JP2005307007A - Method for pyrolyzing waste plastic - Google Patents

Method for pyrolyzing waste plastic Download PDF

Info

Publication number
JP2005307007A
JP2005307007A JP2004126000A JP2004126000A JP2005307007A JP 2005307007 A JP2005307007 A JP 2005307007A JP 2004126000 A JP2004126000 A JP 2004126000A JP 2004126000 A JP2004126000 A JP 2004126000A JP 2005307007 A JP2005307007 A JP 2005307007A
Authority
JP
Japan
Prior art keywords
titanium oxide
particle size
particles
weight
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004126000A
Other languages
Japanese (ja)
Other versions
JP2005307007A5 (en
JP4602690B2 (en
Inventor
Toshikatsu Baba
敏勝 馬場
Atsuki Terabe
敦樹 寺部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osada Giken Co Ltd
Sakai Chemical Industry Co Ltd
Kusatsu Electric Co Ltd
Original Assignee
Osada Giken Co Ltd
Sakai Chemical Industry Co Ltd
Kusatsu Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osada Giken Co Ltd, Sakai Chemical Industry Co Ltd, Kusatsu Electric Co Ltd filed Critical Osada Giken Co Ltd
Priority to JP2004126000A priority Critical patent/JP4602690B2/en
Publication of JP2005307007A publication Critical patent/JP2005307007A/en
Publication of JP2005307007A5 publication Critical patent/JP2005307007A5/ja
Application granted granted Critical
Publication of JP4602690B2 publication Critical patent/JP4602690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for pyrolyzing waste plastics using a pyrolysis catalyst while suppressing to a minimum its loss in its pulverization despite keeping pyrolysis efficiency high. <P>SOLUTION: The pyrolysis catalyst is in the form of granules of a titanium oxide or its mixture. This catalyst is obtained by crushing the baked product of titanium oxide gel or its mixture with at least one kind of gel selected from alumina gel and silica gel followed by edging treatment of the crushed product. This catalyst has such a granular size distribution that the proportion of granules 0.5-1.18 mm in size is 50-95 wt.% and that of granules 1.18-1.7 mm in size 5-50 wt.%, and has an abrasion percentage of less than 2.0%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、廃プラスチックの分解方法に関し、詳しくは、酸化チタン又はその混合物の顆粒体の存在下に廃プラスチックを加熱し、ガス化する廃プラスチックの分解方法に関する。   The present invention relates to a method for decomposing waste plastics, and more particularly to a method for decomposing waste plastics by heating and plasticizing waste plastics in the presence of granules of titanium oxide or a mixture thereof.

近年、廃プラスチックを処理し、又は再利用する方法として、種々のものが提案され、また、一部は実用化されている。このような廃プラスチックの再利用、資源化の一つの有力な方法として、廃プラスチック片を光触媒として知られている酸化チタンからなる分解触媒の存在下に紫外線を照射しながら、加熱して、廃プラスチックをガス化する方法が提案されている(特許文献1参照)。   In recent years, various methods for treating or reusing waste plastic have been proposed, and some of them have been put into practical use. As one effective method for recycling and recycling such waste plastics, waste plastic pieces are heated while being irradiated with ultraviolet rays in the presence of a decomposition catalyst made of titanium oxide, which is known as a photocatalyst. A method of gasifying plastic has been proposed (see Patent Document 1).

しかし、このように、酸化チタンを分解触媒として用いて廃プラスチックを熱分解する方法は、廃プラスチックの熱分解によるガス化を促進するために、通常、容器中に担体ガスを流通させながら、酸化チタンと廃プラスチック片とを攪拌下に加熱し、廃プラスチックを熱分解して、熱分解生成物である分解ガスを容器外に排出させるものである。従って、触媒として用いられる酸化チタン粒子は摩耗し、微粉化し、廃プラスチックの熱分解生成ガスと同伴して容器外に失われるので、時間の経過と共に、熱分解効率が低下する。また、酸化チタン粒子の微粉化に伴って、その粒度分布が変化し、この点からも、廃プラスチックの熱分解効率が低下する。   However, in this way, the method of thermally decomposing waste plastics using titanium oxide as a decomposition catalyst usually promotes oxidation while circulating the carrier gas in the container in order to promote gasification by thermal decomposition of the waste plastics. Titanium and the waste plastic piece are heated with stirring to thermally decompose the waste plastic, and the decomposition gas as the pyrolysis product is discharged out of the container. Accordingly, the titanium oxide particles used as a catalyst are worn, pulverized, and lost to the outside of the container along with the thermal decomposition product gas of the waste plastic, so that the thermal decomposition efficiency decreases with the passage of time. In addition, as the titanium oxide particles are pulverized, the particle size distribution changes, and also from this point, the thermal decomposition efficiency of the waste plastic is lowered.

そこで、容器から熱分解ガスを排出させるための管路にフィルターを取付ければ、微粉化した酸化チタンを回収することはできるが、フィルターが容易に目詰まりを起こすので、廃プラスチックの熱分解効率の低下を招く。他方、酸化チタンの微粉化を避けるために、徒に粒径を大きいもののみを用いても、廃プラスチックの熱分解効率に劣る。
特開2002−363337号公報
Therefore, if a filter is attached to the pipeline for discharging the pyrolysis gas from the container, finely divided titanium oxide can be recovered, but the filter easily clogs, so the thermal decomposition efficiency of waste plastics Cause a decline. On the other hand, even if only a material having a large particle size is used to avoid pulverization of titanium oxide, the thermal decomposition efficiency of the waste plastic is inferior.
JP 2002-363337 A

本発明は、酸化チタンの粒子を熱分解触媒として用いる廃プラスチックの熱分解における上述した問題を解決するためになされたものであって、廃プラスチックの熱分解効率を高く保ちながら、しかも、触媒の微粉化による損失を最小限に抑えた廃プラスチックの熱分解方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems in the thermal decomposition of waste plastics using titanium oxide particles as a thermal decomposition catalyst, and while maintaining high thermal decomposition efficiency of the waste plastics, An object of the present invention is to provide a method for thermally decomposing waste plastic in which loss due to pulverization is minimized.

