JP5253188B2 - Gear tooth surface shape measuring device and measuring method - Google Patents

Gear tooth surface shape measuring device and measuring method Download PDF

Info

Publication number
JP5253188B2
JP5253188B2 JP2009002833A JP2009002833A JP5253188B2 JP 5253188 B2 JP5253188 B2 JP 5253188B2 JP 2009002833 A JP2009002833 A JP 2009002833A JP 2009002833 A JP2009002833 A JP 2009002833A JP 5253188 B2 JP5253188 B2 JP 5253188B2
Authority
JP
Japan
Prior art keywords
tooth
tooth surface
gear
meshing
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009002833A
Other languages
Japanese (ja)
Other versions
JP2010160072A (en
Inventor
光浩 汾陽
哲也 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009002833A priority Critical patent/JP5253188B2/en
Publication of JP2010160072A publication Critical patent/JP2010160072A/en
Application granted granted Critical
Publication of JP5253188B2 publication Critical patent/JP5253188B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、歯車の歯面形状の測定装置および測定方法に関し、特に、はすば歯車の歯面形状の測定に関する。 The present invention relates to a measuring apparatus and how the tooth surface shape of the gear, in particular, relates to the measurement of the tooth surface shape of the helical gear.

一般に、車両用の動力伝達装置は変速機を備えており、変速機に入力された回転速度が所定の回転速度に変換されて出力される。この変速機には歯車式の変速機構が多用されており、歯車同士の噛み合いにより生じたギヤノイズや振動が、空気伝播あるいは固体伝播により重畳されて騒音を引き起こす可能性がある。このようなギヤノイズや振動が発生する原因としては、歯車の精度による影響が大きいことが確認されている。   In general, a power transmission device for a vehicle includes a transmission, and a rotational speed input to the transmission is converted into a predetermined rotational speed and output. A gear-type transmission mechanism is frequently used in this transmission, and gear noise and vibration generated by the meshing of the gears may be superimposed by air propagation or solid propagation to cause noise. It has been confirmed that the cause of such gear noise and vibration is greatly influenced by the accuracy of the gears.

ギヤノイズや振動を低減させるための方法としては、歯車の歯面形状を正確に測定し、この測定結果に基づいて各歯の歯面形状を管理・評価することが挙げられる。従来の歯車の歯面形状の測定に関し、歯面の同時接触線方向あるいはかみ合い進行方向に沿った歯形形状の誤差を検出する技術が提案されている(たとえば、特許文献1参照)。また、検定用マスタの形状偏差の影響を受けない歯形測定器の検定法が提案されている(たとえば、特許文献2参照)。   As a method for reducing gear noise and vibration, it is possible to accurately measure the tooth surface shape of a gear and manage and evaluate the tooth surface shape of each tooth based on the measurement result. Regarding the measurement of the tooth surface shape of a conventional gear, a technique for detecting an error of the tooth shape along the direction of simultaneous contact line or the direction of meshing of the tooth surface has been proposed (for example, see Patent Document 1). Further, a method for verifying a tooth profile measuring instrument that is not affected by the shape deviation of the verification master has been proposed (see, for example, Patent Document 2).

特開平9−5009号公報Japanese Patent Laid-Open No. 9-5209 特開2004−101247号公報JP 2004-101247 A

歯車のかみ合い性能と対応のとれる歯車断面形状として、かみ合い進行方向断面形状が上げられる。歯車のギヤノイズ性能を保証するためには、歯車のかみ合い進行方向断面の測定を高精度に行なう必要がある。   As a gear cross-sectional shape that can correspond to the meshing performance of the gear, the cross-sectional shape in the meshing direction is raised. In order to guarantee the gear noise performance of the gear, it is necessary to measure the cross section in the meshing traveling direction of the gear with high accuracy.

特許文献1に、歯形方向および歯すじ方向の検出結果からかみ合い進行方向の歯形を理論的に求めることの記載はあるが、歯形方向および歯すじ方向の検出結果を用いて機械精度誤差に対する補正量を求めることについての開示はされていない。   Although there is a description in Patent Document 1 that the tooth profile in the meshing direction is theoretically obtained from the detection result of the tooth profile direction and the tooth trace direction, the correction amount for the machine accuracy error using the detection result of the tooth profile direction and the tooth trace direction. There is no disclosure about seeking.

本発明は上記の問題に鑑みてなされてものであり、その主たる目的は、歯車のかみ合い進行方向に沿う歯面形状を高精度に測定できる測定装置および測定方法を提供することである。 The present invention has been made in view of the above problems, the main object is to provide a measuring apparatus and how to measure the tooth surface shape along the engagement direction of travel of the gear with high precision.

本発明の一の局面に係る歯車の歯面形状の測定装置は、歯車のかみ合い進行方向に沿って歯面形状を測定する装置であって、歯面形状を測定する測定部と、測定部の動作を制御する制御部とを備える。制御部は、測定部により測定されたかみ合い進行方向に沿う歯面形状の実測値に、以下の式で求められる補正値Ccompを乗じて歯面形状を算出する。 A gear tooth surface shape measuring device according to one aspect of the present invention is a device that measures a tooth surface shape along a gear meshing traveling direction, a measuring unit that measures the tooth surface shape, and a measuring unit A control unit for controlling the operation. The control unit calculates the tooth surface shape by multiplying the actual measurement value of the tooth surface shape along the meshing direction measured by the measurement unit by the correction value C comp obtained by the following equation.

Figure 0005253188
Figure 0005253188

ただし、CCVは歯形方向の機械精度誤差に対する補正値、CLDは歯すじ方向の機械精度誤差に対する補正値、αは歯形方向とかみ合い進行方向とによって形成される角度、βは歯車の基礎円筒上ねじれ角を表す。 Where C CV is a correction value for a mechanical accuracy error in the tooth profile direction, C LD is a correction value for a mechanical accuracy error in the tooth trace direction, α is an angle formed by the tooth profile direction and the meshing direction, and β is a basic cylinder of the gear. Represents the upper helix angle.

