JP2005197388A - Coil and its manufacturing method - Google Patents

Coil and its manufacturing method Download PDF

Info

Publication number
JP2005197388A
JP2005197388A JP2004000860A JP2004000860A JP2005197388A JP 2005197388 A JP2005197388 A JP 2005197388A JP 2004000860 A JP2004000860 A JP 2004000860A JP 2004000860 A JP2004000860 A JP 2004000860A JP 2005197388 A JP2005197388 A JP 2005197388A
Authority
JP
Japan
Prior art keywords
coil
pipe
insulating layer
cut
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004000860A
Other languages
Japanese (ja)
Inventor
Yoshihide Goto
芳英 後藤
Katsuyoshi Onuma
勝由 大沼
Daiki Goto
大樹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goto Denshi Co Ltd
Original Assignee
Goto Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goto Denshi Co Ltd filed Critical Goto Denshi Co Ltd
Priority to JP2004000860A priority Critical patent/JP2005197388A/en
Publication of JP2005197388A publication Critical patent/JP2005197388A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coil made of a conductive material and its manufacturing method. <P>SOLUTION: A cylindrical pipe that is made of a conductive material and has a specified thickness is cut spirally at a specified width while it is continuously connected between one end of the pipe and the other end thereof so as to make a pipe coil. Then, the pipe coil is covered with an insulating layer, and an adhesive agent is applied and the pipe coil is pressed from both ends to stuck and adhere the cut parts with each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、コイルおよびその製造方法に関するものである。   The present invention relates to a coil and a manufacturing method thereof.

従来のコイル線は、そのほとんどが、断面形状が円形の導電線材(以下、「丸線」という)からなっている。該丸線を用いたコイルでは、当然のことながら、丸線の断面形状が円形であることから、コイルを作製すると、丸線と丸線との間に空隙が発生し、占積率が下がる欠点を有している。該欠点を解消するために断面形状が、長方形、あるいは、正方形等の線材が作製されていることも周知のところである。   Most of the conventional coil wires are made of a conductive wire having a circular cross section (hereinafter referred to as “round wire”). Of course, in the coil using the round wire, since the cross-sectional shape of the round wire is circular, when the coil is manufactured, a gap is generated between the round wire and the round wire, and the space factor is reduced. Has drawbacks. It is also well known that a wire rod having a cross-sectional shape of a rectangle or a square is manufactured in order to eliminate the drawback.

いずれにしても、従来のコイルの製造方法、および、コイルの構造は、円形、あるいは、長方形や正方形等の所定の断面形状を有する線材を用い、該線材の表面に樹脂等からなる絶縁材を均一にコート(被覆)した絶縁層を設け、図31、図32に示すように、該線材26を所定の巻き芯(ボビン)27あるいは、コア等に、所望の幅および層数にて巻きつけてなるものである。従って、巻き付けた線材が対象物の形状に沿ったコイル形状(以下、「巻き形状」という)を保つためには、該線材に設けた絶縁層の外側に必然的に接着層が必要となる。   In any case, the conventional coil manufacturing method and coil structure uses a wire having a predetermined cross-sectional shape such as a circle or a rectangle or a square, and an insulating material made of resin or the like is provided on the surface of the wire. A uniformly coated (covered) insulating layer is provided, and as shown in FIGS. 31 and 32, the wire 26 is wound around a predetermined core (bobbin) 27 or a core with a desired width and number of layers. It will be. Therefore, in order for the wound wire to maintain the coil shape (hereinafter referred to as “winding shape”) along the shape of the object, an adhesive layer is inevitably required outside the insulating layer provided on the wire.

すなわち、コイル用線材は、基本的に直線形状であり、該線材を対象物に巻き付けると、ある一定の範囲までは、線材が対象物の形状に沿って変形する、いわゆる、曲げ変形が起きる。そして、巻き付けたまま、該巻き線端部を開放放置すると、線材端部から線材は、スプリングバック力で元の直線状態に戻ろうとし、所望のコイル形状を維持できなくなる、いわゆる、世間一般的に称せられるところのバラケ状態となることは、周知のところである。   That is, the coil wire is basically linear, and when the wire is wound around the object, so-called bending deformation occurs in which the wire deforms along the shape of the object up to a certain range. If the winding end is left open while being wound, the wire from the end of the wire tries to return to the original straight state by the springback force, and the desired coil shape cannot be maintained. It is a well-known place to be in a loose state as called.

従って、直線形状の線材を、所望のボビン等に巻き付け、所望の巻き形状、すなわち、所望のコイル形状を保つためには、対象物に線材を巻き付けた際、バラケ状態にしないための措置が必要である。該措置の方法が、巻き形状のままで線材相互を強固に接着し、所望の巻き形状を保つ方法であって、該目的のために、前述の如く線材の絶縁層の外側に
、接着剤を一定の厚さで塗布した、接着層が必要となる。
Accordingly, in order to wind a linear wire around a desired bobbin or the like and maintain the desired winding shape, that is, the desired coil shape, it is necessary to take measures to prevent a broken state when the wire is wound around an object. It is. The measure is a method in which the wire rods are firmly bonded to each other while maintaining the winding shape, and the desired winding shape is maintained. For this purpose, an adhesive is applied to the outside of the insulating layer of the wire rod as described above. An adhesive layer applied at a constant thickness is required.

接着剤として、熱可塑性のものと熱硬化性のものとが多用される。熱可塑性のものは巻き線時に線材表面に熱風を当て、所望の温度に加熱しながら巻く。すなわち、線材の接着層を、接着に必要な溶融状態にしつつ巻き付け、巻き付けた線相互の線間を接着剤が熱融着し、巻き終わった直後自然に温度が下がるため、接着剤が初期の性能を発揮し、巻き付けられた線材相互が、所望の巻き形状のまま接着され、固形状態を保ち所望のコイルが完成する。   As the adhesive, a thermoplastic material and a thermosetting material are frequently used. A thermoplastic material is wound while being heated to a desired temperature by applying hot air to the surface of the wire during winding. In other words, the adhesive layer of the wire is wound in a molten state necessary for adhesion, the adhesive is thermally fused between the wound wires, and the temperature naturally decreases immediately after the winding is finished, so the adhesive is the initial The wire rods exhibiting performance are bonded together in a desired winding shape, and the desired coil is completed while maintaining a solid state.

接着層が熱硬化性の場合は、巻き線時に、接着層を溶剤に浸し溶剤再活性を行いつつ巻き付ける。しかしながら、溶剤再活性状態のままの接着強度は、巻き線端部に少しの力が加わるだけでバラける、いわゆる仮止め状態であって、接着剤の本来有する所定の強度に達しない状態である。従って、該溶剤再活性状態から熱処理を行なうが、該熱処理はオーブン等にて所定の温度雰囲気中に所定時間、前記コイルを放置することで容易に実施できる。   When the adhesive layer is thermosetting, the winding is performed while immersing the adhesive layer in a solvent and reactivating the solvent during winding. However, the adhesive strength in the solvent reactivated state is a so-called temporary fixing state that is changed only by applying a small amount of force to the winding end, and does not reach the predetermined strength inherent in the adhesive. . Therefore, the heat treatment is performed from the solvent reactivation state, and the heat treatment can be easily performed by leaving the coil in an oven or the like in a predetermined temperature atmosphere for a predetermined time.

一般的に熱可塑性のものは生産効率が良い反面、使用温度範囲が低く、熱硬化性のものは、その反対の性格を有する。   In general, thermoplastic materials have good production efficiency, but the operating temperature range is low, and thermosetting materials have the opposite characteristics.

昨今のコイルの性能要求は、より一層増大していることは周知のところで、性能向上の対策として、コイルにおける導体占積率の向上が必須であることも周知のところである。該占積率の向上の一つとして、絶縁層および接着層の厚さ削減が求められ、両層とも使用目的に応じ限界まで削減しているのが現状である。   It is well known that the demands on the performance of coils these days are increasing further, and it is also well known that improvement of the conductor space factor in the coils is essential as a measure for improving the performance. As one of the improvement of the space factor, the thickness of the insulating layer and the adhesive layer is required to be reduced, and both layers are reduced to the limit depending on the purpose of use.

しかしながら、絶縁層はコイルの性格上必要不可欠なものであるが、接着層は可能な限り薄く、あるいは、無いことが理想であることは論を待たない。コイル線材を所定の巻き形状に正確に巻くには、線材に所定の張力(テンション)を加えながら巻かねばならないことも周知のところで、該張力と線材の有する反発(スプリングバック)力に耐え得る接着強度が接着層に求められることも当然の理である。   However, although the insulating layer is indispensable for the nature of the coil, it is not a matter of course that it is ideal that the adhesive layer is as thin as possible or absent. It is well known that a coil wire must be wound while applying a predetermined tension (tension) in order to wind the coil wire in a predetermined winding shape accurately, and can withstand the repulsion (spring back) force of the tension and the wire. It is natural that the adhesive strength is required for the adhesive layer.

