JP2005203661A - Measuring method for sheet material, and measuring device - Google Patents

Measuring method for sheet material, and measuring device Download PDF

Info

Publication number
JP2005203661A
JP2005203661A JP2004010114A JP2004010114A JP2005203661A JP 2005203661 A JP2005203661 A JP 2005203661A JP 2004010114 A JP2004010114 A JP 2004010114A JP 2004010114 A JP2004010114 A JP 2004010114A JP 2005203661 A JP2005203661 A JP 2005203661A
Authority
JP
Japan
Prior art keywords
thin plate
plate material
wafer
holding claw
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004010114A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mochizuki
博之 望月
Yasuki Oku
康樹 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004010114A priority Critical patent/JP2005203661A/en
Publication of JP2005203661A publication Critical patent/JP2005203661A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device and a measuring method which suppress the dispersion of the central position of a sheet material in a spindle holding the sheet material to enable highly precise measurement. <P>SOLUTION: A wafer 5 is brought in contact with a first holding nail 14b to regulate the thickness direction of the wafer 5, and then moved toward the location of the first holding nail 14b while being kept contact with the holding nail 14b to come in contact with a second holding nail 14a where the central position of the wafer 5 is regulated. The wafer 5 kept contact with the second holding nail 14a is then brought in contact with a third holding nail 11b opposite to the second holding nail 14a to be held there. As the wafer 5 held in contact with the third nail 11b is rotated, a measuring sensor 9 is moved in the radial direction of the wafer 5 to measure the displacement of the surface of the wafer 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体製造用ウエハや磁気ディスク用基板等の薄板材の測定方法および測定装置に関するものである。   The present invention relates to a measuring method and a measuring apparatus for a thin plate material such as a semiconductor manufacturing wafer and a magnetic disk substrate.

従来のウエハ等の薄板材の厚さムラ・反り測定装置(以下、平坦度測定装置という)においては、薄板材を水平または鉛直に保持して測定を行っていた。   In a conventional apparatus for measuring thickness unevenness / warpage of a thin plate material such as a wafer (hereinafter referred to as a flatness measuring device), the measurement is performed by holding the thin plate material horizontally or vertically.

図5は、従来の薄板材を鉛直に保持して測定を行う平坦度測定装置の概略構成図である。   FIG. 5 is a schematic configuration diagram of a flatness measuring apparatus that performs measurement while holding a conventional thin plate material vertically.

図5において従来の平坦度測定装置は、架台1上に、ウエハ保持ステージ2とセンサー移動ステージ3とを備えている。   In FIG. 5, the conventional flatness measuring apparatus includes a wafer holding stage 2 and a sensor moving stage 3 on a gantry 1.

ウエハ保持ステージ2は、ダイレクトドライブモータ4と内周にウエハ5を保持する環状のスピンドル6とからなっており、スピンドル6はダイレクトドライブモータ4によってXY軸面内で回転駆動される。   The wafer holding stage 2 includes a direct drive motor 4 and an annular spindle 6 that holds the wafer 5 on the inner periphery. The spindle 6 is rotationally driven by the direct drive motor 4 in the XY axis plane.

センサー移動ステージ3は、モータ7とモータ7により回転するボールねじ8と光学式変位計であるウエハ平坦度測定センサー9とからなっており、モータ7を回転させることによりウエハ平坦度測定センサー9をX軸方向に移動させ、スピンドル6に取り付けられたウエハ5の表面の平坦度を測定していた。図5においては、片面側のみにウエハ平坦度測定センサー9を示しているが、ウエハ平坦度測定センサー9はウエハ5の両面側に備えている。   The sensor moving stage 3 includes a motor 7, a ball screw 8 rotated by the motor 7, and a wafer flatness measuring sensor 9 which is an optical displacement meter, and the wafer flatness measuring sensor 9 is rotated by rotating the motor 7. The flatness of the surface of the wafer 5 attached to the spindle 6 was measured by moving in the X-axis direction. In FIG. 5, the wafer flatness measuring sensor 9 is shown only on one side, but the wafer flatness measuring sensor 9 is provided on both sides of the wafer 5.

