JPH05329380A - Cubic catalyst and its manufacture - Google Patents

Cubic catalyst and its manufacture

Info

Publication number
JPH05329380A
JPH05329380A JP4134672A JP13467292A JPH05329380A JP H05329380 A JPH05329380 A JP H05329380A JP 4134672 A JP4134672 A JP 4134672A JP 13467292 A JP13467292 A JP 13467292A JP H05329380 A JPH05329380 A JP H05329380A
Authority
JP
Japan
Prior art keywords
catalyst
spherical
cubic
cellulose
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4134672A
Other languages
Japanese (ja)
Inventor
Yoshihito Yaginuma
義仁 柳沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4134672A priority Critical patent/JPH05329380A/en
Publication of JPH05329380A publication Critical patent/JPH05329380A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to manufacture a cubic catalyst with a sharp granular distribution and high sphericalness efficiently by using a cellulose- contained cubic carrier as a core and a catalytic component as the coat. CONSTITUTION:This cubic catalyst is composed of a cubic carrier containing Z 10% powdery cellulose as a core and a catalytic component as the coat. This catalytic component is nickel, cobalt, molybdenum or iron catalytic material together with the catalytic carrier material. Consequently, it is possible to manufacture a cubic catalyst with a sharp granular distribution and high sphericalness efficiently. In addition, it is possible to manufacture a cubic catalyst with a varying specific gravity or a hollow cubic catalyst, so that catalytic reaction conditions can be optimized easily. Further, the use quantity of a valuable catalyst can be reduced by the use quantity of the cubic catalyst and thereby, reducing the manufacturing cost of catalyst is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セルロースを含有する
球形の担体を、核として含有する球形触媒およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spherical catalyst containing a cellulose-containing spherical carrier as a core and a method for producing the same.

【0002】[0002]

【従来の技術】触媒は、反応系流体の流通を良くし、物
質や熱の移動を速やかにすることで反応効率を向上させ
るという目的のために造粒される。さらに造粒物は、耐
摩耗性や反応条件の制限から、より球形である事が望ま
れる。このような造粒物を得る方法としては、触媒成分
を他の助剤と共に混練して粒状化する方法と、球形担体
を核として、そのまわりに触媒成分を被覆する方法が考
えられる。前者の方法としては、触媒成分を傾斜皿型等
の回転容器に仕込み、転動させながら結合液を散布して
造粒する方法(特開昭54−28780号公報)や、触
媒成分に結晶セルロースを加え、水と混練し、ペレット
に成形してから転動式造粒機にて球形化する方法(特公
昭46−20683号公報)などが知られている。また
後者の方法としてはノンパレル(フロイント産業(株)
製、砂糖あるいは砂糖と澱粉が原料の球形顆粒)、グラ
ニュー糖、結晶乳糖、塩、炭化ケイ素、ムライト、αア
ルミナ、石英砂などの核をCFグラニュレーター(フロ
イント産業(株)製)等の転動型造粒装置にて転動しつ
つ、結合液を噴霧すると同時に粉末をかけながら造粒す
る方法(日本粉体工業技術協会編(1991年);「造
粒ハンドブック」p425−426、特開昭52−11
7292号公報、特開昭54−149379号公報)な
どが知られているが、この方法において、核の成分を特
定することにより製造収率などを改善するという考え方
は知られていない。
2. Description of the Related Art A catalyst is granulated for the purpose of improving the flow of a reaction system fluid and accelerating the movement of substances and heat to improve the reaction efficiency. Further, the granulated product is desired to be more spherical because of its wear resistance and restriction of reaction conditions. As a method of obtaining such a granulated material, a method of kneading the catalyst component with other auxiliary agents to granulate it, and a method of coating the catalyst component around the spherical carrier as a core are considered. As the former method, a method of charging a catalyst component in a rotary container such as an inclined dish type and spraying a binding solution while rolling to granulate (Japanese Patent Application Laid-Open No. 54-28780) or a crystalline cellulose for the catalyst component. A method of kneading with water, kneading with water, forming into pellets, and then spheroidizing with a rolling granulator (Japanese Patent Publication No. 46-20683) is known. As the latter method, non-pareil (Freund Industries Co., Ltd.)
Made of sugar, or spherical granules of which sugar and starch are raw materials), granulated sugar, crystalline lactose, salt, silicon carbide, mullite, α-alumina, quartz sand, etc. are transferred to a CF granulator (made by Freund Sangyo Co., Ltd.) or the like. A method of granulating while spraying a binding solution and simultaneously applying powder while rolling with a dynamic granulator (edited by Japan Powder Industrial Technology Association (1991); "Granulation Handbook" p425-426, JP Sho 52-11
7292 and JP-A-54-149379), etc., but the idea of improving the production yield and the like by specifying the core component is not known in this method.