ところが、線材が太くなるに従い、反発力も増し、テンションも増すことは当然であって、該反発力等に対応して接着層においても接着力を増す必要がある。つまり、材質一定の接着剤を前提とすると、下限量に設定してある接着剤量を多く、つまり、厚くすることで対応せざるを得ず、当然のことながら、導体占積率は低下することになる。従って、高性能コイルを求めながら、結果的に性能劣化を招く欠点を有することになる。   However, as the wire becomes thicker, the repulsive force increases and the tension naturally increases, and it is necessary to increase the adhesive force in the adhesive layer corresponding to the repulsive force and the like. In other words, assuming an adhesive with a constant material, the amount of adhesive that is set to the lower limit amount is increased, that is, it must be handled by increasing the thickness, and naturally the conductor space factor decreases. It will be. Therefore, while seeking a high-performance coil, there is a drawback that results in performance degradation.

本発明の目的は、上記従来例のコイル線材による巻き線コイル製造方法、および、コイル構造の欠点を根本的に解決することができる、より高性能なコイルおよび製造方法を提供することにある。   An object of the present invention is to provide a wound coil manufacturing method using the above-described conventional coil wire material and a higher performance coil and manufacturing method that can fundamentally solve the drawbacks of the coil structure.

請求項1記載の発明は、導電材からなる、所定の厚さを有するパイプを、所定寸法幅にて、一方のパイプ端部から他方の端部まで、連続し且つ繋がった状態でコイル状に切断し、このように切断した前記パイプに絶縁層を被覆し、次いで、接着剤を配してから前記パイプを両端から押し付けて切断された部分相互を密着し且つ固着することに特徴を有するものである。   According to the first aspect of the present invention, a pipe made of a conductive material and having a predetermined thickness is formed in a coil shape in a continuous and connected state from one pipe end to the other end with a predetermined width. Cut and coated with an insulating layer on the pipe thus cut, and then adhesive is applied and then the pipe is pressed from both ends so that the cut parts are brought into close contact with each other and fixed. It is.

請求項2記載の発明は、導電材からなる、所定の厚さを有する円筒状のパイプを、所定寸法幅にて、一方のパイプ端部から他方の端部まで、連続し且つ繋がった状態で螺旋状に切断し、このように切断した前記パイプに絶縁層を被覆し、次いで、接着剤を配してから前記パイプを両端から押し付けて切断された部分相互を密着し且つ固着することに特徴を有するものである。   The invention according to claim 2 is a state in which a cylindrical pipe made of a conductive material and having a predetermined thickness is continuously and connected from one pipe end to the other end with a predetermined width. Cut into a spiral shape, cover the pipe cut in this way with an insulating layer, then place an adhesive and then press the pipe from both ends to adhere and fix the cut parts together It is what has.

請求項3記載の発明は、複数の前記コイルを多層に配して多層コイルとすることに特徴を有するものである。   The invention described in claim 3 is characterized in that a plurality of the coils are arranged in a multilayer to form a multilayer coil.

請求項4記載の発明は、前記多層コイルを構成するに当たり、各層のコイルを、加熱により膨張させまたは冷却により収縮させてから、前記コイル同士を嵌合することに特徴を有するものである。   The invention according to claim 4 is characterized in that, when the multilayer coil is configured, the coils of each layer are expanded by heating or contracted by cooling, and then the coils are fitted to each other.

請求項5記載の発明は、導電材からなる、所定の厚さを有するパイプが、所定寸法幅にて、一方のパイプ端部から他方の端部まで、連続し且つ繋がった状態でコイル状に切断され、このように切断された前記パイプに、絶縁層が被覆され、そして、切断された部分相互が密着し且つ接着剤により固着されていることに特徴を有するものである。   According to the fifth aspect of the present invention, a pipe made of a conductive material and having a predetermined thickness is coiled in a state of being connected and connected from one pipe end to the other end with a predetermined width. The pipe cut in this way is covered with an insulating layer, and the cut parts are in close contact with each other and fixed with an adhesive.

請求項6記載の発明は、導電材からなる、所定の厚さを有する円筒状のパイプが、所定寸法幅にて、一方のパイプ端部から他方の端部まで、連続し且つ繋がった状態で螺旋状に切断され、このように切断された前記パイプに、絶縁層が被覆され、そして、切断された部分相互が密着し且つ接着剤により固着されていることに特徴を有するものである。   The invention according to claim 6 is a state in which a cylindrical pipe made of a conductive material and having a predetermined thickness is continuous and connected from one pipe end to the other end with a predetermined width. The pipe cut in a spiral shape is covered with an insulating layer, and the cut parts are in close contact with each other and fixed by an adhesive.

請求項7記載の発明は、複数の前記コイルが多層に配された多層コイルであることに特徴を有するものである。   The invention according to claim 7 is characterized in that the plurality of coils are multilayer coils arranged in multiple layers.

本発明のコイルは、パイプを所定寸法幅にて、一方の端部から他方の端部まで、連続し且つ繋がった状態でコイル状に切断することにより、円筒状パイプの場合は螺旋状に切断することにより、切断したパイプそのものがコイル形態を保っており、従来の巻き線によるコイルのように線材に所定の張力(テンション)を加える必要性が全く無く、従来のように、コイルに内在する線材の有する反発(スプリングバック)力は皆無となる。   The coil of the present invention cuts a pipe in a spiral shape in the case of a cylindrical pipe by cutting the pipe into a coil shape in a continuous and connected state from one end to the other end with a predetermined width. By doing so, the cut pipe itself maintains the coil form, and there is no need to apply a predetermined tension (tension) to the wire as in the case of a coil with a conventional winding, and it is inherent in the coil as in the past. There is no repulsion (springback) force of the wire.

本発明の多層コイルは、絶縁層が被覆されたコイルを、加熱または冷却により膨張または圧縮させ、熱膨張差を利用して組立てることにより、多層コイルの各層を構成する前記コイルの内径部と外径部とが絞り嵌め寸法を有するので組み立てやすく、しかも、絞り嵌め状態となって極めて、強固な摩擦力によって各層が構成されるため充分な強度が得られる。また、コイルにおける導体占積率の向上が図れ、より高性能なコイルが得られる。   In the multilayer coil of the present invention, the coil coated with the insulating layer is expanded or compressed by heating or cooling, and is assembled by utilizing the difference in thermal expansion, so that the inner diameter portion and the outer portion of the coil constituting each layer of the multilayer coil are assembled. Since the diameter portion has the size of a close-fitting, it is easy to assemble, and since each layer is constituted by a very strong frictional force, a sufficient strength can be obtained. Further, the conductor space factor in the coil can be improved, and a higher performance coil can be obtained.

本発明は、コイルに内在する反発力が皆無で、また、コイル強度が大きいため、接着剤の使用量が従来のコイルより遥かに少ない量で済む。   In the present invention, there is no repulsive force inherent in the coil and the coil strength is large, so that the amount of adhesive used is much smaller than that of the conventional coil.

従来コイルのように導電線材と巻き芯を利用する方式では、コイルの内径が小径になればなるほど、例え1層でも製造が困難となる。一方、本発明によれば、パイプを用いることにより、導電線材をコイルに巻く必要がないため、小径のコイルでも確実且つ容易に製造することができ、コイル応用製品、例えば、小型で且つ強力なソレノイドの機器などに適用することができるといった多大な効果がもたらされる。   In a method using a conductive wire and a winding core as in a conventional coil, the smaller the inner diameter of the coil, the more difficult it is to manufacture even one layer. On the other hand, according to the present invention, since it is not necessary to wind a conductive wire around a coil by using a pipe, it can be reliably and easily manufactured even with a small-diameter coil, and a coil application product, for example, small and powerful. This has a great effect that it can be applied to solenoid devices.

図31、図32に示すような、従来のコイルのように導電線材を巻き芯に巻き付けることによるコイル製造方法では、巻き付ける導電線材26の、巻き芯27の回転軸の軸線28と同方向の幅をtとし、該軸線28と直行する方向の幅をwとすると、これまでは巻き線が非常に困難であった、t<wの断面を持つ導電線材26をwの方向に巻いて行くいわゆる縦巻のコイルも、tおよびwの寸法を自由自在にしてコイルを形成することができる。   As shown in FIGS. 31 and 32, in a coil manufacturing method by winding a conductive wire around a winding core like a conventional coil, the width of the conductive wire 26 to be wound in the same direction as the axis 28 of the rotation axis of the winding core 27 Where t is w and the width in the direction perpendicular to the axis 28 is w, so-called winding of the conductive wire 26 having a cross section of t <w, which has been very difficult until now, is performed. Vertically wound coils can also be formed with freely t and w dimensions.