本発明の他の局面に係る歯車の歯面形状の測定方法は、歯車のかみ合い進行方向に沿って歯面形状を測定する方法であって、かみ合い進行方向に沿って歯面形状の実測値を測定する工程と、実測値に以下の式で求められる補正値Ccompを乗じて歯面形状を算出する工程とを備える。 A method for measuring a tooth surface shape of a gear according to another aspect of the present invention is a method of measuring a tooth surface shape along the meshing traveling direction of the gear, and an actual measurement value of the tooth surface shape along the meshing traveling direction. A step of measuring, and a step of calculating a tooth surface shape by multiplying an actual measurement value by a correction value C comp obtained by the following equation.

Figure 0005253188
Figure 0005253188

ただし、CCVは歯形方向の機械精度誤差に対する補正値、CLDは歯すじ方向の機械精度誤差に対する補正値、αは歯形方向とかみ合い進行方向とによって形成される角度、βは歯車の基礎円筒上ねじれ角を表す。 Where C CV is a correction value for a mechanical accuracy error in the tooth profile direction, C LD is a correction value for a mechanical accuracy error in the tooth trace direction, α is an angle formed by the tooth profile direction and the meshing direction, and β is a basic cylinder of the gear. Represents the upper helix angle.

本発明の測定方法によると、歯車の各歯毎のかみ合い進行方向に沿う歯面形状を正確に管理・評価することができ、各歯の歯面形状の精度の向上に寄与できる。したがって、歯車同士の噛み合いによるギヤノイズや振動が低減されて騒音を抑制することが可能になる。   According to the measuring method of the present invention, the tooth surface shape along the meshing direction of each tooth of the gear can be accurately managed and evaluated, which can contribute to the improvement of the accuracy of the tooth surface shape of each tooth. Therefore, gear noise and vibration due to meshing between gears are reduced, and noise can be suppressed.

本実施の形態の歯車の歯面形状の測定装置を示す斜視図である。It is a perspective view which shows the measuring device of the tooth surface shape of the gear of this Embodiment. 図1に示す測定装置の制御系統を説明するためのブロック図である。It is a block diagram for demonstrating the control system of the measuring apparatus shown in FIG. 本実施の形態に係る測定装置および測定方法により歯面形状を測定されるはすば歯車の一部を拡大して示す第一の斜視図である。It is a 1st perspective view which expands and shows a part of helical gear by which a tooth surface shape is measured by the measuring apparatus and measuring method which concern on this Embodiment. 本実施の形態に係る測定装置および測定方法により歯面形状を測定されるはすば歯車の一部を拡大して示す第二の斜視図である。It is a 2nd perspective view which expands and shows a part of helical gear by which a tooth surface shape is measured by the measuring apparatus and measuring method which concern on this Embodiment. 図4に示すはすば歯車の歯面形状の測定方法を示す流れ図である。It is a flowchart which shows the measuring method of the tooth surface shape of the helical gear shown in FIG. かみ合い進行方向における機差補正値Ccompの導出方法を示す模式図である。It is a schematic diagram which shows the derivation | leading-out method of the machine difference correction value Ccomp in a meshing advance direction. かみ合い進行方向に沿う歯面の形状の実測値と補正後の値との差を模式的に示すグラフである。It is a graph which shows typically the difference of the actual value of the shape of the tooth surface along a meshing progress direction, and the value after amendment.

以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。   Embodiments of the present invention will be described below with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

なお、以下に説明する実施の形態において、各々の構成要素は、特に記載がある場合を除き、本発明にとって必ずしも必須のものではない。また、以下の実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、上記個数などは例示であり、本発明の範囲は必ずしもその個数、量などに限定されない。   In the embodiments described below, each component is not necessarily essential for the present invention unless otherwise specified. In the following embodiments, when referring to the number, amount, etc., unless otherwise specified, the above number is an example, and the scope of the present invention is not necessarily limited to the number, amount, etc.

図1は、本実施の形態の歯車の歯面形状の測定装置60を示す斜視図である。図1に示すように、この測定装置60では、歯車を装着するための回転軸30がベッド31上に上下方向に向けて設けられており、歯車の他方の軸端を支えるピン32が、回転軸30の上方に回転軸30と対向して配置されている。   FIG. 1 is a perspective view showing a gear tooth surface shape measuring device 60 of the present embodiment. As shown in FIG. 1, in this measuring device 60, a rotating shaft 30 for mounting a gear is provided on a bed 31 in a vertical direction, and a pin 32 that supports the other shaft end of the gear rotates. It is disposed above the shaft 30 so as to face the rotating shaft 30.

またベッド31上にコラム33が、回転軸30に接近・離隔する方向(X方向)に往復動可能に配置されている。このコラム33の回転軸30側の正面には、回転軸30の中心軸線と平行な方向すなわち上下方向(Z方向)に往復動するZ軸ヘッド34が取付けられている。さらにこのZ軸ヘッド34の正面には、回転軸30に対して左右方向(Y方向)に往復動するY軸ヘッド35が取付けられている。このY軸ヘッド35の回転軸30側の正面に、触針36がその変位を検出する検出器37を介して取付けられている。触針36は、歯車の歯面と接触しながら歯面形状を測定する。   Further, a column 33 is disposed on the bed 31 so as to be able to reciprocate in a direction (X direction) approaching and separating from the rotation shaft 30. A Z-axis head 34 that reciprocates in the direction parallel to the central axis of the rotary shaft 30, that is, the vertical direction (Z direction) is attached to the front surface of the column 33 on the rotary shaft 30 side. Further, a Y-axis head 35 that reciprocates in the left-right direction (Y direction) with respect to the rotary shaft 30 is attached to the front surface of the Z-axis head 34. A stylus 36 is attached to the front surface of the Y-axis head 35 on the rotating shaft 30 side via a detector 37 that detects the displacement. The stylus 36 measures the tooth surface shape while being in contact with the tooth surface of the gear.