【0003】[0003]

【発明が解決しようとする課題】後者は前者に比べ、粒
状化の容易さ、製品粒度分布のシャープさ、製品形状の
丸さの点で有利な方法であるが、触媒用の球形担体とし
て適当な素材がなかったために、特に製造収率の点で劣
り、汎用されるに至っていない。
The latter method is more advantageous than the former method in terms of easiness of granulation, sharpness of product particle size distribution, and roundness of product shape, but it is suitable as a spherical carrier for a catalyst. Since such materials were not available, the production yield was particularly poor, and they have not been widely used.

【0004】[0004]

【課題を解決するための手段】本発明者はこうした現状
に鑑み、球形触媒について鋭意検討した結果、本発明に
到達したものである。即ち、本発明は、セルロースを1
0%以上含有する球形担体を、核として含有することを
特徴とする球形触媒およびその製造方法に関する。
The present inventors have arrived at the present invention as a result of diligent studies on a spherical catalyst in view of the above circumstances. That is, the present invention uses 1
The present invention relates to a spherical catalyst containing 0% or more of a spherical carrier as a core, and a method for producing the same.

【0005】以下、本発明について説明する。本発明で
いう球形担体は、セルロースを10%以上含有する事が
必要である。セルロースが10%未満の含有量であると
保水性が低下するので、触媒成分を被覆する際に、粒子
の凝集が生じ易くなり収率が低下してしまう。また機械
的強度が低下するので、触媒成分を被覆する際に摩損す
るなどして好ましくない。セルロース含有の効果は、セ
ルロースを50%以上含有する場合に顕著であり、特に
セルロースが100%より成る球形担体が好ましい。
The present invention will be described below. The spherical carrier in the present invention needs to contain 10% or more of cellulose. When the content of cellulose is less than 10%, the water retention property is lowered, so that when the catalyst component is coated, the particles are likely to be aggregated and the yield is lowered. Further, since the mechanical strength is lowered, it is not preferable because it is worn away when coating the catalyst component. The effect of containing cellulose is remarkable when it contains 50% or more of cellulose, and a spherical carrier composed of 100% of cellulose is particularly preferable.

【0006】セルロースの原料としては粉末状であるこ
とが好ましい。セルロース粉末は、例えば、リンター、
パルプ、再生繊維等のセルロース質原料に化学的処理
(酸加水分解、アルカリ酸化分解、等)、および/もし
くは機械的処理(粉砕、磨砕、等)を施すことにより製
造されたものを用いることができる。本発明に用いられ
るセルロースとしては球形担体の製造のしやすさの点か
ら、特に結晶セルロースが好ましい。
The raw material of cellulose is preferably in powder form. Cellulose powder, for example, linter,
Use those produced by subjecting cellulosic raw materials such as pulp and recycled fibers to chemical treatment (acid hydrolysis, alkali oxidation decomposition, etc.) and / or mechanical treatment (crushing, grinding, etc.) You can As the cellulose used in the present invention, crystalline cellulose is particularly preferable from the viewpoint of easy production of the spherical carrier.