次に、この発明の実施の形態を図面を参照しながら説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1〜30は、この発明の実施の形態に係る図面であり、図1は、この発明のコイル(1層)を示す斜視図、図2は、1層コイルの断面図、図3は、図2の部分拡大図、図4は、多層コイルの断面図、図5は、この発明に用いるパイプの斜視図、図6は、パイプの切断を示す説明図、図7は、絶縁層の被覆を示す説明図、図8〜12は内径寸法が20〜28φのパイプ加工コイルを示す断面図、図13〜17は、内径寸法が20〜28φの絶縁層コイルおよび絶縁層コイルを挿入する外冶具を示す斜視図、図18〜22は、内径寸法が20〜28φの絶縁層コイルを外冶具に挿入した状態とオーブン内での加熱状態を示す断面図、図23は、1層目の内径寸法が20φの絶縁層コイルからの外冶具の取外しを示す斜視図、図24は、多層コイルからの外冶具の取外しを示す斜視図、図25は、内冶具からの多層コイルの取出しを示す斜視図、図26〜28は、多層コイルと基板との取付を示す説明図、図29、図30は、基板を装着したコイルを示す斜視図である。なお、図2〜4おいては、断面部分のみを記載し他の部分は省略している。   1 to 30 are drawings according to an embodiment of the present invention, FIG. 1 is a perspective view showing a coil (one layer) of the present invention, FIG. 2 is a sectional view of a single layer coil, and FIG. 2 is a partially enlarged view of FIG. 2, FIG. 4 is a cross-sectional view of a multilayer coil, FIG. 5 is a perspective view of a pipe used in the present invention, FIG. 6 is an explanatory view showing cutting of the pipe, and FIG. 8 to 12 are cross-sectional views showing a pipe machining coil having an inner diameter of 20 to 28φ, and FIGS. 13 to 17 are an insulating layer coil having an inner diameter of 20 to 28φ and an outer jig for inserting the insulating layer coil. 18 to 22 are sectional views showing a state in which an insulating layer coil having an inner diameter of 20 to 28φ is inserted into an outer jig and a heating state in an oven, and FIG. 23 is an inner diameter of the first layer. FIG. 24 is a perspective view showing the removal of the outer jig from the insulating layer coil of 20φ, FIG. 25 is a perspective view showing the removal of the multilayer coil from the inner jig, FIGS. 26 to 28 are explanatory views showing the attachment of the multilayer coil and the substrate, FIG. 29, FIG. 30 is a perspective view showing a coil on which a substrate is mounted. 2 to 4, only the cross-sectional portion is shown and the other portions are omitted.

図1〜3に示す、本発明の1層のコイル1bは、図5に示すアルミニウム製の円筒状のパイプ1を、図6に示すように一方のパイプ端部から他方の端部まで、所定寸法幅にて、連続し且つ繋がった状態で螺旋状に切断してパイプ加工コイル(以下、「パイプコイル」という)1a(図8)とし、該パイプコイル1aに図7に示すように絶縁層8(図2、図3)を被覆し、このように絶縁層8が形成されたパイプコイル1b(以下、絶縁層が被覆されたパイプコイルを「絶縁層コイル」という)に接着層9(図2、図3)を配した後、コイルを両端の外側から内側に押し付けて、コイルの切断した部分相互(以下、パイプの切断部分を「導電線材部」という)を密着させ且つ接着層(接着剤)9により導電線材部を固着することにより構成されている。なお、図2、図3において、絶縁層8、接着層9の厚さは実際の厚さを示すものではない。   1-3, the one-layer coil 1b of the present invention has a predetermined shape from the end of one pipe to the other end of the aluminum cylindrical pipe 1 shown in FIG. A pipe machining coil (hereinafter referred to as “pipe coil”) 1a (FIG. 8) is cut in a spiral shape in a continuous and connected state with a dimensional width, and an insulating layer is formed on the pipe coil 1a as shown in FIG. 8 (FIGS. 2 and 3), and the adhesive layer 9 (FIG. 2) is applied to the pipe coil 1b (hereinafter referred to as “insulating layer coil”) in which the insulating layer 8 is formed in this way. 2 and FIG. 3), the coil is pressed from the outside to the inside to bring the cut parts of the coil into close contact with each other (hereinafter, the cut part of the pipe is referred to as “conductive wire part”) and the adhesive layer (adhesion) Agent) 9 to fix the conductive wire part. There. 2 and 3, the thicknesses of the insulating layer 8 and the adhesive layer 9 do not indicate actual thicknesses.

本発明に用いるパイプは、図5に示すような断面形状が円形の円筒状に限られず、断面形状が、三角形や、その他の多角形の角パイプを用いてもよい。例えば、断面形状が三角形の角パイプを、一方のパイプ端部から他方の端部まで連続し且つ繋がった状態で切断して、断面形状が三角形のコイルとすることもできる。   The pipe used in the present invention is not limited to a cylindrical shape having a circular cross section as shown in FIG. 5, and a square pipe having a triangular or other polygonal cross section may be used. For example, a square pipe having a triangular cross-sectional shape can be cut in a continuous and connected state from one pipe end to the other end to form a triangular cross-sectional coil.

本発明のコイルは、パイプの厚さを変えることや、パイプの切断幅を変えることにより、導電線材部の太さ(断面積)を自由に変えることが可能である。   The coil of the present invention can freely change the thickness (cross-sectional area) of the conductive wire portion by changing the thickness of the pipe or changing the cutting width of the pipe.

また、パイプの切断にCO2レーザー等の切断手段を用いることにより、パイプの軸線方向の所望の位置で、コイルの切断幅を自由に変えることもできる。例えば、コイルの両端部の導電線材部が中央部よりも太くなっているようなコイル形状にすることも容易に可能である。 Further, by using a cutting means such as a CO 2 laser for cutting the pipe, the cutting width of the coil can be freely changed at a desired position in the axial direction of the pipe. For example, it is possible to easily form a coil shape in which the conductive wire portions at both ends of the coil are thicker than the center portion.

図4、図25に示すように、本発明に係る多層コイルは、上記の1層の絶縁層コイル1b(図1〜3)および該絶縁層コイル1bよりも内径が所定寸法ずつ大きい絶縁層コイル2b〜5b(図13〜17)を用い、該絶縁層コイル1b〜5bを重ね合わせて構成された多層コイル6(絶縁層コイル1b〜5b)からなっている。   As shown in FIGS. 4 and 25, the multilayer coil according to the present invention includes the above-mentioned one-layer insulating layer coil 1b (FIGS. 1 to 3) and an insulating layer coil whose inner diameter is larger by a predetermined dimension than the insulating layer coil 1b. 2b to 5b (FIGS. 13 to 17), and the multilayer coil 6 (insulating layer coils 1b to 5b) is formed by overlapping the insulating layer coils 1b to 5b.

本実施の形態において多層コイル6は5層であるが(図4、図25)、該層数を自由に増減することができる。更に、パイプの厚さや切断幅を変えて多層の各コイルの導電線材部の太さを変えること、および、パイプの軸線方向の所望の位置でコイルの切断幅を変えることが可能であり、これらの組み合わせにより目的に応じて所望の多層コイルを自由に製造することができる。   In the present embodiment, the multilayer coil 6 has five layers (FIGS. 4 and 25), but the number of layers can be freely increased or decreased. Furthermore, it is possible to change the thickness of the conductive wire of each multilayer coil by changing the thickness and cutting width of the pipe, and to change the cutting width of the coil at a desired position in the axial direction of the pipe. A desired multilayer coil can be freely manufactured according to the purpose by combining the above.

次に、この発明のコイルの製造方法について説明する。なお、本実施の形態において示される部材の寸法は1例であって、本発明が該寸法に限られないことは言うまでもない。   Next, the manufacturing method of the coil of this invention is demonstrated. In addition, the dimension of the member shown in this Embodiment is an example, and it cannot be overemphasized that this invention is not restricted to this dimension.

まず、1層のコイルの製造について説明する。   First, the production of a single layer coil will be described.

図5に示すような、内径20mm、厚さ(肉厚)1mm、全長が51.2mmの円筒形のアルミニウム製パイプ1を製造する。   As shown in FIG. 5, a cylindrical aluminum pipe 1 having an inner diameter of 20 mm, a thickness (wall thickness) of 1 mm, and a total length of 51.2 mm is manufactured.

