JP2005195360A - Tooth surface error evaluation device for gearwheel pair, evaluation program therefor, and manufacturing method for gearwheel pair using the same - Google Patents

Tooth surface error evaluation device for gearwheel pair, evaluation program therefor, and manufacturing method for gearwheel pair using the same Download PDF

Info

Publication number
JP2005195360A
JP2005195360A JP2003435485A JP2003435485A JP2005195360A JP 2005195360 A JP2005195360 A JP 2005195360A JP 2003435485 A JP2003435485 A JP 2003435485A JP 2003435485 A JP2003435485 A JP 2003435485A JP 2005195360 A JP2005195360 A JP 2005195360A
Authority
JP
Japan
Prior art keywords
tooth surface
error
tooth
gear
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003435485A
Other languages
Japanese (ja)
Inventor
Yoshikazu Miyoshi
慶和 三好
Kohei Saiki
康平 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2003435485A priority Critical patent/JP2005195360A/en
Publication of JP2005195360A publication Critical patent/JP2005195360A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tooth surface error evaluation method for a gearwheel pair capable of grasping accurately and easily a relative meshing condition between a driving tooth surface and a driven tooth surface by an operator. <P>SOLUTION: A controller 3 generates distribution information of a relative tooth surface error that is a relative tooth surface error when the both tooth surfaces are meshed, using a measured value and design value of a tooth surface error data with respect to respective reference tooth surfaces of the driving tooth surface and the driven tooth surface, and makes the operator grasp accurately and easily the relative meshing condition between the driving tooth surface and the driven tooth surface, by evaluating the respective tooth surfaces, based on the generated relative tooth surface error distribution information. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、駆動歯車と被動歯車の歯面誤差を評価する歯車対の歯面誤差評価装置、及びこれを用いた歯車対の製造方法に関する。   The present invention relates to a gear pair tooth surface error evaluation apparatus for evaluating tooth surface errors of a drive gear and a driven gear, and a gear pair manufacturing method using the gear surface tooth error evaluation device.

一般に、歯車対の耐久性や静粛性等は、歯面形状によって大きく左右されるため、歯面形状の正確な把握は特に重要である。この種の歯面形評価を行うための技術として、例えば、特許文献1には、触針式の歯面形状測定装置を用いて歯面の歯形,歯筋チャートを測定し、これらのチャートから、テンプレートを使用して歯面評価を行う技術が開示されている。   In general, the durability and quietness of a gear pair are greatly influenced by the tooth surface shape, and therefore it is particularly important to accurately grasp the tooth surface shape. As a technique for performing this type of tooth surface shape evaluation, for example, in Patent Document 1, a tooth shape and tooth trace chart of a tooth surface is measured using a stylus type tooth surface shape measuring device, and these charts are used. A technique for performing tooth surface evaluation using a template is disclosed.

また、特許文献2には、歯面にマーキングコンパウンドを被覆した歯車対を回転させるとともに、その回転によるコンパウンドの除去状態を撮影し、撮影した画像データをデジタル処理して歯面接触パターンのデジタル像を形成することで歯面評価を行う技術が開示されている。
特開2000−19070号公報 特表平10−510628号公報
Patent Document 2 discloses that a gear pair whose tooth surface is coated with a marking compound is rotated, the removal state of the compound due to the rotation is photographed, and the photographed image data is digitally processed to obtain a digital image of the tooth surface contact pattern. A technique for evaluating a tooth surface by forming a tooth is disclosed.
JP 2000-19070 A Japanese National Patent Publication No. 10-510628

しかしながら、上述の各技術は、歯面形状を定性的に評価するものでしかなく、複雑な歯面の3次元形状を正確且つ容易にオペレータに判断させることは困難である。特に、歯面形状の評価の際に最も重要であると考えられる駆動歯面と被動歯面との相対的な噛合状態を上述の各技術を用いて正確に評価するためには、オペレータの高い熟練度等が要求され、歯面評価結果を効果的に実際の歯車対の歯面加工等にフィードバックさせることは困難である。   However, each of the above-described techniques only evaluates the tooth surface shape qualitatively, and it is difficult for the operator to accurately and easily determine the complicated three-dimensional shape of the tooth surface. In particular, in order to accurately evaluate the relative meshing state of the driving tooth surface and the driven tooth surface, which are considered to be the most important in the evaluation of the tooth surface shape, using the above-mentioned techniques, the operator's high The skill level is required, and it is difficult to effectively feed back the tooth surface evaluation result to the actual tooth surface processing of the gear pair.

本発明は上記事情に鑑みてなされたもので、駆動歯面と被動歯面との相対的な噛合状態を正確且つ容易にオペレータに把握させることのできる歯車対の歯面誤差評価装置、その評価プログラム、及びこれを用いた歯車対の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a gear pair tooth surface error evaluation apparatus capable of allowing an operator to accurately and easily grasp the relative meshing state of a driving tooth surface and a driven tooth surface, and its evaluation It is an object of the present invention to provide a program and a method of manufacturing a gear pair using the program.

本発明は、駆動歯車の駆動歯面及び被動歯車の被動歯面の各基準歯面に対する歯面誤差を複数点測定する誤差測定手段と、上記各基準歯面に対して設定した上記各歯面の歯面誤差の設計値、或いは、上記誤差測定手段で測定した上記歯面誤差の測定値に基づいて、上記駆動歯面と上記被動歯面との噛合時の相対的な歯面誤差である相対歯面誤差の分布情報を生成する分布情報生成手段と、上記分布情報生成手段で生成した上記歯面形状誤差の分布情報に基づいて上記各歯面の定量評価を行う歯面評価手段とを備えたことを特徴とする。   The present invention provides an error measuring means for measuring a plurality of tooth surface errors of the drive tooth surface of the drive gear and the driven tooth surface of the driven gear with respect to each reference tooth surface, and each tooth surface set for each reference tooth surface. Is a relative tooth surface error at the time of meshing between the driving tooth surface and the driven tooth surface based on the designed value of the tooth surface error or the measured value of the tooth surface error measured by the error measuring means. Distribution information generating means for generating relative tooth surface error distribution information, and tooth surface evaluation means for quantitatively evaluating each tooth surface based on the tooth surface shape error distribution information generated by the distribution information generating means. It is characterized by having.

また、本発明は、駆動歯車の駆動歯面及び被動歯車の被動歯面の各基準歯面に対する歯面誤差を誤差測定手段を用いて複数点測定する誤差測定ステップと、上記各基準歯面に対して設定した上記各歯面の歯面誤差の設計値、或いは、上記誤差測定ステップで測定した上記歯面誤差の測定値に基づいて、上記駆動歯面と上記被動歯面との噛合時の相対的な歯面誤差である相対歯面誤差の分布情報を生成する分布情報生成ステップと、上記分布情報生成手段で生成した上記歯面形状誤差の分布情報に基づいて上記各歯面の定量評価を行う歯面評価ステップとを備えたことを特徴とする。   Further, the present invention provides an error measuring step for measuring a plurality of tooth surface errors with respect to each reference tooth surface of the driving gear surface of the driving gear and the driven tooth surface of the driven gear using an error measuring means, and each of the above reference tooth surfaces. Based on the design value of the tooth surface error of each tooth surface set for the tooth surface, or the measured value of the tooth surface error measured in the error measurement step, the meshing of the driving tooth surface and the driven tooth surface is performed. A distribution information generating step for generating relative tooth surface error distribution information, which is a relative tooth surface error, and quantitative evaluation of each tooth surface based on the tooth surface shape error distribution information generated by the distribution information generating means; And a tooth surface evaluation step.

また、本発明は、駆動歯車の駆動歯面及び被動歯車の被動歯面の各基準歯面に対する歯面誤差の設計値を設定する歯面誤差初期値設定工程と、歯車対の歯面誤差評価装置を用いて上記歯面誤差初期値設定工程で設定した上記歯面誤差の設計値に対する上記各歯面の定量評価を行う第1の歯面評価工程と、上記第1の歯面評価工程での評価結果に基づいて上記駆動歯面或いは上記被動歯面の少なくとも何れか一方の歯面加工を行う第1の歯面加工工程と、歯車対の歯面誤差評価装置を用いて上記第1の歯面加工工程で加工した上記駆動歯面及び上記被動歯面の定量評価を行う第2の歯面評価工程と、上記第2の歯面評価工程での評価結果に基づいて上記駆動歯面或いは上記被動歯面の少なくとも何れか一方の歯面加工を行う第2の歯面加工工程とを備えたことを特徴とする。   Further, the present invention provides a tooth surface error initial value setting step for setting a tooth surface error design value for each reference tooth surface of the driving tooth surface of the driving gear and the driven tooth surface of the driven gear, and the tooth surface error evaluation of the gear pair. A first tooth surface evaluation step for quantitatively evaluating each tooth surface with respect to a design value of the tooth surface error set in the tooth surface error initial value setting step using an apparatus; and a first tooth surface evaluation step. A first tooth surface processing step for processing at least one tooth surface of the driving tooth surface or the driven tooth surface based on the evaluation result of the above, and the tooth surface error evaluation device for the gear pair. A second tooth surface evaluation step for quantitatively evaluating the driving tooth surface and the driven tooth surface processed in the tooth surface processing step, and the driving tooth surface based on an evaluation result in the second tooth surface evaluation step; Second tooth surface processing step for processing at least one tooth surface of the driven tooth surface Characterized by comprising a.

本発明の歯車対の歯面誤差評価装置及びその評価プログラムによれば、駆動歯面と被動歯面との相対的な噛合状態を正確且つ容易にオペレータに把握させることができ、この歯面誤差評価装置及び評価プログラムを用いて歯車対を製造することにより、耐久性や静粛性に優れた歯車対を効率的に製造することができる。   According to the gear pair tooth surface error evaluation apparatus and the evaluation program thereof according to the present invention, the operator can accurately and easily grasp the relative meshing state of the driving tooth surface and the driven tooth surface. By producing a gear pair using the evaluation device and the evaluation program, it is possible to efficiently produce a gear pair having excellent durability and quietness.