【0007】セルロース以外の成分としては、アスベス
ト、沸石、ケイソウ土、マグネシア、活性白土、活性ア
ルミナ、ボーキサイト、シリカゲル、ケイ酸塩、黒鉛、
ステアリン酸、ステアリン酸塩、ポリアクリル酸、ポリ
アクリル酸塩、澱粉、乳糖などの粉末を使用することが
できる。これらの成分は球形触媒の最終的な物性、つま
り比重や、強度などを考慮して選択すればよい。また、
球形担体の製造に使用される結合剤成分としては、澱粉
糊、メチルセルロース、ポリビニルアルコール、カルボ
キシメチルセルロースナトリウム、ヒドロキシプロピル
セルロースなどを使用することができる。
As components other than cellulose, asbestos, zeolite, diatomaceous earth, magnesia, activated clay, activated alumina, bauxite, silica gel, silicate, graphite,
Powders of stearic acid, stearates, polyacrylic acid, polyacrylates, starch, lactose and the like can be used. These components may be selected in consideration of the final physical properties of the spherical catalyst, that is, specific gravity and strength. Also,
As the binder component used for producing the spherical carrier, starch paste, methyl cellulose, polyvinyl alcohol, sodium carboxymethyl cellulose, hydroxypropyl cellulose and the like can be used.

【0008】本発明に用いられる球形担体は、例えば以
下の方法で製造されるが、これらの方法に限定されるも
のではない。セルロース粉末を10%以上含有する粉体
を混合撹拌造粒機に仕込み、均一に加水する。水の代わ
りに結合剤としてメチルセルロースなどの水溶液を用い
ても良い。必要であれば、続いて押し出し機を用いて押
し出し造粒を行っても良い。その後、これらを転動型造
粒機に移し、必要に応じて蒸留水、あるいは結合液を噴
霧しながら、造粒、球形化を行った後、乾燥し、必要に
より篩分し、球形担体を得る。
The spherical carrier used in the present invention is produced, for example, by the following methods, but is not limited to these methods. A powder containing 10% or more of cellulose powder is charged into a mixing and agitation granulator to uniformly add water. An aqueous solution of methyl cellulose or the like may be used as a binder instead of water. If necessary, extrusion granulation may be subsequently performed using an extruder. After that, these are transferred to a tumbling type granulator, and while spraying distilled water or a binding solution as necessary, granulation and spheroidization are performed, followed by drying and sieving if necessary to obtain a spherical carrier. obtain.

【0009】使用する球形担体の粒径は目標とする球形
触媒の粒径と触媒の含有量より決定すれば良いが、0.
1mm以上であることが必要である。0.1mm未満で
は球形担体を転動させる事が難しいために触媒成分の被
覆が非常に困難である。1mm以上の球形触媒の製造は
従来技術でも可能であるから、それよりも粒径の小さい
球形触媒を製造することに本発明の価値がある。
The particle size of the spherical carrier to be used may be determined from the target particle size of the spherical catalyst and the content of the catalyst.
It must be 1 mm or more. If it is less than 0.1 mm, it is difficult to roll the spherical carrier, and it is very difficult to coat the catalyst component. Since it is possible to produce a spherical catalyst having a diameter of 1 mm or more by the conventional technique, it is worth the present invention to produce a spherical catalyst having a smaller particle size.

【0010】球形触媒の形状及び粒度分布は使用する球
形担体の性質に大きく依存する。よって、粒度分布の狭
い球形担体を使用すれば、粒度分布の狭い球形触媒を製
造することができるし、また、真球度の高い球形担体を
使用すれば、真球度の高い球形触媒を製造することがで
きる。従来、粒度分布がシャープで、かつ平均粒径が小
さく、さらには真球度の高い球形担体を製造することは
困難であり、また製造できたとしても、小さな球形担体
のまわりに触媒成分を被覆しようとすると粒子が凝集し
てしまい、球形触媒を収率よく製造することはたいへん
困難であった。しかしながら本発明では、セルロースを
10%以上配合することにより、粒度分布がシャープ
で、平均粒径が小さく、真球度の高い球形担体を容易に
製造することができる。しかも、セルロースを10%以
上含んでいるから適度な吸水性を持つために、触媒成分
を被覆する際に粒子の凝集が抑制され、その結果、粒度
分布がシャープで、平均粒径が小さく、さらには真球度
高い球形触媒を収率よく製造することが可能となる。
The shape and particle size distribution of spherical catalysts depends largely on the nature of the spherical support used. Therefore, if a spherical carrier having a narrow particle size distribution is used, a spherical catalyst having a narrow particle size distribution can be produced, and if a spherical carrier having a high sphericity is used, a spherical catalyst having a high sphericity can be manufactured. can do. Conventionally, it is difficult to manufacture a spherical carrier having a sharp particle size distribution, a small average particle size, and high sphericity, and even if it can be manufactured, a catalyst component is coated around a small spherical carrier. If this is attempted, the particles will agglomerate, making it very difficult to produce a spherical catalyst in good yield. However, in the present invention, a spherical carrier having a sharp particle size distribution, a small average particle size and a high sphericity can be easily produced by blending 10% or more of cellulose. Moreover, since it contains 10% or more of cellulose, it has an appropriate water absorption, so that the aggregation of particles is suppressed when coating the catalyst component, and as a result, the particle size distribution is sharp and the average particle size is small. Makes it possible to produce a spherical catalyst with high sphericity in good yield.

