JP3986320B2 - Gear machining method and apparatus - Google Patents

Gear machining method and apparatus Download PDF

Info

Publication number
JP3986320B2
JP3986320B2 JP2002041135A JP2002041135A JP3986320B2 JP 3986320 B2 JP3986320 B2 JP 3986320B2 JP 2002041135 A JP2002041135 A JP 2002041135A JP 2002041135 A JP2002041135 A JP 2002041135A JP 3986320 B2 JP3986320 B2 JP 3986320B2
Authority
JP
Japan
Prior art keywords
error
tooth
center position
grindstone
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002041135A
Other languages
Japanese (ja)
Other versions
JP2003236720A (en
Inventor
華 丘
吉言 柳瀬
道明 橋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002041135A priority Critical patent/JP3986320B2/en
Publication of JP2003236720A publication Critical patent/JP2003236720A/en
Application granted granted Critical
Publication of JP3986320B2 publication Critical patent/JP3986320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gear Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、砥石車を利用した歯車加工方法及び歯車加工装置(歯車研削盤)に関する。
【0002】
【従来の技術】
歯車研削盤は、ベッド上のテーブルに主軸台と心押台が移動自在に支持されると共に、ベッド上にこの主軸台及び心押台の移動方向と交差する上下及び水平方向に沿って砥石車を有する砥石台が移動自在に支持されて構成されている。そして、主軸台及び心押台により被工作物を支持し、主軸によりこの被工作物に対して回転を与えた状態で、砥石台に切り込みと送りを与えることで、所定速度で回転する砥石車により被工作物の外周面に歯車研削加工を施すことができる。
【0003】
【発明が解決しようとする課題】
上述した従来の歯車研削盤にて、被工作物の外周面を研削加工することで、所定の歯形を形成するが、一般には、1回の加工ごとに歯車の歯形形状として圧力角誤差や歯すじ方向誤差などを測定し、この各誤差がなくなるように砥石車の位置や角度、切り込み量や送り量などを修正している。
【0004】
ところが、この歯車の圧力角誤差と歯すじ方向誤差は砥石車の位置や角度など互いに関連性をもって影響を与えるものであり、例えば、歯すじ方向誤差がなくなるように砥石車とテーブル軸の同期運動を行うと、圧力角誤差が大きくなってしまい、この圧力角誤差がなくなるように砥石車の位置や角度を修正すると、歯厚誤差が大きくなってしまうことがある。そのため、作業者は長年の勘を頼りに砥石車の位置や角度や同期運動の修正量が圧力角誤差と歯すじ方向誤差と歯厚に与える影響を考慮し、砥石車の位置や角度や同期運動を調整し、数回の調整作業により各誤差をなくすようにしており、作業が困難で作業時間が長くなり、作業能率が良くないという問題がある。
【0005】
本発明はこのような問題点を解決するものであって、歯車研削作業における作業性の向上を図った歯車加工方法及び装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上述の目的を達成するための第1の発明の歯車加工方法は、総形砥石を用いた成形研削による歯車加工方法において、加工した歯車における圧力角誤差と歯厚誤差を測定あるいは測定値に基づいて算出する一方、前記圧力角誤差が砥石中心位置誤差と砥石取付角誤差により受ける影響と、前記歯厚誤差が砥石中心位置誤差と砥石取付角誤差により受ける影響と、を予め解析しておき、該解析結果に基づいて圧力角誤差と歯厚誤差が減少するような砥石中心位置砥石取付角の各補正量をそれぞれ設定し、該各補正量を加味して再度歯車を加工することを特徴とするものである。
【0007】
また、第2の発明の歯車加工方法は、総形砥石を用いた成形研削による歯車加工方法において、加工した歯車における圧力角誤差、歯すじ方向誤差及び歯厚誤差を測定あるいは測定値に基づいて算出する一方、前記圧力角誤差が砥石中心位置誤差、リード誤差及び砥石取付角誤差により受ける影響と、前記歯すじ方向誤差がリード誤差により受ける影響と、前記歯厚誤差が砥石中心位置誤差、リード誤差及び砥石取付角誤差により受ける影響と、を予め解析しておき、該解析結果に基づいて圧力角誤差、歯すじ方向誤差及び歯厚誤差が減少するような砥石中心位置、リード及び砥石取付角の各補正量をそれぞれ設定し、該各補正量を加味して再度歯車を加工することを特徴とするものである。
【0008】
第3の発明の歯車加工方法では、前記リード補正量は、前記歯すじ方向誤差から2分法を用いて算出することを特徴とするものである。
【0009】
第4の発明の歯車加工方法では、前記砥石中心位置補正量前記砥石取付角補正量は、前記圧力角誤差歯厚誤差から滑降シンプレックス法を用いて算出することを特徴とするものである。
【0010】
第5の発明の歯車加工方法では、前記滑降シンプレックス法は、前記圧力角誤差の2乗値と前記歯厚誤差の2乗値の加算値を評価関数とし、この評価関数を用いて最小化することで、前記砥石中心位置補正量前記砥石取付角補正量を設定することを特徴とするものである。
【0011】
また、第6の発明の歯車加工装置は、
総形砥石を用いた成形研削による歯車加工装置において、
回転可能で且つ互いに直交する3方向に移動自在に支持された砥石と、
該砥石の回転及び移動を制御する駆動制御手段と、
前記砥石により研削加工された歯車における圧力角誤差と歯厚誤差(及び歯すじ方向誤差)を測定あるいは測定値に基づいて算出する誤差測定手段と、
前記圧力角誤差が砥石中心位置誤差と砥石取付角誤差により受ける影響と、前記歯厚誤差が砥石中心位置誤差と砥石取付角誤差により受ける影響(及び前記歯すじ方向誤差がリード誤差により受ける影響)と、を予め解析した解析結果に基づいて該圧力角誤差と歯厚誤差(及び歯すじ方向誤差)が減少するような砥石中心位置砥石取付角(及びリード)の各補正量をそれぞれ設定する補正量演算手段と、
該補正量演算手段により算出された前記砥石中心位置砥石取付角(及びリード)の各補正量に基づいて前記砥石中心位置砥石取付角(及びリード)を修正する修正制御手段と、
を具えたことを特徴とするものである。
【0012】
第7の発明の歯車加工装置では、前記誤差測定手段は前記砥石の近傍に設けられ、前記ワークを支持位置で前記各種誤差を測定可能であることを特徴とするものである。
【0013】
第8の発明の歯車加工装置では、前記誤差測定手段は、前記各種誤差を予め測定する外部測定機であることを特徴とするものである。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
【0015】
図1に本発明の一実施形態に係る歯車加工装置の概略、図2に歯車形状測定装置の概略、図3にNC装置の制御ブロック、図4に歯形誤差伝播解析を説明するためのインボリュート歯形及び歯形チャート、図5にNC装置における表示部の概略、図6に本実施形態の歯車加工装置による補正前後の歯形形状を表す歯形チャートを示す。
【0016】
本実施形態の歯車加工装置(歯車研削盤)において、図1に示すように、図示しないベッドに配設された主軸台11は駆動モータにより駆動回転可能な主軸(図示略)を有し、図示しない心押台と共に被加工物Wを支持し、所定速度でC方向に回転可能となっている。一方、この主軸台11に隣接して砥石台12が配設され、X方向、Y方向、Z方向に移動自在に支持されている。この砥石台12には駆動モータ13により駆動回転可能な砥石車14が装着され、この砥石台12はNC装置15により駆動制御され、被加工物Wに対する切り込み量(X方向)と送り量(Z方向)が設定される。また、この砥石台12はA方向に回動自在であり、砥石車14の取付角度が調整可能となっている。
【0017】
また、砥石台12には門型をなす測定ヘッド(誤差測定手段)16が回動自在に装着され、この測定ヘッド16には測定子17が装着されている。この測定子17は、図2に示すように、加工目標値に沿って測定子17及び被加工物としての歯車Wを移動させることで、先端部と歯車Wの表面の接触感覚により歯車Wにおける左右の圧力角誤差ΔfaL ,ΔfaR (歯形誤差)、歯すじ方向誤差ΔL(歯筋誤差)、歯厚(またぎ歯厚)thを測定することができる。この場合、圧力角誤差ΔfaL ,ΔfaR はX−Y座標上での最大100点の点列で表し、歯すじ方向誤差ΔLはZ−Y座標上での最大100点の点列で表す。そして、測定子17の測定結果はNC装置15を介して操作部としてのパソコン18に出力されるようになっている。なお、NC装置15にて、歯厚(またぎ歯厚)thから歯厚誤差Δthが算出される。
【0018】
ところで、本実施形態の歯車加工装置では、パソコン18から入力された加工目標値に基づいてNC装置15が被加工物Wの回転速度、砥石車14による切り込み量(X方向)及び送り量(Z方向)を制御することで、この砥石車14によって被加工物Wを研削加工するが、その加工終了後、測定子17が被加工物(歯車)Wにおける左右の圧力角誤差ΔfaL ,ΔfaR 、歯すじ方向誤差ΔL、歯厚thを測定してNC装置15に出力し、NC装置15は圧力角誤差ΔfaL ,ΔfaR 、歯すじ方向誤差ΔL、歯厚誤差Δthが減少するように砥石中心位置、リード、砥石取付角の各補正量ΔX,ΔY、ΔP、ΔΣをそれぞれ設定し、各補正量に基づいて砥石車14の位置を修正して再度被加工物Wを研削加工するようにしている。
【0019】
ここで、NC装置15による砥石中心位置誤差の補正量ΔX,ΔY、リード誤差の補正量ΔP、砥石取付角誤差の補正量ΔΣの演算方法について説明する。なお、このリード誤差とは、砥石台12の上下運動と主軸台11における被加工物Wの主軸回りの回転運動の同期誤差である。
【0020】
図3に示すように、測定子17は被加工物(歯車)Wにおける左右の圧力角誤差ΔfaL ,ΔfaR 、歯すじ方向誤差ΔL、歯厚thを測定すると、この測定結果をNC装置15の補正量演算部21に出力する。この補正量演算部21は、目標歯厚と測定歯厚thとから歯厚誤差Δthを算出する誤差演算部22と、歯すじ方向誤差ΔLに基づいてリード誤差の補正量ΔPを設定するリード補正部23と、圧力角誤差ΔfaL ,ΔfaR 及び歯厚誤差thに基づいて砥石中心位置誤差の補正量ΔX,ΔYと砥石取付角誤差の補正量ΔΣを設定するX・Y・A補正部24とを有している。
【0021】
この場合、リード補正部23及びX・Y・A補正部24では、砥石中心位置誤差ΔX,ΔY、リード誤差ΔP、砥石取付角誤差ΔΣが圧力角誤差ΔfaL ,ΔfaR 、歯すじ方向誤差ΔL、歯厚誤差Δthに与える互いの影響を予め解析しておき、この解析結果に基づいて圧力角誤差ΔfaL ,ΔfaR 、歯すじ方向誤差ΔL、歯厚誤差Δthが減少するように、砥石中心位置誤差の補正量ΔX,ΔY、リード誤差の補正量ΔP、砥石取付角誤差の補正量ΔΣをそれぞれ設定するようにしている。
【0022】
出願人は、まず、この圧力角誤差ΔfaL ,ΔfaR 、歯すじ方向誤差ΔL、歯厚誤差Δthが砥石中心位置誤差ΔX,ΔY、リード誤差ΔP、砥石取付角誤差ΔΣに対して互いにどのような影響を与えるか成形研削シミュレーションにより調べた。すると、圧力角誤差ΔfaL ,ΔfaR は全ての項目に影響を受けるが、歯すじ方向誤差ΔLはリード誤差ΔPのみに影響を受け、歯厚誤差Δthは砥石中心位置誤差ΔX、リード誤差ΔP、砥石取付角誤差ΔΣに影響を受けていることがわかった。
【0023】
次に、歯形誤差伝播解析において、使用する歯車加工装置の誤差(砥石中心位置誤差ΔX,ΔY、リード誤差ΔP、砥石取付角誤差ΔΣ)が被加工物Wの歯形誤差(圧力角誤差ΔfaL ,ΔfaR 、歯すじ方向誤差ΔL、歯厚誤差Δth)としてどのように伝播されるかを解析した。すると、ヘリカルギヤでは、各誤差量に対する歯形誤差伝播式1〜3を下記のように得ることができた。また、スパーギヤでは、各誤差量に対する歯形誤差伝播式は1、3となった。
【0024】
【数1】