本発明によれば、第1の方法として、担体ガスの流通下に酸化チタンの顆粒体からなる触媒と共に廃プラスチック片を加熱しながら攪拌して、上記プラスチックをガス化する廃プラスチックの分解方法において、上記酸化チタンの顆粒体がチタン酸化物のゾルを乾燥して酸化チタンゲルとし、この酸化チタンゲルを450〜850℃の範囲の温度で焼成し、この焼成物を破砕し、エッジ処理して得られるものであって、0.5〜1.18mmの粒径を有する粒子の割合が50〜95重量%の範囲にあり、1.18〜1.7mmの粒径を有する粒子の割合が5〜50重量%の範囲にある粒度分布を有すると共に、2.0%以下の摩耗率を有するものであることを特徴とする方法が提供される。   According to the present invention, as a first method, in the method for decomposing waste plastics, the plastic waste is gasified by stirring while heating the waste plastic pieces together with a catalyst comprising titanium oxide granules under the flow of a carrier gas. The titanium oxide granules are obtained by drying a titanium oxide sol to form a titanium oxide gel, firing the titanium oxide gel at a temperature in the range of 450 to 850 ° C., crushing the fired product, and subjecting it to an edge treatment. The ratio of particles having a particle diameter of 0.5 to 1.18 mm is in the range of 50 to 95% by weight, and the ratio of particles having a particle diameter of 1.18 to 1.7 mm is 5 to 50 A method is provided that has a particle size distribution in the range of weight percent and has a wear rate of 2.0% or less.

更に、本発明によれば、第2の方法として、担体ガスの流通下にアルミナとシリカから選ばれる少なくとも1種と酸化チタンとの混合物の顆粒体からなる触媒と共に廃プラスチック片を加熱しながら攪拌して、上記プラスチックをガス化する廃プラスチックの分解方法において、上記アルミナとシリカから選ばれる少なくとも1種と酸化チタンとの混合物の顆粒体がアルミナゾルとシリカゾルから選ばれる少なくとも1種のゾルとチタン酸化物のゾルとを混合し、乾燥してゲルとし、このゲルを450〜850℃の範囲の温度で焼成し、この焼成物を破砕し、エッジ処理して得られるものであって、0.5〜1.18mmの粒径を有する粒子の割合が50〜95重量%の範囲にあり、1.18〜1.7mmの粒径を有する粒子の割合が5〜50重量%の範囲にある粒度分布を有すると共に、2.0%以下の摩耗率を有するものであることを特徴とする方法が提供される。   Furthermore, according to the present invention, as a second method, the waste plastic piece is stirred while heating the catalyst together with a catalyst comprising granules of a mixture of at least one selected from alumina and silica and titanium oxide under a carrier gas flow. Then, in the method for decomposing waste plastics for gasifying the plastic, the granule of a mixture of at least one selected from alumina and silica and titanium oxide is oxidized with at least one sol selected from alumina sol and silica sol and titanium oxide. It is obtained by mixing with a sol of a product, drying to obtain a gel, firing the gel at a temperature in the range of 450 to 850 ° C., crushing the fired product, and performing edge treatment. The proportion of particles having a particle size of ˜1.18 mm is in the range of 50 to 95% by weight and the proportion of particles having a particle size of 1.18 to 1.7 mm is 5 to 5 And it has a particle size distribution in the range of weight%, wherein the one having 2.0% or less of the wear rate is provided.

本発明の方法によれば、酸化チタン又はこれを含む混合物のゲルの焼成物を破砕し、エッジ処理して、所定の粒度分布と摩耗率とを有する顆粒体を熱分解触媒として用いるので、廃プラスチックの熱分解効率を高く保ちながら、しかも、上記顆粒体からなる触媒の微粉化による損失を最小限に抑えることができる。   According to the method of the present invention, the burned product of the gel of titanium oxide or a mixture containing the same is crushed, edge-treated, and granules having a predetermined particle size distribution and wear rate are used as the pyrolysis catalyst. While keeping the thermal decomposition efficiency of the plastic high, it is possible to minimize the loss due to the pulverization of the catalyst composed of the granules.

本発明に従って、廃プラスチックを熱分解するための装置構成の一例を図1に示す。反応容器1は、廃プラスチック片をこの反応容器に投入するための投入口2と、担体ガス3を反応容器に導入し、生成する熱分解ガスを反応容器から搬出するための担体ガス管4を備えており、更に、反応容器中の熱分解触媒5と廃プラスチック片6を攪拌するための攪拌機7を備えている。また、反応容器中の熱分解触媒と廃プラスチック片を加熱するための加熱装置8を備えている。図示した装置においては、この加熱装置は反応容器外に配設されているが、反応容器内に配設されていてもよい。上記担体ガスとしては、通常、空気が用いられるが、必要に応じて、不活性ガスを用いてもよい。しかし、本発明に従って、廃プラスチックを熱分解するに際して、用いる装置は上記例示に限定されるものではなく、例えば、ロータリーキルンや流動床装置を用いることもできる。   An example of an apparatus configuration for thermally decomposing waste plastic according to the present invention is shown in FIG. The reaction vessel 1 has an inlet 2 for introducing waste plastic pieces into the reaction vessel, and a carrier gas pipe 4 for introducing the carrier gas 3 into the reaction vessel and carrying out the pyrolysis gas to be generated from the reaction vessel. And a stirrer 7 for stirring the thermal decomposition catalyst 5 and the waste plastic piece 6 in the reaction vessel. Moreover, the heating apparatus 8 for heating the thermal decomposition catalyst and waste plastic piece in a reaction container is provided. In the illustrated apparatus, the heating device is disposed outside the reaction container, but may be disposed within the reaction container. As the carrier gas, air is usually used, but an inert gas may be used if necessary. However, when pyrolyzing waste plastic according to the present invention, the apparatus to be used is not limited to the above example, and for example, a rotary kiln or a fluidized bed apparatus can be used.

本発明によれば、熱分解触媒として、第1の方法においては、酸化チタンの顆粒体が用いられ、第2の方法においては、アルミナとシリカから選ばれる少なくとも1種と酸化チタンとの混合物(以下、簡単のため、酸化チタン混合物という。)の顆粒体が用いられる。既に知られているように、酸化チタンは光触媒としての機能も有しているので、上記いずれかの触媒を用いて、廃プラスチックを熱分解するに際して、必要に応じて、紫外線の照射の下に、触媒と廃プラスチックとを加熱攪拌してもよい。   According to the present invention, as the pyrolysis catalyst, granules of titanium oxide are used in the first method, and in the second method, a mixture of at least one selected from alumina and silica and titanium oxide ( Hereinafter, for simplicity, a granule of a titanium oxide mixture) is used. As already known, since titanium oxide also has a function as a photocatalyst, when any of the above catalysts is used to thermally decompose waste plastic, it may be irradiated under ultraviolet rays as necessary. The catalyst and waste plastic may be heated and stirred.