【0011】本発明でいう触媒成分としては、ニッケル
系、コバルト−モリブデン系、鉄系、白金系、銅系、亜
鉛系、アルミナ系、シリカ−アルミナ系、バナジウム、
シリカゲルなどの触媒物質および触媒担体物質が用いら
れる。焼成賦活された触媒物質を使用する場合はそのま
ま使う。焼成賦活前の触媒物質、あるいは触媒担体物質
を使用する場合は球形担体に被覆後、焼成(賦活)して
使用する。このとき焼成温度が350℃以上であればセ
ルロースは焼失してしまい、中空状の、あるいは内部が
多孔性の球形触媒となる。球形担体への被覆を容易にす
る目的で、鉱物質、天然有機物など他の添加剤を触媒成
分に配合して用いても良い。被覆に供せられるこれらの
粒子の大きさは、球形担体の直径に対しておおよそ長径
が1/4以下、短径が1/7以下であることが好ましい
ので、場合によってはあらかじめ粉砕及び/もしくは篩
分を行う必要が有る。
As the catalyst component in the present invention, nickel-based, cobalt-molybdenum-based, iron-based, platinum-based, copper-based, zinc-based, alumina-based, silica-alumina-based, vanadium,
Catalyst materials such as silica gel and catalyst support materials are used. When using the catalyst material activated by calcination, use it as it is. When a catalyst substance before calcination activation or a catalyst carrier substance is used, it is used after being coated (coated) on a spherical carrier and then calcined (activated). At this time, if the calcination temperature is 350 ° C. or higher, the cellulose will be burned out, and a hollow or porous spherical catalyst will be formed. For the purpose of facilitating the coating on the spherical carrier, other additives such as mineral substances and natural organic substances may be mixed with the catalyst component and used. The size of these particles provided for coating is preferably about 1/4 or less of the major axis and 1/7 or less of the minor axis with respect to the diameter of the spherical carrier. It is necessary to screen.

【0012】本発明で用いられる球形触媒は、例えば以
下の方法で製造されるが、これらの方法に限定されるも
のではない。触媒成分を粉体の状態で被覆に供する場合
は、球形担体を遠心転動型コーティング装置、あるいは
皿型造粒機などに仕込み、転動させ、メチルセルロース
水溶液などのを結合剤を連続的に噴霧し、触媒成分を供
給して球形担体に触媒成分を被覆した後、乾燥する。ま
た触媒成分が焼成賦活前であるなどの理由で、液体に懸
濁した状態で被覆に供する場合は、流動層コーティング
機、あるいは転動流動層型コーティング装置に球形担体
を仕込み、流動あるいは転動流動した状態の球形担体に
スラリー状の触媒成分を噴霧して被覆した後、必要であ
れば乾燥を行う。球形担体と触媒成分の重量比は、適宜
決定すれば良いが、1/100〜50/1程度である。
The spherical catalyst used in the present invention is produced, for example, by the following methods, but is not limited to these methods. When coating the catalyst component in the form of powder, the spherical carrier is placed in a centrifugal tumbling type coating device or a dish type granulator and rolled, and the binder such as methyl cellulose aqueous solution is continuously sprayed. Then, the catalyst component is supplied to coat the catalyst component on the spherical carrier, and then the carrier is dried. If the catalyst components are to be coated in a state of being suspended in a liquid for reasons such as before activation by calcination, a spherical carrier is placed in a fluidized bed coating machine or a rolling fluidized bed type coating device to flow or roll. After the slurry-like catalyst component is sprayed and coated on the spherical carrier in a fluidized state, it is dried if necessary. The weight ratio of the spherical carrier and the catalyst component may be appropriately determined, but is about 1/100 to 50/1.