以下、図面を参照して本発明の形態を説明する。図面は本発明の一形態に係わり、図1は歯面誤差評価装置の概略構成図、図2は歯面誤差測定装置を示す斜視図、図3は歯面誤差測定対象の抽出例をを示す説明図、図4は歯面の歯筋方向への測定パターンの一例を示す説明図、図5は駆動歯車の歯幅が被動歯車の歯幅よりも小さい場合の歯面誤差データの抽出領域を示す説明図、図6は駆動歯車の歯幅が被動歯車の歯幅よりも小さい場合の歯面誤差データの抽出領域を示す説明図、図7は歯面誤差修正量設定ルーチンを示すフローチャート、図8は歯面誤差測定サブルーチンを示すフローチャート、図9は相対歯面誤差分布情報生成サブルーチンを示すフローチャート、図10は等高線表示された相対歯面誤差分布の一例を示す説明図、図11は最凸点位置に基づく歯面評価の一例を示すマップ、図12は各入力トルクでの歯車対の組付誤差と伝達誤差との関係を示す図表、図13は圧力角誤差及びねじれ角誤差の修正による相対歯面誤差の変化を示す説明図、図14は歯形丸み及びクラウニングの修正による相対歯面誤差の変化を示す説明図、図15はバイアスの修正による相対歯面誤差の変化を示す説明図、図16は歯車対の製造工程を示すフローチャートである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a tooth surface error evaluation device, FIG. 2 is a perspective view showing a tooth surface error measuring device, and FIG. 3 shows an extraction example of a tooth surface error measuring object. FIG. 4 is an explanatory diagram showing an example of a measurement pattern in the tooth trace direction of the tooth surface, and FIG. 5 is an extraction region of tooth surface error data when the tooth width of the driving gear is smaller than the tooth width of the driven gear. FIG. 6 is an explanatory view showing an extraction region of tooth surface error data when the tooth width of the driving gear is smaller than the tooth width of the driven gear, and FIG. 7 is a flowchart showing a tooth surface error correction amount setting routine. 8 is a flowchart showing a tooth surface error measurement subroutine, FIG. 9 is a flowchart showing a relative tooth surface error distribution information generation subroutine, FIG. 10 is an explanatory diagram showing an example of a relative tooth surface error distribution displayed in contour lines, and FIG. An example of tooth surface evaluation based on point position FIG. 12 is a chart showing the relationship between the assembly error and transmission error of the gear pair at each input torque, and FIG. 13 is an explanatory diagram showing the change of the relative tooth surface error due to the correction of the pressure angle error and the torsion angle error. FIG. 14 is an explanatory diagram showing a change in relative tooth surface error due to correction of tooth profile rounding and crowning, FIG. 15 is an explanatory diagram showing a change in relative tooth surface error due to bias correction, and FIG. 16 is a flowchart showing a manufacturing process of a gear pair. It is.

図1において符号1は、歯車対の歯面評価を行う歯面誤差評価装置を示し、この歯面誤差評価装置1は、誤差測定手段としての触針式の歯面誤差測定装置2と、この歯面誤差測定装置2を制御する制御装置3とを有して構成されている。ここで、本形態では、はすば歯車(ヘリカルギヤ)で構成される歯車対を評価対象とする歯面誤差評価装置の一例について説明する。   In FIG. 1, reference numeral 1 denotes a tooth surface error evaluation device that performs tooth surface evaluation of a gear pair. The tooth surface error evaluation device 1 includes a stylus type tooth surface error measuring device 2 as an error measuring means, And a control device 3 that controls the tooth surface error measuring device 2. Here, in the present embodiment, an example of a tooth surface error evaluation apparatus that evaluates a gear pair constituted by a helical gear (helical gear) will be described.

図2に示すように、歯面誤差測定装置2は、評価対象としての歯車を保持する歯車保持部10と、この歯車保持部10に保持された歯車の歯面誤差を測定する触針11とを有して構成されている。   As shown in FIG. 2, the tooth surface error measuring device 2 includes a gear holding unit 10 that holds a gear as an evaluation target, and a stylus 11 that measures a tooth surface error of the gear held by the gear holding unit 10. It is comprised.

歯車保持部10は、測定装置本体20に対して相対回転自在に取り付けられた回転体21と、この回転体21を回転駆動する回転モータ22(図1参照)と、回転体21上で歯車を保持する歯車保持軸23と、測定装置本体20に立設する支柱24上に支持され歯車保持軸23との間に歯車を挟持するピン25とを有して構成されている。   The gear holding unit 10 includes a rotating body 21 that is rotatably attached to the measuring device main body 20, a rotation motor 22 (see FIG. 1) that rotationally drives the rotating body 21, and a gear on the rotating body 21. A gear holding shaft 23 to be held and a pin 25 that is supported on a support column 24 erected on the measuring apparatus main body 20 and pinches the gear between the gear holding shaft 23 are configured.

また、測定装置本体20には歯車保持部10に対して進退移動自在なY軸スライダ26が支柱24に対向して立設され、このY軸スライダ26には、歯車保持部10に対して昇降移動自在なZ軸スライダ27が取り付けられている。さらに、Z軸スライダ27には、Y軸スライダ26及びZ軸スライダ27の移動方向と直交する水平方向に移動自在なX軸スライダ28が取り付けられ、このX軸スライダ28には触針保持軸29を介して触針11が取り付けられている。各スライダ26〜28は、それぞれ、Y軸モータ30、Z軸モータ31、及び、X軸モータ32(図1参照)の駆動によってそれぞれ直線移動するもので、これら各モータ30〜32の駆動により、触針11は歯車保持部10上の歯車に対して3次元的に相対移動可能となっている。   Further, a Y-axis slider 26, which can move forward and backward with respect to the gear holding unit 10, is erected on the measuring apparatus main body 20 so as to oppose the support column 24. A movable Z-axis slider 27 is attached. Further, the Z-axis slider 27 is attached with a Y-axis slider 26 and an X-axis slider 28 that is movable in a horizontal direction perpendicular to the moving direction of the Z-axis slider 27. The stylus holding shaft 29 is attached to the X-axis slider 28. A stylus 11 is attached via The sliders 26 to 28 are linearly moved by driving the Y-axis motor 30, the Z-axis motor 31, and the X-axis motor 32 (see FIG. 1), respectively, and by driving these motors 30 to 32, The stylus 11 can move relative to the gear on the gear holder 10 in three dimensions.

また、各モータ22,30〜32は、モータ制御部35〜38を介して制御装置3に接続されており、各モータ制御部35〜38には、各モータ22,30〜32に付設されたエンコーダ39〜42が接続されている。そして、各モータ制御部35〜38は、各エンコーダ39〜42の出力信号に基づいて、回転体21の回転角度、及び、各スライダ26〜28の直線移動量を取得するようになっている。   Moreover, each motor 22, 30-32 is connected to the control apparatus 3 via the motor control parts 35-38, and each motor control part 35-38 was attached to each motor 22, 30-32. Encoders 39 to 42 are connected. And each motor control part 35-38 acquires the rotation angle of the rotary body 21, and the linear movement amount of each slider 26-28 based on the output signal of each encoder 39-42.

制御装置3は、CPU、RAM、ROM、入出力ポート等(何れも図示せず)を備えたパーソナルコンピュータ等で構成されている。この制御装置3の入力ポートには、触針11の振れ量を検出する検出器45や、キーボード等で構成された入力装置46等が接続され、出力ポートには、各モータ制御部35〜38や、表示手段としてのモニタ47等が接続されている。制御装置3には評価対象となる歯車対の各諸元が入力装置46等を通じて予め入力されており、制御装置3は、ROM内に格納されたプログラムに基づき、例えば図7に示す歯面誤差修正量設定ルーチンに従って後述の各処理を行う。これにより、制御装置3は、分布情報生成手段、歯面評価手段、修正量設定手段としての各機能を実現する。   The control device 3 is constituted by a personal computer or the like provided with a CPU, RAM, ROM, input / output port and the like (all not shown). The input port of the control device 3 is connected to a detector 45 that detects the amount of deflection of the stylus 11, the input device 46 configured by a keyboard and the like, and the motor control units 35 to 38 are connected to the output port. In addition, a monitor 47 as a display means is connected. Each specification of the gear pair to be evaluated is input in advance to the control device 3 through the input device 46 and the like. The control device 3 is based on a program stored in the ROM, for example, the tooth surface error shown in FIG. Each process described later is performed in accordance with the correction amount setting routine. Thereby, the control apparatus 3 implement | achieves each function as a distribution information production | generation means, a tooth surface evaluation means, and a correction amount setting means.

すなわち、図7に示すように、制御装置3は、先ず、ステップS1において、歯面誤差測定装置2を駆動制御し、オペレータによって歯車保持部10上に順次セットされる駆動歯車及び被動歯車の歯面誤差を測定する。   That is, as shown in FIG. 7, the control device 3 first drives and controls the tooth surface error measuring device 2 in step S1, and the teeth of the driving gear and the driven gear sequentially set on the gear holding unit 10 by the operator. Measure surface error.