次いで、図6に示すように、CO2レーザー29を用い、該CO2レーザー29は固定しておき、パイプ1を所定速度で回転させ且つ一方の方向へ移動させながら、パイプ1の一方の端部から他方の端部へ、幅1mm、切り代0.2mmで、螺旋状(ヘリカル状)に連続して切断し、内径20mm、コイル導体(導電線材部)の太さ1mm角(コイル導体の四角形断面形状の1辺が1mm)のパイプコイル(「20コイル」という)1aを製造する。 Next, as shown in FIG. 6, a CO 2 laser 29 is used, the CO 2 laser 29 is fixed, and the pipe 1 is rotated at a predetermined speed and moved in one direction while one end of the pipe 1 is moved. From the first part to the other end part, it is continuously cut in a spiral shape (helical shape) with a width of 1 mm and a cutting margin of 0.2 mm, an inner diameter of 20 mm, and a coil conductor (conductive wire part) thickness of 1 mm square A pipe coil (referred to as “20 coils”) 1 a having a square cross-sectional shape of 1 mm on one side is manufactured.

パイプの切断には、アルミニウム製パイプをCO2レーザーを用いて切断する方法を用いているが、他の方法、例えば、ウォータージェットによる切断でも一向に構わない。また、切り代の寸法が小さい方法が好ましいことは論を待たず、より小さい方法が提案されれば、その方法を用いることもできる。要は、より効率的、且つ、高精度に切断できる方法であれば、該切断方法にこだわる必要性は無い。 For cutting the pipe, a method of cutting an aluminum pipe using a CO 2 laser is used, but other methods, for example, cutting with a water jet may be used. Moreover, it is not awaited that a method with a small cutting allowance is preferable, and if a smaller method is proposed, the method can be used. In short, there is no need to stick to the cutting method as long as it is a more efficient and highly accurate cutting method.

次いで、図7に示すように、電着槽30内の電着液(樹脂)31にパイプコイル1aを浸漬しカチオン電着法によって、パイプコイル1aの導体表面に、絶縁樹脂からなる厚さ約10μmの絶縁膜を被覆して絶縁層コイル1bを製造する。なお、図7において電着のための他の設備は記載を省略している。また、導体がアルミニウムの場合、絶縁層としてアルマイトを用いてもよい。   Next, as shown in FIG. 7, the pipe coil 1 a is immersed in an electrodeposition liquid (resin) 31 in the electrodeposition tank 30, and the conductor surface of the pipe coil 1 a is formed on the conductor surface of the pipe coil 1 a to a thickness of about An insulating layer coil 1b is manufactured by covering a 10 μm insulating film. In FIG. 7, description of other equipment for electrodeposition is omitted. Further, when the conductor is aluminum, alumite may be used as the insulating layer.

次いで、図示はしないが、絶縁層コイル1bを、接着剤を入れた接着槽内に浸漬し接着層を被覆した後、コイルを両端の外側から内側に押し付けて導電線材部(導体部)を密着させた状態で固着する。かくして、絶縁層コイルが得られる。接着層の形成方法は、上記の方法に限定されない。   Next, although not shown in the drawing, the insulating layer coil 1b is immersed in an adhesive tank containing an adhesive to cover the adhesive layer, and then the coil is pressed from the outside to the inside to adhere the conductive wire portion (conductor portion). It sticks in the state of being let. Thus, an insulating layer coil is obtained. The method for forming the adhesive layer is not limited to the above method.

次に、多層コイルの製造について説明する。   Next, production of the multilayer coil will be described.

図5に示す、内径が20mm、厚さ(肉厚)1mm、全長が51.2mmの円筒形のアルミニウム製パイプ1を製造するとともに、更に、内径が、夫々、22mm、24mm、26mmおよび28mmで、肉厚および全長がパイプ1と同寸法(肉厚が1mm、全長が51.2mm)の、円筒形のアルミニウム製パイプを製造する。   As shown in FIG. 5, a cylindrical aluminum pipe 1 having an inner diameter of 20 mm, a thickness (wall thickness) of 1 mm, and an overall length of 51.2 mm is manufactured, and the inner diameters are 22 mm, 24 mm, 26 mm, and 28 mm, respectively. A cylindrical aluminum pipe having the same thickness and the same length as the pipe 1 (thickness is 1 mm and the total length is 51.2 mm) is manufactured.

次いで、各パイプを、図6に示すように、一方の端部から他方の端部へ、幅1mm、切り代0.2mmで、螺旋状(ヘリカル状)に連続して切断し、図8〜12に示すような内径20mm(以下、「20コイル」という)、内径22mm(以下、「22コイル」という)、内径24mm(以下、「24コイル」という)、内径26mm(以下、「26コイル」という)、内径28mm(以下、「28コイル」という)の、パイプ加工コイル1a〜5aを製造する。   Next, as shown in FIG. 6, each pipe is continuously cut in a spiral shape (helical shape) from one end to the other end with a width of 1 mm and a cutting margin of 0.2 mm. The inner diameter is 20 mm (hereinafter referred to as “20 coils”), the inner diameter is 22 mm (hereinafter referred to as “22 coils”), the inner diameter is 24 mm (hereinafter referred to as “24 coils”), and the inner diameter is 26 mm (hereinafter referred to as “26 coils”). The pipe machining coils 1a to 5a having an inner diameter of 28 mm (hereinafter referred to as “28 coils”) are manufactured.

次いで、パイプコイル1a〜5a(20〜28コイル)の各々に、図7に示すカチオン電着法によって、各パイプコイルの導体表面に厚さ約10μmの絶縁膜を被覆し、絶縁層付きパイプコイル(絶縁層コイル)1b〜5bを製造する。   Next, each of the pipe coils 1a to 5a (20 to 28 coils) is coated with an insulating film having a thickness of about 10 μm on the conductor surface of each pipe coil by the cationic electrodeposition method shown in FIG. (Insulating layer coils) 1b to 5b are manufactured.

次いで、絶縁層コイル1b〜5bを重ね合わせて、内径(直径)が20mm、全長が50mm、コイル導体(導電線材部)の太さ1mm角の5層の多層コイル6を構成する。以下に、絶縁層コイル1b〜5bから5層の多層コイル6を組み立てる工程を説明する。   Subsequently, the insulating layer coils 1b to 5b are overlapped to form a five-layer multilayer coil 6 having an inner diameter (diameter) of 20 mm, a total length of 50 mm, and a coil conductor (conductive wire portion) having a thickness of 1 mm square. Below, the process of assembling the multilayer coil 6 of 5 layers from the insulating layer coils 1b-5b is demonstrated.

図13〜22に示すように、まず、絶縁層コイル1b〜5bの夫々を、組立て用の外冶具10〜14の夫々に挿入する(以下、外冶具に挿入された絶縁層コイルを「外冶具付き絶縁層コイル」という)。挿入後、外冶具付き絶縁層コイルの夫々を、所定温度に設定したオーブン(図示せず)の中に入れ、そのまま所定時間保持する。外冶具10〜14は鉄製で、且つ、夫々の外冶具10〜14の内径(直径)は、夫々の絶縁層コイル1b〜5bの外径(直径)に対して、滑り嵌め寸法(F6〜G6)に加工してある。   As shown in FIGS. 13 to 22, first, each of the insulating layer coils 1b to 5b is inserted into each of the outer jigs 10 to 14 for assembly (hereinafter, the insulating layer coils inserted into the outer jig are referred to as “outer jig”. Insulated layer coil with). After the insertion, each of the insulating layer coils with the outer jig is put into an oven (not shown) set to a predetermined temperature and held as it is for a predetermined time. The outer jigs 10 to 14 are made of iron, and the inner diameters (diameters) of the respective outer jigs 10 to 14 are sliding fit dimensions (F6 to G6) with respect to the outer diameters (diameters) of the respective insulating layer coils 1b to 5b. ) Is processed.