【0013】このようにして得られた球形触媒は、触媒
物質が焼成賦活後のものであればそのまま使用に供され
るし、必要であれば焼成賦活後に使用される。また触媒
成分が触媒担体物質のみの場合は、焼成後、球形触媒担
体とし、ついで常法に従い触媒物質を担持させて使用す
ることも可能である。
The spherical catalyst thus obtained is used as it is if the catalyst substance is after calcination activation, and is used after calcination activation if necessary. Further, when the catalyst component is only the catalyst carrier substance, it is also possible to use it after calcination into a spherical catalyst carrier, and then supporting the catalyst substance according to a conventional method.

【0014】[0014]

【実施例】以下、実施例により本発明を詳細に説明す
る。なお、実施例および比較例における球形担体および
球形触媒の物性の測定法は下記の通りである。 ・粒度範囲(μm) ロータップ式篩振盪機(平工製作所製シーブシェーカー
A型)によりJIS標準篩(Z8801−1987)を
用いて試料30gを10分間篩分し、90重量%以上含
む篩いの目開きの範囲を粒度範囲とした。
The present invention will be described in detail below with reference to examples. The methods for measuring the physical properties of the spherical carrier and the spherical catalyst in Examples and Comparative Examples are as follows. Particle size range (μm) 30 g of a sample is sieved for 10 minutes using a JIS standard sieve (Z8801-1987) with a low tap type sieve shaker (Sieve Shaker A type manufactured by Hiraiko Seisakusho), and a sieve opening containing 90% by weight or more. The range of opening was defined as the particle size range.

【0015】・真球度 100個の粒子の光学顕微鏡写真を取り、それぞれの粒
子の短径と長径を測定し、短径を長径で割った値の平均
値を真球度とした。 ・コーティング効率(%) 球形触媒の回収量を、用いた原料の総量(乾燥物とし
て)で除して100倍した値をコーティング効率とし
た。
• Sphericity An optical micrograph of 100 particles was taken, the minor axis and major axis of each particle were measured, and the average value of the values obtained by dividing the minor axis by the major axis was taken as the sphericity. -Coating efficiency (%) The value obtained by dividing the recovery amount of the spherical catalyst by the total amount of the used raw materials (as a dried product) and multiplying by 100 was defined as the coating efficiency.

【0016】・凝集率(%) 球形触媒2gのうちから凝集しているものを取り出し
て、その重量を測定し、2で除して100倍した値を凝
集率とした。 なお、実施例、比較例で使用した球形担体及び球形触媒
試料は、以下の方法で調製したものである。
Agglomeration rate (%) From 2 g of the spherical catalyst, the agglomerated one was taken out, its weight was measured, divided by 2 and multiplied by 100 to obtain the agglomeration rate. The spherical carrier and spherical catalyst samples used in Examples and Comparative Examples were prepared by the following method.