この歯面誤差の測定は、具体的には、例えば図8に示す歯面誤差測定サブルーチンに従って実行される。すなわち、オペレータ等によって歯車保持部10上に駆動歯車がセットされてサブルーチンがスタートすると、制御装置3は、先ず、ステップS101において、各モータ22,30〜32を駆動制御し、駆動歯面に接触する触針11の振れ量から、駆動歯面の歯面誤差を測定する。   Specifically, the measurement of the tooth surface error is executed in accordance with, for example, a tooth surface error measurement subroutine shown in FIG. That is, when the driving gear is set on the gear holding unit 10 by an operator or the like and the subroutine starts, the control device 3 first drives and controls the motors 22, 30 to 32 in step S101 to contact the driving tooth surface. The tooth surface error of the driving tooth surface is measured from the amount of deflection of the stylus 11.

この歯面誤差とは、歯車諸元により定まる歯車の基準歯面(例えば、はすば歯車においては歯車諸元により一義的に定まる歯面のインボリュート曲線)に対する実際の歯面の誤差量である。制御装置3は、所定に抽出された駆動歯車上の各歯面に対し、例えば、図4に一点鎖線で示すように、歯先噛合い開始位置から歯元噛合い終了位置までの間で所定の等間隔毎に計7回、触針11を歯筋方向(歯幅方向)に沿って走査させ、所定サンプル間隔毎に歯面誤差を測定することで、例えば、1歯面当たり、7行×n列の歯面誤差の測定データ群を得る。その際、図4に二点差線で示すように、歯面の歯幅中央で触針11を歯形方向に沿って走査させて歯形方向の歯面誤差を測定し、この歯形方向の測定データに基づいて各歯筋方向の各測定データを相対的に補正することにより、より精度の高い歯面誤差の測定データ群を取得することができる。   The tooth surface error is an actual tooth surface error amount with respect to a reference tooth surface of the gear determined by the gear specifications (for example, in a helical gear, the tooth surface involute curve uniquely determined by the gear specifications). . For each tooth surface on the drive gear that has been extracted in a predetermined manner, the control device 3 performs a predetermined operation between the tooth tip meshing start position and the tooth root meshing end position, for example, as shown by a one-dot chain line in FIG. The stylus 11 is scanned along the tooth trace direction (tooth width direction) a total of 7 times at regular intervals, and the tooth surface error is measured at predetermined sample intervals, for example, 7 rows per tooth surface A measurement data group of tooth surface error in x rows is obtained. At that time, as indicated by a two-dot chain line in FIG. 4, the tooth surface error is measured in the tooth profile direction by scanning the stylus 11 along the tooth profile direction at the center of the tooth width of the tooth surface, and the measurement data in the tooth profile direction is measured. Based on the relative correction of each measurement data in the direction of each tooth trace, a measurement data group of tooth surface errors with higher accuracy can be acquired.

ここで、本形態においては、歯面誤差測定が行われる歯面として、例えば図3に示すように、略90°毎の角度位置に位置する歯車上の各歯面がそれぞれ抽出される。そして、制御装置3のRAM内には、例えば、各抽出歯面の対応する測定データ毎の平均値が歯面誤差の測定データ群として格納される。   Here, in this embodiment, as tooth surfaces for which tooth surface error measurement is performed, for example, as shown in FIG. 3, tooth surfaces on the gears positioned at angular positions of approximately 90 ° are extracted. In the RAM of the control device 3, for example, an average value for each measurement data corresponding to each extracted tooth surface is stored as a measurement data group of tooth surface errors.

続くステップS102において、制御装置3は、例えば多点スプライン補間法を用いてステップS101で測定されたデータ群の補間計算を行い、各歯筋方向のサンプル間隔が例えば0.1mmとなる7行×n’列の歯面誤差のデータ群を取得する。   In subsequent step S102, the control device 3 performs interpolation calculation of the data group measured in step S101 using, for example, a multipoint spline interpolation method, and the sample interval in each tooth trace direction is, for example, 7 rows × 0.1 mm. A data group of tooth surface error in the n ′ column is acquired.

すなわち、制御装置3は、例えば、(1)式に示すように、歯面誤差の各測定データ列を用いて、歯筋方向をx軸とするスプライン近似式を列毎にそれぞれ求め、この近似式から補間データを算出することで所望サンプル間隔のデータ群を取得する。

Figure 2005195360
That is, for example, as shown in Equation (1), the control device 3 uses each measurement data sequence of tooth surface errors to obtain a spline approximation formula with the tooth trace direction as the x axis for each column, and this approximation. A data group at a desired sample interval is obtained by calculating interpolation data from the equation.
Figure 2005195360

ここで、(1)式において、前段の関数は近似式全体の傾向を表す項であり、同項のAk-1〜A0は、n個のデータ列の中から所定に抽出したk個の歯面誤差データに基づいてそれぞれ設定される係数である。また、(1)式において、後段の関数は隣り合うデータ間を滑らかに連結するための項であり、同項のCiは、互いに隣り合うデータ対に基づいてそれぞれ設定される係数である。   Here, in the expression (1), the preceding function is a term representing the tendency of the entire approximate expression, and Ak-1 to A0 in the same term are k teeth extracted from n data strings in a predetermined manner. The coefficients are set based on the surface error data. In equation (1), the latter function is a term for smoothly connecting adjacent data, and Ci in the same term is a coefficient set based on adjacent data pairs.

なお、このステップS102の補間処理は、ステップS101で測定される歯筋方向のサンプル間隔が、所望のサンプル間隔(例えば、0.1mm)と一致する場合には省略可能である。   The interpolation processing in step S102 can be omitted when the sample interval in the tooth trace direction measured in step S101 matches a desired sample interval (for example, 0.1 mm).

次に、オペレータ等によって歯車保持部10上の歯車が駆動歯車から被動歯車に交換されると、制御装置3は、ステップS103において、被動歯車(被動歯面)に対して上述のステップS101と略同様の処理を行い(すなわち、歯先噛合い終了位置から歯元噛合い開始位置までの間で所定の等間隔毎に計7回、触針11を歯筋方向(歯幅方向)に沿って走査させ)、7行×o列の歯面誤差の測定データ群を取得する。   Next, when the gear on the gear holding unit 10 is exchanged from the driving gear to the driven gear by an operator or the like, the control device 3 is substantially the same as step S101 described above with respect to the driven gear (driven tooth surface) in step S103. The same processing is performed (that is, the stylus 11 is moved along the tooth trace direction (tooth width direction) a total of seven times at predetermined equal intervals between the tooth tip mesh end position and the tooth root mesh start position. And a measurement data group of tooth surface error of 7 rows × o columns is acquired.

続くステップS104において、制御装置3は、必要に応じて、上述のステップS102と略同様の補間処理を行い、各歯筋方向のサンプル間隔が例えば0.1mmとなる7行×o’列の歯面誤差のデータ群を取得した後、サブルーチンを抜ける。   In subsequent step S104, the control device 3 performs an interpolation process substantially similar to that in step S102 as necessary, and the teeth in the 7 rows × o ′ columns in which the sample interval in each tooth trace direction is, for example, 0.1 mm. After obtaining the surface error data group, the subroutine is exited.

ここで、制御装置3は、ステップS1において、歯面誤差測定装置2による駆動歯面及び被動歯面の測定による上述の各歯面誤差データの取得に代えて、歯車対の設計段階にシミュレーション等に基づいて設定される各歯面の歯面誤差の設計値(設計段階に基準歯面に対して予め設定される歯面誤差のデータ群)を、入力装置46を通じたオペレータ入力等によって取得することも可能である。   Here, the control device 3 performs a simulation or the like at the design stage of the gear pair instead of acquiring each tooth surface error data by measuring the driving tooth surface and the driven tooth surface by the tooth surface error measuring device 2 in step S1. The design value of the tooth surface error of each tooth surface set based on (the tooth surface error data group preset for the reference tooth surface at the design stage) is acquired by operator input or the like through the input device 46. It is also possible.

次に、ステップS2において、制御装置3は、上述のステップS1で取得した各データ群の測定値或いは設計値、すなわち、駆動歯面の歯面誤差のデータ群(7行×n’列)及び被動歯面の歯面誤差のデータ群(7行×o’列)に基づいて、両歯面の噛合時の相対的な歯面誤差である相対歯面誤差の分布情報を生成する。   Next, in step S2, the control device 3 determines the measured value or design value of each data group acquired in step S1 described above, that is, the data group (7 rows × n ′ column) of the tooth surface error of the drive tooth surface. Based on the tooth surface error data group (7 rows × o ′ column) of the driven tooth surface, the distribution information of the relative tooth surface error, which is a relative tooth surface error at the time of meshing of both tooth surfaces, is generated.

この相対歯面誤差の分布情報の生成は、例えば図9に示す相対歯面誤差分布情報生成サブルーチンに従って実行される。すなわち、サブルーチンがスタートすると、制御装置3は、ステップS201において、歯車対の諸元によって一義的に定まる両歯面上の有効噛合領域を算出し、駆動歯面の噛合誤差のデータ群(7行×n’列)及び被動歯面の噛合誤差のデータ群(7行×o’列)の中から、有効噛合領域内に存在する歯面誤差のデータ群(7行×p列)をそれぞれ抽出する。   The generation of the relative tooth surface error distribution information is executed, for example, according to a relative tooth surface error distribution information generation subroutine shown in FIG. That is, when the subroutine starts, the control device 3 calculates an effective meshing region on both tooth surfaces that is uniquely determined by the specifications of the gear pair in step S201, and generates a data group (7th row) Xn ′ column) and driven tooth surface meshing error data group (7 rows × o ′ column), respectively, tooth surface error data group (7 rows × p column) existing in the effective meshing region is extracted. To do.