Figure 0003986320
【0025】
【数2】
Figure 0003986320
【0026】
【数3】
Figure 0003986320
【0027】
このような解析結果から、歯すじ方向誤差ΔLを修正するにはリード誤差の補正量ΔPのみを用い、まず始めにこのリード補正量ΔPを測定された歯すじ方向誤差ΔLから2分法を用いて算出する。次に、このリード補正量ΔPを考慮し、圧力角誤差ΔfaL ,ΔfaR 及び歯厚誤差Δthを修正するような砥石中心位置補正量ΔX,ΔYと砥石取付角補正量ΔΣを滑降シンプレックス法を用いて算出する。そして、この滑降シンプレックス法では、左歯面圧力角誤差ΔfaL の2乗値と右歯面圧力角誤差ΔfaR の2乗値と歯厚誤差Δthの2乗値の加算値を評価関数とし、この評価関数を用いて最小化することで、圧力角誤差ΔfaL ,ΔfaR 及び歯厚誤差Δthを同時に修正できる砥石中心位置誤差の補正量ΔX,ΔY及び砥石取付角誤差の補正量ΔΣを設定する。
【0028】
例えば、ヘリカルギヤにおいて、まず、歯すじ方向誤差ΔLを修正するには、リード誤差の補正量ΔPを求める必要がある。歯筋誤差伝播解析にて、歯すじ方向誤差ΔLはZ−Y座標上で表されるものであるため、図2に示すように、歯幅方向における各端部での歯形曲線(一点鎖線で表示)を求め、各歯形曲線がピッチ円付近どれだけ誤差があるかを求めて歯筋チャートが得られ、歯すじ方向誤差ΔLが求められる。ここで、リード誤差ΔPが発生したときにこの歯筋チャートがどのように変化するかを、前述した数式2を用いて求める。
【0029】
歯形誤差伝播解析にて、インボリュート歯形の点列(X0 ,Y0 )は、図4(a)に示すものとなっており、砥石中心位置誤差ΔX=0,ΔY=0であるときは加工目標値通りの歯形チャートとなる。従って、この数式2のΔPに適当な数値を入力していくことで、歯幅方向の各端部にてそれぞれ図4(a)に示すインボリュート歯形の点列(X0 ′,Y0 ′)を求める。この場合、
ΔX=X0 ′−X0
ΔY=Y0 ′−Y0
であり、ΔX,ΔYから歯幅方向の上端と下端での歯すじ方向誤差ΔLT ′,ΔLB ′が求められ、このΔLT ′,ΔLB ′の合計がピッチ円付近での歯すじ方向誤差ΔL′となり、図4(b)に示すような歯形チャートとなる。
【0030】
このようにして求められた歯すじ方向誤差ΔL′から2分法を用いてリード誤差の補正量ΔPを求める。つまり、この歯すじ方向誤差ΔL′と測定された歯すじ方向誤差ΔLとの差が0となれば、実際のリード誤差ΔPが正確に推定されたものであり、実際には、最小となる補正量ΔPを求めることとなる。
【0031】
このようにしてリード誤差の補正量ΔPが設定されると、次に、左右の歯面の圧力角誤差ΔfaL ,ΔfaR 及び歯厚誤差Δthから砥石中心位置補正量ΔX,ΔYと砥石取付角誤差ΔΣを求めるが、この場合、リード誤差の補正量ΔPによる圧力角誤差ΔfaL ,ΔfaR と歯厚誤差Δthの影響を考慮する必要がある。つまり、前述した数式2を用いてリード誤差ΔPからΔX0 ,ΔY0 を求めておく。
【0032】
歯形誤差伝播解析にて、インボリュート歯形の点列(X0 ,Y0 )は、図4(a)に示すものとなっており、砥石中心位置誤差ΔX=0,ΔY=0であるときは加工目標値通りの歯形チャートとなり、圧力角誤差ΔfaL =0,ΔfaR =0である。ここで、砥石中心位置誤差ΔX,ΔYが発生したときにこの歯形チャートがどのように変化するかを、前述した数式1を用いて求める。つまり、この数式1のΔX,ΔYに適当な数値を入力していくことで、図4(a)に示すインボリュート歯形の点列(X0 ′,Y0 ′)を求める。この場合、
0 ′=X0 +ΔX
0 ′=Y0 +ΔY
であるが、X0 ′,Y0 ′にはリード誤差ΔPから数式2にて求めたΔX0 ,ΔY0 を加算する。すると、求めたデータ(X0 ′,Y0 ′)から図4(c)に示すような歯形チャートが得られ、圧力角誤差ΔfaL ′(ΔfaR ′)を求めることができる。
【0033】
また、同様に、前述した数式3を用いて砥石取付角誤差ΔΣに適当な数値を入力していくことで、インボリュート歯形の点列(X0 ′,Y0 ′)を求め、求めたデータ(X0 ′,Y0 ′)から歯形チャートを得て歯厚誤差Δth′を求める。
【0034】
このようにして求められた圧力角誤差ΔfaL ′,ΔfaR ′及び歯厚誤差Δth′から滑降シンプレックス法を用いて砥石中心位置誤差の補正量ΔX,ΔY及び砥石取付角誤差の補正量ΔΣを求める。この場合、評価関数fは、下記式により与えられる。
f=(ΔfaL ′−ΔfaL 2 +(ΔfaR ′−ΔfaR 2
+(Δth′−Δth)2
この数式を用いて推定した補正量ΔX,ΔY,ΔΣに対して、評価関数f=0となれば、実際の砥石中心位置誤差ΔX,ΔY、砥石取付角誤差ΔΣが正確に推定されたものであり、実際には、評価関数fが最小となる補正量ΔX,ΔY,ΔΣを求めることとなる。
【0035】
このような演算はNC装置15内で行われるものであり、図5に示すように、NC装置15の表示部25に被加工物Wの測定データとして左歯形圧力角誤差ΔfaL 、右歯形圧力角誤差ΔfaR 、歯すじ方向誤差ΔL、歯厚誤差Δthが表示され、パソコン18の操作により砥石中心位置誤差(X,Y軸誤差)の補正量ΔX,ΔY、砥石取付角誤差(A軸誤差)の補正量ΔΣ、リード誤差の補正量ΔPがそれぞれ演算されて表示される。従って、NC装置15はこの各補正量ΔX,ΔY、ΔΣ、ΔPに基づいて砥石車14の位置を修正することで、例えば、被加工物Wの歯形形状において、図6に示すように、加工目標値に近似した加工を行うことができる。
【0036】
このように本実施形態の歯車加工装置にあっては、研削加工終了後、測定子17が被加工物(歯車)Wにおける左右の圧力角誤差ΔfaL ,ΔfaR 、歯すじ方向誤差ΔL、歯厚誤差Δthを測定演算し、まず、測定された歯すじ方向誤差ΔLから2分法を用いてリード補正量ΔPを算出し、次に、このリード補正量ΔPを考慮し、測定された圧力角誤差ΔfaL ,ΔfaR 及び歯厚誤差Δthから評価関数fが最小となるよう滑降シンプレックス法を用いて砥石中心位置補正量ΔX,ΔYと砥石取付角補正量ΔΣを算出するようにしている。
【0037】
従って、歯車Wにおける左右の圧力角誤差ΔfaL ,ΔfaR 、歯すじ方向誤差ΔL、歯厚誤差Δthにおける互いの影響度を考慮して砥石中心位置補正量ΔX,ΔY、リード補正量ΔP、砥石取付角補正量ΔΣを求めることとなり、早期に、且つ、高精度な砥石車14の位置修正を行うことができ、作業性を向上することができる。
【0038】
なお、上述の実施形態では、ヘリカルギヤにおいて、圧力角誤差ΔfaL ,ΔfaR 、歯すじ方向誤差ΔL、歯厚誤差Δthから砥石中心位置補正量ΔX,ΔY、リード補正量ΔP、砥石取付角補正量ΔΣを求める手法について説明したが、スパーギヤの場合には、リード補正量ΔPを考慮せずに、圧力角誤差ΔfaL ,ΔfaR 、歯すじ方向誤差ΔL、歯厚誤差Δthから砥石中心位置補正量ΔX,ΔY砥石取付角補正量ΔΣを求めればよい。
【0039】
また、上述の実施形態では、砥石台12の近傍に設けられた測定ヘッド16を誤差測定手段としたが、圧力角誤差、歯すじ方向誤差、歯厚を予め測定する外部測定機としてもよい。
【0040】
【発明の効果】
以上、実施形態において詳細に説明したように第1の発明の歯車加工方法によれば、総形砥石を用いた成形研削による歯車加工方法において、加工した歯車における圧力角誤差と歯厚誤差を測定あるいは測定値に基づいて算出する一方、前記圧力角誤差が砥石中心位置誤差と砥石取付角誤差により受ける影響と、前記歯厚誤差が砥石中心位置誤差と砥石取付角誤差により受ける影響と、を予め解析しておき、解析結果に基づいて圧力角誤差と歯厚誤差が減少するような砥石中心位置砥石取付角の各補正量をそれぞれ設定し、各補正量を加味して再度歯車を加工するので、被加工物における圧力角誤差と歯厚誤差における互いの影響度を考慮して砥石中心位置補正量砥石取付角補正量を求めることとなり、早期に、且つ、高精度な砥石車の位置修正を行うことができ、作業性を向上することができる。
【0041】
また、第2の発明の歯車加工方法によれば、総形砥石を用いた成形研削による歯車加工方法において、加工した歯車における圧力角誤差、歯すじ方向誤差及び歯厚誤差を測定あるいは測定値に基づいて算出する一方、前記圧力角誤差が砥石中心位置誤差、リード誤差及び砥石取付角誤差により受ける影響と、前記歯すじ方向誤差がリード誤差により受ける影響と、前記歯厚誤差が砥石中心位置誤差、リード誤差及び砥石取付角誤差により受ける影響と、を予め解析しておき、解析結果に基づいて圧力角誤差、歯すじ方向誤差及び歯厚誤差が減少するような砥石中心位置、リード及び砥石取付角の各補正量をそれぞれ設定し、各補正量を加味して再度歯車を加工するので、被加工物における圧力角誤差、歯すじ方向誤差及び歯厚誤差における互いの影響度を考慮して砥石中心位置補正量、リード補正量及び砥石取付角補正量を求めることとなり、早期に、且つ、高精度な砥石車の位置修正を行うことができ、作業性を向上することができる。
【0042】
第3の発明の歯車加工方法によれば、リード補正量を歯すじ方向誤差から2分法を用いて算出するので、影響を受けない誤差項目を除外することで、容易にリード補正量を算出することができる。
【0043】
第4の発明の歯車加工方法によれば、前記砥石中心位置補正量前記砥石取付角補正量は、前記圧力角誤差歯厚誤差から滑降シンプレックス法を用いて算出するので、各誤差項目の影響度を十分に考慮して高精度な演算を実行することができる。
【0044】
第5の発明の歯車加工方法によれば、前記滑降シンプレックス法は、前記圧力角誤差の2乗値と前記歯厚誤差の2乗値の加算値を評価関数とし、この評価関数を用いて最小化することで、前記砥石中心位置補正量前記砥石取付角補正量を設定するので、評価関数を用いることで容易に高精度な演算を実行することができる。
【0045】
また、第6の発明の歯車加工装置によれば総形砥石を用いた成形研削による歯車加工装置において、
回転可能で且つ互いに直交する3方向に移動自在に支持された砥石と、
該砥石の回転及び移動を制御する駆動制御手段と、
前記砥石により研削加工された歯車における圧力角誤差と歯厚誤差(及び歯すじ方向誤差)を測定あるいは測定値に基づいて算出する誤差測定手段と、
前記圧力角誤差が砥石中心位置誤差と砥石取付角誤差により受ける影響と、前記歯厚誤差が砥石中心位置誤差と砥石取付角誤差により受ける影響(及び前記歯すじ方向誤差がリード誤差により受ける影響)と、を予め解析した解析結果に基づいて該圧力角誤差と歯厚誤差(及び歯すじ方向誤差)が減少するような砥石中心位置砥石取付角(及びリード)の各補正量をそれぞれ設定する補正量演算手段と、
該補正量演算手段により算出された前記砥石中心位置砥石取付角(及びリード)の各補正量に基づいて前記砥石中心位置砥石取付角(及びリード)を修正する修正制御手段と、
を具えたので、被加工物における圧力角誤差歯厚誤差(及び歯すじ方向誤差)における互いの影響度を考慮して砥石中心位置補正量砥石取付角補正量(及びリード補正量)を求めることとなり、早期に、且つ、高精度な砥石車の位置修正を行うことができ、作業性を向上することができると共に、装置の簡素化を図ることができる。
【0046】
第7の発明の歯車加工装置によれば、誤差測定手段を砥石の近傍に設けてワークを支持位置で前記各種誤差を測定あるいは算出可能としたので、計測精度を向上することができると共に、計測作業を短時間で行うことができ、また、装置の小型化に寄与することができる。
【0047】
第8の発明の歯車加工装置によれば、誤差測定手段を前記各種誤差を予め測定する外部測定機としたので、作業を短時間で行うことができると共に、装置を小型化することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る歯車加工装置の概略図である。
【図2】歯車形状測定装置の概略図である。
【図3】NC装置の制御ブロック図である。
【図4】歯形誤差伝播解析を説明するためのインボリュート歯形及び歯形チャートである。
【図5】NC装置における表示部の概略図である。
【図6】本実施形態の歯車加工装置による補正前後の歯形形状を表す歯形チャートである。
【符号の説明】
11 主軸台
12 砥石台
14 砥石車
15 NC装置
16 測定ヘッド
17 測定子
18 パソコン
21 補正量演算部
22 誤差演算部
23 リード補正部
24 X・Y・A補正部
25 表示部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gear machining method and a gear machining apparatus (gear grinding machine) using a grinding wheel.
[0002]
[Prior art]
The gear grinding machine is supported by a table on a bed so that a headstock and a tailstock can move freely, and a grinding wheel along the vertical and horizontal directions intersecting the moving direction of the headstock and the tailstock on the bed. A whetstone base having a slidable support is movably supported. A grinding wheel that rotates at a predetermined speed by supporting the workpiece by the spindle stock and the tailstock and giving cutting and feeding to the grinding wheel platform in a state in which the workpiece is rotated by the spindle. Thus, gear grinding can be performed on the outer peripheral surface of the workpiece.
[0003]
[Problems to be solved by the invention]
A predetermined tooth profile is formed by grinding the outer peripheral surface of the workpiece with the above-described conventional gear grinding machine. Generally, however, a pressure tooth error or tooth is formed as a gear tooth profile for each processing. The streak direction error is measured, and the position and angle of the grinding wheel, the cutting amount, the feed amount, etc. are corrected so as to eliminate these errors.
[0004]
However, the pressure angle error and the tooth trace direction error of this gear influence each other in relation to the position and angle of the grinding wheel. For example, the synchronous movement of the grinding wheel and the table shaft so as to eliminate the tooth trace direction error. If the position of the grinding wheel is corrected so that the pressure angle error is eliminated, the tooth thickness error may be increased. For this reason, the worker relies on intuition for many years to consider the effect of the correction amount of the grinding wheel position, angle, and synchronous motion on the pressure angle error, tooth direction error, and tooth thickness, and the grinding wheel position, angle, and synchronization. The movement is adjusted and each error is eliminated by several adjustments, and there is a problem that the work is difficult, the work time is long, and the work efficiency is not good.