本発明によれば、第1の方法において上記熱分解触媒として用いられる酸化チタンの顆粒体は、チタン酸化物のゾルを乾燥して酸化チタンゲルとし、この酸化チタンゲルを450〜850℃の範囲の温度で焼成し、この焼成物を破砕し、エッジ処理して得られものであって、0.5〜1.18mmの粒径を有する粒子の割合が50〜95重量%の範囲にあり、1.18〜1.7mmの粒径を有する粒子の割合が5〜50重量%の範囲にある粒度分布を有すると共に、2.0%以下の摩耗率を有するものである。   According to the present invention, the titanium oxide granules used as the thermal decomposition catalyst in the first method are obtained by drying a titanium oxide sol into a titanium oxide gel, and the titanium oxide gel has a temperature in the range of 450 to 850 ° C. 1 and obtained by crushing and edging the fired product, and the proportion of particles having a particle size of 0.5 to 1.18 mm is in the range of 50 to 95% by weight. It has a particle size distribution in which the proportion of particles having a particle size of 18 to 1.7 mm is in the range of 5 to 50% by weight, and has a wear rate of 2.0% or less.

また、本発明によれば、第2の方法において上記熱分解触媒として用いられる酸化チタン混合物の顆粒体は、アルミナゾルとシリカゾルから選ばれる少なくとも1種のゾルとチタン酸化物のゾルとを混合し、乾燥してゲルとし、このゲルを450〜850℃の範囲の温度で焼成し、この焼成物を破砕し、エッジ処理して得られるものであって、0.5〜1.18mmの粒径を有する粒子の割合が50〜95重量%の範囲にあり、1.18〜1.7mmの粒径を有する粒子の割合が5〜50重量%の範囲にある粒度分布を有すると共に、2.0%以下の摩耗率を有するものである。   According to the present invention, the granule of the titanium oxide mixture used as the thermal decomposition catalyst in the second method is a mixture of at least one sol selected from alumina sol and silica sol and a titanium oxide sol, It is dried to obtain a gel, which is obtained by baking the gel at a temperature in the range of 450 to 850 ° C., crushing the fired product, and subjecting it to an edge treatment, and having a particle size of 0.5 to 1.18 mm. Having a particle size distribution in which the proportion of particles having is in the range of 50-95 wt%, the proportion of particles having a particle size of 1.18-1.7 mm in the range of 5-50 wt%, and 2.0% It has the following wear rate.

本発明において用いる熱分解触媒は、このように、酸化チタンの顆粒体か、又は酸化チタン混合物の顆粒体からなり、上記粒度分布を有すると共に、エッジ処理の結果、2.0%以下の摩耗率を有するものであるので、廃プラスチック片と加熱下に攪拌混合しても、長期間にわたって、上記粒度分布を保つことができる。従って、本発明によれば、上述したような熱分解触媒を用いることによって、長時間にわたって廃プラスチックを高い熱分解効率にて分解することができる。但し、本発明において、顆粒体の摩耗率とは、後述するように、所定の装置を用いて所定の条件下に測定して得られる値をいうものとする。   Thus, the thermal decomposition catalyst used in the present invention is composed of titanium oxide granules or titanium oxide mixture granules, and has the above particle size distribution and, as a result of edge treatment, wear rate of 2.0% or less. Therefore, even if it stirs and mixes with a waste plastic piece under heating, the said particle size distribution can be maintained over a long period of time. Therefore, according to the present invention, waste plastic can be decomposed with high thermal decomposition efficiency over a long period of time by using the thermal decomposition catalyst as described above. However, in the present invention, the wear rate of the granule means a value obtained by measurement under a predetermined condition using a predetermined apparatus, as will be described later.

熱分解触媒として、種々の製法による酸化チタンのなかでも、上述したように、チタン酸化物のゾルを乾燥して酸化チタンゲルとし、この酸化チタンゲルを450〜850℃の範囲の温度で焼成して得られる酸化チタンが廃プラスチックの熱分解触媒としてすぐれた性能を有するが、破砕物のままでは、容易に摩耗し、微粉を生じて、失われる部分が多くなる。   As described above, among the titanium oxides produced by various production methods as the thermal decomposition catalyst, the titanium oxide sol is dried to form a titanium oxide gel, and the titanium oxide gel is obtained by firing at a temperature in the range of 450 to 850 ° C. Titanium oxide obtained has excellent performance as a thermal decomposition catalyst for waste plastics, but if it is crushed, it will be easily worn out, resulting in fine powder, and more parts will be lost.

そこで、本発明に従って、そのような酸化チタンゲルの焼成物の破砕物をエッジ処理して、いわば、予め、角を取ることによって、摩耗率を著しく低減し、かくして、廃プラスチックを高い熱分解効率で熱分解することができるのみならず、望ましい粒度分布を保って、その高い熱分解効率を長時間にわたって維持することができる。酸化チタン混合物の顆粒体からなる触媒についても同様である。このようなエッジ処理は、例えば、酸化チタンのゲルや、アルミナとシリカから選ばれる少なくとも1種のゲルと酸化チタンのゲルとの混合ゲルを破砕し、これを造粒装置の一つとしてよく知られている転動造粒装置にて処理することによって行うことができる。   Therefore, according to the present invention, such a crushed product of the titanium oxide gel is edge-treated, so to speak, the wear rate is remarkably reduced by removing the corners in advance, and thus the waste plastic can be decomposed with high thermal decomposition efficiency. Not only can it be pyrolyzed, it can maintain its high thermal decomposition efficiency over a long period of time while maintaining the desired particle size distribution. The same applies to a catalyst made of granules of a titanium oxide mixture. Such edge treatment is well known as one of granulating devices, for example, by crushing a gel of titanium oxide or a mixed gel of at least one gel selected from alumina and silica and a gel of titanium oxide. It can carry out by processing with the rolling granulation apparatus currently used.

特に、本発明によれば、触媒として用いる酸化チタンの顆粒体又は酸化チタン混合物の顆粒体は、0.5〜1.18mmの粒径を有する粒子の割合が60〜90重量%の範囲にあり、1.18〜1.7mmの粒径を有する粒子の割合が10〜40重量%の範囲にある粒度分布を有する共に、1.0%以下の摩耗率を有するものであることが好ましい。   In particular, according to the present invention, the titanium oxide granules or titanium oxide mixture granules used as the catalyst have a ratio of particles having a particle size of 0.5 to 1.18 mm in the range of 60 to 90% by weight. It is preferable that the ratio of the particles having a particle size of 1.18 to 1.7 mm has a particle size distribution in the range of 10 to 40% by weight and has a wear rate of 1.0% or less.