上記の回転軸30およびコラム33ならびに各軸のヘッド34,35は、数値制御(NC;Numerical Control)されて、回転および駆動されるようになっている。図2は、図1に示す測定装置60の制御系統を説明するためのブロック図である。図2に示すように、回転軸30を駆動するサーボモータ38は、回転コントローラ39によって制御される。サーボモータ38の回転量を検出するロータリエンコーダ40が、フィードバック信号を回転コントローラ39に入力するよう接続されている。   The rotary shaft 30 and the column 33 and the heads 34 and 35 of each axis are rotated and driven by numerical control (NC). FIG. 2 is a block diagram for explaining a control system of the measuring apparatus 60 shown in FIG. As shown in FIG. 2, the servo motor 38 that drives the rotary shaft 30 is controlled by a rotation controller 39. A rotary encoder 40 that detects the rotation amount of the servo motor 38 is connected to input a feedback signal to the rotation controller 39.

Y軸ヘッド35を左右方向に駆動するサーボモータ41は、Y軸コントローラ42によって制御される。Y軸ヘッド35のX方向の移動量を検出するリニアエンコーダ43が、フィードバック信号をY軸コントローラ42に入力するよう接続されている。   A servo motor 41 that drives the Y-axis head 35 in the left-right direction is controlled by a Y-axis controller 42. A linear encoder 43 that detects the amount of movement of the Y-axis head 35 in the X direction is connected to input a feedback signal to the Y-axis controller 42.

Z軸ヘッド34を上下方向に直線的に移動させるサーボモータ44は、Z軸コントローラ45によって制御される。Z軸ヘッド34の移動量を検出するリニアエンコーダ46が、フィードバック信号をZ軸コントローラ45に入力するように接続されている。   A servo motor 44 that linearly moves the Z-axis head 34 in the vertical direction is controlled by a Z-axis controller 45. A linear encoder 46 that detects the amount of movement of the Z-axis head 34 is connected to input a feedback signal to the Z-axis controller 45.

コラム33を直線的に往復動させるサーボモータ47は、X軸コントローラ48によって制御される。コラム33の移動量を検出するリニアエンコーダ49が、フィードバック信号をX軸コントローラ48に入力するよう接続されている。   A servo motor 47 that linearly reciprocates the column 33 is controlled by an X-axis controller 48. A linear encoder 49 that detects the amount of movement of the column 33 is connected to input a feedback signal to the X-axis controller 48.

これらのコントローラ39,42,45,48に制御信号を出力する制御部50が設けられている。この制御部50には、検出器37が接続される一方、制御内容あるいは検出結果を出力する出力装置51が接続されている。制御部50は、コントローラ39,42,45,48を介して、触針36の動作を制御する。ロータリエンコーダ40およびリニアエンコーダ43,46,49のフィードバック信号は、制御部50にも取り込まれて、制御指令を作成するとともに誤差演算に用いられる。なお、回転軸30の回転および触針36の移動方向は、図1に+,−の符号で示すように設定されている。歯車の歯面形状を測定する測定部としての触針36が、X、Y、Z軸方向に同時に移動することができるように、測定装置60は構成されている。   A controller 50 that outputs control signals to these controllers 39, 42, 45, 48 is provided. The control unit 50 is connected to the detector 37 and is connected to an output device 51 that outputs control contents or detection results. The control unit 50 controls the operation of the stylus 36 via the controllers 39, 42, 45, 48. The feedback signals of the rotary encoder 40 and the linear encoders 43, 46, 49 are also taken into the control unit 50 to create a control command and use it for error calculation. The rotation direction of the rotary shaft 30 and the moving direction of the stylus 36 are set as indicated by the symbols + and − in FIG. The measuring device 60 is configured so that the stylus 36 as a measuring unit that measures the tooth surface shape of the gear can move simultaneously in the X, Y, and Z axis directions.

図3および図4は、本実施の形態に係る測定装置および測定方法により歯面形状を測定されるはすば歯車の一部を拡大して示す斜視図である。図中には、左ねじれのはすば歯車1の、一つの歯10が示されている。図3および図4に示すように、はすば歯車1は、歯10の歯先14側に形成された歯先面11と、歯先14と歯元15とを結ぶように形成された歯面12とを有する。歯面12は、矢印4に示す歯形方向に延びる端辺18および19と、歯先14側および歯元15側のそれぞれで、矢印6に示す歯すじ方向に延びる端辺16および17とに囲まれた、略矩形形状に形成されている。端辺18と端辺19とは、歯すじ方向に向い合って互いに平行に延びている。端辺16と端辺17とは、歯形方向に向い合って互いに平行に延びている。   3 and 4 are enlarged perspective views showing a part of a helical gear whose tooth surface shape is measured by the measuring apparatus and measuring method according to the present embodiment. In the figure, a single tooth 10 of a helically helical gear 1 is shown. As shown in FIGS. 3 and 4, the helical gear 1 includes a tooth tip surface 11 formed on the tooth tip 14 side of the tooth 10, and a tooth formed so as to connect the tooth tip 14 and the tooth base 15. Surface 12. The tooth surface 12 is surrounded by edges 18 and 19 extending in the tooth profile direction indicated by the arrow 4 and edges 16 and 17 extending in the tooth trace direction indicated by the arrow 6 on the tooth tip 14 side and the tooth root 15 side, respectively. It is formed in a substantially rectangular shape. The end side 18 and the end side 19 face each other in the tooth trace direction and extend in parallel to each other. The end side 16 and the end side 17 face each other in the tooth profile direction and extend in parallel to each other.