図6は、ウエハ5を保持するスピンドル6とスピンドル6にウエハ5を供給する移載部とを示す概略構成図である。   FIG. 6 is a schematic configuration diagram showing a spindle 6 that holds the wafer 5 and a transfer unit that supplies the wafer 5 to the spindle 6.

図6において、スピンドル6の移載アーム10と対向する面には、複数の保持爪11a、11bが内周縁に沿ってほぼ等間隔に取り付けられている。保持爪11a、11bの先端部は、スピンドル6の内周面から中心方向に突出し、先端面には直径300mm、厚さ0.775mmのウエハ5の厚さ方向の規正と中心位置の規正とを同時に行いながら外周縁を保持するため、例えばV字形状の溝が形成されている。ウエハ5は、図7で示すように、ウエハ5の外周近傍のダレ部13と保持爪11a、11bの溝表面とが接触することにより保持されている。2つの保持爪11aは固定になっており、1つの保持爪11bはスピンドル6の半径方向に可動するようになっている。   In FIG. 6, a plurality of holding claws 11 a and 11 b are attached to the surface of the spindle 6 facing the transfer arm 10 at substantially equal intervals along the inner peripheral edge. The front ends of the holding claws 11a and 11b protrude in the center direction from the inner peripheral surface of the spindle 6. The front end surface has a thickness direction regulation and a center position regulation of a wafer 5 having a diameter of 300 mm and a thickness of 0.775 mm. For example, a V-shaped groove is formed to hold the outer peripheral edge while performing simultaneously. As shown in FIG. 7, the wafer 5 is held by contact between the sag portion 13 near the outer periphery of the wafer 5 and the groove surfaces of the holding claws 11a and 11b. The two holding claws 11 a are fixed, and the one holding claw 11 b is movable in the radial direction of the spindle 6.

移載アーム10の先端は、複数の把持爪12を有する把持部により形成されており、ウエハ5の半径方向にスライド可能で、スプリング等の弾性部材により中心方向に向かって付勢されている。把持爪12の先端面は、保持爪11a、11bの先端面と同様に、例えばV字形状の溝が形成されており、ウエハ5の把持は保持爪11a、11bと同様にダレ部13と把持爪12の溝表面とが接触することにより把持されている。   The tip of the transfer arm 10 is formed by a grip portion having a plurality of grip claws 12, is slidable in the radial direction of the wafer 5, and is biased toward the center by an elastic member such as a spring. The tip surface of the gripping claw 12 is formed with, for example, a V-shaped groove similarly to the tip surfaces of the holding claws 11a and 11b, and the wafer 5 is gripped with the sag portion 13 similarly to the holding claws 11a and 11b. The nail 12 is gripped by contact with the groove surface.

上記構成の保持爪11a、11bと把持爪12を用いて、移載アーム10とスピンドル6との間でウエハ5の受け渡しを行っていた(例えば、特許文献1参照。)。
特開2003−273187号公報
Using the holding claws 11a and 11b and the gripping claws 12 having the above-described configuration, the wafer 5 is transferred between the transfer arm 10 and the spindle 6 (see, for example, Patent Document 1).
JP 2003-273187 A

上記に示したような従来の方法では、ウエハの厚さ方向の規正と中心位置の規正を同一の保持爪によって行っており、保持爪の先端表面と接触するウエハのダレ部はウエハの外径精度に比べて形状精度が悪く、バラツキが大きいため、ダレ部でウエハを保持した場合、保持したウエハの中心位置にバラツキが発生し、測定データーの精度を悪化させてしまうという課題があった。   In the conventional method as described above, the wafer thickness direction adjustment and the center position adjustment are performed by the same holding claw, and the sagging portion of the wafer that contacts the tip surface of the holding claw is the outer diameter of the wafer. Since the shape accuracy is poor and the variation is large compared to the accuracy, when the wafer is held in the sag portion, there is a problem that the variation occurs at the center position of the held wafer and the accuracy of the measurement data is deteriorated.