本発明において、上述した粒度分布を有する顆粒体を得る方法は特に限定されるものではない。例えば、前述したように、ゲルを焼成し、得られた焼成物を破砕し、エッジ処理した後、分級して、上記粒度分布を有する顆粒体を得てもよく、また、エッジ処理した後、分級し、得られた分級物を適宜、混合して、上記粒度分布を有する顆粒体を得てもよい。   In the present invention, the method for obtaining the granule having the particle size distribution described above is not particularly limited. For example, as described above, the gel is fired, and the obtained fired product is crushed and subjected to an edge treatment, followed by classification to obtain granules having the above particle size distribution, and after the edge treatment, Classification may be performed, and the obtained classified product may be appropriately mixed to obtain granules having the above particle size distribution.

本発明によれば、熱分解触媒として、上述した酸化チタンの顆粒体又は酸化チタン混合物の顆粒体と共に、無機酸化物又は水酸化物を併用してもよい。このような酸化物や水酸化物として、例えば、アルカリ金属又はアルカリ土類金属の酸化物や水酸化物が好ましく、例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化マグネシウム等を挙げることができる。しかし、これら以外にも、例えば、酸化アルミニウム、酸化ケイ素、酸化鉄等も用いることができる。更に、これらの酸化物の一つの形態として、セメントも無機酸化物として用いることができる。   According to the present invention, an inorganic oxide or a hydroxide may be used in combination with the above-described titanium oxide granules or titanium oxide mixture granules as a thermal decomposition catalyst. As such an oxide or hydroxide, for example, an alkali metal or alkaline earth metal oxide or hydroxide is preferable, and examples thereof include sodium oxide, potassium oxide, calcium oxide, and magnesium oxide. However, besides these, for example, aluminum oxide, silicon oxide, iron oxide, and the like can be used. Furthermore, cement can also be used as an inorganic oxide as one form of these oxides.

このような無機酸化物や水酸化物も、酸化チタンや酸化チタン混合物と同じく、プラスチックの熱分解触媒として有効であるが、上記酸化チタンや酸化チタン混合物とは、好適な反応温度や生成する熱分解ガスが異なるので、酸化チタンや酸化チタン混合物と上述した無機酸化物や水酸化物を併用することによって、熱分解温度の範囲を拡大や最適化、生成ガスの種類の制御等を行うことができる。また、上述した無機酸化物や水酸化物以外にも、炭酸塩も用いることができる。   Such inorganic oxides and hydroxides are also effective as a thermal decomposition catalyst for plastics like titanium oxides and titanium oxide mixtures. However, the above-mentioned titanium oxides and titanium oxide mixtures are suitable for reaction temperatures and heat generated. Since the cracked gas is different, the combined use of titanium oxide or a titanium oxide mixture and the above-mentioned inorganic oxides or hydroxides can expand or optimize the thermal decomposition temperature range, control the type of product gas, etc. it can. In addition to the inorganic oxides and hydroxides described above, carbonates can also be used.

本発明において、熱分解触媒と廃プラスチックの加熱温度は、プラスチックの種類にもよるが、少なくとも、200℃は必要であり、好ましくは、300℃以上であり、特に好ましくは、400〜600℃の範囲である。   In the present invention, the heating temperature of the pyrolysis catalyst and the waste plastic depends on the kind of plastic, but at least 200 ° C. is necessary, preferably 300 ° C. or more, and particularly preferably 400 to 600 ° C. It is a range.

本発明の方法を適用することができるプラスチックは、特に限定されるものではなく、ポリエチレン、ポリプロピレン等の汎用の熱可塑性プラスチックのほか、熱硬化性プラスチックも本発明の方法によって熱分解し、ガス化することができる。必要に応じて、廃プラスチックを軟化点近くまで予熱した後、反応容器に投入してもよい。また、廃プラスチックは、破砕して、数mm角程度の大きさにしたものが好ましいが、特に、限定されるものではない。   The plastic to which the method of the present invention can be applied is not particularly limited. In addition to general-purpose thermoplastics such as polyethylene and polypropylene, thermosetting plastics are also thermally decomposed and gasified by the method of the present invention. can do. If necessary, the waste plastic may be preheated to near the softening point and then charged into the reaction vessel. The waste plastic is preferably crushed to a size of about several square mm, but is not particularly limited.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

実施例1
硫酸法による酸化チタン製造工程のうち、加水分解工程から得られたチタン水酸化物のスラリーを濾過、水洗し、これをリパルプしてスラリーとした。このスラリーにゾル化剤として硝酸を加え、チタン酸化物のゾルを得た。このチタン酸化物のゾルを100℃に加熱、乾燥して、乾燥ゲルとし、これを電気炉中、650℃で3時間焼成して、酸化チタンの焼成物を得た。
Example 1
Of the titanium oxide production process by the sulfuric acid method, the titanium hydroxide slurry obtained from the hydrolysis process was filtered, washed with water, and repulped to obtain a slurry. Nitric acid was added to the slurry as a solubilizing agent to obtain a titanium oxide sol. This titanium oxide sol was heated to 100 ° C. and dried to obtain a dried gel, which was baked in an electric furnace at 650 ° C. for 3 hours to obtain a baked product of titanium oxide.

この酸化チタンの焼成物を粗砕し、得られた粗砕物を回転円盤式転動造粒装置(ダルトン社製マルメライザー)にて周速4m/秒で1時間処理して、エッジ処理した後、分級して、酸化チタンの顆粒体を得た。この酸化チタンの顆粒体の粒度分布は粒径0.5〜1.18mmの粒子が75重量%であり、粒径1.18〜1.7mmの粒子が25重量%であり、比表面積は43m2/gであり、摩耗率は0.37%であった。 After this titanium oxide fired product is crushed, the resulting crushed product is treated with a rotating disk type rolling granulator (Malmerizer manufactured by Dalton Co., Ltd.) at a peripheral speed of 4 m / sec for 1 hour, and then subjected to edge treatment. To obtain titanium oxide granules. The particle size distribution of the titanium oxide granules is 75% by weight of particles having a particle size of 0.5 to 1.18 mm, 25% by weight of particles having a particle size of 1.18 to 1.7 mm, and a specific surface area of 43 m. 2 / g, and the wear rate was 0.37%.

酸化チタンの顆粒体の摩耗率は図2に示す摩耗率測定装置にて測定した。即ち、この摩耗測定装置は、内径63mm、深さ86mmの試料容器9に攪拌機10を取付けてなり、この攪拌機は、軸体11の下端部にそれぞれ長さ20mmの楕円形状の攪拌羽根12を3枚、60゜間隔で軸体から直径方向に延びるように取付けたものであって、攪拌羽根はそれぞれ水平に対して45゜の角度を有するように傾斜している。この攪拌羽根は、その最下縁が試料容器の底から8mmの距離に位置する。   The wear rate of the titanium oxide granules was measured with a wear rate measuring apparatus shown in FIG. In other words, this wear measuring apparatus has a stirrer 10 attached to a sample container 9 having an inner diameter of 63 mm and a depth of 86 mm, and this stirrer has three elliptical stirring blades 12 each having a length of 20 mm at the lower end portion of the shaft body 11. The plates are attached so as to extend in the diameter direction from the shaft body at intervals of 60 °, and the stirring blades are inclined so as to have an angle of 45 ° with respect to the horizontal. The lowermost edge of the stirring blade is located at a distance of 8 mm from the bottom of the sample container.