図4において歯面12には、矢印8に示すかみ合い進行方向が示されている。はすば歯車1と図示しない相手歯車との間では、各瞬間ごとに所定の接触幅(これを同時接触線と称する)によってかみ合いが生じる。かみ合い進行方向とは、はすば歯車1の歯面12における同時接触線が、はすば歯車1の回転に伴って移動する方向を示している。かみ合い進行方向は、歯すじ方向および歯形方向の双方に対して斜めに延びている。かみ合い進行方向を示す矢印8の延びる方向は、歯面12における各同時接触線上において、歯面12が最も高くなる位置を結んで得られる。なお、歯面12の高さとは、はすば歯車1の設計基準歯面、たとえば、インボリュート歯形の基準歯面から歯面12までの距離を指す。   In FIG. 4, the tooth surface 12 shows a meshing advance direction indicated by an arrow 8. An engagement occurs between the helical gear 1 and the other gear (not shown) by a predetermined contact width (referred to as a simultaneous contact line) at each moment. The meshing traveling direction indicates the direction in which the simultaneous contact line on the tooth surface 12 of the helical gear 1 moves as the helical gear 1 rotates. The meshing advance direction extends obliquely with respect to both the tooth trace direction and the tooth profile direction. The extending direction of the arrow 8 indicating the meshing traveling direction is obtained by connecting the positions where the tooth surface 12 becomes the highest on each simultaneous contact line on the tooth surface 12. The height of the tooth surface 12 indicates the distance from the design reference tooth surface of the helical gear 1, for example, the reference tooth surface of the involute tooth profile to the tooth surface 12.

以下、本実施の形態に係るはすば歯車1の歯面12の形状を測定する方法について説明する。図5は、図4に示すはすば歯車1の歯面形状の測定方法を示す流れ図である。なお、本実施の形態に係るはすば歯車1の歯面12の形状の測定方法は、図5に示す各工程を順次実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体、たとえば、ハードディスクやROM(Read-Only Memory)を有するコンピュータにより自動的に行なわれる。ここでいう「コンピュータ」とは、本実施の形態に係る制御部50を構成するものをいう。   Hereinafter, a method for measuring the shape of the tooth surface 12 of the helical gear 1 according to the present embodiment will be described. FIG. 5 is a flowchart showing a method for measuring the tooth surface shape of the helical gear 1 shown in FIG. Note that the method for measuring the shape of the tooth surface 12 of the helical gear 1 according to the present embodiment is a computer-readable recording medium, such as a hard disk, in which a program for sequentially executing the steps shown in FIG. 5 is recorded. And a computer having a ROM (Read-Only Memory). Here, the “computer” refers to what constitutes the control unit 50 according to the present embodiment.

本実施の形態のはすば歯車1の歯面12の測定方法では、図5に示すように、まず工程(S10)において、歯形方向における機械精度誤差に対する補正値CCVを決定する。具体的には、図1に示す測定装置60を用いて、マスターギヤの歯形方向に沿う歯面形状を測定し、測定された実測値に補正値CCVを乗じることで実測値をマスターギヤの所定の精度に合わせられるように、補正値CCVを決定する。 In the measurement method of the tooth surface 12 of the helical gear 1 according to the present embodiment, as shown in FIG. 5, first, in a step (S10), a correction value C CV for the mechanical accuracy error in the tooth profile direction is determined. Specifically, using the measuring device 60 shown in FIG. 1, the tooth surface shape along the tooth profile direction of the master gear is measured, and the measured value is multiplied by the correction value C CV to obtain the measured value of the master gear. The correction value C CV is determined so as to be adjusted to a predetermined accuracy.

次に工程(S20)において、歯すじ方向における機械精度誤差に対する補正値CLDを決定する。具体的には、図1に示す測定装置60を用いて、マスターギヤの歯すじ方向に沿う歯面形状を測定し、測定された実測値に補正値CLDを乗じることで実測値をマスターギヤの所定の精度に合わせられるように、補正値CLDを決定する。 Next, in the step (S20), determines a correction value C LD to mechanical precision error in the tooth trace direction. Specifically, by using a measuring device 60 shown in FIG. 1, the tooth surface shape along the tooth trace direction of the master gear is measured and the master gear and the measured value by multiplying the correction value C LD to measured actual value The correction value C LD is determined so as to match the predetermined accuracy.

次に工程(S30)において、はすば歯車1のモジュールや、基礎円筒上ねじれ角βなどの歯車諸元を、キーボードなどの入力装置を用いてコンピュータに入力する。なお、インボリュート歯形(歯面)が作られる基礎となる円筒を基礎円筒という。つまり、基礎円筒に巻きつけた糸を緊張した状態で巻き戻したときに、その先端が描く曲線が、インボリュート歯車の歯形を形成する。また、基礎円筒上ねじれ角βとは、基礎円筒の軸方向に対し歯10の歯すじ方向が傾斜する角度を示す。   Next, in step (S30), the gear specifications such as the helical gear 1 module and the basic cylinder upper helix angle β are input to the computer using an input device such as a keyboard. In addition, the cylinder used as the foundation from which an involute tooth profile (tooth surface) is made is called a basic cylinder. That is, when the yarn wound around the basic cylinder is rewound in a tensioned state, the curve drawn by the tip forms the tooth profile of the involute gear. Further, the torsion angle β on the base cylinder indicates an angle at which the streak direction of the tooth 10 is inclined with respect to the axial direction of the base cylinder.