ここで、駆動歯面及び被動歯面の有効噛合領域は、具体的には、歯車諸元である各歯面の歯幅及び両歯面間の歯幅ズレ量(駆動歯面の中心と被動歯面の中心との歯幅方向のズレ量)ΔBに基づいて算出される。この場合、図5(a)及び(b)から明らかなように、駆動歯面Dvの歯幅が被動歯面Dnの歯幅よりも大きい場合であって、且つ、駆動歯面Dvと被動歯面Dnとが完全に重なる場合には、抽出される各歯面の歯幅方向のデータ数は、p=o’となる。また、図5(c)及び(d)から明らかなように、駆動歯面Dvの歯幅が被動歯面Dnの歯幅よりも大きい場合であって、且つ、駆動歯面Dvと被動歯面Dnとが完全に重ならない場合には、抽出される各歯面の歯幅方向のデータ数は、p<o’となる。また、図6(a)及び(b)から明らかなように、駆動歯面Dvの歯幅が被動歯面Dnの歯幅よりも小さい場合であって、且つ、駆動歯面Dvと被動歯面Dnとが完全に重なる場合には、抽出される各歯面の歯幅方向のデータ数は、p=n’となる。また、図6(c)及び図6(d)から明らかなように、駆動歯面Dvの歯幅が被動歯面Dnの歯幅よりも小さい場合であって、且つ、駆動歯面Dvと被動歯面Dnとが完全に重ならない場合には、抽出される各歯面の歯幅方向のデータ数は、p<n’となる。なお、図5及び図6は、噛合時に重畳される駆動歯面Dvと被動歯面Dnとを上下に並べて表示したものである。   Here, the effective meshing region of the driving tooth surface and the driven tooth surface specifically includes the tooth width of each tooth surface that is the gear specification and the tooth width deviation amount between both tooth surfaces (the center of the driving tooth surface and the driven tooth surface). It is calculated based on the amount of deviation ΔB in the tooth width direction from the center of the tooth surface. In this case, as is apparent from FIGS. 5A and 5B, the tooth width of the driving tooth surface Dv is larger than the tooth width of the driven tooth surface Dn, and the driving tooth surface Dv and the driven tooth When the surface Dn completely overlaps, the number of data in the tooth width direction of each tooth surface extracted is p = o ′. Further, as is apparent from FIGS. 5C and 5D, the tooth width of the driving tooth surface Dv is larger than the tooth width of the driven tooth surface Dn, and the driving tooth surface Dv and the driven tooth surface. When Dn does not completely overlap, the number of data in the tooth width direction of each tooth surface to be extracted is p <o ′. 6A and 6B, the tooth width of the driving tooth surface Dv is smaller than the tooth width of the driven tooth surface Dn, and the driving tooth surface Dv and the driven tooth surface. When Dn completely overlaps, the number of data in the tooth width direction of each tooth surface to be extracted is p = n ′. Further, as apparent from FIGS. 6C and 6D, the tooth width of the driving tooth surface Dv is smaller than the tooth width of the driven tooth surface Dn, and the driving tooth surface Dv and the driven tooth surface are driven. When the tooth surface Dn does not completely overlap, the number of data in the tooth width direction of each tooth surface to be extracted is p <n ′. 5 and 6 show the driving tooth surface Dv and the driven tooth surface Dn that are superimposed at the time of meshing arranged side by side.

続くステップS202において、制御装置3は、ステップS201で抽出された各歯面誤差データ群(7行×p列)に基づいて、駆動歯面と被動歯面との噛合時の相対的な歯面誤差である相対歯面誤差の分布情報を生成する。ここで、相対歯面誤差の分布情報として、制御装置3では、例えば駆動歯面を基準として、歯車対に負荷が付与されていない無負荷状態でのものと、歯車対に所定負荷が付与された負荷状態のものとを生成する。   In subsequent step S202, the control device 3 determines the relative tooth surface at the time of meshing between the driving tooth surface and the driven tooth surface based on each tooth surface error data group (7 rows × p columns) extracted in step S201. The distribution information of the relative tooth surface error which is an error is generated. Here, as the distribution information of the relative tooth surface error, the control device 3 applies a predetermined load to the gear pair and an unloaded state in which no load is applied to the gear pair, for example, based on the driving tooth surface. Under load conditions.

具体的に説明すると、7行×p列の各歯面誤差データ群において、駆動歯面側のi行j列目の歯面誤差データをDriveData(i,j)、被動歯面側のi行j列目の歯面誤差データをDrivenData(i,j)とすると、無負荷状態での各相対歯面誤差データ(MuhukaSoutaiData(i,j))は、例えば(2)式に示す計算式を用いて算出される。
MuhukaSoutaiData(i,j)=DriveData(i,j)+DrivenData(7-1-i,j) …(2)
すなわち、この計算式により、各歯面の抽出データ群が例えば7行×161列である場合には、
MuhukaSoutaiData(0,0)=DriveData(0,0)+DrivenData(6,0),
MuhukaSoutaiData(0,1)=DriveData(0,1)+DrivenData(6,1),…,
MuhukaSoutaiData(6,159)=DriveData(6,159)+DrivenData(0,159),
MuhukaSoutaiData(6,160)=DriveData(6,160)+DrivenData(0,160)
の各データからなる、7行×161列の無負荷状態での相対歯面誤差のデータ群(相対歯面誤差の分布情報)が算出される。
More specifically, in each tooth surface error data group of 7 rows × p columns, the tooth surface error data of the i-th row and j-th column on the driving tooth surface side is DriveData (i, j), i rows on the driven tooth surface side. If the tooth surface error data in the jth column is DrivenData (i, j), each relative tooth surface error data (MuhukaSoutaiData (i, j)) in the no-load state uses, for example, the calculation formula shown in equation (2). Is calculated.
MuhukaSoutaiData (i, j) = DriveData (i, j) + DrivenData (7-1-i, j) (2)
That is, according to this calculation formula, when the extraction data group of each tooth surface is, for example, 7 rows × 161 columns,
MuhukaSoutaiData (0,0) = DriveData (0,0) + DrivenData (6,0),
MuhukaSoutaiData (0,1) = DriveData (0,1) + DrivenData (6,1), ...,
MuhukaSoutaiData (6,159) = DriveData (6,159) + DrivenData (0,159),
MuhukaSoutaiData (6,160) = DriveData (6,160) + DrivenData (0,160)
A data group of relative tooth surface errors (relative tooth surface error distribution information) in the no-load state of 7 rows × 161 columns is calculated.

また、7行×p列の各抽出データ群のうち、駆動歯面側のi行j列目の歯面誤差データをDriveData(i,j)、被動歯面側のi行j列目の歯面誤差データをDrivenData(i,j)とすると、負荷状態での各相対歯面誤差データ(HukaSoutaiData(i,j))は、例えば(3)式に示す計算式を用いて算出される。
HukaSoutaiData(i,j)=DriveData(i,j)+DrivenData(7-1-i,j)
+TaoreData(i,j)+GosaData(i,j) …(3)
ここで、TaoreData(i,j)は歯車対に所定負荷を付与した際の歯車軸倒れ量(実測値)の影響を歯面上に反映させた補正値であり、GosaData(i,j)は歯車対の組付誤差量を歯面上に反映させた補正値である。
すなわち、この計算式により、各歯面の抽出データ群が例えば7行×161列である場合には、
HukaSoutaiData(0,0)=DriveData(0,0)+DrivenData(6,0)
+TaoreData(0,0)+GosaData(0,0),
HukaSoutaiData(0,1)=DriveData(0,1)+DrivenData(6,1)
+TaoreData(0,1)+GosaData(0,1),…,
HukaSoutaiData(6,159)=DriveData(6,159)+DrivenData(0,159)
+TaoreData(6,159)+GosaData(6,159),
HukaSoutaiData(6,160)=DriveData(6,160)+DrivenData(0,160)
+TaoreData(6,160)+GosaData(6,160)
の各データからなる、7行×161列の負荷状態での相対歯面誤差のデータ群(相対歯面誤差の分布情報)が算出される。
In addition, among the extracted data groups of 7 rows × p columns, the tooth surface error data of the i-th row and j-th column on the driving tooth surface side is DriveData (i, j), and the tooth in the i-th row and j-th column on the driven tooth surface side. When the surface error data is DrivenData (i, j), each relative tooth surface error data (HukaSoutaiData (i, j)) in the loaded state is calculated using, for example, a calculation formula shown in Expression (3).
HukaSoutaiData (i, j) = DriveData (i, j) + DrivenData (7-1-i, j)
+ TaoreData (i, j) + GosaData (i, j) (3)
Here, TaoreData (i, j) is a correction value that reflects on the tooth surface the influence of the gear shaft tilt amount (measured value) when a predetermined load is applied to the gear pair, and GosaData (i, j) is This is a correction value in which the amount of gear pair assembly error is reflected on the tooth surface.
That is, according to this calculation formula, when the extraction data group of each tooth surface is, for example, 7 rows × 161 columns,
HukaSoutaiData (0,0) = DriveData (0,0) + DrivenData (6,0)
+ TaoreData (0,0) + GosaData (0,0),
HukaSoutaiData (0,1) = DriveData (0,1) + DrivenData (6,1)
+ TaoreData (0,1) + GosaData (0,1), ...,
HukaSoutaiData (6,159) = DriveData (6,159) + DrivenData (0,159)
+ TaoreData (6,159) + GosaData (6,159),
HukaSoutaiData (6,160) = DriveData (6,160) + DrivenData (0,160)
+ TaoreData (6,160) + GosaData (6,160)
A relative tooth surface error data group (relative tooth surface error distribution information) in a load state of 7 rows × 161 columns is calculated.

続くステップS203において、制御装置3は、各状態での相対歯面誤差のデータ群に対し、上述の多点スプライン補間法を用いて行補間及び列補間を行い、より詳細な相対歯面誤差のデータ群(例えば、241行×241列のデータ群)を生成した後、サブルーチンを抜ける。   In subsequent step S203, the control device 3 performs row interpolation and column interpolation on the relative tooth surface error data group in each state using the above-described multi-point spline interpolation method, and more detailed relative tooth surface error. After generating a data group (for example, a data group of 241 rows × 241 columns), the subroutine is exited.