また、保持爪の先端表面はウエハとの摩擦により変形してくる可能性があり、保持爪の先端表面のウエハと接する部分の形状が変形すると、保持したウエハの中心位置にバラツキが発生し、測定データーの精度を悪化させてしまうという課題があった。   In addition, there is a possibility that the tip surface of the holding claw may be deformed due to friction with the wafer, and if the shape of the portion of the holding claw tip surface that contacts the wafer is deformed, the center position of the held wafer will vary, There was a problem that the accuracy of the measurement data deteriorated.

上記課題を解決するために本発明は、薄板材を第一の保持爪に接触させて厚さ方向を規正した後、前記第一の保持爪に接触させた状態で前記薄板材を前記第一の保持爪がある方向へ移動させて第二の保持爪に接触させて前記薄板材の中心位置を規正し、前記第二の保持爪に接触させた状態で更に前記第二の保持爪と対向する位置にある第三の保持爪を前記薄板材に接触させて前記薄板材を保持し、前記保持された薄板材を回転させながら測定センサーを前記薄板材の径方向に移動させ、前記薄板材表面の変位を測定することにより、スピンドル内でのウエハの中心位置のバラツキを半分以下にすることが可能であるため、高精度な測定を行うことが可能となる。   In order to solve the above-mentioned problems, the present invention provides a method in which a thin plate material is brought into contact with a first holding claw and the thickness direction is regulated, and then the thin plate material is brought into contact with the first holding claw in the state where The holding claw is moved in a certain direction and brought into contact with the second holding claw to regulate the center position of the thin plate material, and is further opposed to the second holding claw in a state of being in contact with the second holding claw. A third holding claw in a position to contact the thin plate material to hold the thin plate material, and while rotating the held thin plate material, move the measurement sensor in the radial direction of the thin plate material, and By measuring the displacement of the surface, the variation in the center position of the wafer in the spindle can be reduced to half or less, so that highly accurate measurement can be performed.

本発明によれば、スピンドル内におけるウエハの厚み方向の姿勢規正は第一の保持爪で行い、ウエハの中心の位置規正は第二の保持爪で行うことにより、ウエハの中心の位置規正はより精度の高いウエハの外径部で行うことが可能であり、スピンドル内でのウエハの中心位置のバラツキを半分以下にすることが可能であるため、高精度な測定を行うことが可能となる。   According to the present invention, the position adjustment in the thickness direction of the wafer in the spindle is performed by the first holding claw, and the position adjustment of the center of the wafer is performed by the second holding claw. It is possible to perform the measurement at the outer diameter portion of the wafer with high accuracy, and the variation in the center position of the wafer within the spindle can be reduced to half or less, so that highly accurate measurement can be performed.

さらに、ウエハの厚み方向の位置規正を行う保持爪とウエハの中心位置を規正する保持爪とを分けることにより、従来と比較して、経時的な磨耗による保持したウエハの中心位置のバラツキを半分以下にすることが可能となり、保持爪の交換作業回数を従来の半分以下にすることが可能となる。   Furthermore, by separating the holding claw that adjusts the position of the wafer in the thickness direction and the holding claw that controls the center position of the wafer, the variation in the center position of the held wafer due to wear over time is halved compared to the conventional case. It becomes possible to make it below, and it becomes possible to make the frequency | count of replacement | exchange operation | work of a holding nail less than half of the past.

本発明の一実施の形態について、図1から図4を用いて説明する。   An embodiment of the present invention will be described with reference to FIGS.

本発明の一実施の形態における平坦度測定装置は、図5に示す従来の平坦度測定装置と同様の装置を用いるが、スピンドル6の内周縁に設けられているウエハ5の保持部の構成が違っている。   The flatness measuring apparatus according to the embodiment of the present invention uses the same apparatus as the conventional flatness measuring apparatus shown in FIG. 5, but the configuration of the holding portion of the wafer 5 provided on the inner peripheral edge of the spindle 6 is the same. Are different.