従って、前記の如くオーブン内に外冶具10〜14付きコイル1b〜5bを保持しておくと、鉄からなる外冶具10〜14と、アルミニウムからなる絶縁層コイル1b〜5bとの熱膨張差によって、夫々の絶縁層コイル1b〜5bの外周部が、夫々の外冶具10〜14の内周部に密着する。密着した時点で、まず、内径の最も小さい外冶具10付き絶縁層コイル1bをオーブンから取り出し、図23に示すように、速やかに、内冶具15に挿入する。内冶具15は常温以下に冷却してある。内冶具15も鉄製であり、内冶具15の外径(直径)は常温(約20℃)時における絶縁層コイル1b(内径φ20)の内径(直径)に対して、滑り嵌め寸法(F6〜G6)に加工してある。   Therefore, if the coils 1b to 5b with the outer jigs 10 to 14 are held in the oven as described above, due to the difference in thermal expansion between the outer jigs 10 to 14 made of iron and the insulating layer coils 1b to 5b made of aluminum. The outer peripheral portions of the respective insulating layer coils 1b to 5b are in close contact with the inner peripheral portions of the respective outer jigs 10 to 14. At the time of close contact, first, the insulating layer coil 1b with the outer jig 10 having the smallest inner diameter is taken out of the oven and immediately inserted into the inner jig 15 as shown in FIG. The inner jig 15 is cooled to a room temperature or lower. The inner jig 15 is also made of iron, and the outer diameter (diameter) of the inner jig 15 is a sliding fit dimension (F6 to G6) with respect to the inner diameter (diameter) of the insulating layer coil 1b (inner diameter φ20) at room temperature (about 20 ° C.). ) Is processed.

前記の如く、オーブンによって加熱されて膨張し、取出した外冶具10付き絶縁層コイル1bの内径の寸法は、常温時より大きくなっており、更に、内冶具15は常温以下に冷却してあるので内冶具15の外径寸法は常温時より小さくなっており、相互の絶縁層コイル1bの内径、および、内冶具15の外径に設定した滑り嵌め寸法(F6〜G6)より、遥かに大きなクリアランス寸法が発生し、外冶具10付き絶縁層コイル1bの内径内に容易に内冶具15の外径部が挿入される。   As described above, the inner diameter dimension of the insulating layer coil 1b with the outer jig 10 which is heated and expanded by the oven is larger than that at room temperature, and the inner jig 15 is cooled to below room temperature. The outer diameter of the inner jig 15 is smaller than that at room temperature, and the clearance is much larger than the inner diameter of the mutual insulating layer coil 1b and the sliding fit dimensions (F6 to G6) set to the outer diameter of the inner jig 15. A dimension is generated, and the outer diameter portion of the inner jig 15 is easily inserted into the inner diameter of the insulating layer coil 1b with the outer jig 10.

更に、内冶具15に挿入した直後から、外冶具10付き絶縁層コイル1bの内径部が内冶具15の外径部から急激に冷却されるため、当然のことながら、絶縁層コイル1bは収縮し、絶縁層コイル1bの内径部は内冶具15の外径部に密着する。絶縁層コイル1bの材質は、前記の如くアルミニウムであるため、極めて熱伝導性が良く、反応は早い。従って、絶縁層コイル1bの外径部と外冶具10の内径部との間に、着脱可能ならしめるに充分なクリアランスが発生し、図23に示すように絶縁層コイル1bから容易に外冶具10を抜き取ることが可能となる。   Further, immediately after the insertion into the inner jig 15, the inner diameter portion of the insulating layer coil 1b with the outer jig 10 is rapidly cooled from the outer diameter portion of the inner jig 15, so that the insulating layer coil 1b naturally contracts. The inner diameter portion of the insulating layer coil 1 b is in close contact with the outer diameter portion of the inner jig 15. Since the material of the insulating layer coil 1b is aluminum as described above, the thermal conductivity is very good and the reaction is fast. Accordingly, a sufficient clearance is generated between the outer diameter portion of the insulating layer coil 1b and the inner diameter portion of the outer jig 10, so that the outer jig 10 can be easily detached from the insulating layer coil 1b as shown in FIG. Can be extracted.

更に、オーブン内において所定時間保持してある、外冶具11付きの絶縁層コイル2b(内径φ22)を取り出し、絶縁層コイル1bの外径部に、絶縁層コイル2bの内径部を挿入する。当然のことながら、絶縁層コイル1bは冷却されているため、更に、絶縁層コイル2bは加熱されているため、前記同様挿入するに余裕を持ったクリアランスが発生し、容易に絶縁層コイル1bの外径に絶縁層コイル2bの内径部を挿入することが可能である。前記同様、挿入後からは、絶縁層コイル2bは絶縁層コイル1bの外径部よりも冷却される。   Further, the insulating layer coil 2b (inner diameter φ22) with the outer jig 11 held in the oven for a predetermined time is taken out, and the inner diameter portion of the insulating layer coil 2b is inserted into the outer diameter portion of the insulating layer coil 1b. As a matter of course, since the insulating layer coil 1b is cooled, and further, the insulating layer coil 2b is heated, a clearance with a margin for insertion is generated as described above, and the insulating layer coil 1b can be easily formed. The inner diameter portion of the insulating layer coil 2b can be inserted into the outer diameter. Similarly to the above, after insertion, the insulating layer coil 2b is cooled more than the outer diameter portion of the insulating layer coil 1b.

絶縁層コイル2bの内径(直径)寸法は、絶縁層コイル1bの外径(直径)寸法と同じ寸法に設定してある。従って、絶縁層コイル2bが冷却され、絶縁層コイル1bと同じ温度に達すると、絶縁層コイル2bの内径部と絶縁層コイル1bの外径部とは密着され、クリアランスがゼロの状態、いわゆる、絞り嵌め状態となり、尚且つ絶縁層コイル2bの外径部と外冶具11の内径部との間に、着脱可能ならしめるのに充分なクリアランスが発生する。   The inner diameter (diameter) dimension of the insulating layer coil 2b is set to the same dimension as the outer diameter (diameter) dimension of the insulating layer coil 1b. Therefore, when the insulating layer coil 2b is cooled and reaches the same temperature as the insulating layer coil 1b, the inner diameter portion of the insulating layer coil 2b and the outer diameter portion of the insulating layer coil 1b are brought into close contact with each other, and the clearance is zero, so-called A close-fit state is generated, and a sufficient clearance is generated between the outer diameter portion of the insulating layer coil 2b and the inner diameter portion of the outer jig 11 so as to be detachable.

勿論、絶縁層コイル2bが常温状態でも滑り嵌め状態のクリアランスが得られるが、絶縁層コイル1b(内冶具15に挿入されている状態の絶縁層コイル1b)への挿入直後は、外冶具11が鉄製であることから、該外冶具11の熱伝導率が、アルミニウム製である絶縁層コイル2bより当然のことながら低い。従って、冷却による収縮速さが絶縁層コイル2bより遅く、前記の如く着脱可能ならしめるに充分なクリアランスが発生することとなる。従って、容易に絶縁層コイル2bから外冶具11を抜き取ることが可能である。   Of course, the insulation layer coil 2b has a slip fit clearance even at room temperature, but immediately after insertion into the insulation layer coil 1b (the insulation layer coil 1b inserted in the inner jig 15), the outer jig 11 Since it is made of iron, the thermal conductivity of the outer jig 11 is naturally lower than that of the insulating layer coil 2b made of aluminum. Therefore, the contraction speed due to cooling is slower than that of the insulating layer coil 2b, and a sufficient clearance is generated to make it detachable as described above. Therefore, the outer jig 11 can be easily extracted from the insulating layer coil 2b.

更に、外冶具12〜14付きの絶縁層コイル3b〜5b(内径φ24、φ26、φ28)を、順次オーブンから取り出し、前記同様の工程を繰り返すと、図24に示すように多層コイル6(絶縁層コイル1b〜5b)から外冶具14が抜き取られ、絶縁層コイル1b〜5bが図24に示すように内冶具15に装着した状態となる。更に、該内冶具15を常温環境下に設置すると、絶縁層コイル1bの内径部と内冶具15の外径部との間に所定のクリアランス(滑り嵌め寸法)が発生するので、図25に示すように、5層になった絶縁層コイル1b〜5bを内冶具15より抜き取り、かくして、5層の多層コイル6が得られる。   Further, when the insulating layer coils 3b to 5b (inner diameters φ24, φ26, and φ28) with the outer jigs 12 to 14 are sequentially taken out from the oven and the same process is repeated, the multilayer coil 6 (insulating layer) is obtained as shown in FIG. The outer jig 14 is extracted from the coils 1b to 5b), and the insulating layer coils 1b to 5b are attached to the inner jig 15 as shown in FIG. Furthermore, when the inner jig 15 is installed in a room temperature environment, a predetermined clearance (sliding fit dimension) is generated between the inner diameter portion of the insulating layer coil 1b and the outer diameter portion of the inner jig 15, so that it is shown in FIG. As described above, the five-layered insulating layer coils 1b to 5b are extracted from the inner jig 15, and thus the five-layered multilayer coil 6 is obtained.

上記により得られた多層コイル6は、コイルとしては未完成であり、本発明コイルをコイルとして完成させる工程を以下に説明する。   The multilayer coil 6 obtained as described above is incomplete as a coil, and the process of completing the coil of the present invention as a coil will be described below.