ここで、制御装置3は、生成した各相対歯面誤差の分布情報を、モニタ47を通じて等高線状に可視化表示することも可能である。すなわち、制御装置3は、例えば、各点の相対歯面誤差を所定誤差区分毎(例えば2μm毎に区分された誤差区分毎)に分類し、同じ誤差区分に分類した相対歯面誤差を同色で表示するための等高線データを生成する。そして、この等高線データをモニタ47に出力することにより、モニタ47には、例えば図10に示すように、等高線表示された相対歯面誤差分布情報が表示される。   Here, the control device 3 can also visualize and display the generated distribution information of each relative tooth surface error in a contour line through the monitor 47. That is, for example, the control device 3 classifies the relative tooth surface error at each point for each predetermined error section (for example, for each error section divided every 2 μm), and the relative tooth surface errors classified into the same error section have the same color. Generate contour line data for display. Then, by outputting the contour line data to the monitor 47, the relative tooth surface error distribution information displayed in the contour line is displayed on the monitor 47, for example, as shown in FIG.

次に、ステップS3において、制御装置3は、ステップS2で生成した各相対歯面誤差の分布情報に基づく歯面評価を行う。   Next, in step S3, the control device 3 performs tooth surface evaluation based on the distribution information of each relative tooth surface error generated in step S2.

具体的に説明すると、制御装置3は、無負荷状態での相対歯面誤差の分布情報を用いて駆動歯面と被動歯面との噛合時の最凸点位置を検索し、この最凸点位置から、ROM内に予め格納されている評価マップ(図11参照)を参照して歯面評価を行う。ここで、最凸点とは、駆動歯面と被動歯面との噛合時に相対歯面誤差が最も小さくなる点(換言すれば、噛合時に最も強い応力が加わる駆動歯面及び被動歯面上の点)である。また、評価マップは、最凸点位置に応じて大きく変化する歯車対の歯面の強度評価を、例えば、最優良、優良、良、不良、悪、最悪の6段階評価で行うためのマップであり、歯車諸元等に基づいて予め実験やシミュレーション等により設定されるものである。   More specifically, the control device 3 searches for the most convex point position when the driving tooth surface and the driven tooth surface mesh with each other using the distribution information of the relative tooth surface error in the no-load state, and this most convex point. From the position, the tooth surface is evaluated with reference to an evaluation map (see FIG. 11) stored in advance in the ROM. Here, the most convex point is a point at which the relative tooth surface error becomes the smallest when the driving tooth surface and the driven tooth surface are engaged (in other words, on the driving tooth surface and the driven tooth surface to which the strongest stress is applied during the engagement). Point). In addition, the evaluation map is a map for performing the strength evaluation of the tooth surfaces of the gear pair that varies greatly according to the position of the most convex point, for example, in six grades of best, good, good, bad, bad, and worst. Yes, based on gear specifications and the like, which are set in advance through experiments, simulations, and the like.

また、制御装置3は、歯車諸元や負荷状態での相対歯面誤差の分布情報等を用いて、各トルク状態での歯車対の組付誤差と伝達誤差との関係を演算し、これら伝達誤差の演算結果に基づく歯面評価を行う。ここで、伝達誤差とは、負荷による歯の変形と相対歯面誤差による回転変動を考慮した噛合誤差であり、この噛合誤差は、歯面間での起振の大きな要因であるため、一般に伝達誤差を小さくする程、歯車対の静粛性を向上することができる。そこで、制御装置3は、各伝達誤差が予め設定された閾値よりも小さい場合(例えば、図12(a)参照)には静粛性の高い歯車対であるとの評価を行い、閾値よりも高い伝達誤差が存在する場合(例えば、図12(b)参照)に静粛性の低い歯車対であるとの評価を行う。   Further, the control device 3 calculates the relationship between the gear pair assembly error and the transmission error in each torque state using the gear specifications, the distribution information of the relative tooth surface error in the load state, and the like. The tooth surface is evaluated based on the error calculation result. Here, the transmission error is a meshing error considering the deformation of the tooth due to the load and the rotational fluctuation due to the relative tooth surface error, and this meshing error is a large factor of the vibration between the tooth surfaces, and therefore is generally transmitted. As the error is reduced, the silence of the gear pair can be improved. Therefore, when each transmission error is smaller than a preset threshold value (for example, see FIG. 12A), the control device 3 evaluates that the gear pair has high silence and is higher than the threshold value. When there is a transmission error (for example, see FIG. 12B), it is evaluated that the gear pair is low in silence.

次に、ステップS4において、制御装置3は、ステップS3での最凸点位置に基づく歯面評価結果及び伝達誤差に基づく歯面評価結果に応じて、相対歯面誤差の分布状態を適宜変更するための歯面誤差修正量を設定した後、ルーチンを抜ける。   Next, in step S4, the control device 3 appropriately changes the distribution state of the relative tooth surface error according to the tooth surface evaluation result based on the most convex point position and the tooth surface evaluation result based on the transmission error in step S3. After setting the tooth surface error correction amount for this, the routine is exited.

この場合、制御装置3では、歯面誤差修正量として、駆動歯面或いは被動歯面の少なくとも何れか一方の、圧力誤差修正量、ねじれ角誤差修正量、歯形丸み修正量、クラウニング修正量、バイアス修正量を適宜設定する。   In this case, in the control device 3, as the tooth surface error correction amount, the pressure error correction amount, the torsion angle error correction amount, the tooth profile roundness correction amount, the crowning correction amount, the bias, of at least one of the driving tooth surface and the driven tooth surface. Set the correction amount as appropriate.

具体的に説明すると、制御装置3は、駆動歯面或いは被動歯面の少なくとも何れか一方の圧力誤差、ねじれ角誤差、歯形丸み、クラウニング、バイアスを適宜変更させた際の相対歯面誤差の分布情報をシミュレーションによって求め、このシミュレーションされた相対歯面誤差の分布情報に基づく歯面評価を繰り返すことにより、例えば、最凸点を優良以上の領域に位置させ、且つ、各伝達誤差を閾値以下とするための歯面誤差修正量を求める。   More specifically, the control device 3 determines the distribution of relative tooth surface errors when the pressure error, torsion angle error, tooth profile rounding, crowning, and bias of at least one of the driving tooth surface and the driven tooth surface are appropriately changed. Information is obtained by simulation, and by repeating the tooth surface evaluation based on the simulated distribution information of the relative tooth surface error, for example, the most convex point is located in a region that is superior or superior, and each transmission error is equal to or less than a threshold value. The amount of correction of the tooth surface error is calculated.

ここで、相対歯面誤差分布の上下方向(歯形方向)への移動は圧力角誤差の増減修正によって実現され、相対歯面誤差分布の左右方向(歯幅方向)への移動は捩れ角誤差の増減修正によって実現される。すなわち、図13に示すように、駆動歯面或いは被動歯面の歯先修正や歯元修正によって圧力角誤差をマイナス修正すると、相対歯面誤差分布は歯形方向に沿って歯先側に移動され、圧力角誤差をプラス修正すると、相対歯面誤差分布は歯形方向に沿って歯元側に移動される。また、駆動歯面或いは被動歯面の歯筋倒れ量修正によって捩れ角誤差をプラス修正すると、相対歯面誤差分布は歯幅方向に沿って噛合開始点側に移動され、捩れ角誤差をマイナス修正すると、相対歯面誤差分布は歯幅方向に沿って指向終了点側に移動される。   Here, the movement of the relative tooth surface error distribution in the vertical direction (tooth profile direction) is realized by correcting the increase / decrease of the pressure angle error, and the movement of the relative tooth surface error distribution in the left / right direction (tooth width direction) is caused by the twist angle error. Realized by increase / decrease correction. That is, as shown in FIG. 13, when the pressure angle error is corrected to minus by correcting the tooth tip or the tooth root of the driving tooth surface or the driven tooth surface, the relative tooth surface error distribution is moved to the tooth tip side along the tooth profile direction. When the pressure angle error is positively corrected, the relative tooth surface error distribution is moved to the tooth base side along the tooth profile direction. Also, if the torsion angle error is corrected by correcting the amount of inclination of the driving tooth surface or the driven tooth surface, the relative tooth surface error distribution is moved to the meshing start point side along the tooth width direction, and the torsion angle error is corrected to minus. Then, the relative tooth surface error distribution is moved toward the pointing end point along the tooth width direction.

また、相対歯面誤差が小さい領域の上下方向(歯形方向)への拡縮は歯形丸みの増減修正によって実現され、相対歯面誤差が小さい領域の左右方向(歯幅方向)への拡縮はクラウニングの増減修正によって実現される。すなわち、図14に示すように、駆動歯面或いは被動歯面の歯先或いは歯元修正によって歯形丸みをマイナス修正すると、相対歯面誤差が小さい領域は歯形方向に沿って拡大され、歯形丸みをプラス修正すると、相対歯面誤差が小さい領域は歯形方向に沿って縮小される。また、駆動歯面或いは被動歯面のクラウニングをマイナス修正すると、相対歯面誤差が小さい領域は歯幅方向に沿って拡大され、クラウニングをプラス修正すると、相対歯面誤差が小さい領域は歯幅方向に沿って縮小される。   In addition, expansion / contraction in the vertical direction (tooth profile direction) of the region where the relative tooth surface error is small is realized by increasing / decreasing the tooth profile roundness, and expansion / contraction of the region where the relative tooth surface error is small in the horizontal direction (tooth width direction) Realized by increase / decrease correction. That is, as shown in FIG. 14, when the tooth profile roundness is corrected by minus correction of the tooth tip or root of the driving tooth surface or driven tooth surface, the region where the relative tooth surface error is small is enlarged along the tooth profile direction, and the tooth profile rounding is performed. When the plus correction is performed, the region where the relative tooth surface error is small is reduced along the tooth profile direction. If the crowning of the driving tooth surface or the driven tooth surface is negatively corrected, the region where the relative tooth surface error is small is enlarged along the tooth width direction, and if the crowning is positively corrected, the region where the relative tooth surface error is small is the tooth width direction. Is reduced along.