試料酸化チタンの顆粒体の摩耗率の測定に際しては、これを150mLを200mLメスシリンダーで計量し、重量を記録した後、試料容器に全量を投入し、300rpmで30分間上記攪拌機を用いて攪拌した後、試料容器から試料を取り出し、全量を目開き0.5mmの篩に移し、この篩を通過した試料の重量を測定した。ここに、試料の摩耗率Aは、目開き0.5mmの篩を通過した試料の重量をWとし、測定に供した試料の重量をW0 とするとき、A=(W/W0 )×100(%)である。 In measuring the wear rate of the titanium oxide granules, 150 mL of this was measured with a 200 mL graduated cylinder, the weight was recorded, the entire amount was put into the sample container, and stirred at 300 rpm for 30 minutes using the above stirrer. Thereafter, the sample was taken out from the sample container, and the entire amount was transferred to a sieve having an opening of 0.5 mm, and the weight of the sample that passed through this sieve was measured. Here, the wear rate A of the sample is A = (W / W 0 ) × where W is the weight of the sample that has passed through the sieve having an aperture of 0.5 mm, and W 0 is the weight of the sample subjected to the measurement. 100 (%).

次に、攪拌機と加熱装置を有する500mL容量ビーカーからなる熱分解装置のビーカー内に上で得た酸化チタンの顆粒体50gと約5mm角に破砕したポリエチレン樹脂50gとを仕込み、攪拌しながら、400℃に加熱し、上記ポリエチレン樹脂がすべて熱分解されて、ガス化するまでの時間を測定したところ、13分であった。   Next, 50 g of the titanium oxide granules obtained above and 50 g of polyethylene resin crushed to about 5 mm square were charged into a beaker of a thermal decomposition apparatus comprising a 500 mL capacity beaker having a stirrer and a heating apparatus, and while stirring, 400 g It was 13 minutes when it heated to ° C and the time until all the said polyethylene resins were thermally decomposed and gasified was measured.

実施例2
実施例1において、チタン酸化物の乾燥ゲルを電気炉中、600℃で3時間焼成した以外は、同様にして、酸化チタンの顆粒体を得た。この酸化チタンの顆粒体の粒度分布は粒径0.5〜1.18mmの粒子が79重量%であり、粒径1.18〜1.7mmの粒子が21重量%であり、比表面積は61m2/gであり、摩耗率は1.7%であった。
Example 2
Titanium oxide granules were obtained in the same manner as in Example 1 except that the dried gel of titanium oxide was calcined at 600 ° C. for 3 hours in an electric furnace. The particle size distribution of the titanium oxide granules is 79% by weight of particles having a particle size of 0.5 to 1.18 mm, 21% by weight of particles having a particle size of 1.18 to 1.7 mm, and a specific surface area of 61 m. 2 / g, and the wear rate was 1.7%.

この酸化チタンの顆粒体を熱分解触媒として用いて、実施例1と同様にして、上記ポリエチレン樹脂がすべて熱分解されて、ガス化するまでの時間を測定したところ、13分であった。   Using the titanium oxide granules as a thermal decomposition catalyst, the time until the polyethylene resin was all thermally decomposed and gasified was measured in the same manner as in Example 1. The result was 13 minutes.

実施例3
実施例1で得たチタン酸化物のゾルにアルミナ20重量%を含有するアルミナゾルを混合し、この混合ゾルを100℃に加熱、乾燥して、乾燥ゲルとし、これを電気炉中、650℃で3時間焼成して、酸化チタンとアルミナとの混合物(酸化チタン/アルミナ重量比1/1)の焼成物を得た。
Example 3
An alumina sol containing 20% by weight of alumina was mixed with the titanium oxide sol obtained in Example 1, and this mixed sol was heated to 100 ° C. and dried to obtain a dried gel, which was then heated at 650 ° C. in an electric furnace. Firing was performed for 3 hours to obtain a fired product of a mixture of titanium oxide and alumina (titanium oxide / alumina weight ratio 1/1).

この酸化チタンとアルミナとの混合物の焼成物を実施例1と同様に粗砕し、エッジ処理した後、分級して、酸化チタンとアルミナとの混合物の顆粒体を得た。この顆粒体の粒度分布は粒径0.5〜1.18mmの粒子が65重量%であり、粒径1.18〜1.7mmの粒子が35重量%であり、比表面積は90m2/gであり、摩耗率は0.25%であった。 The fired product of the mixture of titanium oxide and alumina was roughly crushed in the same manner as in Example 1, and after edge treatment, it was classified to obtain granules of a mixture of titanium oxide and alumina. The granule has a particle size distribution of 65% by weight of particles having a particle size of 0.5 to 1.18 mm, 35% by weight of particles having a particle size of 1.18 to 1.7 mm, and a specific surface area of 90 m 2 / g. The wear rate was 0.25%.

この酸化チタンとアルミナとの混合物の顆粒体を熱分解触媒として用いて、実施例1と同様にして、上記ポリエチレン樹脂がすべて熱分解されて、ガス化するまでの時間を測定したところ、13.5分であった。   Using this granule of a mixture of titanium oxide and alumina as a thermal decomposition catalyst, the time until the polyethylene resin was all thermally decomposed and gasified was measured in the same manner as in Example 1. It was 5 minutes.

実施例4
実施例1で得たチタン酸化物のゾルにシリカ30重量%を含有するシリカゾルを混合し、この混合ゾルを100℃に加熱、乾燥して、乾燥ゲルとし、これを電気炉中、650℃で3時間焼成して、酸化チタンとシリカとの混合物(酸化チタン/シリカ重量比35:65)の焼成物を得た。
Example 4
A silica sol containing 30% by weight of silica was mixed with the titanium oxide sol obtained in Example 1, and this mixed sol was heated to 100 ° C. and dried to obtain a dry gel, which was heated at 650 ° C. in an electric furnace. Firing was performed for 3 hours to obtain a fired product of a mixture of titanium oxide and silica (titanium oxide / silica weight ratio 35:65).