上記により製造された多層コイル6(絶縁層コイル1b〜5b)(図4)の両端部に対して、約0.1mmの研磨加工を施す。該研磨加工により、導電部(地肌、すなわち、アルミニウム)および絶縁層が交互に1mm間隔にて同心円状に現れる。本実施の形態では、該露出部分に防錆剤を塗布し、導電材たるアルミニウム露出部の表面酸化を一時的に防ぐ。また、該アルミニウム露出部分にめっき等の酸化防止処理を施しても一向に構わない。   About 0.1 mm of grinding | polishing process is given with respect to the both ends of the multilayer coil 6 (insulating layer coil 1b-5b) (FIG. 4) manufactured by the above. By this polishing process, conductive portions (background, that is, aluminum) and insulating layers appear concentrically at intervals of 1 mm. In the present embodiment, a rust inhibitor is applied to the exposed portion to temporarily prevent surface oxidation of the exposed aluminum portion that is a conductive material. Further, the exposed portion of the aluminum may be subjected to oxidation treatment such as plating.

前記露出部を接続配線すると、コイルとして完成する。本実施の形態では、接続配線方法として、我々が、既に提案した、プリントパターン配線を利用している。以下、その工程について説明する。   When the exposed portion is connected and wired, the coil is completed. In the present embodiment, the print pattern wiring that we have already proposed is used as the connection wiring method. Hereinafter, the process will be described.

まず、世間一般で多用されている、厚さ、1.6mmのガラス繊維入りエポキシ基板に所定厚の銅箔をラミネートしてなる、通称ガラエポ基板なるものを使用し、図26〜28に示すような形状のプリントパターンを作製した。当然の如く、配線用プリント基板は、2種類のプリント基板(A基板およびB基板)が用意される。   First, using what is commonly called a glass-epoxy substrate, which is commonly used by the general public and is laminated with a copper foil of a predetermined thickness on a 1.6 mm thick glass fiber epoxy substrate, as shown in FIGS. A printed pattern having a proper shape was produced. As a matter of course, two types of printed boards (A board and B board) are prepared for the printed board for wiring.

A基板およびB基板の導電パターンを示す図26〜28に示すように、A基板16は、コイル入力部の関係上、基板両面に導電材である所定厚さの銅箔18が設けられたものを用いており、多層コイル6の一方の端部のアルミニウム露出部に接触する側(A基板の「内側」)が、図26(b)に示すように同心円状に、絶縁層コイル1b(φ20)用18a、絶縁層コイル2b、3b(φ22、φ24)用18b、絶縁層コイル4b、5b(φ26、φ28)用18cのパターンが設けられている。更に、基板中央に設けられた円形の穴17の内径の内壁部は、銅めっき加工により、所定厚さの銅が付着しており、図26(a)に示す反対側(基板Aの「外側」)の銅箔18に繋がっている、一般的にスルーホールと呼ばれている構造となっている。また、A基板16の、図26(a)(b)に示す下側の所定位置に、絶縁層コイル1bの入力リード線20の装着用の穴19が設けられている。   As shown in FIGS. 26 to 28 showing the conductive patterns of the A substrate and the B substrate, the A substrate 16 is provided with a copper foil 18 having a predetermined thickness as a conductive material on both surfaces of the substrate due to the coil input part. As shown in FIG. 26B, the insulating layer coil 1b (φ20) is formed so that the side (the “inside” of the A substrate) that contacts the exposed aluminum portion at one end of the multilayer coil 6 is concentrically formed. ) 18a, insulating layer coils 2b and 3b (φ22, φ24) 18b, and insulating layer coils 4b and 5b (φ26, φ28) 18c. Furthermore, the inner wall portion of the inner diameter of the circular hole 17 provided in the center of the substrate is attached with copper of a predetermined thickness by copper plating, and the opposite side (“outside of the substrate A” shown in FIG. ]), Which is connected to the copper foil 18 and is generally called a through hole. In addition, a hole 19 for mounting the input lead wire 20 of the insulating layer coil 1b is provided at a predetermined position on the lower side of the A substrate 16 shown in FIGS. 26 (a) and 26 (b).

一方、基板中央に円形の穴22を有するB基板21は、基板片面に導電材である所定厚さの銅箔23が設けられてなるものを用いており、図28(a)に示すように、B基板21の内側最外層から順次内側の層に接続配線するよう、前記のA基板16と略同様の同心円状の、絶縁層コイル5b(φ28)用23a、絶縁層コイル4b、3b(φ26、φ24)用23b、絶縁層コイル2b、1b(φ22、φ20)用23cの導電パターンを設けている。また、B基板21の、図28(a)(b)に示す上側の所定位置に、絶縁層コイル5b(φ28)の入力リード線25装着用の穴24が設けられている。   On the other hand, the B substrate 21 having the circular hole 22 in the center of the substrate is one in which a copper foil 23 having a predetermined thickness as a conductive material is provided on one surface of the substrate, as shown in FIG. The concentric circles 23a for the insulating layer coil 5b (φ28), the insulating layer coils 4b, 3b (φ26), which are substantially similar to the A substrate 16 so as to connect and wire from the innermost outermost layer of the B substrate 21 to the inner layer sequentially , Φ24) 23b and insulating layer coils 2b, 1b (φ22, φ20) 23c. In addition, a hole 24 for mounting the input lead wire 25 of the insulating layer coil 5b (φ28) is provided at a predetermined position on the B substrate 21 shown in FIGS. 28 (a) and 28 (b).

A基板16およびB基板21を多層コイル6の両端部に装着するが、本実施の形態の場合、A基板16およびB基板21の内側同心円パターンにクリーム半田をシルクスクリーン法で塗布し、更に、前記銅線露出部分に塗布した防錆剤を、溶剤を含んだ布にて拭き取り、図29、図30に示すように、多層コイル6(絶縁層コイル1b〜5b)端部の銅線露出部および、A基板16およびB基板21の内側を接触させ圧定させた。また、図面には記載してないが、前記の基板装着工程においては、組立て冶具を用いて、夫々の基板のパターンとコイル端部の銅線露出部が適切に配置されるよう位置出しを行なっている。   The A substrate 16 and the B substrate 21 are attached to both ends of the multilayer coil 6. In this embodiment, cream solder is applied to the inner concentric patterns of the A substrate 16 and the B substrate 21 by a silk screen method. The rust preventive agent applied to the exposed portion of the copper wire is wiped off with a cloth containing a solvent, and as shown in FIGS. 29 and 30, the exposed portion of the copper wire at the end of the multilayer coil 6 (insulating layer coils 1b to 5b). And the inside of the A board | substrate 16 and the B board | substrate 21 was contacted, and it was made to press. Although not shown in the drawings, in the substrate mounting process, positioning is performed using an assembly jig so that the pattern of each substrate and the exposed portion of the copper wire at the coil end are appropriately arranged. ing.

圧定状態のまま、すなわち、前記の組立て冶具装着のまま、所定温度のオーブン内において所定時間保持すると、前記クリーム半田が溶融状態となり、夫々の基板パターンおよびアルミニウム露出部が接続配線される。オーブンより取り出し、そして、冷却の後、組立て冶具を外すと、半田が硬化してプリント基板がコイルに固着した状態となる。   If it is kept in a pressed state, that is, with the assembly jig mounted, for a predetermined time in an oven at a predetermined temperature, the cream solder is melted, and the respective substrate pattern and aluminum exposed portion are connected and wired. When the assembly jig is removed after taking out from the oven and cooling, the solder is cured and the printed circuit board is fixed to the coil.

次いで、A基板16およびB基板21に設けた入力用穴19、24に、入力用リード線20、25の先端部を挿入し、半田付けしてコイル7として完成する。本実施の形態の場合、入力用リード線を基板に半田付けにて接続配線した例を示したが、該基板に入力用端子を装着しても一向に構わず、目的に応じて自由に設計することができる。   Next, the leading ends of the input lead wires 20 and 25 are inserted into the input holes 19 and 24 provided in the A board 16 and the B board 21 and soldered to complete the coil 7. In the case of the present embodiment, the example in which the input lead wire is connected to the board by soldering is shown. However, even if the input terminal is mounted on the board, it is possible to design it freely according to the purpose. be able to.

また、本実施の形態の場合、コイル端部の銅線露出部の接続配線に、前記の如くガラス繊維入りエポキシ基板を用いた例を示したが、目的に応じてポリイミドフィルム等に銅パターンを配した、通称フィルム基板を用いても構わないし、直接、ジャンパ線などを用いて局部的に接続配線を行なっても一向に構わないものである。   In the case of the present embodiment, an example in which an epoxy substrate containing glass fiber is used for the connection wiring of the copper wire exposed portion at the coil end as described above, but depending on the purpose, a copper pattern is applied to the polyimide film or the like. A commonly called film substrate may be used, or direct connection wiring may be performed directly using a jumper wire or the like.