また、相対歯面誤差が小さい領域の噛合方向(噛合進行方向)への拡縮はバイアスの増減修正によって実現される。すなわち、図15に示すように、バイアスをプラス修正(バイアスイン)すると、相対歯面誤差が小さい領域は噛合方向に沿って拡大され、バイアスをマイナス修正(バイアスアウト)すると、相対歯面誤差が小さい領域は噛合方向に沿って縮小される。   Further, expansion / contraction in the meshing direction (meshing progress direction) of the region where the relative tooth surface error is small is realized by correcting the increase / decrease of the bias. That is, as shown in FIG. 15, when the bias is positively corrected (bias-in), the region where the relative tooth surface error is small is enlarged along the meshing direction, and when the bias is negatively corrected (bias out), the relative tooth surface error is The small area is reduced along the meshing direction.

ここで、歯面誤差修正量の設定は、等高線状にモニタ表示された相対歯面誤差分布情報を参照してオペレータにより適宜設定されるものであってもよい。   Here, the setting of the tooth surface error correction amount may be appropriately set by an operator with reference to the relative tooth surface error distribution information displayed in a contour line on the monitor.

次に、上述の歯面誤差評価装置1を用いた歯車対の製造方法について、図16に示すフローチャートに従って説明する。
先ず、ステップS501において、オペレータは、歯面誤差評価装置1の制御装置3に対し、入力装置46等を通じて、評価対象となる駆動歯車及び被動歯車の各諸元を入力するとともに、駆動歯面及び被動歯面の各基準歯面に対する歯面誤差データ(設計値)を初期値として設定する(歯面誤差初期値設定工程)。
Next, a gear pair manufacturing method using the above-described tooth surface error evaluation apparatus 1 will be described with reference to the flowchart shown in FIG.
First, in step S501, the operator inputs the specifications of the drive gear and the driven gear to be evaluated through the input device 46 and the like to the control device 3 of the tooth surface error evaluation device 1, and the driving tooth surface and Tooth surface error data (design value) for each reference tooth surface of the driven tooth surface is set as an initial value (tooth surface error initial value setting step).

続くステップS502において、オペレータは、歯面誤差評価装置1を用いて、各歯面誤差の設計値を考慮した上で歯車対の歯面評価(例えば、最凸点位置に基づく歯面評価及び伝達誤差に基づく歯面評価)を行う(第1の歯面誤差評価工程)。   In subsequent step S502, the operator uses the tooth surface error evaluation device 1 to consider the tooth surface error design value and evaluate the tooth surface of the gear pair (for example, tooth surface evaluation and transmission based on the position of the most convex point). Tooth surface evaluation based on error) is performed (first tooth surface error evaluation step).

そして、ステップS503において、オペレータは、ステップS502の評価結果に応じて歯面誤差修正量を適宜設定するとともに、この設定した歯面誤差修正量を加味した上で、駆動歯車及び被動歯車に対する歯面加工量を設定し、歯面加工を行う(第1の歯面加工工程)。   In step S503, the operator appropriately sets the tooth surface error correction amount according to the evaluation result in step S502, and takes into account the set tooth surface error correction amount, and then the tooth surfaces for the driving gear and the driven gear. A processing amount is set and tooth surface processing is performed (first tooth surface processing step).

各歯車に対する歯面加工が行われてステップS504に進むと、オペレータは、歯面誤差評価装置1の歯車保持部10上に駆動歯車及び被動歯車を順次セットして各歯面の歯面誤差を測定するとともに、これら測定データに基づく歯車対の歯面評価(例えば、最凸点位置に基づく歯面評価及び伝達誤差に基づく歯面評価)を行う(第2の歯面誤差評価工程)。   When the tooth surface processing is performed on each gear and the process proceeds to step S504, the operator sequentially sets the driving gear and the driven gear on the gear holding unit 10 of the tooth surface error evaluation device 1 to set the tooth surface error of each tooth surface. While measuring, the tooth surface evaluation of the gear pair based on these measurement data (for example, tooth surface evaluation based on the most convex point position and tooth surface evaluation based on transmission error) is performed (second tooth surface error evaluation step).

そして、ステップS505において、オペレータは、ステップS504での評価結果を参照し、評価結果が良好でない場合には、ステップS506に進む。すなわち、歯車対の強度や静粛性等は、歯面のミクロン単位の歯面状態にも影響されるため、たとえ、ステップS503の工程で適正な歯面加工量を設定して歯面加工を行ったとしても、機械加工誤差等の影響により良好な評価結果が得られない場合がある。そこで、オペレータは、ステップS504での評価結果に応じて歯面誤差修正量を再度設定するとともに、この設定した歯面誤差修正量を加味した上で、駆動歯車及び被動歯車に対する歯面加工量を設定し、歯面加工(第2の歯面加工工程)を行った後、ステップS504に戻る。   In step S505, the operator refers to the evaluation result in step S504, and proceeds to step S506 if the evaluation result is not good. That is, the strength and quietness of the gear pair are also affected by the tooth surface condition in micron units of the tooth surface, so even if the tooth surface processing is performed by setting an appropriate tooth surface processing amount in the step S503. Even in such a case, a good evaluation result may not be obtained due to the influence of a machining error or the like. Therefore, the operator sets the tooth surface error correction amount again in accordance with the evaluation result in step S504, and considers the tooth surface error correction amount for the driving gear and the driven gear after taking into account the set tooth surface error correction amount. After setting and performing tooth surface processing (second tooth surface processing step), the process returns to step S504.

一方、ステップS505において、ステップS504での評価結果が良好であったと判断した場合には、ステップS507に進み、オペレータは、過去の歯面加工量を総括して駆動歯車及び被動歯車に対する最終的な各歯面加工量(すなわち、例えば歯車対の量産時等に用いられる各歯面加工量)を設定した後、ルーチンを終了する。   On the other hand, if it is determined in step S505 that the evaluation result in step S504 is good, the process proceeds to step S507, and the operator summarizes the past tooth surface machining amounts and finally determines the final values for the driving gear and the driven gear. After setting each tooth surface processing amount (that is, each tooth surface processing amount used for mass production of a gear pair, for example), the routine is terminated.

このような形態によれば、駆動歯車と被動歯車との噛合時の相対的な歯面誤差である相対歯面誤差の分布情報を生成し、生成した相対歯面誤差分布情報に基づいて各歯面の評価を行うことにより、駆動歯面と被動歯面との相対的な噛合状態を正確且つ容易にオペレータに把握させることができる。   According to such a form, the distribution information of the relative tooth surface error that is a relative tooth surface error at the time of meshing of the driving gear and the driven gear is generated, and each tooth is generated based on the generated relative tooth surface error distribution information. By evaluating the surface, the operator can accurately and easily grasp the relative meshing state of the driving tooth surface and the driven tooth surface.

その際、駆動歯面と被動歯面との噛合時のズレ量に応じて有効噛合領域を算出し、この有効噛合領域に基づいて相対歯面誤差分布情報の生成領域を可変に設定することにより、歯車対の噛合時のズレ量を考慮した適切な相対歯面誤差分布情報を得ることができる。   At that time, by calculating the effective meshing area according to the amount of deviation at the time of meshing between the driving tooth surface and the driven tooth surface, and by setting the relative tooth surface error distribution information generation area variably based on this effective meshing area Thus, it is possible to obtain appropriate relative tooth surface error distribution information in consideration of the shift amount at the time of meshing of the gear pair.

また、相対歯面誤差分布情報として、駆動歯車及び被動歯車に負荷が付与されていない無負荷状態での相対歯面誤差分布情報を生成し、この無負荷状態での分布情報に基づいて両歯面の最凸点位置を評価することにより、歯車対の歯面に対する適切な強度評価を行うことができる。   Further, as relative tooth surface error distribution information, relative tooth surface error distribution information in an unloaded state in which no load is applied to the driving gear and the driven gear is generated, and both teeth are generated based on the distribution information in the unloaded state. By evaluating the position of the most convex point on the surface, it is possible to perform an appropriate strength evaluation on the tooth surface of the gear pair.

また、相対歯面誤差分布情報として、駆動歯車及び被動歯車に所定負荷が付与された負荷状態での相対歯面誤差分布情報を生成し、この負荷状態での分布状態に基づいて両歯面の伝達誤差を評価することにより、歯車対の歯面に対する適切な静粛性の評価を行うことができる。   Further, as relative tooth surface error distribution information, relative tooth surface error distribution information in a load state in which a predetermined load is applied to the driving gear and the driven gear is generated, and based on the distribution state in this load state, By evaluating the transmission error, it is possible to evaluate appropriate quietness with respect to the tooth surfaces of the gear pair.

その際、相対歯面誤差の分布情報を補間計算付きで詳細に求めることにより、より良好な歯面評価を実現することができる。   At that time, by obtaining the distribution information of the relative tooth surface error in detail with interpolation calculation, better tooth surface evaluation can be realized.

また、上述の各歯面評価結果に基づいて各歯面に対する圧力角誤差修正量、歯形丸み修正量、捩れ角誤差修正量、クラウニング修正量、バイアス修正量等の各歯面誤差修正量を設定することにより、歯車対の強度や静粛性を効果的に向上させることができる。   Also, each tooth surface error correction amount such as pressure angle error correction amount, tooth roundness correction amount, torsion angle error correction amount, crowning correction amount, bias correction amount, etc. for each tooth surface is set based on each tooth surface evaluation result described above. By doing so, the strength and quietness of the gear pair can be effectively improved.