この酸化チタンとシリカとの混合物の焼成物を実施例1と同様に粗砕し、エッジ処理した後、分級して、酸化チタンとシリカとの混合物の顆粒体を得た。この顆粒体の粒度分布は粒径0.5〜1.18mmの粒子が55重量%であり、粒径1.18〜1.7mmの粒子が45重量%であり、比表面積は75m2/gであり、摩耗率は0.20%であった。 The fired product of the mixture of titanium oxide and silica was roughly crushed in the same manner as in Example 1, and after edge treatment, it was classified to obtain granules of a mixture of titanium oxide and silica. The granule has a particle size distribution of 55% by weight of particles having a particle size of 0.5 to 1.18 mm, 45% by weight of particles having a particle size of 1.18 to 1.7 mm, and a specific surface area of 75 m 2 / g. The wear rate was 0.20%.

この酸化チタンとシリカとの混合物の顆粒体を熱分解触媒として用いて、実施例1と同様にして、上記ポリエチレン樹脂がすべて熱分解されて、ガス化するまでの時間を測定したところ、14分であった。   Using this granule of a mixture of titanium oxide and silica as a thermal decomposition catalyst, the time until the polyethylene resin was all thermally decomposed and gasified was measured in the same manner as in Example 1. Met.

比較例1
実施例1において得た酸化チタンの焼成物の粗砕物をエッジ処理することなく、分級して、粒径0.5〜1.18mmの粒子が80重量%であり、粒径1.18〜1.7mmの粒子が20重量%である粒度分布を有し、比表面積が46m2/gであり、摩耗率が3.5%の顆粒体を得た。この酸化チタンの顆粒体を熱分解触媒として用いて、実施例1と同様にして、上記ポリエチレン樹脂がすべて熱分解されて、ガス化するまでの時間を測定したところ、18分であった。
Comparative Example 1
The coarsely baked titanium oxide obtained in Example 1 was classified without edge treatment, and particles having a particle size of 0.5 to 1.18 mm were 80% by weight, and a particle size of 1.18 to 1 A granule having a particle size distribution of 20% by weight of 0.7 mm particles, a specific surface area of 46 m 2 / g, and a wear rate of 3.5% was obtained. Using this titanium oxide granule as a thermal decomposition catalyst, the time until the polyethylene resin was all thermally decomposed and gasified was measured in the same manner as in Example 1, and it was 18 minutes.

本発明による方法を実施するための装置構成の一例を示す一部断面図である。It is a partial cross section figure which shows an example of the apparatus structure for enforcing the method by this invention. 酸化チタンの摩耗率を測定するための装置を示す図である。It is a figure which shows the apparatus for measuring the abrasion rate of a titanium oxide.

符号の説明Explanation of symbols

1…反応容器
2…廃プラスチック片投入口
3…担体ガス
4…担体ガス管
5…熱分解触媒
6…廃プラスチック片
7…攪拌機
8…加熱装置

DESCRIPTION OF SYMBOLS 1 ... Reaction container 2 ... Waste plastic piece inlet 3 ... Carrier gas 4 ... Carrier gas pipe 5 ... Pyrolysis catalyst 6 ... Waste plastic piece 7 ... Stirrer 8 ... Heating device

Claims (3)

担体ガスの流通下に酸化チタンの顆粒体からなる触媒と共に廃プラスチック片を加熱しながら攪拌して、上記プラスチックをガス化する廃プラスチックの分解方法において、上記酸化チタンの顆粒体がチタン酸化物のゾルを乾燥して酸化チタンゲルとし、この酸化チタンゲルを450〜850℃の範囲の温度で焼成し、この焼成物を破砕し、エッジ処理して得られるものであって、0.5〜1.18mmの粒径を有する粒子の割合が50〜95重量%の範囲にあり、1.18〜1.7mmの粒径を有する粒子の割合が5〜50重量%の範囲にある粒度分布を有すると共に、2.0%以下の摩耗率を有するものであることを特徴とする方法。   In the method for decomposing waste plastics, wherein the plastics are gasified by stirring the waste plastic pieces together with a catalyst comprising titanium oxide granules under the flow of the carrier gas, the titanium oxide granules are made of titanium oxide. The sol is dried to obtain a titanium oxide gel, which is obtained by baking the titanium oxide gel at a temperature in the range of 450 to 850 ° C., crushing the fired product, and subjecting it to an edge treatment. A particle size distribution in which the proportion of particles having a particle size of 50 to 95% by weight and the proportion of particles having a particle size of 1.18 to 1.7 mm is in the range of 5 to 50% by weight; A method having a wear rate of 2.0% or less. 担体ガスの流通下にアルミナとシリカから選ばれる少なくとも1種と酸化チタンとの混合物の顆粒体からなる触媒と共に廃プラスチック片を加熱しながら攪拌して、上記プラスチックをガス化する廃プラスチックの分解方法において、上記アルミナとシリカから選ばれる少なくとも1種と酸化チタンとの混合物の顆粒体がアルミナゾルとシリカゾルから選ばれる少なくとも1種のゾルとチタン酸化物のゾルとを混合し、乾燥してゲルとし、このゲルを450〜850℃の範囲の温度で焼成し、この焼成物を破砕し、エッジ処理して得られるものであって、0.5〜1.18mmの粒径を有する粒子の割合が50〜95重量%の範囲にあり、1.18〜1.7mmの粒径を有する粒子の割合が5〜50重量%の範囲にある粒度分布を有すると共に、2.0%以下の摩耗率を有するものであることを特徴とする方法。   A method for decomposing waste plastics by gasifying the plastic by heating and stirring the waste plastic pieces together with a catalyst comprising a granule of a mixture of at least one selected from alumina and silica and titanium oxide under the flow of a carrier gas In the above, a granule of a mixture of at least one selected from alumina and silica and titanium oxide is mixed with at least one sol selected from alumina sol and silica sol and a sol of titanium oxide, and dried to form a gel. The gel is fired at a temperature in the range of 450 to 850 ° C., the fired product is crushed and subjected to edge treatment, and the proportion of particles having a particle diameter of 0.5 to 1.18 mm is 50. When the particle size distribution is in the range of ~ 95% by weight, the proportion of particles having a particle size of 1.18 to 1.7 mm is in the range of 5 to 50% by weight. Wherein the, one having 2.0% or less of the wear rate. 顆粒体が0.5〜1.18mmの粒径を有する粒子の割合が60〜90重量%の範囲にあり、1.18〜1.7mmの粒径を有する粒子の割合が10〜40重量%の範囲にある粒度分布を有すると共に、1.0%以下の摩耗率を有するものである請求項1又は2に記載の方法。

The proportion of particles having a particle size of 0.5 to 1.18 mm in the range of 60 to 90% by weight and the proportion of particles having a particle size of 1.18 to 1.7 mm is 10 to 40% by weight The method according to claim 1, wherein the method has a particle size distribution in the range of 1.0% and a wear rate of 1.0% or less.