図1は、本発明の一実施の形態における保持部の概略構成図である。   FIG. 1 is a schematic configuration diagram of a holding unit according to an embodiment of the present invention.

図1において、スピンドル6の内周縁に沿ってスピンドル6の内周面から中心方向に突出した、保持爪11b、14a、14bが設けられており、保持爪11b、14bはスピンドル6の半径方向に可動するようになっている。保持爪11b、14bはそれぞれ回転軸15によりスピンドル6の内周方向に回転可能であり、弾性部材、例えばバネ16のようなものでスピンドル6の内周面から中心方向に向かって付勢されており、ストッパー17により所定の距離以上に中心方向に向かって突出しないように構成されている。   In FIG. 1, holding claws 11 b, 14 a, 14 b are provided along the inner peripheral edge of the spindle 6 from the inner peripheral surface of the spindle 6 in the center direction, and the holding claws 11 b, 14 b are arranged in the radial direction of the spindle 6. It is designed to move. Each of the holding claws 11b and 14b can be rotated in the inner circumferential direction of the spindle 6 by the rotation shaft 15, and is urged toward the center from the inner circumferential surface of the spindle 6 by an elastic member, for example, a spring 16. The stopper 17 is configured not to protrude toward the center direction beyond a predetermined distance.

図2は、保持爪14aの断面形状を示す図である。保持爪14aの先端形状は、図2(a)で示すように、ウエハ5の測定面と垂直な面を有しており、保持爪14aの先端面によりウエハ5を保持する。保持爪14aの先端形状は、ウエハ5の測定面と接触しないようにすることが可能であれば、図2(b)で示すような形状にしてもよい。   FIG. 2 is a diagram showing a cross-sectional shape of the holding claw 14a. As shown in FIG. 2A, the tip shape of the holding claw 14a has a surface perpendicular to the measurement surface of the wafer 5, and the wafer 5 is held by the tip surface of the holding claw 14a. The tip of the holding claw 14a may be shaped as shown in FIG. 2 (b) as long as it can be prevented from coming into contact with the measurement surface of the wafer 5.

図3は、保持爪11b、14bの断面形状を示す図である。保持爪11b、14bの先端形状は、図3(a)で示すように、所定の角度をなしている接触面18a、18bで構成されたV字形状の溝を有しており、ウエハ5の外周近傍のダレ部13と保持爪11b、14bのV字形状の溝表面とが接触することにより保持する。保持爪11b、14bの先端形状は、図3(b)で示すような形状にしてもよい。   FIG. 3 is a diagram illustrating a cross-sectional shape of the holding claws 11b and 14b. As shown in FIG. 3 (a), the tips of the holding claws 11b and 14b have V-shaped grooves formed of contact surfaces 18a and 18b having a predetermined angle. The sag portion 13 near the outer periphery and the V-shaped groove surfaces of the holding claws 11b and 14b are held in contact with each other. The tips of the holding claws 11b and 14b may be shaped as shown in FIG.

次に、上記構成の保持爪を用いてウエハ5を保持する方法について、図4を用いて説明する。   Next, a method of holding the wafer 5 using the holding claws having the above configuration will be described with reference to FIG.

図6に示す移載アーム10によってスピンドル6にウエハ5が供給される際には、図4に示すように、保持爪11bは図示していない外部のアクチュエーターによってスピンドル6の内周縁の外側に十分に開いた状態となっており、保持爪14bはスピンドル6の内周面から中心方向に向かってストッパー17の位置まで内側に閉じた状態となっている。   When the wafer 5 is supplied to the spindle 6 by the transfer arm 10 shown in FIG. 6, as shown in FIG. 4, the holding claw 11b is sufficiently outside the inner peripheral edge of the spindle 6 by an external actuator (not shown). The holding claw 14b is closed inward from the inner peripheral surface of the spindle 6 to the position of the stopper 17 toward the center.

