すると全体として触媒効率が向上すると考えられる。また破砕したときにも同様である。
The carrier may be any particles such as silica sand. The size is such that it fits the above size.
As a method of fixing to the carrier, adhesion may be made with a fluorine-based resin or a silicon-based resin that is not easily decomposed. Further, in the case of a titanium oxide catalyst, it is considered that the catalyst efficiency is improved as a whole when titanium alkoxide is used as an adhesive as described above. The same applies when crushing.

更に、水系樹脂(水溶性樹脂やエマルジョンタイプ樹脂)とセメント(水硬反応で硬化するものすべて)の両方で、担体に光触媒を固着したものでもよい。
固着の方法は、まず担体に水系樹脂を塗布し、次いでセメント、及び触媒を固着するものである。最初に水系樹脂の初期接着力によりセメントや触媒を固着する。そして、セメントが硬化すれば、触媒による酸化力等で水系樹脂が分解されてもセメントによって保持されているのである。
Further, both a water-based resin (water-soluble resin or emulsion-type resin) and cement (all those cured by a hydraulic reaction) may have a photocatalyst fixed to a carrier.
In the fixing method, first, an aqueous resin is applied to a carrier, and then cement and a catalyst are fixed. First, the cement or catalyst is fixed by the initial adhesive strength of the water-based resin. And if a cement hardens | cures, even if a water-system resin is decomposed | disassembled by the oxidizing power etc. by a catalyst, it will be hold | maintained by the cement.

本発明触媒の使用方法は、自由であり、従来の触媒と同様に使用すればよい。しかし、被分解物と混合、攪拌して使用する子が好適であり、最も効果を発揮する方法である。
熱触媒は加熱する等の温度、圧力、電磁波の照射の有無、液中ならばそのpH等の条件も自由であり、適宜決めればよい。
The method of using the catalyst of the present invention is free and may be used in the same manner as conventional catalysts. However, a child used by mixing and stirring with a substance to be decomposed is suitable, and is the most effective method.
The temperature of the thermal catalyst, such as heating, pressure, presence / absence of electromagnetic wave irradiation, and pH in the liquid can be freely determined.

本発明触媒には、次のような大きな利点がある。
(1) 触媒のサイズが単一でなく、特定の粒度分布を有しているため、分解効率が非常によい。
(2) 特に粉体を造粒したものを使用すれば、種々のサイズが自由に製造できるため実施が容易である。
(3) 本発明の粒度分布を持った触媒では、舞い上がりや同伴といった欠点も軽減できる。
The catalyst of the present invention has the following great advantages.
(1) Since the catalyst has a single size and a specific particle size distribution, the decomposition efficiency is very good.
(2) If a powder granulated powder is used, various sizes can be produced freely, and the implementation is easy.
(3) With the catalyst having the particle size distribution of the present invention, defects such as soaring and entrainment can be reduced.

以下好適な実施例に基づいて本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail based on preferred examples.

実施例1
ここでは、触媒として、酸化チタン(アナターゼ型の光触媒)粉体(サイズは数nm〜数十nm)を、造粒したものを用いた。造粒法はここでは燒結法であった。粒度分布は次の通りである。
1.6mm以上、0.98重量%、
1.2〜1.6mmが、10.0重量%、
0.7〜1.2mmが、34.3重量%、
0.5〜0.7mmが、41・9重量%、
0.3〜0.5mmが、9.87重量%。
0.3mm以下が、2.95重量%。
Example 1
Here, a granulated titanium oxide (anatase-type photocatalyst) powder (size of several nm to several tens of nm) was used as the catalyst. The granulation method was here the sintering method. The particle size distribution is as follows.
1.6mm or more, 0.98% by weight,
1.2 to 1.6 mm is 10.0% by weight,
0.7 to 1.2 mm is 34.3% by weight,
0.5 to 0.7 mm is 41.9% by weight,
0.3 to 0.5 mm is 9.87% by weight.
Less than 0.3 mm is 2.95% by weight.