[0005]
The present invention solves such problems, and an object of the present invention is to provide a gear machining method and apparatus that improve workability in gear grinding work.
[0006]
[Means for Solving the Problems]
Gear cutting method of the first invention for achieving the above object, in the gear cutting method according to profile grinding with form-grinding wheel, processed in the measurement or measurements the difference erroneous pressure angle and tooth thickness error in gear while calculated based, the influence of the pressure angle errors experienced by the grindstone center position error and the grindstone mounting angle error, the tooth thickness error in advance by analyzing the influence received by the grindstone center position error and the grindstone mounting angle error, the previously , the difference erroneous pressure angle on the basis of the analysis result and the tooth thickness error of the correction amount of the grinding wheel center position and the grindstone mounting angle so as to reduce set respectively, to process the re-gear in consideration of the respective correction amount It is characterized by.
[0007]
Further, the gear machining method of the second invention is a gear machining method by forming grinding using a general-purpose grindstone. In the gear machining method, the pressure angle error, the tooth line direction error and the tooth thickness error in the machined gear are measured or based on the measured value. On the other hand, the pressure angle error is affected by the wheel center position error, the lead error, and the wheel mounting angle error, the influence of the tooth streak direction error by the lead error, and the tooth thickness error is the wheel center position error, the lead. Analyzing the error and the influence of the wheel mounting angle error in advance, and based on the analysis result, the wheel center position, the lead and the wheel mounting angle that reduce the pressure angle error, tooth direction error and tooth thickness error Each correction amount is set, and the gear is processed again in consideration of each correction amount.
[0008]
In the third gear cutting method of the invention, the lead correction amount is characterized in that calculated using the bisection method from the tooth trace direction error.
[0009]
In gear machining method of the fourth invention, the grindstone mounting angle correction amount and the grinding wheel center position correction amount is characterized in that calculated using the downhill simplex procedure from the pressure angle error and tooth thickness error .
[0010]
In the gear machining method according to a fifth aspect of the present invention, the downhill simplex method uses the square value of the pressure angle error and the square value of the tooth thickness error as an evaluation function, and minimizes it using this evaluation function. Thus, the grinding wheel center position correction amount and the grinding wheel mounting angle correction amount are set .
[0011]
The gear machining apparatus of the sixth invention is
In gear processing equipment by forming grinding using a general grinding wheel,
A grindstone supported so as to be rotatable and movable in three directions orthogonal to each other;
Drive control means for controlling the rotation and movement of the grindstone;
And error measuring means for calculating, based on the measurement or measurements of the pressure angle erroneous difference and the tooth thickness error (and the tooth trace direction error) in Grinding processed gear by said grinding wheel,
The effect of the pressure angle error due to the wheel center position error and the wheel mounting angle error, and the effect of the tooth thickness error due to the wheel center position error and the wheel mounting angle error (and the effect of the tooth line direction error due to the lead error) setting the respective correction amounts of based on previously analyzed analysis result pressure angle erroneous difference and the tooth thickness error (and the tooth trace direction error) grinding wheel center position and the grindstone mounting angle as to decrease (and lead), respectively Correction amount calculating means to perform,
Correction control means for correcting the grindstone center position and the grindstone mounting angle (and lead) based on the respective correction amounts of the grindstone center position and the grindstone mounting angle (and lead) calculated by the correction amount calculating means;
It is characterized by comprising.
[0012]
In a gear machining apparatus according to a seventh aspect of the present invention, the error measuring means is provided in the vicinity of the grindstone, and the various errors can be measured at a position where the workpiece is supported .
[0013]
In the gear machining apparatus according to an eighth aspect of the invention, the error measuring means is an external measuring machine that measures the various errors in advance .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is an outline of a gear machining apparatus according to an embodiment of the present invention, FIG. 2 is an outline of a gear shape measuring apparatus, FIG. 3 is a control block of an NC apparatus, and FIG. 4 is an involute tooth profile for explaining tooth profile error propagation analysis. FIG. 5 shows an outline of the display unit in the NC device, and FIG. 6 shows a tooth profile chart showing the tooth profile before and after correction by the gear machining device of this embodiment.
[0016]
In the gear machining apparatus (gear grinding machine) of the present embodiment, as shown in FIG. 1, a headstock 11 disposed on a bed (not shown) has a spindle (not shown) that can be driven and rotated by a drive motor. The workpiece W is supported together with the tailstock that does not, and can rotate in the C direction at a predetermined speed. On the other hand, a grindstone platform 12 is disposed adjacent to the headstock 11 and is supported so as to be movable in the X, Y, and Z directions. A grinding wheel 14 that can be driven and rotated by a drive motor 13 is mounted on the grinding wheel base 12. The grinding wheel base 12 is driven and controlled by an NC device 15, and a cutting amount (X direction) and a feeding amount (Z) with respect to the workpiece W are provided. Direction) is set. The grinding wheel base 12 is rotatable in the direction A, and the mounting angle of the grinding wheel 14 can be adjusted.
[0017]