この状態でウエハ5は、スピンドル6の中心位置OSから距離aだけ下がった位置OWにウエハ5の中心をあわせて供給される。この段階ではウエハ5は保持爪11b、14a、14bによっては保持されておらず、保持爪14aとウエハ5との鉛直方向の最短距離bは保持爪14bとウエハ5との鉛直方向の最短距離cより大きくなっており、距離cは距離aより小さくなっている。 Wafer 5 in this state is supplied together the center of the wafer 5 to the position O W that dropped from the center position O S of the spindle 6 by a distance a. At this stage, the wafer 5 is not held by the holding claws 11b, 14a, 14b, and the shortest vertical distance b between the holding claws 14a and the wafer 5 is the shortest vertical distance c between the holding claws 14b and the wafer 5. The distance c is larger than the distance a.

次に、ウエハ5は移載アーム10によりスピンドル6の中心位置OSに向かって上昇し、保持爪14b先端面のV字形状の溝に接触する。ウエハ5は保持爪14b先端面のV字形状の溝に接触することにより、ウエハ5の厚み方向の姿勢が規正される。 Next, the wafer 5 is increased toward the center position O S of the spindle 6 by the transfer arm 10 into contact with the groove of the V-shape of the holding claws 14b tip surface. The wafer 5 comes into contact with the V-shaped groove on the front end surface of the holding claw 14b, so that the posture of the wafer 5 in the thickness direction is regulated.

さらに、保持爪14bは可動式となっており、保持爪14bにより厚み方向の姿勢が規正された状態でウエハ5を上昇させ、ウエハ5は保持爪14a先端面に接触する。ウエハ5は保持爪14a先端面に接触することにより、ウエハ5の鉛直方向の位置が規正される。保持爪14aの位置は、ウエハ5が位置規正された際に、ウエハ5の中心がスピンドル6の中心位置OSになるように取り付けられている。 Further, the holding claw 14b is movable, and the wafer 5 is raised in a state where the posture in the thickness direction is regulated by the holding claw 14b, and the wafer 5 contacts the front end surface of the holding claw 14a. When the wafer 5 comes into contact with the front end surface of the holding claw 14a, the vertical position of the wafer 5 is regulated. The position of the holding claw 14 a is attached so that the center of the wafer 5 becomes the center position O S of the spindle 6 when the wafer 5 is positioned.

次に、スピンドル6の内周縁の外側に開いていた保持爪11bをウエハ5に接触するまで内側に閉じる。   Next, the holding claws 11 b that have been opened outside the inner peripheral edge of the spindle 6 are closed inward until they contact the wafer 5.

以上の動作によりウエハ5の保持を行い、スピンドル6を回転させながら光学式変位計であるウエハ平坦度測定センサー9をX軸方向に移動させ、スピンドル6に取り付けられたウエハ5の表面の平坦度を測定する。   The wafer 5 is held by the above operation, and the wafer flatness measuring sensor 9 which is an optical displacement meter is moved in the X-axis direction while rotating the spindle 6, and the flatness of the surface of the wafer 5 attached to the spindle 6 is moved. Measure.

本発明の一実施の形態によれば、スピンドル6内におけるウエハ5の厚み方向の姿勢規正は保持爪11b、14bで行い、ウエハ5の中心の位置規正は保持爪11b、14aで行うことにより、ウエハ5の中心の位置規正はより精度の高いウエハ5の外径部で行うことが可能であり、スピンドル6内でのウエハ5の中心位置のバラツキを半分以下にすることが可能であり、高精度な測定を行うことが可能となる。   According to one embodiment of the present invention, the posture adjustment in the thickness direction of the wafer 5 in the spindle 6 is performed by the holding claws 11b and 14b, and the position adjustment of the center of the wafer 5 is performed by the holding claws 11b and 14a. The center position of the wafer 5 can be adjusted at the outer diameter portion of the wafer 5 with higher accuracy, and the variation of the center position of the wafer 5 in the spindle 6 can be reduced to half or less. Accurate measurement can be performed.