【0017】試料A;市販の結晶セルロース製球形顆粒
(セルフィア<登録商標>CP−203、旭化成工業
(株)製)を試料Aとした。試料Aの基礎物性を表1に
示す。 試料B;市販の結晶セルロース製球形顆粒(セルフィア
<登録商標>CP−305、旭化成工業(株)製)を試
料Bとした。試料Bの基礎物性を表1に示す。 試料C;結晶セルロース(アビセル<登録商標>PH−
101、旭化成工業(株)製)500gとガンマ・アル
ミナ粉末500gをポリ袋中で混合し、プラネタリーミ
キサー(カントーミキサーSS71、関東混合機工業
製)に入れ、水700gを加え、30分間練合した。次
いで押し出し造粒機(RG−5型(スクリーン孔径0.
5mm)、菊水製作所製)を用いて造粒した。この押し
出し造粒物800gをマルメライザー(Q−230型、
不二パウダル(株)製)に仕込み、500rpmで30
分間転動させ球形化した。その後40℃で一昼夜乾燥
し、ふるい分けにより得た300〜500μmの粒子を
試料Cとした。試料Cの基礎物性を表1に示す。
Sample A: Commercially available spherical granules of crystalline cellulose (Selfia <registered trademark> CP-203, manufactured by Asahi Kasei Kogyo Co., Ltd.) were used as Sample A. Table 1 shows the basic physical properties of Sample A. Sample B: Commercially available crystalline cellulose spherical granules (Selfia <registered trademark> CP-305, manufactured by Asahi Kasei Corporation) were used as Sample B. Table 1 shows the basic physical properties of Sample B. Sample C; crystalline cellulose (Avicel <registered trademark> PH-
101, manufactured by Asahi Kasei Kogyo Co., Ltd., and 500 g of gamma-alumina powder are mixed in a plastic bag, placed in a planetary mixer (Can Tho Mixer SS71, manufactured by Kanto Mixer Kogyo), and 700 g of water is added and kneaded for 30 minutes. did. Extrusion granulator (RG-5 type (screen pore size: 0.
5 mm), manufactured by Kikusui Seisakusho). 800 g of this extruded granulated product was used as a marumerizer (Q-230 type,
Charged to Fuji Paudal Co., Ltd., 30 at 500 rpm
Rolled for a minute to make it spherical. Thereafter, it was dried at 40 ° C. for a whole day and night, and particles of 300 to 500 μm obtained by sieving were used as sample C. Table 1 shows the basic physical properties of Sample C.

【0018】試料D;結晶セルロース100gとガンマ
・アルミナ粉末900gをポリ袋中で混合し、プラネタ
リーミキサーに入れ、水540gを加え、15分間練合
した。次いでこの練合物をフラッシュミル(スクリーン
孔径5mmφ、不二パウダル(株)製)で解砕した。こ
の解砕物800gをマルメライザーに仕込み、1000
rpmで15分間転動させ球形化した。その後40℃で
一昼夜乾燥し、ふるい分けにより得た300〜500μ
mの粒子を試料Dとした。試料Dの基礎物性を表1に示
す。
Sample D: 100 g of crystalline cellulose and 900 g of gamma-alumina powder were mixed in a plastic bag, placed in a planetary mixer, 540 g of water was added, and the mixture was kneaded for 15 minutes. Next, this kneaded product was crushed with a flash mill (screen pore size: 5 mmφ, manufactured by Fuji Paudal Co., Ltd.). Charge 800 g of this crushed material to a marumerizer, and
Spheroidized by rolling at rpm for 15 minutes. After that, it was dried at 40 ° C for 24 hours and then 300-500μ obtained by sieving.
Particles of m were used as sample D. Table 1 shows the basic physical properties of Sample D.

【0019】試料E;結晶セルロースを50g、ガンマ
・アルミナを950g、水を510gと変更する以外は
試料Dと同様にして調製し、試料Eを得た。試料Eの基
礎物性を表1に示す。
Sample E: Sample E was prepared in the same manner as in Sample D except that crystalline cellulose was changed to 50 g, gamma-alumina was changed to 950 g, and water was changed to 510 g. The basic physical properties of Sample E are shown in Table 1.

【0020】[0020]

【実施例1】試料A400gを遠心転動コーチング装置
(CF−360型、フロイント産業(株)製)に入れ、
スリツトエア温度40℃、ローター回転数160rpm
にて転動し、3%カルボキシメチルセルロースナトリウ
ム水溶液を8g/minの速度で噴霧しながら、空気中
で350℃、1.5時間焼成賦活した銅−クロム触媒粉
末216gとポリアクリル酸ナトリウム(重合度2万〜
7万)24g(いずれも38μm篩下留分を使用)の混
合物を20g/minの速度で供給し、被覆を行った。
この球形顆粒を空気中110℃、16時間乾燥して球形
触媒を得た。球形触媒のコーティング効率、凝集度及び
基礎物性を表2に示す。
Example 1 400 g of sample A was placed in a centrifugal rolling coating device (CF-360 type, manufactured by Freund Sangyo Co., Ltd.),
Slit air temperature 40 ℃, Rotor speed 160rpm
And spraying a 3% sodium carboxymethyl cellulose aqueous solution at a rate of 8 g / min while firing in air at 350 ° C. for 1.5 hours to activate copper-chromium catalyst powder 216 g and sodium polyacrylate (degree of polymerization). 20,000 ~
70,000) 24 g (both using a 38 μm sieve fraction) were supplied at a rate of 20 g / min for coating.
The spherical granules were dried in air at 110 ° C. for 16 hours to obtain a spherical catalyst. Table 2 shows the coating efficiency, aggregation degree and basic physical properties of the spherical catalyst.