実施例2
実施例1と同じ触媒を用いた。粒度分布は次の通りである。
1.6mm以上、22.2重量%、
1.2〜1.6mmが、21.4重量%、
0.7〜1.2mmが、25.8重量%、
0.5〜0.7mmが、22.7重量%、
0.3〜0.5mmが、7.3重量%。
0.3mm以下が、0.6重量%。
Example 2
The same catalyst as in Example 1 was used. The particle size distribution is as follows.
1.6 mm or more, 22.2% by weight,
1.2 to 1.6 mm is 21.4% by weight,
0.7 to 1.2 mm is 25.8% by weight,
0.5 to 0.7 mm is 22.7% by weight,
0.3 to 0.5 mm is 7.3% by weight.
Less than 0.3 mm is 0.6% by weight.

比較例1
同じ触媒でサイズを0.1〜0.3mmに統一したものを比較例とした。
Comparative Example 1
The same catalyst with a uniform size of 0.1 to 0.3 mm was used as a comparative example.

図1は、触媒の分解効率を調べるための簡単な装置である。500ccビーカー1に攪拌装置2と加熱装置3を設けたものである。ここに電磁波を照射してもよいがなくてもよい。光触媒は電磁波がなくとも、加熱すれば触媒効果を発揮することが発明者の実験で分かっている。
この装置にプラスチック小片4(ポリエチレンの約5mmの破砕品)と触媒をほぼ同量(50g)導入して、加熱(約400℃)混合してプラスチックが分解して気体になる時間を計った。
FIG. 1 is a simple apparatus for examining the decomposition efficiency of a catalyst. A 500 cc beaker 1 is provided with a stirring device 2 and a heating device 3. Here, electromagnetic waves may or may not be irradiated. It has been found through experiments by the inventors that a photocatalyst exhibits a catalytic effect when heated even without electromagnetic waves.
The plastic piece 4 (about 5 mm of crushed polyethylene) and the catalyst were introduced into this apparatus in substantially the same amount (50 g) and mixed by heating (about 400 ° C.) to measure the time for the plastic to decompose and become gas.

比較例では、プラスチック片がなくなるのに、約30分かかった。そして、相当の触媒が舞い上がり空中に散逸した。本発明実施例1では15分でほぼなくなり、舞い上がりも少なかった。また、実施例2では、13分でほぼなくなった。更に、比較例より小さい粉体だけでも行なったが、舞い上がりが多く継続不可能であった。   In the comparative example, it took about 30 minutes for the plastic piece to disappear. A considerable amount of catalyst flew up and dissipated into the air. In Example 1 of the present invention, it almost disappeared in 15 minutes and there was little soaring. Moreover, in Example 2, it almost disappeared in 13 minutes. Furthermore, although it performed only with the powder smaller than a comparative example, it rose so much that it could not be continued.

本発明触媒の効果を調べる装置の1例を示す概略断面図である。It is a schematic sectional drawing which shows one example of the apparatus which investigates the effect of this invention catalyst.

符号の説明Explanation of symbols

1 ビーカー
2 攪拌装置
3 加熱装置
4 プラスチック片
5 触媒
1 Beaker 2 Stirrer 3 Heater 4 Plastic Piece 5 Catalyst

Claims (4)

分解触媒であって、その粒度分布が次の範囲に入ることを特徴とする粉粒状触媒。
1.2mm以上が、1〜50重量%、
0.5〜1.2mmが、40〜90重量%
0.5mm以下が、1〜20重量%。
A granular catalyst characterized in that it is a decomposition catalyst and its particle size distribution falls within the following range.
1.2 mm or more is 1 to 50% by weight,
0.5-1.2mm is 40-90% by weight
0.5 mm or less is 1 to 20% by weight.
触媒が微粉末を造粒したものである請求項1記載の分解触媒。   The cracking catalyst according to claim 1, wherein the catalyst is obtained by granulating fine powder. 該触媒は光触媒である請求項1又は2記載の分解触媒。   The cracking catalyst according to claim 1 or 2, wherein the catalyst is a photocatalyst. 該造粒は、燒結法又は接着法である請求項2又は3記載の分解触媒。
The decomposition catalyst according to claim 2 or 3, wherein the granulation is a sintering method or an adhesion method.
JP2004014482A 2004-01-22 2004-01-22 Cracking catalyst Expired - Lifetime JP4848479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014482A JP4848479B2 (en) 2004-01-22 2004-01-22 Cracking catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014482A JP4848479B2 (en) 2004-01-22 2004-01-22 Cracking catalyst