更に、本実施の形態の場合、導体(パイプ)の材質としてアルミニウムを用いたが、当然のことながら、銅(Cu)や、他の導電性を有する材質であれば、一向に差し支えなく、目的に応じて使い分けることが可能である。特に導体として銅を用いる場合は、外冶具および内冶具に熱膨張係数の小さい、例えば、W(タングステン)を含むFe合金を使用すると容易に実施可能である。   Furthermore, in the case of the present embodiment, aluminum is used as the material of the conductor (pipe). However, as a matter of course, copper (Cu) or other conductive materials can be used for any purpose. It is possible to use them properly. In particular, when copper is used as the conductor, it can be easily implemented by using an Fe alloy containing a small coefficient of thermal expansion, for example, W (tungsten), for the outer jig and the inner jig.

そして、更に、本実施の形態では、導体からなるパイプを必要長さに切断してから、螺旋状切断、絶縁層被覆等を実施する例を示したが、必要長さ以上の所定長さを有するパイプに、螺旋状切断、絶縁層被覆等を先に実施して絶縁層コイルとし、その後に該絶縁層コイルを必要長さに切断する方法を用いても、全く同様に実施することができる。   Further, in the present embodiment, an example in which a pipe made of a conductor is cut to a required length and then a spiral cut, an insulating layer coating, etc. is performed is shown. Even if it uses the method of cut | disconnecting the insulation layer coil to required length after that, it carries out spiral cutting, insulation layer coating | covering, etc. to the pipe which has first to make an insulation layer coil, and it can implement similarly. .

この発明の実施の形態に係る1層のコイルを示す斜視図である。It is a perspective view which shows the coil of 1 layer which concerns on embodiment of this invention. この発明の実施の形態に係るコイルの断面図である。It is sectional drawing of the coil which concerns on embodiment of this invention. この発明の実施の形態に係る図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2 according to the embodiment of the present invention. この発明の実施の形態に係る多層コイルを示す断面図である。It is sectional drawing which shows the multilayer coil which concerns on embodiment of this invention. この発明の実施の形態に係るこの発明に用いるパイプを示す斜視図である。It is a perspective view which shows the pipe used for this invention which concerns on embodiment of this invention. この発明の実施の形態に係るパイプの切断を示す説明図である。It is explanatory drawing which shows the cutting | disconnection of the pipe which concerns on embodiment of this invention. この発明の実施の形態に係る絶縁層の被覆を示す説明図である。It is explanatory drawing which shows the coating | cover of the insulating layer which concerns on embodiment of this invention. この発明の実施の形態に係る螺旋状に連続して切断した内径寸法が20φのパイプコイルを示す断面図である。It is sectional drawing which shows the pipe coil whose internal-diameter dimension 20phi cut | disconnected continuously helically which concerns on embodiment of this invention. この発明の実施の形態に係る螺旋状に連続して切断した内径寸法が22φのパイプコイルを示す断面図である。It is sectional drawing which shows the pipe coil whose internal-diameter dimension which cut | disconnected helically and which concerns on embodiment of this invention is 22 (phi). この発明の実施の形態に係る螺旋状に連続して切断した内径寸法が24φのパイプコイルを示す断面図である。It is sectional drawing which shows the pipe coil whose internal-diameter dimension which cut | disconnected continuously helically which concerns on embodiment of this invention is 24 (phi). この発明の実施の形態に係る螺旋状に連続して切断した内径寸法が26φのパイプコイルを示す断面図である。It is sectional drawing which shows the pipe coil whose internal-diameter dimension which cut | disconnected spirally and which concerns on embodiment of this invention is 26 (phi). この発明の実施の形態に係る螺旋状に連続して切断した内径寸法が28φのパイプコイルを示す断面図である。It is sectional drawing which shows the pipe coil whose internal-diameter dimension which cut | disconnected helically and which concerns on embodiment of this invention is 28 (phi). この発明の実施の形態に係る内径寸法が20φの絶縁層コイルおよび絶縁層コイルを装入する外冶具を示す斜視図である。It is a perspective view which shows the outer jig | tool which inserts the insulation layer coil which has an internal diameter dimension of 20 (phi) based on embodiment of this invention, and an insulation layer coil. この発明の実施の形態に係る内径寸法が22φの絶縁層コイルおよび絶縁層コイルを装入する外冶具を示す斜視図である。It is a perspective view which shows the outer jig | tool which inserts the insulation layer coil which has an internal diameter dimension of 22 (phi) based on embodiment of this invention, and an insulation layer coil. この発明の実施の形態に係る内径寸法が24φの絶縁層コイルおよび絶縁層コイルを装入する外冶具を示す斜視図である。It is a perspective view which shows the outer jig | tool which inserts the insulating layer coil which has an internal diameter dimension of 24 (phi) based on embodiment of this invention, and an insulating layer coil. この発明の実施の形態に係る内径寸法が26φの絶縁層コイルおよび絶縁層コイルを装入する外冶具を示す斜視図である。It is a perspective view which shows the outer jig | tool which inserts the insulation layer coil which has an internal diameter dimension of 26 (phi) based on embodiment of this invention, and an insulation layer coil. この発明の実施の形態に係る内径寸法が28φの絶縁層コイルおよび絶縁層コイルを装入する外冶具を示す斜視図である。It is a perspective view which shows the outer jig | tool which inserts the insulating layer coil which has an internal-diameter dimension of 28 (phi) concerning embodiment of this invention, and an insulating layer coil. この発明の実施の形態に係る内径寸法が20φの絶縁層コイルを外冶具に挿入した状態とオーブン内での加熱状態を示す断面図である。It is sectional drawing which shows the state which inserted the insulation layer coil whose internal-diameter dimension which concerns on embodiment of this invention to 20 (phi) in the outer jig, and the heating state in oven. この発明の実施の形態に係る内径寸法が22φの絶縁層コイルを外冶具に挿入した状態とオーブン内での加熱状態を示す断面図である。It is sectional drawing which shows the state which inserted the insulation layer coil whose internal-diameter dimension which concerns on embodiment of this invention to 22 (phi) in the outer jig, and the heating state in oven. この発明の実施の形態に係る内径寸法が24φの絶縁層コイルを外冶具に挿入した状態とオーブン内での加熱状態を示す断面図である。It is sectional drawing which shows the state which inserted the insulation layer coil whose internal-diameter dimension which concerns on embodiment of this invention to 24 (phi) in the outer jig, and the heating state in oven. この発明の実施の形態に係る内径寸法が26φの絶縁層コイルを外冶具に挿入した状態とオーブン内での加熱状態を示す断面図である。It is sectional drawing which shows the state which inserted the insulating layer coil whose internal-diameter dimension which concerns on embodiment of this invention is 26 (phi) in the outer jig, and the heating state in oven. この発明の実施の形態に係る内径寸法が28φの絶縁層コイルを外冶具に挿入した状態とオーブン内での加熱状態を示す断面図である。It is sectional drawing which shows the state which inserted the insulating-layer coil whose internal-diameter dimension which concerns on embodiment of this invention is 28 (phi) in the outer jig, and the heating state in oven. この発明の実施の形態に係る1層目の内径寸法が20φの絶縁層コイルからの外冶具の取外しを示す斜視図である。It is a perspective view which shows the removal of the outer jig | tool from the insulating layer coil whose inner-diameter dimension of the 1st layer which concerns on embodiment of this invention is 20phi. この発明の実施の形態に係る多層コイルからの外冶具の取外しを示す斜視図である。It is a perspective view which shows the removal of the outer jig from the multilayer coil which concerns on embodiment of this invention. この発明の実施の形態に係る内冶具からの多層コイルの取出しを示す斜視図である。It is a perspective view which shows taking out of the multilayer coil from the internal jig which concerns on embodiment of this invention. この発明の実施の形態に係るプリントパターン基板のA基板の(a)は外側を示す正面図、(b)は内側を示す背面図である。(A) of the A board | substrate of the printed pattern board | substrate which concerns on embodiment of this invention is a front view which shows an outer side, (b) is a rear view which shows an inner side. この発明の実施の形態に係る多層コイル、A基板およびB基板を示す断面図である。It is sectional drawing which shows the multilayer coil which concerns on embodiment of this invention, A board | substrate, and B board | substrate. この発明の実施の形態に係るプリントパターン基板のB基板の(a)は内側を示す正面図、(b)は外側を示す背面図である。(A) of the B board | substrate of the printed pattern board | substrate which concerns on embodiment of this invention is a front view which shows an inner side, (b) is a rear view which shows the outer side. この発明の実施の形態に係る基板を装着したコイルを示す分解斜視図である。It is a disassembled perspective view which shows the coil which mounted | wore the board | substrate which concerns on embodiment of this invention. この発明の実施の形態に係る基板を装着したコイルを示す斜視図である。It is a perspective view which shows the coil which mounted | wore the board | substrate which concerns on embodiment of this invention. 従来方式の巻き線によるコイルの製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the coil by the winding of a conventional system. 従来方式の巻き線によるコイルの製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the coil by the winding of a conventional system.