【0021】[0021]

【実施例2】試料Bを用いる以外は実施例1同様にし
て、球形触媒を得た。球形触媒のコーティング効率、凝
集度及び基礎物性を表2に示す。
Example 2 A spherical catalyst was obtained in the same manner as in Example 1 except that Sample B was used. Table 2 shows the coating efficiency, aggregation degree and basic physical properties of the spherical catalyst.

【0022】[0022]

【実施例3】試料Cを用いる以外は実施例1同様にし
て、球形触媒を得た。球形触媒のコーティング効率、凝
集度及び基礎物性を表2に示す。
Example 3 A spherical catalyst was obtained in the same manner as in Example 1 except that Sample C was used. Table 2 shows the coating efficiency, aggregation degree and basic physical properties of the spherical catalyst.

【0023】[0023]

【実施例4】試料Dを用いる以外は実施例1同様にし
て、球形触媒を得た。球形触媒のコーティング効率、凝
集度及び基礎物性を表2に示す。
Example 4 A spherical catalyst was obtained in the same manner as in Example 1 except that Sample D was used. Table 2 shows the coating efficiency, aggregation degree and basic physical properties of the spherical catalyst.

【0024】[0024]

【比較例1】試料Eを用いる以外は実施例1同様にし
て、球形触媒を得た。球形触媒のコーティング効率、凝
集度及び基礎物性を表2に示す。以上、セルロース含有
量が10%以上である球形担体(試料A〜D)を用いて
球形触媒を製造すると、コーティング収率が97.3%
以上で、凝集率が5.3%以下で、さらには真球度が
0.82以上となり、球形触媒の製造にとって極めて好
ましい結果が得られる。しかしながら、セルロース含有
量が10%未満である球形担体(試料D)を用いて球形
触媒を製造すると、コーティング効率、凝集度、真球度
のいずれの値も不満足な結果となる。
Comparative Example 1 A spherical catalyst was obtained in the same manner as in Example 1 except that Sample E was used. Table 2 shows the coating efficiency, aggregation degree and basic physical properties of the spherical catalyst. As described above, when the spherical catalyst is produced using the spherical carriers (Samples A to D) having a cellulose content of 10% or more, the coating yield is 97.3%.
As described above, the agglomeration rate is 5.3% or less, and the sphericity is 0.82 or more, which is a very preferable result for the production of the spherical catalyst. However, when a spherical catalyst is produced using a spherical carrier having a cellulose content of less than 10% (Sample D), the coating efficiency, the degree of aggregation, and the sphericity all have unsatisfactory results.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】核としてセルロースを10%以上含有す
る球形担体を用いることによって、粒度分布がシャープ
で、かつ真球度の高い球形触媒を効率よく製造する事が
可能である。また比重の異なる球形触媒あるいは中空の
球形触媒を製造することが可能なので、触媒反応条件の
最適化が容易となる。さらには球形担体を使用する分、
高価な触媒の使用量を減らすことが出来るので、触媒コ
ストの削減が可能となる。
Industrial Applicability By using a spherical carrier containing 10% or more of cellulose as the core, it is possible to efficiently produce a spherical catalyst having a sharp particle size distribution and a high sphericity. Further, since it is possible to produce spherical catalysts having different specific gravities or hollow spherical catalysts, it becomes easy to optimize the catalytic reaction conditions. Furthermore, since a spherical carrier is used,
Since the amount of expensive catalyst used can be reduced, the catalyst cost can be reduced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セルロースを10%以上含有する球形担体
を、核として含有することを特徴とする球形触媒。
1. A spherical catalyst comprising a spherical carrier containing 10% or more of cellulose as a core.
【請求項2】セルロースを10%以上含有する球形担体
に、触媒成分を被覆することを特徴とする球形触媒の製
造方法。
2. A method for producing a spherical catalyst, which comprises coating a spherical carrier containing 10% or more of cellulose with a catalyst component.
JP4134672A 1992-05-27 1992-05-27 Cubic catalyst and its manufacture Withdrawn JPH05329380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4134672A JPH05329380A (en) 1992-05-27 1992-05-27 Cubic catalyst and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4134672A JPH05329380A (en) 1992-05-27 1992-05-27 Cubic catalyst and its manufacture