Publications (2)

Publication Number Publication Date
JP2005205312A true JP2005205312A (en) 2005-08-04
JP4848479B2 JP4848479B2 (en) 2011-12-28

Family

ID=34900259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014482A Expired - Lifetime JP4848479B2 (en) 2004-01-22 2004-01-22 Cracking catalyst

Country Status (1)

Country Link
JP (1) JP4848479B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051253A1 (en) 2007-10-19 2009-04-23 Kusatsu Electric Co., Ltd. Catalyst circulating waste plastic/organic matter decomposition apparatus and decomposition system
JP2009270123A (en) * 2006-04-19 2009-11-19 Kusatsu Electric Co Ltd Decomposition method of waste plastics and organic matter, decomposition device, and decomposition system
WO2010021122A1 (en) 2008-08-20 2010-02-25 草津電機株式会社 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
JP2010263817A (en) * 2009-05-13 2010-11-25 Okabe Sangyo Kk Microbial material
WO2013089222A1 (en) 2011-12-15 2013-06-20 堺化学工業株式会社 Granular body of titanium oxide having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material using said granular body
EP2324914A4 (en) * 2008-08-20 2014-06-18 Sakai Chemical Industry Co Catalyst and method for pyrolysis of organic substances and method for manufacturing such catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123816A (en) * 1986-10-31 1988-05-27 クロノス・チタン−ゲゼルシヤフト・ミツト・ベシュレンクテル・ハフツング Manufacture of crude abrasive titanium dioxide particle aggregate
JPH04500659A (en) * 1988-09-15 1992-02-06 カー ― マギー ケミカル コーポレーション Non-pigmented titanium dioxide powder
JPH0952052A (en) * 1995-08-18 1997-02-25 Mitsubishi Paper Mills Ltd Preparation of photoreactive grain
JP2000140634A (en) * 1998-11-10 2000-05-23 Ishihara Techno Kk Removing method of harmful substance in liquid
JP2000288405A (en) * 1999-04-02 2000-10-17 Otsuka Chem Co Ltd Photocatalyst body and removing method of harmful material using the same
JP2001087628A (en) * 1999-09-27 2001-04-03 Sintokogio Ltd Filter having photocatalytic capacity
JP2002363337A (en) * 2001-06-07 2002-12-18 Osada Giken Kk Method for recycling plastic as resource

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123816A (en) * 1986-10-31 1988-05-27 クロノス・チタン−ゲゼルシヤフト・ミツト・ベシュレンクテル・ハフツング Manufacture of crude abrasive titanium dioxide particle aggregate
JPH04500659A (en) * 1988-09-15 1992-02-06 カー ― マギー ケミカル コーポレーション Non-pigmented titanium dioxide powder
JPH0952052A (en) * 1995-08-18 1997-02-25 Mitsubishi Paper Mills Ltd Preparation of photoreactive grain
JP2000140634A (en) * 1998-11-10 2000-05-23 Ishihara Techno Kk Removing method of harmful substance in liquid
JP2000288405A (en) * 1999-04-02 2000-10-17 Otsuka Chem Co Ltd Photocatalyst body and removing method of harmful material using the same
JP2001087628A (en) * 1999-09-27 2001-04-03 Sintokogio Ltd Filter having photocatalytic capacity
JP2002363337A (en) * 2001-06-07 2002-12-18 Osada Giken Kk Method for recycling plastic as resource