JP2004126000A 2004-04-21 2004-04-21 Disassembly method of waste plastic Expired - Lifetime JP4602690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126000A JP4602690B2 (en) 2004-04-21 2004-04-21 Disassembly method of waste plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126000A JP4602690B2 (en) 2004-04-21 2004-04-21 Disassembly method of waste plastic

Publications (3)

Publication Number Publication Date
JP2005307007A true JP2005307007A (en) 2005-11-04
JP2005307007A5 JP2005307007A5 (en) 2007-06-07
JP4602690B2 JP4602690B2 (en) 2010-12-22

Family

ID=35436138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126000A Expired - Lifetime JP4602690B2 (en) 2004-04-21 2004-04-21 Disassembly method of waste plastic

Country Status (1)

Country Link
JP (1) JP4602690B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847313A1 (en) * 2006-04-19 2007-10-24 Kusatsu Electric Co., Ltd. Apparatus of Catalyst-circulation type for decomposing waste plastics and organics, and system thereof
EP1918032A2 (en) * 2006-10-31 2008-05-07 Kusatsu Electric Co., Ltd. Decomposition method of waste plastics and organics
WO2009004801A1 (en) * 2007-07-05 2009-01-08 Panasonic Corporation Method of recovering valuable materials from waste household electrical appliance
WO2009051253A1 (en) 2007-10-19 2009-04-23 Kusatsu Electric Co., Ltd. Catalyst circulating waste plastic/organic matter decomposition apparatus and decomposition system
JP2009270123A (en) * 2006-04-19 2009-11-19 Kusatsu Electric Co Ltd Decomposition method of waste plastics and organic matter, decomposition device, and decomposition system
WO2010021397A1 (en) 2008-08-20 2010-02-25 堺化学工業株式会社 Catalyst and method for pyrolysis of organic substances and method for manufacturing such catalyst
WO2010021122A1 (en) 2008-08-20 2010-02-25 草津電機株式会社 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
WO2013089222A1 (en) 2011-12-15 2013-06-20 堺化学工業株式会社 Granular body of titanium oxide having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material using said granular body
WO2014125995A1 (en) * 2013-02-14 2014-08-21 昭和電工株式会社 Granulated rutile titanium oxide catalyst and method for decomposing plastic
WO2015147021A1 (en) * 2014-03-27 2015-10-01 Rapas株式会社 Method for using titanium oxide granules to recover reinforcing material from reinforced plastic
JP6941902B1 (en) * 2020-07-10 2021-09-29 Rapas株式会社 Object processing method and processing equipment
JPWO2022050281A1 (en) * 2020-09-01 2022-03-10

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288265A (en) * 1976-01-19 1977-07-23 Matsushita Electric Ind Co Ltd Thermal decomposition of organic high molecular compounds
JPH05329380A (en) * 1992-05-27 1993-12-14 Asahi Chem Ind Co Ltd Cubic catalyst and its manufacture
JPH0873647A (en) * 1994-08-31 1996-03-19 Shizuoka Univ Method for recovering styrene from polystyrene
JPH08253773A (en) * 1995-03-17 1996-10-01 Mitsui Eng & Shipbuild Co Ltd Method of pyrolyzing plastic and plastic pyrolysis catalyst for use therein
JPH09194625A (en) * 1996-01-19 1997-07-29 Nippon Telegr & Teleph Corp <Ntt> Method and equipment for decomposition of waste material
JPH1180747A (en) * 1997-09-04 1999-03-26 Ebara Corp Oil formation from mixed plastic
JP2001316303A (en) * 2000-03-01 2001-11-13 San Kaihatsu Kk Method for recovery of styrene monomer from polystyrene resin by catalytic method
JP2002363337A (en) * 2001-06-07 2002-12-18 Osada Giken Kk Method for recycling plastic as resource

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288265A (en) * 1976-01-19 1977-07-23 Matsushita Electric Ind Co Ltd Thermal decomposition of organic high molecular compounds
JPH05329380A (en) * 1992-05-27 1993-12-14 Asahi Chem Ind Co Ltd Cubic catalyst and its manufacture
JPH0873647A (en) * 1994-08-31 1996-03-19 Shizuoka Univ Method for recovering styrene from polystyrene
JPH08253773A (en) * 1995-03-17 1996-10-01 Mitsui Eng & Shipbuild Co Ltd Method of pyrolyzing plastic and plastic pyrolysis catalyst for use therein
JPH09194625A (en) * 1996-01-19 1997-07-29 Nippon Telegr & Teleph Corp <Ntt> Method and equipment for decomposition of waste material
JPH1180747A (en) * 1997-09-04 1999-03-26 Ebara Corp Oil formation from mixed plastic
JP2001316303A (en) * 2000-03-01 2001-11-13 San Kaihatsu Kk Method for recovery of styrene monomer from polystyrene resin by catalytic method
JP2002363337A (en) * 2001-06-07 2002-12-18 Osada Giken Kk Method for recycling plastic as resource