符号の説明Explanation of symbols

1 パイプ
1a〜5a パイプコイル(パイプ加工コイル)
1b〜5b 絶縁層コイル(絶縁層付きパイプコイル)
6 多層コイル(絶縁層コイル1b〜5b)
7 基板装着コイル
8 絶縁層
9 接着層
10〜14 外冶具
15 内冶具
16 A基板
17 穴
18、18a〜c 銅箔
19 入力リード線装着用の穴
20 入力リード線
21 B基板
22 穴
23、23a〜c 銅箔
24 入力リード線装着用の穴
25 入力リード線
26 導電線材
27 巻き芯
28 軸線
29 CO2レーザー
30 電着槽
31 電着液
1 Pipe 1a-5a Pipe coil (pipe processing coil)
1b-5b Insulation layer coil (pipe coil with insulation layer)
6 Multi-layer coil (insulating layer coils 1b to 5b)
7 Board mounting coil 8 Insulating layer 9 Adhesive layer 10-14 Outer jig 15 Inner jig 16 A board 17 Hole 18, 18a-c Copper foil 19 Input lead wire mounting hole 20 Input lead wire 21 B board 22 Holes 23, 23a ~c foil 24 input hole 25 input lead 26 conductive wire 27 wound core 28 axis 29 CO 2 laser 30 for lead wire attached electrodeposition tank 31 electrodepositing solution

Claims (7)

導電材からなる、所定の厚さを有するパイプを、所定寸法幅にて、一方のパイプ端部から他方の端部まで、連続し且つ繋がった状態でコイル状に切断し、このように切断した前記パイプに絶縁層を被覆し、次いで、接着剤を配してから前記パイプを両端から押し付けて切断された部分相互を密着し且つ固着することを特徴とするコイルの製造方法。   A pipe made of a conductive material and having a predetermined thickness was cut into a coil shape in a continuous and connected state from one pipe end to the other end at a predetermined dimension width, and thus cut. A method of manufacturing a coil, wherein an insulating layer is coated on the pipe, and then an adhesive is provided, and then the pipe is pressed from both ends so that the cut portions are brought into close contact with each other and fixed. 導電材からなる、所定の厚さを有する円筒状のパイプを、所定寸法幅にて、一方のパイプ端部から他方の端部まで、連続し且つ繋がった状態で螺旋状に切断し、このように切断した前記パイプに絶縁層を被覆し、次いで、接着剤を配してから前記パイプを両端から押し付けて切断された部分相互を密着し且つ固着することを特徴とするコイルの製造方法。   A cylindrical pipe made of a conductive material and having a predetermined thickness is cut into a spiral shape in a continuous and connected state from one pipe end to the other end with a predetermined width. A method of manufacturing a coil, comprising: coating an insulating layer on the pipe cut into pieces, then placing an adhesive and then pressing the pipe from both ends to bring the cut portions into close contact with each other. 複数の前記コイルを多層に配して多層コイルとする請求項1または2記載のコイルの製造方法。   The coil manufacturing method according to claim 1, wherein a plurality of the coils are arranged in a multilayer to form a multilayer coil. 前記多層コイルを構成するに当たり、各層のコイルを、加熱により膨張させまたは冷却により収縮させてから、前記コイル同士を嵌合する請求項3記載のコイルの製造方法。   The coil manufacturing method according to claim 3, wherein, in forming the multilayer coil, the coils of each layer are expanded by heating or contracted by cooling, and then the coils are fitted together. 導電材からなる、所定の厚さを有するパイプが、所定寸法幅にて、一方のパイプ端部から他方の端部まで、連続し且つ繋がった状態でコイル状に切断され、このように切断された前記パイプに、絶縁層が被覆され、そして、切断された部分相互が密着し且つ接着剤により固着されていることを特徴とするコイル。   A pipe made of a conductive material and having a predetermined thickness is cut into a coil shape in a continuous and connected state from one pipe end to the other end with a predetermined width. The coil is characterized in that the pipe is covered with an insulating layer, and the cut parts are in close contact with each other and fixed with an adhesive. 導電材からなる、所定の厚さを有する円筒状のパイプが、所定寸法幅にて、一方のパイプ端部から他方の端部まで、連続し且つ繋がった状態で螺旋状に切断され、このように切断された前記パイプに、絶縁層が被覆され、そして、切断された部分相互が密着し且つ接着剤により固着されていることを特徴とするコイル。   A cylindrical pipe made of a conductive material and having a predetermined thickness is cut in a spiral shape in a continuous and connected state from one pipe end to the other end with a predetermined width. An insulating layer is coated on the pipe cut into pieces, and the cut parts are in close contact with each other and fixed with an adhesive. 複数の前記コイルが多層に配された多層コイルである請求項5または6記載のコイル。   The coil according to claim 5 or 6, wherein the plurality of coils are multilayer coils arranged in multiple layers.
JP2004000860A 2004-01-06 2004-01-06 Coil and its manufacturing method Pending JP2005197388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000860A JP2005197388A (en) 2004-01-06 2004-01-06 Coil and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000860A JP2005197388A (en) 2004-01-06 2004-01-06 Coil and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005197388A true JP2005197388A (en) 2005-07-21

Family

ID=34816530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000860A Pending JP2005197388A (en) 2004-01-06 2004-01-06 Coil and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005197388A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120828A (en) * 2011-12-07 2013-06-17 Suncall Corp Coil manufacturing method
DE102012011554A1 (en) * 2012-06-11 2013-12-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for manufacturing electrical coil for e.g. electric motor, involves forming coil head of loop from tubular metal semi-finished product, and removing regions of tubular metal semi-finished product, for forming conductor loop
DE102019202236A1 (en) * 2019-02-19 2020-08-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a helical metal body
JP2022520617A (en) * 2019-02-15 2022-03-31 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト Coil and manufacturing method of the coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120828A (en) * 2011-12-07 2013-06-17 Suncall Corp Coil manufacturing method
DE102012011554A1 (en) * 2012-06-11 2013-12-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for manufacturing electrical coil for e.g. electric motor, involves forming coil head of loop from tubular metal semi-finished product, and removing regions of tubular metal semi-finished product, for forming conductor loop
DE102012011554B4 (en) * 2012-06-11 2017-04-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing an electrotechnical coil
JP2022520617A (en) * 2019-02-15 2022-03-31 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト Coil and manufacturing method of the coil
DE102019202236A1 (en) * 2019-02-19 2020-08-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a helical metal body

Similar Documents

Publication Publication Date Title
JP6865605B2 (en) Common mode choke coil
JP6766697B2 (en) Coil parts
JP6733580B2 (en) Coil parts
JP6884603B2 (en) Coil parts
US11235406B2 (en) High-efficiency soldering apparatus for winding head of flat-wire motor and soldering process
JPWO2003036665A1 (en) Thin transformer and manufacturing method thereof
JP2007012969A (en) Laminated coil and method for manufacturing the same
JP6791068B2 (en) Coil parts and mounting board with coil parts
CN104700991A (en) Inductance element and method for manufacturing inductance element
JP2011138911A (en) Wound coil component, and method of manufacturing the same
JP2006295106A (en) Air core coil and manufacturing method thereof
WO2021153347A1 (en) Coil, and method for manufacturing same
US11798732B2 (en) Coil component manufacturing method
JP2005197388A (en) Coil and its manufacturing method
JP2019009286A (en) Coil component
JP5100533B2 (en) Superconducting conductor connection method, connection structure, connection member
JP2012178532A (en) Manufacturing method of coil component
JP2006165460A (en) Surface-mounting coil and manufacturing method thereof
JP7286936B2 (en) Coil devices, pulse transformers and electronic components
JP2006331765A (en) Winding-terminal connection method
JP6992101B2 (en) Coil parts
JP6844724B2 (en) Coil parts
US20110284274A1 (en) Wired circuit board and producing method thereof
EP1647999B1 (en) A mounting assembly for inductors and method of producing the same
JP2004259944A (en) Method for manufacturing inductance element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A131 Notification of reasons for refusal

Effective date: 20060425

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060815

Free format text: JAPANESE INTERMEDIATE CODE: A02