次に工程(S40)において、かみ合い進行方向を設定する。具体的には、工程(S30)において入力された情報に基づいて、歯面12上に複数の同時接触線を設定し、これら複数の同時接触線に交差する方向にかみ合い進行方向を設定する。たとえば、特開平11−118407号公報に記載されている手法を用いてかみ合い進行方向を設定することができる。   Next, in the step (S40), the meshing traveling direction is set. Specifically, based on the information input in the step (S30), a plurality of simultaneous contact lines are set on the tooth surface 12, and a meshing advance direction is set in a direction intersecting the plurality of simultaneous contact lines. For example, the meshing traveling direction can be set using the technique described in Japanese Patent Application Laid-Open No. 11-118407.

次に工程(S50)において、かみ合い進行方向における機械精度誤差に対する補正値Ccompを決定する。図6は、かみ合い進行方向における機差補正値Ccompの導出方法を示す模式図である。図6(a)は、図3および図4に示す歯10の歯面12を平面展開した作用面13を示す。作用面13は、その四辺が歯10の端辺16,17,18,19により構成される矩形で表される。図6(b)は、はすば歯車1の外周面における歯10および歯10に隣接する他の歯20の配置を示す図である。図6(b)にはまた、測定子としての触針36がかみ合い進行方向に沿った歯面12の形状を測定するときの、歯すじ方向に展開した触針36の動きが模式的に図示されている。図6(c)は、触針36がかみ合い進行方向に沿った歯面12の形状を測定するときの、歯面法線方向に展開した触針36の動きを模式的に示す図である。 Next, in step (S50), a correction value C comp for the machine accuracy error in the meshing direction is determined. FIG. 6 is a schematic diagram illustrating a method for deriving the machine difference correction value C comp in the meshing traveling direction. Fig.6 (a) shows the action surface 13 which planarly developed the tooth surface 12 of the tooth | gear 10 shown to FIG. 3 and FIG. The action surface 13 is represented by a rectangle whose four sides are constituted by the end sides 16, 17, 18, 19 of the teeth 10. FIG. 6B is a diagram showing the arrangement of the teeth 10 on the outer peripheral surface of the helical gear 1 and other teeth 20 adjacent to the teeth 10. FIG. 6B also schematically shows the movement of the stylus 36 developed in the tooth trace direction when the stylus 36 as a measuring element measures the shape of the tooth surface 12 along the meshing direction. Has been. FIG. 6C is a diagram schematically showing the movement of the stylus 36 developed in the tooth surface normal direction when the shape of the tooth surface 12 along the direction in which the stylus 36 meshes is measured.

図6(a)に示す作用面13上において、矢印4に示す歯形方向と、矢印8に示すかみ合い進行方向とは、角度αを形成するように交差している。作用面13において、かみ合い進行方向は、歯形方向に対し角度α分傾斜している。作用面13が形成する矩形の、歯形方向に延びる端辺18,19の寸法は、図6(a)に示すlで示される。lは、はすば歯車1の歯10の歯面12の形状をかみ合い進行方向に沿って測定するときに、かみ合い進行方向に沿う歯面12形状の歯形方向成分を測るために必要となるはすば歯車1の回転量を示す。換言すると、はすば歯車1を停止させた状態において、かみ合い進行方向に沿う歯面12形状の歯形方向成分を図るために必要な、はすば歯車1に対する触針36の歯面法線方向の相対的な移動量が、寸法lである。 On the working surface 13 shown in FIG. 6A, the tooth profile direction indicated by the arrow 4 and the meshing advance direction indicated by the arrow 8 intersect so as to form an angle α. In the working surface 13, the meshing direction is inclined by an angle α with respect to the tooth profile direction. The dimensions of the rectangular side edges 18 and 19 formed by the working surface 13 and extending in the tooth profile direction are indicated by 10 shown in FIG. When measuring the shape of the tooth surface 12 of the tooth 10 of the helical gear 1 along the meshing advance direction, l 0 is necessary for measuring the tooth profile direction component of the tooth surface 12 shape along the meshing travel direction. The rotation amount of the helical gear 1 is shown. In other words, in the state where the helical gear 1 is stopped, the tooth surface normal direction of the stylus 36 with respect to the helical gear 1 is required to obtain the tooth profile direction component of the tooth surface 12 shape along the meshing traveling direction. Is the dimension l 0 .

一方、はすば歯車1の歯10の歯面12の形状をかみ合い進行方向に沿って測定するときに、かみ合い進行方向に沿う歯面12の形状の歯すじ方向成分を測るために必要となるはすば歯車1の回転量は、図6(c)に示す寸法lTAで表される。はすば歯車1には、基礎円筒上ねじれ角βを有するように歯10が形成されているために、かみ合い進行方向に沿う歯面12の歯すじ方向成分を測定するためには、歯すじ方向だけでなく歯面法線方向への移動も複合して考慮する必要がある。つまり、はすば歯車1の歯10に対して、歯すじ方向に加えて歯面法線方向にも触針36を相対的に移動させ、歯面12および触針36を同期させる必要がある。その場合の触針36の、停止させた状態のはすば歯車1に対する歯面法線方向の相対的な移動量が、寸法lTAである。 On the other hand, when measuring the shape of the tooth surface 12 of the tooth 10 of the helical gear 1 along the meshing traveling direction, it is necessary to measure the tooth trace direction component of the shape of the tooth surface 12 along the meshing traveling direction. rotational amount of the gear 1 helical is represented by dimension l TA shown in FIG. 6 (c). Since the tooth 10 is formed on the helical gear 1 to have a torsion angle β on the basic cylinder, in order to measure the tooth line direction component of the tooth surface 12 along the meshing traveling direction, the tooth line is used. It is necessary to consider not only the direction but also the movement in the tooth surface normal direction in combination. In other words, it is necessary to move the stylus 36 relative to the tooth 10 of the helical gear 1 in the tooth surface normal direction in addition to the tooth direction, so that the tooth surface 12 and the stylus 36 are synchronized. . Its stylus 36 when the relative movement amount of tooth surface normal direction to the gear 1 Helical of being stopped is the dimension l TA.