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270123A (en) * 2006-04-19 2009-11-19 Kusatsu Electric Co Ltd Decomposition method of waste plastics and organic matter, decomposition device, and decomposition system
EP1847313A1 (en) * 2006-04-19 2007-10-24 Kusatsu Electric Co., Ltd. Apparatus of Catalyst-circulation type for decomposing waste plastics and organics, and system thereof
US7776284B2 (en) 2006-04-19 2010-08-17 Kusatsu Electric Co., Ltd. Apparatus of catalyst-circulation type for decomposing waste plastics and organics, and system thereof
EP1918032A2 (en) * 2006-10-31 2008-05-07 Kusatsu Electric Co., Ltd. Decomposition method of waste plastics and organics
EP1918032A3 (en) * 2006-10-31 2012-12-19 Kusatsu Electric Co., Ltd. Decomposition method of waste plastics and organics
WO2009004801A1 (en) * 2007-07-05 2009-01-08 Panasonic Corporation Method of recovering valuable materials from waste household electrical appliance
JPWO2009051253A1 (en) * 2007-10-19 2011-03-03 草津電機株式会社 Catalyst recycling type waste plastic / organic matter decomposition equipment and decomposition system
WO2009051253A1 (en) 2007-10-19 2009-04-23 Kusatsu Electric Co., Ltd. Catalyst circulating waste plastic/organic matter decomposition apparatus and decomposition system
KR101536156B1 (en) * 2007-10-19 2015-07-13 쿠사츠 일렉트릭 컴퍼니 리미티드 Catalyst circulating waste plastic/organic matter decomposition apparatus and decomposition system
JP4469417B2 (en) * 2007-10-19 2010-05-26 草津電機株式会社 Catalyst recycling type waste plastic / organic matter decomposition equipment and decomposition system
US8722958B2 (en) 2008-08-20 2014-05-13 Kusatsu Electric Co., Ltd. Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
US8956995B2 (en) 2008-08-20 2015-02-17 Sakai Chemical Industry Co., Ltd. Catalyst and method for thermal decomposition of organic substance and method for producing such catalyst
KR20110046467A (en) 2008-08-20 2011-05-04 사까이가가꾸고오교가부시끼가이샤 Catalysts and methods for thermal decomposition of organics and methods of making such catalysts
US20110144406A1 (en) * 2008-08-20 2011-06-16 Mitsuru Masatsugu Catalyst and method for thermal decomposition of organic substance and method for producing such catalyst
CN102137717A (en) * 2008-08-20 2011-07-27 堺化学工业株式会社 Catalyst and method for pyrolysis of organic substances and method for manufacturing such catalyst
CN102137724A (en) * 2008-08-20 2011-07-27 草津电机株式会社 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
JP2010046575A (en) * 2008-08-20 2010-03-04 Sakai Chem Ind Co Ltd Catalyst and method for pyrolytically decomposing organic matter as well as method of manufacturing this catalyst
JP5190897B2 (en) * 2008-08-20 2013-04-24 草津電機株式会社 Method for decomposing waste plastics and organic substances using titanium oxide granules with optimum particle characteristics
KR20110041531A (en) 2008-08-20 2011-04-21 쿠사츠 일렉트릭 컴퍼니 리미티드 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
CN102137724B (en) * 2008-08-20 2013-09-11 草津电机株式会社 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
WO2010021122A1 (en) 2008-08-20 2010-02-25 草津電機株式会社 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
KR101670524B1 (en) * 2008-08-20 2016-10-28 사까이가가꾸고오교가부시끼가이샤 Catalyst and method for thermal decomposition of organic substance and method for producing such catalyst
KR101650875B1 (en) 2008-08-20 2016-08-24 쿠사츠 일렉트릭 컴퍼니 리미티드 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
WO2010021397A1 (en) 2008-08-20 2010-02-25 堺化学工業株式会社 Catalyst and method for pyrolysis of organic substances and method for manufacturing such catalyst
WO2013089222A1 (en) 2011-12-15 2013-06-20 堺化学工業株式会社 Granular body of titanium oxide having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material using said granular body
US9079166B2 (en) 2011-12-15 2015-07-14 Sakai Chemical Industry Co., Ltd. Granular body of titanium oxide having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material using said granular body
JP5655162B2 (en) * 2011-12-15 2015-01-14 堺化学工業株式会社 Granules of titanium oxide supporting transition metal and / or transition metal oxide, and method for decomposing waste plastic / organic matter using the granules
CN104080531A (en) * 2011-12-15 2014-10-01 堺化学工业株式会社 Titanium oxide granules having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material by usingthe granules
WO2014125995A1 (en) * 2013-02-14 2014-08-21 昭和電工株式会社 Granulated rutile titanium oxide catalyst and method for decomposing plastic
JPWO2015147021A1 (en) * 2014-03-27 2017-04-13 Rapas株式会社 Method for recovering reinforcement from reinforced plastic using titanium oxide granules
CN106459472A (en) * 2014-03-27 2017-02-22 拉帕斯株式会社 Method for using titanium oxide granules to recover reinforcing material from reinforced plastic
WO2015147021A1 (en) * 2014-03-27 2015-10-01 Rapas株式会社 Method for using titanium oxide granules to recover reinforcing material from reinforced plastic
US10279336B2 (en) 2014-03-27 2019-05-07 Rapas Corporation Method for using titanium oxide granules to recover reinforcing material from reinforced plastic
CN106459472B (en) * 2014-03-27 2020-09-29 拉帕斯株式会社 Method for recovering reinforcing material from reinforced plastic using titanium oxide granules
JP6941902B1 (en) * 2020-07-10 2021-09-29 Rapas株式会社 Object processing method and processing equipment
JP2022016301A (en) * 2020-07-10 2022-01-21 Rapas株式会社 Object treating method and treating apparatus
JP7011356B2 (en) 2020-07-10 2022-02-10 Rapas株式会社 Object processing method and processing equipment
CN115768571A (en) * 2020-07-10 2023-03-07 拉派司株式会社 Method and device for treating objects
JPWO2022050281A1 (en) * 2020-09-01 2022-03-10
WO2022050281A1 (en) * 2020-09-01 2022-03-10 帝人株式会社 Method for decomposing plastic-containing material, method for recovering inorganic material, recycled carbon fiber, method for producing recycled carbon fiber, blended yarn, carbon fiber-reinforced thermoplastic resin pellets containing said blended yarn and method for producing same, carbon fiber-reinforced thermoplastic resin strand and method for producing same, and carbon fiber-reinforced thermoplastic pellets

Also Published As

Publication number Publication date
JP4602690B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP5638746B2 (en) Catalyst and method for pyrolyzing organic matter and method for producing such a catalyst
JP4602690B2 (en) Disassembly method of waste plastic
JP5190897B2 (en) Method for decomposing waste plastics and organic substances using titanium oxide granules with optimum particle characteristics
RU2437917C2 (en) Improved procedure for conversion of material of carbon energy carrier
CN1189108A (en) Iron sulfides and process for producing the same
JP2002363337A (en) Method for recycling plastic as resource
JP4719082B2 (en) High temperature slag treatment method
JP2007191670A (en) System for producing alkaline soil-improving material, combined with flue-gas desulfurization
CN1463251A (en) Alumina particle and method for producing same
JPH07267619A (en) Production of granular activated carbon
JP6237788B2 (en) Method for thermally decomposing organic substance and method for producing pyrolyzed product of organic substance
JP2005307007A5 (en)
CA2981611C (en) Process for upgrading asbestos tailings
JP3284861B2 (en) Waste treatment method for cement raw materials
CN109365472A (en) A kind of cleaning method of solid waste
JP4848479B2 (en) Cracking catalyst
KR102332537B1 (en) Continuous method of preparing high quality slaked lime slurry from low quallity unslaked lime and method of neutralizing acidic gases using high quality slaked lime slurry obtained therefrom
CN106277873B (en) A kind of microwave production cement method with exhaust gas generating function
JP5522125B2 (en) Method for producing silicon tetrachloride
JP6519020B2 (en) Hydrogen production apparatus and hydrogen production method
JP6323835B2 (en) Briquette and manufacturing method thereof
JP3868844B2 (en) Chlorine-containing resin processing equipment
JP2017149619A (en) Method for producing anhydrous gypsum
JP2017149620A (en) Apparatus for reforming waste gypsum and method for operating the same
JP2022142857A (en) Filler treatment method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4602690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term