さらに、ウエハ5の厚み方向の位置規正を行う保持爪14bとウエハの中心位置を規正する保持爪14aとを分けることにより、従来と比較して、経時的な磨耗による保持したウエハ5の中心位置のバラツキを半分以下にすることが可能となり、保持爪の交換作業回数を半分以下にすることが可能となる。   Further, by separating the holding claw 14b for adjusting the position of the wafer 5 in the thickness direction and the holding claw 14a for adjusting the center position of the wafer, the center position of the wafer 5 held by wear over time as compared with the prior art. It is possible to reduce the variation of the holding claws to half or less, and the holding claw replacement operation can be reduced to half or less.

なお、本発明の一実施の形態においては、ウエハ平坦度測定センサーは光学式変位計で説明したが、ウエハ表面の厚さや形状を測定可能なセンサーであればよく、例えば静電容量センサー等を用いてもよい。   In the embodiment of the present invention, the wafer flatness measurement sensor has been described as an optical displacement meter. However, any sensor capable of measuring the thickness and shape of the wafer surface may be used. For example, a capacitance sensor or the like may be used. It may be used.

本発明の薄板材の保持方法および測定装置は、半導体製造用ウエハや磁気ディスク用基板等の薄板材の保持等の用途にも適用できる。   The thin plate material holding method and measuring apparatus of the present invention can also be applied to applications such as holding thin plate materials such as semiconductor manufacturing wafers and magnetic disk substrates.

本発明の実施の形態における保持部の概略構成図The schematic block diagram of the holding | maintenance part in embodiment of this invention 本発明の実施の形態における保持爪の断面形状図Cross-sectional shape diagram of a holding claw in an embodiment of the present invention 本発明の実施の形態における保持爪の断面形状図Cross-sectional shape diagram of a holding claw in an embodiment of the present invention 本発明の実施の形態におけるウエハ規正の説明図Explanatory drawing of wafer correction in embodiment of this invention 従来の平坦度測定装置の概略構成図Schematic configuration diagram of a conventional flatness measuring device 従来の平坦度測定装置の移載部の概略構成図Schematic configuration diagram of transfer unit of conventional flatness measuring device 従来の保持爪の断面形状図Cross-sectional shape diagram of conventional holding claws

符号の説明Explanation of symbols

5 ウエハ
6 スピンドル
11b 保持爪
14a 保持爪
14b 保持爪
15 回転軸
16 バネ(弾性部材)
17 ストッパー
5 Wafer 6 Spindle 11b Holding claw 14a Holding claw 14b Holding claw 15 Rotating shaft 16 Spring (elastic member)
17 Stopper

Claims (10)