また、生成した相対歯面誤差分布情報を、モニタ47を通じて等高線状に可視化表示することにより、歯車対の噛合状態をオペレータに一目で把握させることができる。   In addition, by visualizing and displaying the generated relative tooth surface error distribution information in a contour line through the monitor 47, the meshing state of the gear pair can be recognized at a glance.

また、このような歯面誤差評価装置1による定量的な評価結果に基づいて歯車対の各歯面加工量を設定することにより、オペレータの熟練度等に頼ることなく適正な歯面加工量を設定することができる。   Further, by setting the tooth surface processing amount of each gear pair based on the quantitative evaluation result by the tooth surface error evaluation device 1 as described above, an appropriate tooth surface processing amount can be obtained without depending on the skill level of the operator or the like. Can be set.

なお、上述の形態においては、はすば歯対の評価についての一例について説明したが、本発明はこれに限定されるものではなく、他種の歯車対にも適用が可能であることは勿論である。   In the above-described embodiment, an example of evaluation of a helical tooth pair has been described. However, the present invention is not limited to this, and can be applied to other types of gear pairs. It is.

歯面誤差評価装置の概略構成図Schematic configuration diagram of tooth surface error evaluation device 歯面誤差測定装置を示す斜視図Perspective view showing tooth surface error measuring device 歯面誤差測定対象の抽出例をを示す説明図Explanatory drawing which shows the example of extraction of a tooth surface error measurement object 歯面の歯筋方向への測定パターンの一例を示す説明図Explanatory drawing which shows an example of the measurement pattern to the tooth trace direction of a tooth surface 駆動歯車の歯幅が被動歯車の歯幅よりも小さい場合の歯面誤差データの抽出領域を示す説明図Explanatory drawing which shows the extraction area | region of tooth surface error data when the tooth width of a drive gear is smaller than the tooth width of a driven gear 駆動歯車の歯幅が被動歯車の歯幅よりも小さい場合の歯面誤差データの抽出領域を示す説明図Explanatory drawing which shows the extraction area | region of tooth surface error data when the tooth width of a drive gear is smaller than the tooth width of a driven gear 歯面誤差修正量設定ルーチンを示すフローチャートFlow chart showing tooth surface error correction amount setting routine 歯面誤差測定サブルーチンを示すフローチャートFlow chart showing tooth surface error measurement subroutine 相対歯面誤差分布情報生成サブルーチンを示すフローチャートFlow chart showing relative tooth surface error distribution information generation subroutine 等高線表示された相対歯面誤差分布の一例を示す説明図Explanatory drawing which shows an example of relative tooth surface error distribution displayed by contour lines 最凸点位置に基づく歯面評価の一例を示すマップMap showing an example of tooth surface evaluation based on the position of the most convex point 各入力トルクでの歯車対の組付誤差と伝達誤差と関係を示す図表Chart showing the relationship between gear pair assembly error and transmission error at each input torque 圧力角誤差及びねじれ角誤差の修正による相対歯面誤差の変化を示す説明図Explanatory drawing which shows change of relative tooth surface error by correction of pressure angle error and torsion angle error 歯形丸み及びクラウニングの修正による相対歯面誤差の変化を示す説明図Explanatory drawing which shows change of relative tooth surface error by correction of tooth profile rounding and crowning バイアスの修正による相対歯面誤差の変化を示す説明図Explanatory drawing showing changes in relative tooth surface error due to bias correction 歯車対の製造工程を示すフローチャートFlow chart showing gear pair manufacturing process

符号の説明Explanation of symbols

1 … 歯面誤差評価装置
2 … 歯面誤差測定装置(測定手段)
3 … 制御装置(分布情報生成手段、歯面評価手段、修正量設定手段)
47 … モニタ(表示手段)
S1 … 誤差測定ステップ
S2 … 分布情報生成ステップ
S3 … 歯面評価ステップ
S4 … 修正量設定ステップ
Dn … 被動歯面
Dv … 駆動歯面
代理人 弁理士 伊 藤 進
DESCRIPTION OF SYMBOLS 1 ... Tooth surface error evaluation apparatus 2 ... Tooth surface error measuring apparatus (measuring means)
3 ... Control device (distribution information generation means, tooth surface evaluation means, correction amount setting means)
47 ... Monitor (display means)
S1 ... Error measurement step S2 ... Distribution information generation step S3 ... Tooth surface evaluation step S4 ... Correction amount setting step Dn ... Driven tooth surface Dv ... Drive tooth surface
Agent Patent Attorney Susumu Ito

Claims (16)