Further, a measuring head (error measuring means) 16 having a gate shape is rotatably attached to the grindstone 12, and a measuring element 17 is attached to the measuring head 16. As shown in FIG. 2, the measuring element 17 moves the measuring element 17 and the gear W as a workpiece along the processing target value, so that the contact of the tip portion and the surface of the gear W makes contact with the gear W. The left and right pressure angle errors Δfa L and Δfa R (tooth profile error), tooth line direction error ΔL (tooth trace error), and tooth thickness (stripe thickness) th can be measured. In this case, the pressure angle errors Δfa L and Δfa R are represented by a point sequence of a maximum of 100 points on the XY coordinate, and the tooth direction error ΔL is represented by a point sequence of a maximum of 100 points on the Z-Y coordinate. Then, the measurement result of the probe 17 is output to the personal computer 18 as the operation unit via the NC device 15. The NC device 15 calculates a tooth thickness error Δth from the tooth thickness (spanning tooth thickness) th.
[0018]
By the way, in the gear machining apparatus according to the present embodiment, the NC device 15 performs the rotation speed of the workpiece W, the cutting amount (X direction) and the feed amount (Z) by the grinding wheel 14 based on the machining target value input from the personal computer 18. by controlling the direction), but grinding the workpiece W by the grinding wheel 14, after the processing end, the measuring element 17 is a workpiece (gear) the pressure angle of the left and right in the W error .delta.fa L, .delta.fa R The tooth trace direction error ΔL and the tooth thickness th are measured and output to the NC device 15, and the NC device 15 grinds so that the pressure angle errors Δfa L and Δfa R , the tooth trace direction error ΔL and the tooth thickness error Δth decrease. The correction amounts ΔX, ΔY, ΔP, and ΔΣ for the center position, the lead, and the grindstone mounting angle are set, respectively, and the position of the grinding wheel 14 is corrected based on the respective correction amounts and the workpiece W is ground again. ing.
[0019]
Here, a calculation method of the correction amount ΔX, ΔY of the grindstone center position error, the correction amount ΔP of the lead error, and the correction amount ΔΣ of the grindstone mounting angle error by the NC device 15 will be described. The lead error is a synchronization error between the vertical movement of the grindstone table 12 and the rotational movement of the worktable W around the spindle of the spindle table 11.
[0020]
As shown in FIG. 3, when the measuring element 17 measures the left and right pressure angle errors Δfa L and Δfa R , the tooth streak direction error ΔL, and the tooth thickness th in the workpiece (gear) W, the measurement result is used as the NC device 15. Is output to the correction amount calculation unit 21. This correction amount calculation unit 21 calculates an error calculation unit 22 that calculates a tooth thickness error Δth from the target tooth thickness and the measured tooth thickness th, and a lead correction that sets a correction amount ΔP of the lead error based on the tooth line direction error ΔL. X, Y, A correction unit 24 for setting the correction amount ΔX, ΔY of the grindstone center position error and the correction amount ΔΣ of the grindstone mounting angle error based on the pressure angle errors Δfa L , Δfa R and the tooth thickness error th. And have.
[0021]
In this case, in the lead correction unit 23 and the X / Y / A correction unit 24, the wheel center position errors ΔX and ΔY, the lead error ΔP, and the wheel mounting angle error ΔΣ are the pressure angle errors Δfa L and Δfa R , and the tooth trace direction error ΔL. , The mutual influence on the tooth thickness error Δth is analyzed in advance, and based on the analysis result, the wheel center is set so that the pressure angle errors Δfa L and Δfa R , the tooth line direction error ΔL, and the tooth thickness error Δth are reduced. A position error correction amount ΔX, ΔY, a lead error correction amount ΔP, and a grinding wheel mounting angle error correction amount ΔΣ are set.
[0022]
The applicant firstly determines how the pressure angle errors ΔfaL and ΔfaR, the tooth line direction error ΔL, and the tooth thickness error Δth affect the wheel center position errors ΔX and ΔY, the lead error ΔP, and the wheel mounting angle error ΔΣ. Was investigated by forming grinding simulation. Then, the pressure angle errors ΔfaL and ΔfaR are affected by all items, but the tooth line direction error ΔL is affected only by the lead error ΔP, the tooth thickness error Δth is the wheel center position error ΔX, the lead error ΔP, and the wheel mounting. It was found that it was affected by the angular error ΔΣ.
[0023]
Next, in the tooth profile error propagation analysis, the errors of the gear machining apparatus to be used (grinding wheel center position errors ΔX, ΔY, lead error ΔP, wheel mounting angle error ΔΣ) are converted into tooth profile errors (pressure angle error Δfa L , It was analyzed how Δfa R , tooth line direction error ΔL, and tooth thickness error Δth) were propagated. Then, in the helical gear, the tooth profile error propagation equations 1 to 3 for the respective error amounts could be obtained as follows. In the spur gear, the tooth profile error propagation equations for the respective error amounts are 1 and 3.
[0024]
[Expression 1]
Figure 0003986320
[0025]
[Expression 2]
Figure 0003986320
[0026]
[Equation 3]
Figure 0003986320
[0027]
From such an analysis result, only the lead error correction amount ΔP is used to correct the tooth trace direction error ΔL, and first, this lead correction amount ΔP is first divided into two from the measured tooth direction error ΔL. To calculate. Next, considering the lead correction amount ΔP, the wheel center position correction amounts ΔX and ΔY and the wheel mounting angle correction amount ΔΣ that correct the pressure angle errors ΔfaL and ΔfaR and the tooth thickness error Δth are calculated using the downhill simplex method. calculate. In this downhill simplex method, the evaluation value is the sum of the square value of the left tooth surface pressure angle error ΔfaL, the square value of the right tooth surface pressure angle error ΔfaR, and the square value of the tooth thickness error Δth. By minimizing using the function, the correction amounts ΔX and ΔY of the grindstone center position error and the correction amount ΔΣ of the grindstone mounting angle error that can simultaneously correct the pressure angle errors ΔfaL and ΔfaR and the tooth thickness error Δth are set.
[0028]
For example, in a helical gear, first, in order to correct the tooth trace direction error ΔL, it is necessary to obtain a lead error correction amount ΔP. In the tooth trace error propagation analysis, the tooth trace direction error ΔL is expressed on the Z-Y coordinate, and therefore, as shown in FIG. 2, the tooth profile curve at each end in the tooth width direction (indicated by a one-dot chain line) Display), how much error each tooth profile curve has in the vicinity of the pitch circle is obtained, a tooth trace chart is obtained, and the tooth trace direction error ΔL is obtained. Here, how the tooth trace chart changes when the read error ΔP occurs is obtained using the above-described formula 2.
[0029]