つまり、かみ合い進行方向に沿う歯面12の形状を測定するときに必要とされる、はすば歯車1の回転量(または、停止状態のはすば歯車1に対する触針36の歯面法線方向の移動量)lは、以下の式で表すことができる。   That is, the rotation amount of the helical gear 1 (or the tooth surface normal of the stylus 36 with respect to the helical gear 1 in a stopped state) required for measuring the shape of the tooth surface 12 along the meshing direction. The amount of movement (direction) l can be expressed by the following equation.

Figure 0005253188
Figure 0005253188

上述したように、lTAは、かみ合い進行方向に沿う歯面12の形状の歯すじ方向成分を測るために必要となる、停止させた状態のはすば歯車1に対する歯面法線方向の相対的な移動量である。図6(b)に示す、かみ合い進行方向に沿う歯面12の形状の歯すじ方向成分を測る場合の触針36の歯すじ方向の移動量lAXを用いて、lTAは、以下のように表される。 As described above, l TA meshes required to measure the tooth trace direction component of the shape of the tooth surface 12 along the traveling direction, the tooth surface normal direction relative with respect to the gear 1 Helical of being stopped The amount of movement. Using the amount of movement l AX in the tooth trace direction of the stylus 36 when measuring the tooth trace direction component of the shape of the tooth surface 12 along the meshing traveling direction shown in FIG. 6B, l TA is as follows: It is expressed in

Figure 0005253188
Figure 0005253188

ここで図6(a)を参照して、l、lAXおよび角度αの関係は、 Here, referring to FIG. 6A, the relationship between l 0 , l AX and angle α is

Figure 0005253188
Figure 0005253188

のように表すことができるので、結局lTAは、寸法lを用いて以下のように表される。 In the end, l TA is represented as follows using the dimension l 0 .

Figure 0005253188
Figure 0005253188

したがって、触針36の歯形方向および歯すじ方向における移動量への寄与率を考慮すると、歯形方向には1倍の補正、歯すじ方向にはtanαtanβ倍の補正をする必要があることになる。そのため、かみ合い進行方向における機械精度誤差に対する補正値Ccompは、次式で表されることになる。 Therefore, considering the contribution ratio of the stylus 36 to the tooth profile direction and the amount of movement in the tooth trace direction, it is necessary to perform correction of 1 time in the tooth profile direction and correction of tan αtan β times in the tooth trace direction. For this reason, the correction value C comp for the mechanical accuracy error in the meshing traveling direction is expressed by the following equation.

Figure 0005253188
Figure 0005253188

このようにして、工程(S10)において決定した歯形方向における機械精度誤差に対する補正値CCV、および、工程(S20)において決定した歯すじ方向における機械精度誤差に対する補正値CLDを用い、CCVおよびCLDを変換して、かみ合い進行方向における機械精度誤差に対する補正値Ccompを決定することができる。 In this way, using the correction value C CV for the machine accuracy error in the tooth profile direction determined in step (S10) and the correction value C LD for the machine accuracy error in the tooth trace direction determined in step (S20), C CV And C LD can be converted to determine a correction value C comp for the machine accuracy error in the meshing direction.

図5に戻って、次に工程(S60)において、触針36を歯面12に接触させ、かみ合い進行方向に沿って歯面12を走査するように移動させることにより、歯10のかみ合い進行方向に沿った歯面12の形状の測定を行なう。続いて工程(S70)において、工程(S50)で求めたかみ合い進行方向の機差補正値Ccompを用いて、かみ合い進行方向に沿った歯面12の形状を補正する。具体的には、工程(S60)で測定された歯面12の形状の実測値に、補正値Ccompを乗じることにより、補正後の歯面12の形状を算出する。 Returning to FIG. 5, in the next step (S <b> 60), the stylus 36 is brought into contact with the tooth surface 12, and moved so as to scan the tooth surface 12 along the meshing direction, whereby the meshing direction of the teeth 10. The shape of the tooth surface 12 along the line is measured. Subsequently, in the step (S70), the shape of the tooth surface 12 along the meshing advance direction is corrected using the machine difference correction value C comp in the meshing advance direction obtained in the step (S50). Specifically, the corrected shape of the tooth surface 12 is calculated by multiplying the measured value of the shape of the tooth surface 12 measured in the step (S60) by the correction value C comp .

図7は、かみ合い進行方向に沿う歯面12の形状の実測値と補正後の値との差を模式的に示すグラフである。図7中に破線で示す実測値に対し、上述した補正値Ccompを用いて実測値に対して掛ける値(倍率)を決定することにより、図7中に実線で示す補正後の歯面12の形状が求められる。この補正後の歯面12の形状が、はすば歯車1について許容できる精度誤差の範囲にあることを確認して、歯面12を測定した各はすば歯車1が製品に適用可能であるか否かを判断する。 FIG. 7 is a graph schematically showing the difference between the measured value of the shape of the tooth surface 12 along the meshing direction and the corrected value. By determining the value (magnification) to be multiplied with the actual measurement value indicated by the broken line in FIG. 7 using the correction value C comp described above, the corrected tooth surface 12 indicated by the solid line in FIG. Is required. After confirming that the shape of the tooth surface 12 after this correction is within the range of accuracy errors that can be tolerated for the helical gear 1, each helical gear 1 that has measured the tooth surface 12 can be applied to a product. Determine whether or not.