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270123A (en) * 2006-04-19 2009-11-19 Kusatsu Electric Co Ltd Decomposition method of waste plastics and organic matter, decomposition device, and decomposition system
WO2009051253A1 (en) 2007-10-19 2009-04-23 Kusatsu Electric Co., Ltd. Catalyst circulating waste plastic/organic matter decomposition apparatus and decomposition system
WO2010021122A1 (en) 2008-08-20 2010-02-25 草津電機株式会社 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
KR20110041531A (en) 2008-08-20 2011-04-21 쿠사츠 일렉트릭 컴퍼니 리미티드 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
CN102137724A (en) * 2008-08-20 2011-07-27 草津电机株式会社 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
JP5190897B2 (en) * 2008-08-20 2013-04-24 草津電機株式会社 Method for decomposing waste plastics and organic substances using titanium oxide granules with optimum particle characteristics
CN102137724B (en) * 2008-08-20 2013-09-11 草津电机株式会社 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
US8722958B2 (en) 2008-08-20 2014-05-13 Kusatsu Electric Co., Ltd. Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
EP2324914A4 (en) * 2008-08-20 2014-06-18 Sakai Chemical Industry Co Catalyst and method for pyrolysis of organic substances and method for manufacturing such catalyst
KR101650875B1 (en) 2008-08-20 2016-08-24 쿠사츠 일렉트릭 컴퍼니 리미티드 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
JP2010263817A (en) * 2009-05-13 2010-11-25 Okabe Sangyo Kk Microbial material
WO2013089222A1 (en) 2011-12-15 2013-06-20 堺化学工業株式会社 Granular body of titanium oxide having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material using said granular body

Also Published As

Publication number Publication date
JP4848479B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
Kurniawan et al. Green chemistry influences in organic synthesis: A review
Mason Sonochemistry and the environment–Providing a “green” link between chemistry, physics and engineering
Blissett et al. Valorisation of rice husks using a TORBED® combustion process
JP4848479B2 (en) Cracking catalyst
CN106582772A (en) CoFe&lt;2&gt;O&lt;4&gt;/g-C&lt;3&gt;N&lt;4&gt; magnetic nanomaterial and preparation method therefor
KR102158694B1 (en) Dechlorination apparatus and method for converting low grade fuel oil into low chlorine clean light fuel oil
JP2006348367A (en) Method for recycling metal oxide
Asli et al. Sonophotocatalytic degradation of pollutants by ZnO‐based catalysts: a review
JP2002363337A (en) Method for recycling plastic as resource
Gogate Improvements in catalyst synthesis and photocatalytic oxidation processing based on the use of ultrasound
US5242601A (en) Sludge treatment with CaO or CaC2 and recovery of CaO therefrom
Akhayere et al. Efficacy studies of silica nanoparticles synthesized using agricultural waste for mitigating waterborne contaminants
Wang et al. Ultrasonic activated biochar and its removal of harmful substances in environment
Mishra et al. Efficacy of nanoparticles as photocatalyst in leachate treatment
JP2005307007A (en) Method for pyrolyzing waste plastic
Dzinun et al. Photocatalytic performance of TiO2/Eggshell composite for wastewater treatment
US20040073078A1 (en) Method for decomposing organic substance
JP2000288405A (en) Photocatalyst body and removing method of harmful material using the same
JP2008194545A (en) Method for oxidizing or decomposing target substance
JP2005169293A (en) Method for oxidizing or decomposing organic material
CN212944618U (en) Waste treatment device
JP2005048160A (en) Method for decomposing organic material
JP2005169293A5 (en)
JP2005066433A (en) Photocatalyst molding
Sharara et al. Photodegradation of polyethylene debris in water by sulfur-doped TiO2: system optimization, degradation mechanism, and reusability

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

R150 Certificate of patent or registration of utility model

Ref document number: 4848479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term