Publications (1)

Publication Number Publication Date
JPH05329380A true JPH05329380A (en) 1993-12-14

Family

ID=15133873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4134672A Withdrawn JPH05329380A (en) 1992-05-27 1992-05-27 Cubic catalyst and its manufacture

Country Status (1)

Country Link
JP (1) JPH05329380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307007A (en) * 2004-04-21 2005-11-04 Sakai Chem Ind Co Ltd Method for pyrolyzing waste plastic
WO2006093170A1 (en) * 2005-03-01 2006-09-08 National Institute Of Advanced Industrial Science And Technology Porous inorganic oxide carrier and hydrotreating catalyst for catalytically cracked gasoline made by using the carrier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307007A (en) * 2004-04-21 2005-11-04 Sakai Chem Ind Co Ltd Method for pyrolyzing waste plastic
JP4602690B2 (en) * 2004-04-21 2010-12-22 堺化学工業株式会社 Disassembly method of waste plastic
WO2006093170A1 (en) * 2005-03-01 2006-09-08 National Institute Of Advanced Industrial Science And Technology Porous inorganic oxide carrier and hydrotreating catalyst for catalytically cracked gasoline made by using the carrier
JPWO2006093170A1 (en) * 2005-03-01 2008-08-07 独立行政法人産業技術総合研究所 Porous inorganic oxide support and hydrocracking catalyst for catalytic cracking gasoline using the same
US7795168B2 (en) 2005-03-01 2010-09-14 National Institute Of Advanced Industrial Science And Technology Porous inorganic oxide support and hydrotreating catalyst of catalytic cracking gasoline using the same
JP4883417B2 (en) * 2005-03-01 2012-02-22 独立行政法人産業技術総合研究所 Porous inorganic oxide support and hydrocracking catalyst for catalytic cracking gasoline using the same

Similar Documents

Publication Publication Date Title
FI85283B (en) FOER FARING FRAMSTAELLNING AV IMMOBILISERADE ENZYMER.
US3894963A (en) High surface area catalyst bodies
US4797271A (en) Producing alumina granules in a fluidized bed
JP2000503294A (en) Spherical ceramic molded body, its production method and use
US3226332A (en) Production of potassium permanganate activated alumina composite
US4430254A (en) Spherical cerium-activated catalyst for ammonia synthesis and process for its manufacture
JP3440489B2 (en) Fine spherical zeolite compact and method for producing the same
US4321224A (en) Method for production of spherical molded product containing titanium oxide
JPH05329380A (en) Cubic catalyst and its manufacture
JPS6172624A (en) Manufacture of high activity low appearance density dispersion aluminum oxide hydrate
CN103861660B (en) A kind of rolling forming method of spherical titanium aluminium composite oxide
CN103894221A (en) Method used for preparing vinyl chloride via hydrochlorination of acetylene in presence of molecular sieve mercury-free catalyst
JP4526760B2 (en) Zeolite microsphere compact
JPH0763624B2 (en) Method for producing fluidized catalyst for synthesizing methanol
JPH0139689B2 (en)
JPH04175213A (en) Production of cellular spherical apatite grain
JPH111318A (en) Production of zeolite granule with controlled pore size
JPH08333110A (en) Granular activated carbon and its production
JPS6065725A (en) Preparation of spherical particles of titania
JP3543396B2 (en) Granules supporting drug solution
JP3722548B2 (en) Method for producing granulated material containing carbon black
JPH11226411A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
CN103894220A (en) Molecular sieve mercury-free catalyst for acetylene hydrochlorination reaction, and preparation method thereof
JP3765663B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
US4407737A (en) Catalysts for heterogeneous synthesis

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803