薄板材を第一の保持爪に接触させて厚さ方向を規正した後、前記第一の保持爪に接触させた状態で前記薄板材を前記第一の保持爪がある方向へ移動させて第二の保持爪に接触させて前記薄板材の中心位置を規正し、前記第二の保持爪に接触させた状態で更に前記第二の保持爪と対向する位置にある第三の保持爪を前記薄板材に接触させて前記薄板材を保持し、前記保持された薄板材を回転させながら測定センサーを前記薄板材の径方向に移動させ、前記薄板材表面の変位を測定することを特徴とする薄板材の測定方法。 After the sheet material is brought into contact with the first holding claw and the thickness direction is regulated, the sheet material is moved in the direction in which the first holding claw is in a state where the sheet material is brought into contact with the first holding claw to change the thickness direction. A second holding claw to regulate the center position of the thin plate material, and a third holding claw in a position facing the second holding claw in a state of being in contact with the second holding claw The thin plate material is held in contact with the thin plate material, the measurement sensor is moved in the radial direction of the thin plate material while rotating the held thin plate material, and the displacement of the thin plate material surface is measured. Method for measuring thin plate materials. 薄板材の両方の面側から前記薄板材表面の変位を測定することを特徴とする請求項1記載の薄板材の測定方法。 2. The method for measuring a thin plate material according to claim 1, wherein the displacement of the surface of the thin plate material is measured from both sides of the thin plate material. 薄板材がウエハであることを特徴とする請求項1または2記載の薄板材の測定方法。 3. The method for measuring a thin plate material according to claim 1, wherein the thin plate material is a wafer. 薄板材を回転させるスピンドルと、前記スピンドルの周縁に取り付けられ前記薄板材の厚さ方向を規正する第一の保持爪と、前記スピンドルの周縁に取り付けられ前記薄板材の中心位置を規正する第二の保持爪と、前記第一の保持爪と前記第二の保持爪とに対向する前記スピンドルの周縁に取り付けられ前記薄板材の厚さ方向と中心位置とを規正する第三の保持爪と、前記薄板材表面の変位を測定する測定部と、前記測定部を前記薄板材の径方向に移動させる移動機構とを備えたことを特徴とする薄板材の測定装置。 A spindle that rotates the thin plate material, a first holding claw that is attached to the periphery of the spindle and regulates the thickness direction of the thin plate material, and a second that is attached to the periphery of the spindle and regulates the center position of the thin plate material A third holding claw that is attached to the periphery of the spindle that faces the first holding claw and the second holding claw and regulates the thickness direction and the center position of the thin plate material, An apparatus for measuring a thin plate material, comprising: a measurement unit that measures the displacement of the surface of the thin plate material; and a moving mechanism that moves the measurement unit in a radial direction of the thin plate material. 第一の保持爪および第二の保持爪は少なくとも2つ備えたことを特徴とする請求項4記載の薄板材の測定装置。 The thin plate material measuring apparatus according to claim 4, wherein at least two of the first holding claws and the second holding claws are provided. 第一の保持爪および第三の保持爪の先端面にV字形状の溝を備えたことを特徴とする請求項4または5記載の薄板材の測定装置。 6. The apparatus for measuring a thin plate material according to claim 4, wherein a V-shaped groove is provided on the tip surfaces of the first holding claw and the third holding claw. 測定部を薄板材の両方の面側に備えたことを特徴とする請求項4から6のいずれか一項に記載の薄板材の測定装置。 The thin plate material measuring apparatus according to any one of claims 4 to 6, wherein the measurement unit is provided on both sides of the thin plate material. 薄板材を鉛直に保持することを特徴とする請求項4から7のいずれか一項に記載の薄板材の測定装置。 The thin plate material measuring apparatus according to any one of claims 4 to 7, wherein the thin plate material is held vertically. 測定部が光学式変位計であることを特徴とする請求項4から8のいずれか一項に記載の薄板材の測定装置。 9. The thin plate material measuring apparatus according to claim 4, wherein the measuring unit is an optical displacement meter. 薄板材がウエハであることを特徴とする請求項4から9のいずれか一項に記載の薄板材の測定装置。 The thin plate material measuring apparatus according to any one of claims 4 to 9, wherein the thin plate material is a wafer.
JP2004010114A 2004-01-19 2004-01-19 Measuring method for sheet material, and measuring device Pending JP2005203661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004010114A JP2005203661A (en) 2004-01-19 2004-01-19 Measuring method for sheet material, and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004010114A JP2005203661A (en) 2004-01-19 2004-01-19 Measuring method for sheet material, and measuring device

Publications (1)

Publication Number Publication Date
JP2005203661A true JP2005203661A (en) 2005-07-28

Family

ID=34822931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010114A Pending JP2005203661A (en) 2004-01-19 2004-01-19 Measuring method for sheet material, and measuring device

Country Status (1)

Country Link
JP (1) JP2005203661A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072694A1 (en) * 2006-12-14 2008-06-19 Is Technology Japan, Inc. Disc holding apparatus and defect/foreign material detecting apparatus
JP2009141081A (en) * 2007-12-05 2009-06-25 Sumco Corp Semiconductor wafer surface inspecting apparatus
JP2009272464A (en) * 2008-05-08 2009-11-19 Techno Fine:Kk Sample holding mechanism
JP2012004522A (en) * 2010-06-21 2012-01-05 Brewer Science Inc Method and apparatus for removing reversibly mounted device wafer from carrier substrate
CN102867770A (en) * 2011-07-05 2013-01-09 北京中科信电子装备有限公司 Silicon chip clamp for silicon chip implantation process