駆動歯車の駆動歯面及び被動歯車の被動歯面の各基準歯面に対する歯面誤差を複数点測定する誤差測定手段と、
上記各基準歯面に対して設定した上記各歯面の歯面誤差の設計値、或いは、上記誤差測定手段で測定した上記歯面誤差の測定値に基づいて、上記駆動歯面と上記被動歯面との噛合時の相対的な歯面誤差である相対歯面誤差の分布情報を生成する分布情報生成手段と、
上記分布情報生成手段で生成した上記歯面形状誤差の分布情報に基づいて上記各歯面の定量評価を行う歯面評価手段とを備えたことを特徴とする歯車対の歯面誤差評価装置。
An error measuring means for measuring a plurality of tooth surface errors with respect to each reference tooth surface of the driving tooth surface of the driving gear and the driven tooth surface of the driven gear;
Based on the design value of the tooth surface error of each tooth surface set for each of the reference tooth surfaces or the measured value of the tooth surface error measured by the error measuring means, the driving tooth surface and the driven tooth A distribution information generating means for generating distribution information of a relative tooth surface error that is a relative tooth surface error at the time of meshing with the surface;
A tooth surface error evaluating device for a gear pair, comprising: tooth surface evaluating means for quantitatively evaluating each tooth surface based on the distribution information of the tooth surface shape error generated by the distribution information generating means.
上記分布情報生成手段は、上記駆動歯面と上記被動歯面との噛合時のズレ量に応じて、上記相対歯面誤差の分布情報の生成領域を可変に設定することを特徴とする請求項1記載の歯車対の歯面誤差評価装置。   The distribution information generation means variably sets a generation area of the distribution information of the relative tooth surface error according to a shift amount at the time of meshing between the driving tooth surface and the driven tooth surface. The gear pair tooth surface error evaluation apparatus according to claim 1. 上記分布情報生成手段は、上記駆動歯車及び上記被動歯車に負荷が付与されていない無負荷状態での上記相対歯面誤差の分布情報を生成することを特徴とする請求項1または請求項2記載の歯車対の歯面誤差評価装置。   3. The distribution information generating means generates distribution information of the relative tooth surface error in a no-load state in which no load is applied to the driving gear and the driven gear. Gear tooth error evaluation device for gear pairs. 上記歯面評価手段は、無負荷状態での上記相対歯面誤差の分布情報に基づいて、上記駆動歯面と上記被動歯面の噛合時の最凸点位置を評価することを特徴とする請求項3記載の歯車対の歯面誤差評価装置。   The tooth surface evaluation means evaluates the position of the most convex point when the driving tooth surface and the driven tooth surface mesh with each other based on the distribution information of the relative tooth surface error in an unloaded state. Item 3. An apparatus for evaluating tooth surface errors of a gear pair according to Item 3. 上記分布情報生成手段は、上記駆動歯車及び上記被動歯車に所定の負荷が付与された負荷状態での上記相対歯面誤差の分布情報を生成することを特徴とする請求項1または請求項2記載の歯車対の歯面誤差評価装置。   3. The distribution information generation means generates distribution information of the relative tooth surface error in a load state in which a predetermined load is applied to the driving gear and the driven gear. Gear tooth error evaluation device for gear pairs. 上記歯面評価手段は、負荷状態での上記相対歯面誤差の分布情報に基づいて、上記駆動歯面と上記被動歯面との間の伝達誤差を評価することを特徴とする請求項5記載の歯車対の歯面誤差評価装置。   6. The tooth surface evaluation means evaluates a transmission error between the driving tooth surface and the driven tooth surface based on distribution information of the relative tooth surface error in a loaded state. Gear tooth error evaluation device for gear pairs. 上記歯面評価手段による評価結果に基づいて、歯面誤差に対する修正量を設定する修正量設定手段を備えたことを特徴とする請求項1乃至請求項6の何れかに記載の歯車対の歯面誤差評価装置。   The gear pair teeth according to any one of claims 1 to 6, further comprising correction amount setting means for setting a correction amount for a tooth surface error based on an evaluation result by the tooth surface evaluation means. Surface error evaluation device. 上記修正量は、上記駆動歯面或いは上記被動歯面の少なくとも何れか一方に対する圧力角誤差修正量であることを特徴とする請求項7記載の歯車対の歯面誤差評価装置。   8. The gear pair tooth surface error evaluation apparatus according to claim 7, wherein the correction amount is a pressure angle error correction amount for at least one of the driving tooth surface and the driven tooth surface. 上記修正量は、上記駆動歯面或いは上記被動歯面の少なくとも何れか一方に対する歯形丸み修正量であることを特徴とする請求項7記載の歯車対の歯面誤差評価装置。   8. The gear pair tooth surface error evaluation apparatus according to claim 7, wherein the correction amount is a tooth profile rounding correction amount for at least one of the driving tooth surface and the driven tooth surface. 上記修正量は、上記駆動歯面或いは上記被動歯面の少なくとも何れか一方に対するねじれ角誤差修正量であることを特徴とする請求項7記載の歯車対の歯面誤差評価装置。   8. The gear pair tooth surface error evaluation apparatus according to claim 7, wherein the correction amount is a torsion angle error correction amount for at least one of the driving tooth surface and the driven tooth surface. 上記修正量は、上記駆動歯面或いは上記被動歯面の少なくとも何れか一方に対するクラウニング修正量であることを特徴とする請求項7記載の歯車対の歯面誤差評価装置。   8. The gear pair tooth surface error evaluation apparatus according to claim 7, wherein the correction amount is a crowning correction amount for at least one of the driving tooth surface and the driven tooth surface. 上記修正量は、上記駆動歯面或いは上記被動歯面の少なくとも何れか一方に対するバイアス修正量であることを特徴とする請求項7記載の歯車対の歯面誤差評価装置。   8. The gear pair tooth surface error evaluation apparatus according to claim 7, wherein the correction amount is a bias correction amount for at least one of the driving tooth surface and the driven tooth surface. 上記相対歯面誤差の分布情報を等高線状に可視化表示する表示手段を備えたことを特徴とする請求項1乃至請求項12の何れかに記載の歯車対の歯面誤差評価装置。   13. The gear pair tooth surface error evaluation apparatus according to claim 1, further comprising display means for visualizing and displaying the distribution information of the relative tooth surface error in a contour line. 駆動歯車の駆動歯面及び被動歯車の被動歯面の各基準歯面に対する歯面誤差を誤差測定手段を用いて複数点測定する誤差測定ステップと、
上記各基準歯面に対して設定した上記各歯面の歯面誤差の設計値、或いは、上記誤差測定ステップで測定した上記歯面誤差の測定値に基づいて、上記駆動歯面と上記被動歯面との噛合時の相対的な歯面誤差である相対歯面誤差の分布情報を生成する分布情報生成ステップと、
上記分布情報生成手段で生成した上記歯面形状誤差の分布情報に基づいて上記各歯面の定量評価を行う歯面評価ステップとを備えたことを特徴とする歯車対の歯面誤差評価プログラム。
An error measuring step for measuring a plurality of tooth surface errors with respect to each reference tooth surface of the driving tooth surface of the driving gear and the driven tooth surface of the driven gear using an error measuring means;
Based on the design value of the tooth surface error of each tooth surface set for each of the reference tooth surfaces or the measured value of the tooth surface error measured in the error measurement step, the driving tooth surface and the driven tooth A distribution information generation step for generating distribution information of a relative tooth surface error that is a relative tooth surface error at the time of meshing with the surface;
A tooth surface error evaluation program for a gear pair, comprising: a tooth surface evaluation step for quantitatively evaluating each tooth surface based on the distribution information of the tooth surface shape error generated by the distribution information generating means.
上記歯面評価ステップによる評価結果に基づいて、歯面誤差に対する修正量を設定する修正量設定ステップを備えたことを特徴とする請求項14記載の歯車対の歯面誤差評価プログラム。   15. The gear pair tooth surface error evaluation program according to claim 14, further comprising a correction amount setting step for setting a correction amount for the tooth surface error based on the evaluation result of the tooth surface evaluation step. 駆動歯車の駆動歯面及び被動歯車の被動歯面の各基準歯面に対する歯面誤差の設計値を設定する歯面誤差初期値設定工程と、
請求項1乃至請求項13の何れかの歯車対の歯面誤差評価装置を用いて上記歯面誤差初期値設定工程で設定した上記歯面誤差の設計値に対する上記各歯面の定量評価を行う第1の歯面評価工程と、
上記第1の歯面評価工程での評価結果に基づいて上記駆動歯面或いは上記被動歯面の少なくとも何れか一方の歯面加工を行う第1の歯面加工工程と、
請求項1乃至請求項13の何れかの歯車対の歯面誤差評価装置を用いて上記第1の歯面加工工程で加工した上記駆動歯面及び上記被動歯面の定量評価を行う第2の歯面評価工程と、
上記第2の歯面評価工程での評価結果に基づいて上記駆動歯面或いは上記被動歯面の少なくとも何れか一方の歯面加工を行う第2の歯面加工工程とを備えたことを特徴とする歯車対の製造方法。
A tooth surface error initial value setting step for setting a design value of a tooth surface error with respect to each reference tooth surface of the driving tooth surface of the driving gear and the driven tooth surface of the driven gear;
A quantitative evaluation of each tooth surface with respect to the design value of the tooth surface error set in the tooth surface error initial value setting step is performed using the tooth surface error evaluation device for a gear pair according to any one of claims 1 to 13. A first tooth surface evaluation step;
A first tooth surface processing step of performing at least one tooth surface processing of the driving tooth surface or the driven tooth surface based on the evaluation result in the first tooth surface evaluation step;
A second evaluation for quantitatively evaluating the driving tooth surface and the driven tooth surface processed in the first tooth surface processing step using the tooth surface error evaluation device for a gear pair according to any one of claims 1 to 13. Tooth surface evaluation process;
And a second tooth surface processing step of performing at least one tooth surface processing of the driving tooth surface or the driven tooth surface based on the evaluation result in the second tooth surface evaluation step. A method for manufacturing a gear pair.
JP2003435485A 2003-12-26 2003-12-26 Tooth surface error evaluation device for gearwheel pair, evaluation program therefor, and manufacturing method for gearwheel pair using the same Pending JP2005195360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435485A JP2005195360A (en) 2003-12-26 2003-12-26 Tooth surface error evaluation device for gearwheel pair, evaluation program therefor, and manufacturing method for gearwheel pair using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435485A JP2005195360A (en) 2003-12-26 2003-12-26 Tooth surface error evaluation device for gearwheel pair, evaluation program therefor, and manufacturing method for gearwheel pair using the same

Publications (1)

Publication Number Publication Date
JP2005195360A true JP2005195360A (en) 2005-07-21

Family

ID=34815548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435485A Pending JP2005195360A (en) 2003-12-26 2003-12-26 Tooth surface error evaluation device for gearwheel pair, evaluation program therefor, and manufacturing method for gearwheel pair using the same

Country Status (1)

Country Link
JP (1) JP2005195360A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707879B2 (en) * 2005-04-15 2010-05-04 Fuji Jukogyo Kabushiki Kaisha Gear pair evaluation apparatus, gear pair evaluation program, and gear pair whose tooth surfaces are evaluated using the apparatus and program
JP2010165181A (en) * 2009-01-15 2010-07-29 Fuji Heavy Ind Ltd Device, program and method for designing gear pair, and the gear pair
JP2010164134A (en) * 2009-01-15 2010-07-29 Fuji Heavy Ind Ltd Apparatus, program and method for designing gear pair and gear pair
CN114754698A (en) * 2022-04-11 2022-07-15 重庆大学 Surface gear tooth surface measuring point planning and on-machine measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707879B2 (en) * 2005-04-15 2010-05-04 Fuji Jukogyo Kabushiki Kaisha Gear pair evaluation apparatus, gear pair evaluation program, and gear pair whose tooth surfaces are evaluated using the apparatus and program
JP2010165181A (en) * 2009-01-15 2010-07-29 Fuji Heavy Ind Ltd Device, program and method for designing gear pair, and the gear pair
JP2010164134A (en) * 2009-01-15 2010-07-29 Fuji Heavy Ind Ltd Apparatus, program and method for designing gear pair and gear pair
CN114754698A (en) * 2022-04-11 2022-07-15 重庆大学 Surface gear tooth surface measuring point planning and on-machine measuring method
CN114754698B (en) * 2022-04-11 2023-08-04 重庆大学 Face gear tooth surface measuring point planning and on-machine measuring method

Similar Documents

Publication Publication Date Title
CN102289534B (en) Method for modeling involute helical gear accurately
JP4540937B2 (en) Gear tooth trace correction and / or correction of tooth trace deviation
EP2016370B1 (en) Differential calibration
JP4376938B2 (en) Cornu helical gear
CN109063326B (en) Gear accurate modeling method considering microscopic shape correction and actual machining errors
NL1041839B1 (en) A method and apparatus increasing the accuracy of the two ball or wire measurement of pitch diameter, simple pitch diameter and virtual pitch diameter of internal and external screw threads and thread gauges.
JP6113963B2 (en) Shape measuring method and shape measuring apparatus
US6324931B1 (en) Straight bevel gears with improved tooth root area geometry and method for manufacturing forging die for making thereof
JP6743760B2 (en) Measuring method of uneven shape on three-dimensional curved surface
CN112304270A (en) Shape measuring device and shape measuring method
JP5140007B2 (en) Gear pair design apparatus, gear pair design program, gear pair design method, and gear pair
EP3423781B1 (en) Measurement of worm gears
JP5253188B2 (en) Gear tooth surface shape measuring device and measuring method
JP2008175694A (en) Evaluation device of gear pair, evaluation program, and evaluation method of gear pair using this
JP7373970B2 (en) Error correction method for machine tools and machine tools
JP2005195360A (en) Tooth surface error evaluation device for gearwheel pair, evaluation program therefor, and manufacturing method for gearwheel pair using the same
US6335503B1 (en) Method for manufacturing forging die for making net formed gears with predetermined tooth contact area
JPS581724B2 (en) A tool for controlling and measuring the normal involute tooth profile of helical gears
JP2012145551A (en) R-shape measuring device, r-shape measuring method, and r-shape measuring program
CN116963849A (en) Heating scheme calculating method, program, recording medium, apparatus, deforming method, plate deforming apparatus, and deformed plate manufacturing method
JP3986320B2 (en) Gear machining method and apparatus
JP2008123117A (en) Design device for gearwheel pair, design program thrtrfor, and gearwheel pair design method of using the same
JP5330837B2 (en) Gear pair design device and gear pair
JP2005114549A (en) Surface profile measuring apparatus and method
JP2003048124A (en) Manufacturing method for die or electrical discharge machining electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223