はすば歯車1の歯面12の形状を測定する測定装置60には、たとえば温度環境の変動に伴って発生する材料の膨張または収縮などを原因として、歯車を装着する回転軸30の中心のずれ、コラム33の鉛直方向に対する傾斜など、機械精度の誤差が発生する場合がある。このような誤差の発生に対して、かみ合い進行方向に沿う歯面12の形状の実測値に対する補正値とし補正値Ccompを用いることにより、かみ合い進行方向に沿う歯面12の形状をより精度よく求めることができる。 The measuring device 60 that measures the shape of the tooth surface 12 of the helical gear 1 includes, for example, the center of the rotating shaft 30 on which the gear is mounted due to the expansion or contraction of the material that occurs due to a change in the temperature environment. In some cases, errors in machine accuracy such as displacement and inclination of the column 33 with respect to the vertical direction may occur. By using the correction value C comp as a correction value for the actual measurement value of the shape of the tooth surface 12 along the meshing advance direction, the shape of the tooth surface 12 along the meshing progress direction can be more accurately determined. Can be sought.

補正後、すなわち機械精度誤差を除いた状態において、歯面12の形状が許容できる誤差範囲を外れている場合、このような歯面12を有するはすば歯車1を製品に使用して回転させるとギヤノイズが発生する。このような場合には、許容誤差範囲を外れた歯面12の形状を有するはすば歯車1を製造ラインから除き、一方、歯面12のマスタ精度に対する精度のずれを、はすば歯車1の製造工程にフィードバックすることができる。その結果、各はすば歯車1の歯面12の形状を調整でき、歯面12の精度のずれを低減することができるので、ギヤノイズを低減することができる。   If the shape of the tooth surface 12 is out of an allowable error range after correction, that is, excluding the machine accuracy error, the helical gear 1 having such a tooth surface 12 is rotated using the product. And gear noise occurs. In such a case, the helical gear 1 having the shape of the tooth surface 12 outside the allowable error range is removed from the production line, while the deviation of the accuracy of the tooth surface 12 with respect to the master accuracy is Can be fed back to the manufacturing process. As a result, the shape of the tooth surface 12 of each helical gear 1 can be adjusted, and the deviation of the accuracy of the tooth surface 12 can be reduced, so that gear noise can be reduced.

以上説明したように、本実施の形態のはすば歯車1の歯面12の形状の測定方法では、はすば歯車1のかみ合い進行方向に沿って歯面12の形状の実測値を測定する工程(S60)と、当該実測値に上記のかみ合い進行方向の機械精度誤差の補正値Ccompを乗じて歯面12の形状を算出する工程(S70)とを備える。 As described above, in the method for measuring the shape of the tooth surface 12 of the helical gear 1 according to the present embodiment, the actual measurement value of the shape of the tooth surface 12 is measured along the meshing direction of the helical gear 1. A step (S60) and a step (S70) of calculating the shape of the tooth surface 12 by multiplying the actual measurement value by the correction value C comp of the mechanical accuracy error in the meshing direction.

このようにすれば、歯面12をかみ合い進行方向に沿って測定する測定装置60(図1参照)の機械精度誤差を、的確に補正することができる。すなわち、かみ合い進行方向に沿う歯面12の形状の実測値に対し、的確な補正値Ccompを算出することができる。そのため、はすば歯車1の各歯10のかみ合い進行方向に沿う歯面12の形状の測定精度を向上することができるので、各歯10毎のかみ合い進行方向に沿う歯面12の形状を正確に管理・評価することができる。したがって、はすば歯車1同士の噛み合いによるギヤノイズや振動が低減されて、騒音を抑制することが可能になる。 In this way, it is possible to accurately correct the mechanical accuracy error of the measuring device 60 (see FIG. 1) that measures the tooth surface 12 along the advancing direction. That is, it is possible to calculate an accurate correction value C comp for the actual measurement value of the shape of the tooth surface 12 along the meshing direction. Therefore, since the measurement accuracy of the shape of the tooth surface 12 along the meshing direction of each tooth 10 of the helical gear 1 can be improved, the shape of the tooth surface 12 along the meshing direction of each tooth 10 is accurately determined. Can be managed and evaluated. Therefore, gear noise and vibration due to the meshing of the helical gears 1 are reduced, and noise can be suppressed.

以上のように本発明の実施の形態について説明を行なったが、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。   Although the embodiment of the present invention has been described as above, the embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 はすば歯車、10,20 歯、12 歯面、13 作用面、14 歯先、15 歯元、16,17,18,19 端辺、36 触針、50 制御部、60 測定装置。   1 Helical gear, 10, 20 teeth, 12 tooth surfaces, 13 working surfaces, 14 tooth tips, 15 tooth roots, 16, 17, 18, 19 edges, 36 stylus, 50 control unit, 60 measuring device.

Claims (2)