At tooth profile error propagation analysis, point sequence of involute tooth (X 0, Y 0) is adapted to that shown in FIG. 4 (a), the grinding wheel center position error [Delta] X = 0, when it is [Delta] Y = 0 is processed It becomes a tooth profile chart according to the target value. Therefore, by inputting an appropriate numerical value to ΔP in Equation 2, the involute tooth profile point sequence (X 0 ′, Y 0 ′) shown in FIG. 4A is obtained at each end in the tooth width direction. Ask for. in this case,
ΔX = X 0 ′ −X 0
ΔY = Y 0 ′ −Y 0
The tooth trace direction errors ΔL T ′ and ΔL B ′ at the upper and lower ends in the tooth width direction are obtained from ΔX and ΔY, and the sum of these ΔL T ′ and ΔL B ′ is the direction of the tooth trace in the vicinity of the pitch circle. The error ΔL ′ results in a tooth profile chart as shown in FIG.
[0030]
A correction amount ΔP of the lead error is obtained from the tooth direction error ΔL ′ thus obtained using a bisection method. In other words, if the difference between the tooth trace direction error ΔL ′ and the measured tooth trace direction error ΔL becomes zero, the actual read error ΔP is accurately estimated, and in practice, the minimum correction is performed. The amount ΔP is obtained.
[0031]
When the lead error correction amount ΔP is set in this way, the grinding wheel center position correction amounts ΔX and ΔY and the wheel mounting angle are then calculated from the pressure angle errors Δfa L and Δfa R of the left and right tooth surfaces and the tooth thickness error Δth. The error ΔΣ is obtained. In this case, it is necessary to consider the effects of the pressure angle errors Δfa L and Δfa R and the tooth thickness error Δth due to the lead error correction amount ΔP. That is, ΔX 0 and ΔY 0 are obtained from the read error ΔP using Equation 2 described above.
[0032]
In the tooth profile error propagation analysis, the point sequence (X 0 , Y 0 ) of the involute tooth profile is as shown in FIG. 4 (a). When the grinding wheel center position error ΔX = 0, ΔY = 0, machining is performed. become tooth profile chart of the desired value as the pressure angle error .delta.fa L = 0, a Δfa R = 0. Here, how the tooth profile chart changes when the whetstone center position errors ΔX and ΔY are generated is obtained using the above-described equation (1). That is, by inputting appropriate numerical values to ΔX and ΔY in Equation 1, the involute tooth profile point sequence (X 0 ′, Y 0 ′) shown in FIG. in this case,
X 0 ′ = X 0 + ΔX
Y 0 ′ = Y 0 + ΔY
However, ΔX 0 and ΔY 0 obtained from Formula 2 from the read error ΔP are added to X 0 ′ and Y 0 ′. Then, a tooth profile chart as shown in FIG. 4C is obtained from the obtained data (X 0 ′, Y 0 ′), and the pressure angle error Δfa L ′ (Δfa R ′) can be obtained.
[0033]
Similarly, by inputting an appropriate numerical value to the grindstone mounting angle error ΔΣ using the above-described Equation 3, the involute tooth profile (X 0 ′, Y 0 ′) is obtained, and the obtained data ( Tooth profile error Δth ′ is obtained by obtaining a tooth profile chart from X 0 ′, Y 0 ′).
[0034]
From the pressure angle errors Δfa L ′, Δfa R ′ and the tooth thickness error Δth ′ thus determined, the correction amounts ΔX, ΔY of the grindstone center position error and the correction amount ΔΣ of the grindstone mounting angle error are calculated using the downhill simplex method. Ask. In this case, the evaluation function f is given by the following equation.
f = (Δfa L ′ −Δfa L ) 2 + (Δfa R ′ −Δfa R ) 2
+ (Δth′−Δth) 2
If the evaluation function f = 0 with respect to the correction amounts ΔX, ΔY, ΔΣ estimated using this mathematical formula, the actual wheel center position error ΔX, ΔY and the wheel mounting angle error ΔΣ are accurately estimated. In fact, correction amounts ΔX, ΔY, ΔΣ that minimize the evaluation function f are obtained.
[0035]
Such calculation is performed in the NC device 15, and as shown in FIG. 5, the left tooth profile pressure angle error Δfa L and the right tooth profile pressure are measured on the display unit 25 of the NC device 15 as measurement data of the workpiece W. The angle error Δfa R , the tooth line direction error ΔL, and the tooth thickness error Δth are displayed, and the correction amount ΔX, ΔY of the wheel center position error (X, Y axis error) and the wheel mounting angle error (A axis error) are operated by the personal computer 18. ) And the read error correction amount ΔP are calculated and displayed. Therefore, the NC device 15 corrects the position of the grinding wheel 14 based on the correction amounts ΔX, ΔY, ΔΣ, ΔP, for example, in the tooth profile shape of the workpiece W, as shown in FIG. Processing close to the target value can be performed.
[0036]
As described above, in the gear machining apparatus according to the present embodiment, after the grinding process is finished, the measuring element 17 causes the right and left pressure angle errors ΔfaL and ΔfaR in the workpiece (gear) W, the tooth trace direction error ΔL, and the tooth thickness error. Δth is measured and calculated. First, a lead correction amount ΔP is calculated from the measured tooth line direction error ΔL using a bisection method. Next, the measured pressure angle error ΔfaL is calculated in consideration of the lead correction amount ΔP. , and to calculate the grinding wheel center position correction amount [Delta] X, [Delta] Y and the grindstone mounting angle correction amount ΔΣ using downhill simplex method so that the evaluation function f is minimized from ΔfaR and tooth thickness error .DELTA.th.
[0037]
Accordingly, the wheel center position correction amounts ΔX and ΔY, the lead correction amount ΔP, and the wheel mounting angle in consideration of the mutual influences of the left and right pressure angle errors ΔfaL and ΔfaR, the tooth direction error ΔL, and the tooth thickness error Δth in the gear W. Since the correction amount ΔΣ is obtained, the position of the grinding wheel 14 can be corrected early and with high accuracy, and workability can be improved.
[0038]
In the above-described embodiment, in the helical gear, the wheel center position correction amounts ΔX and ΔY, the lead correction amount ΔP, and the wheel mounting angle correction amount ΔΣ are calculated from the pressure angle errors ΔfaL and ΔfaR, the tooth line direction error ΔL, and the tooth thickness error Δth. In the case of the spur gear, the lead correction amount ΔP is not considered, but the pressure angle errors ΔfaL, ΔfaR, the tooth line direction error ΔL, and the tooth thickness error Δth are used to calculate the wheel center position correction amounts ΔX, ΔY , The grindstone mounting angle correction amount ΔΣ may be obtained.
[0039]
In the above-described embodiment, the measurement head 16 provided in the vicinity of the grindstone table 12 is used as an error measurement unit. However, an external measurement device that measures a pressure angle error, a tooth line direction error, and a tooth thickness in advance may be used.
[0040]
【The invention's effect】
As described above, according to the gear cutting method of the first invention, as described in detail in embodiments, the gear cutting method according to profile grinding with form-grinding wheel, processed difference and tooth thickness error erroneous pressure angle at the gear While measuring or calculating based on the measured value, the influence of the pressure angle error due to the wheel center position error and the wheel mounting angle error, and the influence of the tooth thickness error due to the wheel center position error and the wheel mounting angle error , previously analyzed, the correction amount of the grinding wheel center position and the grindstone mounting angle as erroneous difference and tooth thickness error is reduced pressure angle, based on the analysis results are respectively set, again in consideration of the respective correction amount since processing the gear, it becomes possible to obtain a grinding wheel center position correction amount in consideration of the mutual impact and the grindstone mounting angle correction amount at a pressure angle erroneous difference and the tooth thickness error in the workpiece, early, and precision a grinding wheel Can perform the position fix, it is possible to improve workability.
[0041]
Further, according to the gear machining method of the second invention, in the gear machining method by forming grinding using the general-purpose grindstone, the pressure angle error, the tooth line direction error and the tooth thickness error in the machined gear are measured or measured values. while calculated based, the pressure angle error grindstone center position error, lead error and the influence received by the grindstone mounting angle error, the effect of the tooth trace direction error is subjected by the read error, the tooth thickness error grindstone center position error The effect of the lead error and the wheel mounting angle error is analyzed in advance, and the wheel center position, the lead and the wheel are such that the pressure angle error, the tooth line direction error and the tooth thickness error are reduced based on the analysis result. each correction amount of the mounting angle was set respectively, since the processing again gear in consideration of the respective correction amount, put in pressure angle error, tooth trace direction error and tooth thickness error in the workpiece Grindstone center position correction amount in consideration of the mutual influence, it becomes possible to obtain a lead correction amount and the grindstone mounting angle correction amount, early, and can perform position correction of the high precision grinding wheel, the workability Can be improved.
[0042]
According to the gear machining method of the third aspect of the invention, the lead correction amount is calculated from the tooth direction error using the bisection method, so that the lead correction amount can be easily calculated by excluding the error items that are not affected. can do.
[0043]
According to the gear machining method of the fourth invention, the grinding wheel center position correction amount and the grinding wheel mounting angle correction amount are calculated using the downhill simplex method from the pressure angle error and the tooth thickness error. It is possible to perform highly accurate calculations with sufficient consideration of the degree of influence.
[0044]
According to the gear machining method of the fifth invention, the downhill simplex method uses the sum of the square value of the pressure angle error and the square value of the tooth thickness error as an evaluation function, and uses this evaluation function to minimize Therefore, since the grinding wheel center position correction amount and the grinding wheel mounting angle correction amount are set, highly accurate calculation can be easily executed by using the evaluation function.
[0045]
Further, according to the gear machining apparatus of the sixth aspect of the present invention, in the gear machining apparatus by forming grinding using the overall shape grindstone,
A grindstone supported so as to be rotatable and movable in three directions orthogonal to each other;
Drive control means for controlling the rotation and movement of the grindstone;
And error measuring means for calculating, based on the measurement or measurements of the pressure angle erroneous difference and the tooth thickness error (and the tooth trace direction error) in Grinding processed gear by said grinding wheel,
The effect of the pressure angle error due to the wheel center position error and the wheel mounting angle error, and the effect of the tooth thickness error due to the wheel center position error and the wheel mounting angle error (and the effect of the tooth line direction error due to the lead error) setting the respective correction amounts of based on previously analyzed analysis result pressure angle erroneous difference and the tooth thickness error (and the tooth trace direction error) grinding wheel center position and the grindstone mounting angle as to decrease (and lead), respectively Correction amount calculating means to perform,
And correction control means for correcting the grinding wheel center position and the grindstone mounting angle based on the correction amount of the grinding wheel center position and the grindstone mounting angle is calculated (and read) (and read) by the correction amount calculation means,
Therefore, the wheel center position correction amount and the wheel mounting angle correction amount ( and lead correction amount) are calculated in consideration of the mutual effects of the pressure angle error and tooth thickness error (and tooth trace direction error) on the workpiece. As a result, the position of the grinding wheel can be corrected at an early stage and with high accuracy, workability can be improved, and the apparatus can be simplified.
[0046]
According to the gear machining apparatus of the seventh aspect of the invention, the error measurement means is provided in the vicinity of the grindstone so that the various errors can be measured or calculated at the work support position, so that the measurement accuracy can be improved and the measurement can be performed. Work can be performed in a short time, and it can contribute to size reduction of an apparatus.
[0047]
According to the gear machining apparatus of the eighth invention, since the error measuring means is an external measuring machine that measures the various errors in advance, the operation can be performed in a short time and the apparatus can be miniaturized.
[Brief description of the drawings]
FIG. 1 is a schematic view of a gear machining apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic view of a gear shape measuring apparatus.
FIG. 3 is a control block diagram of the NC device.
FIG. 4 is an involute tooth profile and a tooth profile chart for explaining tooth profile error propagation analysis;
FIG. 5 is a schematic view of a display unit in the NC apparatus.
FIG. 6 is a tooth profile chart showing tooth profile shapes before and after correction by the gear machining apparatus of the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Headstock 12 Grinding wheel base 14 Grinding wheel 15 NC device 16 Measuring head 17 Measuring element 18 Personal computer 21 Correction amount calculation part 22 Error calculation part 23 Lead correction part 24 X, Y, A correction part 25 Display part

Claims (9)

総形砥石を用いた成形研削による歯車加工方法において、加工した歯車における圧力角誤差と歯厚誤差を測定あるいは測定値に基づいて算出する一方、前記圧力角誤差が砥石中心位置誤差と砥石取付角誤差により受ける影響と、前記歯厚誤差が砥石中心位置誤差と砥石取付角誤差により受ける影響と、を予め解析しておき、該解析結果に基づいて圧力角誤差と歯厚誤差が減少するような砥石中心位置砥石取付角の各補正量をそれぞれ設定し、該各補正量を加味して再度歯車を加工することを特徴とする歯車加工方法。 In gear cutting method according to profile grinding with form-grinding wheel, processed while calculating on the basis of the pressure angle erroneous difference and tooth thickness errors in the measurement or measurements in gear, the pressure angle error grindstone center position error and the grindstone mounting and influence received by the angular errors, the tooth thickness error in advance by analyzing the influence received by the grindstone center position error and the grindstone mounting angle error, in advance, erroneous difference and tooth thickness error is reduced pressure angle on the basis of the analysis result gear cutting method characterized by the correction amount of the grinding wheel center position and the grindstone mounting angle as the respectively set, to process the re-gear in consideration of the respective correction amounts. 総形砥石を用いた成形研削による歯車加工方法において、加工した歯車における圧力角誤差、歯すじ方向誤差及び歯厚誤差を測定あるいは測定値に基づいて算出する一方、前記圧力角誤差が砥石中心位置誤差、リード誤差及び砥石取付角誤差により受ける影響と、前記歯すじ方向誤差がリード誤差により受ける影響と、前記歯厚誤差が砥石中心位置誤差、リード誤差及び砥石取付角誤差により受ける影響と、を予め解析しておき、該解析結果に基づいて圧力角誤差、歯すじ方向誤差及び歯厚誤差が減少するような砥石中心位置、リード及び砥石取付角の各補正量をそれぞれ設定し、該各補正量を加味して再度歯車を加工することを特徴とする歯車加工方法。 In gear cutting method according to profile grinding with form-grinding wheel, the pressure angle error at the processed gear, while calculating on the basis of the measurement or measurements of the tooth trace direction error and tooth thickness error, the pressure angle error grindstone center position Error, lead error and grinding wheel mounting angle error, influence of tooth direction error due to lead error, and influence of tooth thickness error due to grinding wheel center position error, lead error and grinding wheel mounting angle error. Analyze in advance, and set each correction amount of the wheel center position, lead and wheel mounting angle so that the pressure angle error, tooth direction error and tooth thickness error are reduced based on the analysis results. A gear machining method, wherein the gear is machined again in consideration of the amount. 請求項2記載の歯車加工方法において、前記リード補正量は、前記歯すじ方向誤差から2分法を用いて算出することを特徴とする歯車加工方法。  3. The gear machining method according to claim 2, wherein the lead correction amount is calculated from the tooth line direction error using a bisection method. 請求項1または2記載の歯車加工方法において、前記砥石中心位置補正量前記砥石取付角補正量は、前記圧力角誤差歯厚誤差から滑降シンプレックス法を用いて算出することを特徴とする歯車加工方法。3. The gear machining method according to claim 1, wherein the grinding wheel center position correction amount and the grinding wheel mounting angle correction amount are calculated by using a downhill simplex method from the pressure angle error and the tooth thickness error. Processing method. 請求項4記載の歯車加工方法において、前記滑降シンプレックス法は、前記圧力角誤差の2乗値と前記歯厚誤差の2乗値の加算値を評価関数とし、この評価関数を用いて最小化することで、前記砥石中心位置補正量前記砥石取付角補正量を設定することを特徴とする歯車加工方法。5. The gear machining method according to claim 4, wherein the downhill simplex method uses an addition value of the square value of the pressure angle error and the square value of the tooth thickness error as an evaluation function, and minimizes the evaluation function. Thus, the gear processing method is characterized in that the grinding wheel center position correction amount and the grinding wheel mounting angle correction amount are set. 総形砥石を用いた成形研削による歯車加工装置において、
回転可能で且つ互いに直交する3方向に移動自在に支持された砥石と、
該砥石の回転及び移動を制御する駆動制御手段と、
前記砥石により研削加工された歯車における圧力角誤差と歯厚誤差を測定あるいは測定値に基づいて算出する誤差測定手段と、
前記圧力角誤差が砥石中心位置誤差と砥石取付角誤差により受ける影響と、前記歯厚誤差が砥石中心位置誤差と砥石取付角誤差により受ける影響と、を予め解析した解析結果に基づいて該圧力角誤差と歯厚誤差が減少するような砥石中心位置砥石取付角の各補正量をそれぞれ設定する補正量演算手段と、
該補正量演算手段により算出された前記砥石中心位置砥石取付角の各補正量に基づいて前記砥石中心位置砥石取付角を修正する修正制御手段と、
を具えたことを特徴とする歯車加工装置。
In gear processing equipment by forming grinding using a general grinding wheel,
A grindstone supported so as to be rotatable and movable in three directions orthogonal to each other;
Drive control means for controlling the rotation and movement of the grindstone;
And error measuring means for calculating on the basis of the pressure angle erroneous difference and tooth thickness errors in the measurement or measurements at ground machined gear by said grinding wheel,
Based on the analysis results obtained by analyzing in advance the influence of the pressure angle error due to the wheel center position error and the wheel mounting angle error and the influence of the tooth thickness error due to the wheel center position error and the wheel mounting angle error. a correction amount calculation means for setting the correction amount of the grinding wheel center position and the grindstone mounting angle as erroneous difference and tooth thickness error is reduced, respectively,
And correction control means for correcting the grinding wheel center position and the grindstone mounting angle based on the correction amount of the grinding wheel center position and the grindstone mounting angle calculated by the correction amount calculation means,
A gear machining apparatus characterized by comprising:
総形砥石を用いた成形研削による歯車加工装置において、
回転可能で且つ互いに直交する3方向に移動自在に支持された砥石と、
該砥石の回転及び移動を制御する駆動制御手段と、
前記砥石により研削加工された歯車における圧力角誤差、歯すじ方向誤差及び歯厚誤差を測定あるいは測定値に基づいて算出する誤差測定手段と、
前記圧力角誤差が砥石中心位置誤差、リード誤差及び砥石取付角誤差により受ける影響と、前記歯すじ方向誤差がリード誤差により受ける影響と、前記歯厚誤差が砥石中心位置 誤差、リード誤差及び砥石取付角誤差により受ける影響と、を予め解析した解析結果に基づいて該圧力角誤差、歯すじ方向誤差及び歯厚誤差が減少するような砥石中心位置、リード及び砥石取付角の各補正量をそれぞれ設定する補正量演算手段と、
該補正量演算手段により算出された前記砥石中心位置、リード及び砥石取付角の各補正量に基づいて前記砥石中心位置、リード及び砥石取付角を修正する修正制御手段と、
を具えたことを特徴とする歯車加工装置。
In gear processing equipment by forming grinding using a general grinding wheel,
A grindstone supported so as to be rotatable and movable in three directions orthogonal to each other;
Drive control means for controlling the rotation and movement of the grindstone;
Error measurement means for measuring a pressure angle error, a tooth line direction error and a tooth thickness error in a gear ground by the grinding wheel or calculating based on a measurement value ;
The effect of the pressure angle error due to the wheel center position error, the lead error and the wheel mounting angle error, the effect of the tooth direction error due to the lead error, and the tooth thickness error as the wheel center position error, the lead error and the wheel mounting error. Based on the analysis results obtained by analyzing in advance the effects of angle errors, the correction values for the wheel center position, lead and wheel mounting angle are set to reduce the pressure angle error, tooth direction error and tooth thickness error. Correction amount calculating means to perform,
Correction control means for correcting the grindstone center position, the lead and the grindstone mounting angle based on the correction amounts of the grindstone center position, the lead and the grindstone mounting angle calculated by the correction amount calculating means;
A gear machining apparatus characterized by comprising:
請求項6又は7記載の歯車加工装置において、前記誤差測定手段は前記砥石の近傍に設けられ、前記ワークを支持位置で前記各種誤差を測定可能であることを特徴とする歯車加工装置。8. The gear machining apparatus according to claim 6, wherein the error measuring means is provided in the vicinity of the grindstone, and the various errors can be measured at a position where the workpiece is supported. 請求項6又は7記載の歯車加工装置において、前記誤差測定手段は、前記各種誤差を予め測定する外部測定機であることを特徴とする歯車加工装置。8. The gear machining apparatus according to claim 6, wherein the error measuring means is an external measuring machine that measures the various errors in advance.
JP2002041135A 2002-02-19 2002-02-19 Gear machining method and apparatus Expired - Lifetime JP3986320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041135A JP3986320B2 (en) 2002-02-19 2002-02-19 Gear machining method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002041135A JP3986320B2 (en) 2002-02-19 2002-02-19 Gear machining method and apparatus

Publications (2)

Publication Number Publication Date
JP2003236720A JP2003236720A (en) 2003-08-26
JP3986320B2 true JP3986320B2 (en) 2007-10-03

Family

ID=27781637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041135A Expired - Lifetime JP3986320B2 (en) 2002-02-19 2002-02-19 Gear machining method and apparatus

Country Status (1)

Country Link
JP (1) JP3986320B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024626A1 (en) 2009-08-24 2011-03-03 三菱重工業株式会社 Internal gear machining method and internal gear machining device
US11003168B2 (en) 2018-10-02 2021-05-11 Fanuc Corporation Controller for gear cutting machine
US11022958B2 (en) 2018-10-02 2021-06-01 Fanuc Corporation Disturbance component identification method and disturbance component identification device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4202306B2 (en) * 2004-07-29 2008-12-24 三菱重工業株式会社 Gear grinding machine
DE102009008120A1 (en) * 2009-02-09 2010-08-12 Deckel Maho Pfronten Gmbh Machine tool and method for machining a workpiece
JP5308404B2 (en) 2010-06-16 2013-10-09 三菱重工業株式会社 Gear grinding method
JP5430760B2 (en) * 2010-06-18 2014-03-05 株式会社牧野フライス製作所 Gear grinding method and processing apparatus
CN103264198B (en) * 2013-05-07 2015-08-05 西安交通大学 A kind of face gear grinding method
JP6348049B2 (en) * 2014-10-28 2018-06-27 トーヨーエイテック株式会社 Gear grinding machine machining accuracy correction method
JP6440452B2 (en) * 2014-10-28 2018-12-19 トーヨーエイテック株式会社 Gear grinding machine machining accuracy correction method
CN105252083B (en) * 2015-11-06 2017-08-29 中车戚墅堰机车车辆工艺研究所有限公司 A kind of carburizing and quenching long tooth wide gear is ground casting skin removing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024626A1 (en) 2009-08-24 2011-03-03 三菱重工業株式会社 Internal gear machining method and internal gear machining device
CN102481648A (en) * 2009-08-24 2012-05-30 三菱重工业株式会社 Internal gear machining method and internal gear machining device
CN102481648B (en) * 2009-08-24 2015-01-21 三菱重工业株式会社 Internal gear machining method and internal gear machining device
US9969018B2 (en) 2009-08-24 2018-05-15 Mitsubishi Heavy Industries Machine Tool Co., Ltd. Internal gear machining method and internal gear machining device
US11003168B2 (en) 2018-10-02 2021-05-11 Fanuc Corporation Controller for gear cutting machine
US11022958B2 (en) 2018-10-02 2021-06-01 Fanuc Corporation Disturbance component identification method and disturbance component identification device

Also Published As

Publication number Publication date
JP2003236720A (en) 2003-08-26

Similar Documents

Publication Publication Date Title
JP5511263B2 (en) Internal gear machining method and internal gear machining machine
JP4829359B2 (en) Calculation method of probe mounting position of on-machine measuring device
JP4618837B2 (en) Grinding worm processing method and processing apparatus
TWI474891B (en) Calibration method of gear measuring device
JP3986320B2 (en) Gear machining method and apparatus
WO2010055766A1 (en) Method of measuring gear
JP6942577B2 (en) Numerical control device and numerical control method for machine tools
US9168602B2 (en) Gear grinding machine and gear grinding method
JPH0698568B2 (en) Method for grinding two or more cams on a camshaft
JP2014215079A (en) Geometric deviation measurement method, and geometric deviation measurement device
JP6892070B2 (en) How to adjust control parameters of machine tool control device, how to machine work and machine tool
TWI329246B (en) Measuring method and system for cnc machine
JP3634146B2 (en) Grinding wheel shaping error correction method, grinding wheel shaping / straight groove forming grinding error correction method, and error correction devices thereof
JPH05111851A (en) Gear measuring method and gear grinder commonly used for gear measurement
JP5854661B2 (en) Calibration method of probe for shape measurement
JPH05329771A (en) Rotary grinding wheel wear correcting device
CN108628254A (en) Power causes error lower rolling tooth to process tooth surface parameters acquisition methods
JP4322087B2 (en) Work surface measurement method, program and medium
JPH11347930A (en) Correcting method for twisted groove forming and grinding process and twisted groove forming and grinding device
JP6450895B1 (en) Screw rotor machining method and screw rotor lead correction calculation device
JP2021148559A (en) Measurement system and eccentricity correction method
JPS61131821A (en) Methods of setting angle correction for shaving cutter and adjustment of infeed depth in addition gear measuring machine used therefor
JP2019155557A (en) Method for estimation of drive shaft deviation in machine tool and machine tool with use thereof
TW201914740A (en) Geometric precision error measuring device and measuring method for rotary table capable of obtaining the data through performing a combined calculation
JP3072693B2 (en) Gear shape measurement method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Ref document number: 3986320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term