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072694A1 (en) * 2006-12-14 2008-06-19 Is Technology Japan, Inc. Disc holding apparatus and defect/foreign material detecting apparatus
EP2095412A1 (en) * 2006-12-14 2009-09-02 IS Technology Japan, Inc. Disc holding apparatus and defect/foreign material detecting apparatus
EP2095412A4 (en) * 2006-12-14 2011-09-14 Is Technology Japan Inc Disc holding apparatus and defect/foreign material detecting apparatus
US8348255B2 (en) 2006-12-14 2013-01-08 Is Technology Japan, Inc. Disk holding apparatus and defect/foreign material detecting apparatus
JP5175743B2 (en) * 2006-12-14 2013-04-03 アイエス・テクノロジー・ジャパン株式会社 Disk holding device and defective foreign object detection device
TWI407518B (en) * 2006-12-14 2013-09-01 Is Technology Japan Inc Circular disc holding device, and defect and contamination inspection device
KR101361382B1 (en) 2006-12-14 2014-02-10 아이에스 테크놀로지 재팬 가부시키가이샤 Disc holding apparatus and defect/foreign material detecting apparatus
JP2009141081A (en) * 2007-12-05 2009-06-25 Sumco Corp Semiconductor wafer surface inspecting apparatus
JP2009272464A (en) * 2008-05-08 2009-11-19 Techno Fine:Kk Sample holding mechanism
JP2012004522A (en) * 2010-06-21 2012-01-05 Brewer Science Inc Method and apparatus for removing reversibly mounted device wafer from carrier substrate
CN102867770A (en) * 2011-07-05 2013-01-09 北京中科信电子装备有限公司 Silicon chip clamp for silicon chip implantation process

Similar Documents

Publication Publication Date Title
US5352249A (en) Apparatus for providing consistent, non-jamming registration of semiconductor wafers
JP2896746B2 (en) Work holder for rotary grinding machine for grinding semiconductor wafers and method for positioning the work holder
US10354900B2 (en) Substrate transfer apparatus and substrate transfer method
EP1450398A2 (en) A method and an apparatus for positioning a substrate relative to a support stage
US20070006895A1 (en) Substrate cleaning brush, and substrate treatment apparatus and substrate treatment method using the same
US20080293333A1 (en) Methods and apparatus for controlling the size of an edge exclusion zone of a substrate
KR102253809B1 (en) Workpiece cutting method and workpiece holding tool
JP7170524B2 (en) Substrate mounting method, film forming method, film forming apparatus, organic EL panel manufacturing system
EP3082155B1 (en) Substrate processing apparatus and substrate processing method
US7499767B2 (en) Methods and apparatus for positioning a substrate relative to a support stage
KR20030074374A (en) Method and apparatus for shift-loading a thin plate material
KR20170061653A (en) Method and apparatus of polishing single-side of single semiconductor wafer
WO2019013037A1 (en) Grinding device, grinding method and computer storage medium
EP1860692B1 (en) Holding gripper and holding method for semiconductor wafer and shape measuring apparatus
JP2005203661A (en) Measuring method for sheet material, and measuring device
JP2009297882A (en) Machining device
JP2004188554A (en) Tool changing device, and tool
KR20170143433A (en) Scribe device and holder unit
US7151981B2 (en) Methods and apparatus for positioning a substrate relative to a support stage
JP2008258484A (en) Wafer clamp device
JP2004151102A (en) Wafer shape measuring instrument
TWI712803B (en) Method and apparatus for measuring electrostatic charge of a substrate
JP2015205459A (en) Scribe device, scribe method and scribing tool
KR100834116B1 (en) Teaching method of apparatus for manufacturing semiconductor
CN113495428A (en) Position alignment device, pattern forming device, and method for manufacturing article