歯車のかみ合い進行方向に沿って歯面形状を測定する、歯車の歯面形状の測定装置であって、
前記歯面形状を測定する測定部と、
前記測定部の動作を制御する制御部とを備え、
前記制御部は、前記測定部により測定された前記かみ合い進行方向に沿う前記歯面形状の実測値に、以下の式で求められる補正値Ccompを乗じて前記歯面形状を算出する、歯車の歯面形状の測定装置。
Figure 0005253188
ただし、CCVは歯形方向の機械精度誤差に対する補正値、CLDは歯すじ方向の機械精度誤差に対する補正値、αは前記歯形方向と前記かみ合い進行方向とによって形成される角度、βは前記歯車の基礎円筒上ねじれ角を表す。
A gear tooth surface shape measuring device for measuring a tooth surface shape along a gear meshing traveling direction,
A measuring unit for measuring the tooth surface shape;
A control unit for controlling the operation of the measurement unit,
The control unit calculates the tooth surface shape by multiplying the actual measurement value of the tooth surface shape along the meshing traveling direction measured by the measurement unit by a correction value C comp obtained by the following equation. Tooth surface shape measuring device.
Figure 0005253188
Where C CV is a correction value for a mechanical accuracy error in the tooth profile direction, C LD is a correction value for a mechanical accuracy error in the tooth trace direction, α is an angle formed by the tooth profile direction and the meshing direction, and β is the gear. Represents the torsion angle on the basic cylinder.
歯車のかみ合い進行方向に沿って歯面形状を測定する、歯車の歯面形状の測定方法であって、
前記かみ合い進行方向に沿って前記歯面形状の実測値を測定する工程と、
前記実測値に以下の式で求められる補正値Ccompを乗じて前記歯面形状を算出する工程とを備える、歯車の歯面形状の測定方法。
Figure 0005253188
ただし、CCVは歯形方向の機械精度誤差に対する補正値、CLDは歯すじ方向の機械精度誤差に対する補正値、αは前記歯形方向と前記かみ合い進行方向とによって形成される角度、βは前記歯車の基礎円筒上ねじれ角を表す。
A method for measuring a tooth surface shape of a gear, measuring a tooth surface shape along a gear meshing traveling direction,
Measuring the actual measurement value of the tooth surface shape along the meshing direction;
And a step of calculating the tooth surface shape by multiplying the actual measurement value by a correction value C comp obtained by the following equation.
Figure 0005253188
Where C CV is a correction value for a mechanical accuracy error in the tooth profile direction, C LD is a correction value for a mechanical accuracy error in the tooth trace direction, α is an angle formed by the tooth profile direction and the meshing direction, and β is the gear. Represents the torsion angle on the basic cylinder.
JP2009002833A 2009-01-08 2009-01-08 Gear tooth surface shape measuring device and measuring method Expired - Fee Related JP5253188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002833A JP5253188B2 (en) 2009-01-08 2009-01-08 Gear tooth surface shape measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002833A JP5253188B2 (en) 2009-01-08 2009-01-08 Gear tooth surface shape measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2010160072A JP2010160072A (en) 2010-07-22
JP5253188B2 true JP5253188B2 (en) 2013-07-31

Family

ID=42577333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002833A Expired - Fee Related JP5253188B2 (en) 2009-01-08 2009-01-08 Gear tooth surface shape measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP5253188B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897397A (en) * 2015-06-18 2015-09-09 北京工业大学 Method of accurately determining assessment domain boundary points in gear global error measurement
US11722671B2 (en) 2018-05-01 2023-08-08 Nvidia Corporation Managing virtual machine density by controlling server resource

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5678780B2 (en) * 2011-04-01 2015-03-04 トヨタ自動車株式会社 Vehicle meshing gear device
CN104913931B (en) * 2015-06-18 2017-09-01 北京工业大学 Another accurate determination method of domain for assessment circle point in Gear integrated error measuring
CN105698722A (en) * 2016-01-21 2016-06-22 深圳市海翔铭实业有限公司 Gear precision measurement and evaluation method
IT201700068751A1 (en) * 2017-06-21 2018-12-21 Torneria Ferraro S P A METHOD OF VERIFICATION OF GEARS WITHOUT SCREW.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282216A (en) * 1986-05-31 1987-12-08 Jiro Ishikawa Method and apparatus for inspecting tooth shape and tooth trace errors of gear
JPS63175716A (en) * 1987-01-17 1988-07-20 Sumitomo Heavy Ind Ltd Measuring instrument for tooth profile error
JP2554157B2 (en) * 1989-01-24 1996-11-13 三菱重工業株式会社 Tooth profile error measurement method
JP3127785B2 (en) * 1995-06-15 2001-01-29 トヨタ自動車株式会社 Gear tooth profile measuring device
JP3399322B2 (en) * 1997-10-14 2003-04-21 トヨタ自動車株式会社 Method and apparatus for measuring gear tooth profile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897397A (en) * 2015-06-18 2015-09-09 北京工业大学 Method of accurately determining assessment domain boundary points in gear global error measurement
US11722671B2 (en) 2018-05-01 2023-08-08 Nvidia Corporation Managing virtual machine density by controlling server resource

Also Published As

Publication number Publication date
JP2010160072A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP5253188B2 (en) Gear tooth surface shape measuring device and measuring method
JP5255012B2 (en) Calibration method of gear measuring device
JP4540937B2 (en) Gear tooth trace correction and / or correction of tooth trace deviation
KR101721969B1 (en) Method for the location determination of the involutes in gears
JP5189806B2 (en) Surface shape measuring device
JP6113963B2 (en) Shape measuring method and shape measuring apparatus
JP4829359B2 (en) Calculation method of probe mounting position of on-machine measuring device
CN104028849A (en) Machining Method For Hard-fine Machining Of Noise-optimized Gears On Gear-cutting Machine
JP2010117196A (en) Method of measuring gear
JP7321665B2 (en) Method for automatic measurement of external dimensions of gear cutting machine tools
CN102288141B (en) Industrial machine
JP2008256462A (en) Image display method of shape data
JP6119981B2 (en) Calibration jig and calibration method for optical interference measuring apparatus
JP7431550B2 (en) Adjustment method that enables higher accuracy of machine tools
JP6636288B2 (en) Collective autonomous calibration method of rotation angle sensor and displacement sensor in screw lead measurement and screw lead measuring device
JP7365934B2 (en) How to calibrate a gear cutting machine measuring probe
JP2012145551A (en) R-shape measuring device, r-shape measuring method, and r-shape measuring program
JP3127785B2 (en) Gear tooth profile measuring device
JP4931867B2 (en) Variable terminal
JP6474515B1 (en) Gear measuring device
US11047669B2 (en) Method and arrangement for increasing a throughput in workpiece measurement
CN202255344U (en) Meshing line large-specification gear measuring center
JP4484111B2 (en) Evaluation Method for Gear Tooth Surface Profile Measuring Machine
JP2005221422A (en) Gear measuring machine
JP3399322B2 (en) Method and apparatus for measuring gear tooth profile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R151 Written notification of patent or utility model registration

Ref document number: 5253188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees