JP2008175694A - Evaluation device of gear pair, evaluation program, and evaluation method of gear pair using this - Google Patents

Evaluation device of gear pair, evaluation program, and evaluation method of gear pair using this Download PDF

Info

Publication number
JP2008175694A
JP2008175694A JP2007009481A JP2007009481A JP2008175694A JP 2008175694 A JP2008175694 A JP 2008175694A JP 2007009481 A JP2007009481 A JP 2007009481A JP 2007009481 A JP2007009481 A JP 2007009481A JP 2008175694 A JP2008175694 A JP 2008175694A
Authority
JP
Japan
Prior art keywords
tooth
load
pair
meshing
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007009481A
Other languages
Japanese (ja)
Inventor
Yoshikazu Miyoshi
慶和 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2007009481A priority Critical patent/JP2008175694A/en
Publication of JP2008175694A publication Critical patent/JP2008175694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation device of a gear pair capable of calculating the distribution of a load or stress acting on the gear pair in detail over the whole tooth surface. <P>SOLUTION: An arithmetic section 6 calculates a unit distribution load P<SB>n</SB>(I, j) as a distribution load on a contact line C-C' at each mesh progression position I when a unit load is charged on mutually meshing tooth pair of the gear pair 100 and mesh rigidity value K<SB>0</SB>(I) based on each involute tooth surface shape of the tooth pair, calculates shared load f(I) at each mesh progression position I of the tooth pair when a predetermined load P<SB>s</SB>is charged on the gear pair 100 based on relative tooth surface error S(I, j) of the tooth pair and the mesh rigidity value K<SB>0</SB>(I), and calculates the real distributed load P(I, j) as the distribution load on the contact line C-C' at each mesh progression position I of the tooth pair when the predetermined load P<SB>s</SB>is charged on the gear pair 100 based on the unit distribution load P<SB>n</SB>(I, j) and the shared load f(I). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、スパーギヤやヘリカルギヤ等からなる歯車対の評価装置、評価プログラム、及びこれを用いた歯車対の評価方法に関する。   The present invention relates to a gear pair evaluation apparatus, an evaluation program, and a gear pair evaluation method using the spear gear, helical gear, and the like.

一般に、歯車対の評価としては、例えば、所定の負荷状態(例えば、歯車対を使用する際に想定される最大負荷状態)で歯車対を噛合させた場合の耐久性評価等が行われる。この種の評価では、一般に、ISO規格やJIS規格に準拠した計算式(例えば、非特許文献1参照)等を用いたシミュレーションにより、所定負荷状態におけるピッチ円上の接線力が算出され、この接線力に基づいてピッチ点での応力(歯面接線応力)が算出される。そして、算出したピッチ点での応力に対し、例えば、オペレータの経験等に基づいて設定されたマージンが与えられ、このマージンを考慮した応力値が、歯車対の耐久性上、許容できる値であるか否かが判定される。   In general, as the evaluation of the gear pair, for example, durability evaluation when the gear pair is engaged in a predetermined load state (for example, a maximum load state assumed when the gear pair is used) is performed. In this type of evaluation, generally, a tangential force on a pitch circle in a predetermined load state is calculated by a simulation using a calculation formula (for example, see Non-Patent Document 1) based on the ISO standard or JIS standard. Based on the force, a stress at the pitch point (tooth surface tangential stress) is calculated. Then, a margin set based on, for example, the experience of the operator is given to the stress at the calculated pitch point, and the stress value in consideration of this margin is an allowable value for the durability of the gear pair. It is determined whether or not.

ところで、この種の歯車対において、歯面接触応力が最大となる歯面上の地点は、必ずしもピッチ点であるとは限らず、むしろ、歯対の噛み合い始めや終わりの領域に存在することが多い。これは、一般に、歯対の噛み合い始めや終わりでは、噛み合い接触線の長さが短いため、分布荷重が大きく、しかも、歯面の曲率半径が小さいことに大きく起因する。
「JGMA STANDARD 日本歯車工業会規格 −ISO規格に準拠− 平歯車およびはすば歯車の歯面強さ計算式」 平成元年3月8日制定 財団法人日本歯車工業会
By the way, in this type of gear pair, the point on the tooth surface where the tooth surface contact stress is maximum is not necessarily the pitch point, but rather may exist in the region where the tooth pair starts to mesh or ends. Many. This is largely due to the fact that the length of the meshing contact line is short at the beginning and end of meshing of the tooth pair, so the distributed load is large and the radius of curvature of the tooth surface is small.
"JGMA STANDARD Japan Gear Industry Association Standard-Conforms to ISO Standard-Spur Gear and Helical Gear Tooth Surface Strength Calculation Formula" Established March 8, 1989 Japan Gear Industry Association

しかしながら、歯車対に作用する応力等の演算方法については、上述のようにピッチ点における応力等の演算方法しか知られておらず、歯車対に作用する荷重や応力等についての分布を歯面全体に亘って詳細に演算することが困難であった。   However, as for the calculation method of stress and the like acting on the gear pair, only the calculation method of stress and the like at the pitch point is known as described above, and the distribution of the load and stress acting on the gear pair is distributed over the entire tooth surface. It has been difficult to calculate in detail over a long period of time.

本発明は上記事情に鑑みてなされたもので、歯車対に作用する荷重や応力の分布を歯面全体に亘って詳細に演算することができる歯車対の評価装置、評価プログラム、及びこれを用いた歯車対の評価方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an evaluation device, an evaluation program, and an evaluation program for a gear pair capable of calculating in detail the load and stress distribution acting on the gear pair over the entire tooth surface. An object of the present invention is to provide a method for evaluating a pair of gears.

本発明の歯車対の評価装置は、歯車対の互いに噛み合う歯対の歯面間の相対的な誤差である相対歯面誤差の分布情報を演算する相対歯面誤差演算手段と、前記歯対に単位荷重を付与したときの当該歯対の各噛合進行位置における接触線上の分布荷重である単位分布荷重を前記歯対の各インボリュート歯面形状に基づいて演算する単位分布荷重演算手段と、前記歯対の前記各噛合進行位置における噛合剛性値を前記歯対の各インボリュート歯面形状に基づいて演算する噛合剛性値演算手段と、前記歯車対に所定荷重を付与したときの前記歯対の各噛合進行位置における分担荷重を前記相対歯面誤差と前記噛合剛性値とに基づいて演算する分担荷重演算手段と、前記歯車対に所定荷重を付与したときの前記歯対の各噛合進行位置における接触線上の分布荷重である実分布荷重を前記単位分布荷重と前記分担荷重とに基づいて演算する実分布荷重演算手段と、を備えたことを特徴とする。   The gear pair evaluation device according to the present invention includes a relative tooth surface error calculating means for calculating relative tooth surface error distribution information, which is a relative error between the tooth surfaces of the tooth pairs engaged with each other, and the tooth pairs. Unit distributed load calculating means for calculating a unit distributed load which is a distributed load on the contact line at each meshing advance position of the tooth pair when a unit load is applied based on each involute tooth surface shape of the tooth pair; and the tooth A mesh stiffness value calculating means for calculating a mesh stiffness value at each mesh advance position of the pair based on each involute tooth surface shape of the tooth pair; and each mesh of the tooth pair when a predetermined load is applied to the gear pair. On the contact line at each meshing advance position of the tooth pair when a predetermined load is applied to the gear pair, and a share load calculating means for calculating the shared load at the advance position based on the relative tooth surface error and the meshing rigidity value And the actual load distribution calculation means for calculating on the basis of distribution is load actual load distribution in said unit distributed load and the shared load, characterized by comprising a.

本発明の歯車対の評価プログラムは、歯車対の互いに噛み合う歯対の歯面間の相対的な誤差である相対歯面誤差の分布情報を演算する相対歯面誤差演算ステップと、前記歯対に単位荷重を付与したときの当該歯対の各噛合進行位置における接触線上の分布荷重である単位分布荷重を前記歯対の各インボリュート歯面形状に基づいて演算する単位分布荷重演算ステップと、前記歯対の前記各噛合進行位置における噛合剛性値を前記歯対の各インボリュート歯面形状に基づいて演算する噛合剛性値演算ステップと、前記歯車対に所定荷重を付与したときの前記歯対の各噛合進行位置における分担荷重を前記相対歯面誤差と前記噛合剛性値とに基づいて演算する分担荷重演算ステップと、前記歯車対に所定荷重を付与したときの前記歯対の各噛合進行位置における接触線上の分布荷重である実分布荷重を前記単位分布荷重と前記分担荷重とに基づいて演算する実分布荷重演算ステップと、を備えたことを特徴とする。   The gear pair evaluation program according to the present invention includes a relative tooth surface error calculating step for calculating distribution information of a relative tooth surface error, which is a relative error between tooth surfaces of the tooth pairs engaged with each other, and the tooth pairs. A unit distributed load calculating step for calculating a unit distributed load which is a distributed load on the contact line at each meshing advance position of the tooth pair when a unit load is applied based on each involute tooth surface shape of the tooth pair; and A mesh stiffness value calculating step for calculating a mesh stiffness value at each mesh advance position of the pair based on each involute tooth surface shape of the tooth pair; and each mesh of the tooth pair when a predetermined load is applied to the gear pair. A shared load calculating step of calculating a shared load at the advancing position based on the relative tooth surface error and the meshing rigidity value; and each meshing advance of the tooth pair when a predetermined load is applied to the gear pair And the actual distribution load calculating step of calculating, based the actual distributed load is distributed load of the contact line at a position in said shared load with the unit distributed load, characterized by comprising a.

本発明の歯車対の評価方法は、歯車対の互いに噛み合う歯対の歯面間の相対的な誤差である相対歯面誤差の分布情報を演算する相対歯面誤差演算工程と、前記歯対に単位荷重を付与したときの当該歯対の各噛合進行位置における接触線上の分布荷重である単位分布荷重を前記歯対の各インボリュート歯面形状に基づいて演算する単位分布荷重演算工程と、前記歯対の前記各噛合進行位置における噛合剛性値を前記歯対の各インボリュート歯面形状に基づいて演算する噛合剛性値演算工程と、前記歯車対に所定荷重を付与したときの前記歯対の各噛合進行位置における分担荷重を前記相対歯面誤差と前記噛合剛性値とに基づいて演算する分担荷重演算工程と、前記歯車対に所定荷重を付与したときの前記歯対の各噛合進行位置における接触線上の分布荷重である実分布荷重を前記単位分布荷重と前記分担荷重とに基づいて演算する実分布荷重演算工程と、を備えたことを特徴とする。   The gear pair evaluation method according to the present invention includes a relative tooth surface error calculating step for calculating a distribution information of a relative tooth surface error, which is a relative error between tooth surfaces of the tooth pairs engaged with each other, and the tooth pair. A unit distributed load calculating step of calculating a unit distributed load that is a distributed load on the contact line at each meshing advance position of the tooth pair when a unit load is applied based on each involute tooth surface shape of the tooth pair; and A mesh stiffness value calculating step for calculating a mesh stiffness value at each mesh advance position of the pair based on each involute tooth surface shape of the tooth pair, and each mesh of the tooth pair when a predetermined load is applied to the gear pair. On the contact line at each meshing advance position of the tooth pair when a predetermined load is applied to the gear pair, and a shared load calculating step for calculating the shared load at the advance position based on the relative tooth surface error and the meshing rigidity value And the actual distribution load calculating step of calculating, based the actual distributed load is distributed load and the unit distributed load and the shared load, characterized by comprising a.

本発明によれば、歯車対に作用する荷重や応力の分布を歯面全体に亘って詳細に演算することができる。   According to the present invention, the load and stress distribution acting on the gear pair can be calculated in detail over the entire tooth surface.

以下、図面を参照して本発明の形態を説明する。図面は本発明の一形態に係わり、図1は歯車対の評価装置の概略構成図、図2は歯車対の評価装置を実現するためのコンピュータの一例を示す概略図、図3は応力分布演算ルーチンを示すフローチャート、図4ははすば歯車対の作用平面を示す説明図、図5は歯面上に設定された修正量入力点を示す説明図、図6は歯先修正量及び歯元修正量の説明図、図7(a)はクラウニング修正量の説明図であり(b)は歯筋タオレ修正量の説明図、図8はバイアス修正量の説明図、図9(a)は等高線表示された相対歯面誤差分布の一例を示す説明図であり(b)は等高線表示された応力分布の一例を示す説明図、図10は各噛み合い瞬間における各歯対の噛み合い剛性値の推移を示す説明図、図11は接触線上での相対歯面誤差と等価歯形誤差を示す説明図、図12ははすば歯車対の解析モデルを示す説明図、図13は接触線に対する垂直方向の応力分布を示す説明図、図14は各噛み合い瞬間における各歯対の応力分布を示す説明図、図15は歯面応力最大値の推移を示す説明図である。なお、本発明は、歯車対のドライブ側の噛み合い、及びコースト側の噛み合いの何れにも適用が可能であるが、本実施形態においては、以下、ドライブ側の噛み合いを例に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a gear pair evaluation device, FIG. 2 is a schematic diagram showing an example of a computer for realizing the gear pair evaluation device, and FIG. 3 is a stress distribution calculation. FIG. 4 is an explanatory diagram showing a working plane of a helical gear pair, FIG. 5 is an explanatory diagram showing correction amount input points set on the tooth surface, and FIG. 6 is a tooth tip correction amount and tooth base. 7A is an explanatory diagram of the crowning correction amount, FIG. 7B is an explanatory diagram of the tooth trace correction amount, FIG. 8 is an explanatory diagram of the bias correction amount, and FIG. 9A is a contour line. FIG. 10 is an explanatory diagram showing an example of the displayed relative tooth surface error distribution; FIG. 10B is an explanatory diagram showing an example of the stress distribution displayed by contour lines; and FIG. 10 shows the transition of the meshing rigidity value of each tooth pair at each meshing moment. Fig. 11 shows relative tooth surface error and equivalent tooth profile error on the contact line. FIG. 12 is an explanatory diagram showing an analysis model of a helical gear pair, FIG. 13 is an explanatory diagram showing a stress distribution in a direction perpendicular to the contact line, and FIG. 14 is a stress distribution of each tooth pair at each meshing moment. FIG. 15 is an explanatory diagram showing the transition of the maximum tooth surface stress. Note that the present invention can be applied to both the engagement on the drive side and the engagement on the coast side of the gear pair, but in the present embodiment, the engagement on the drive side will be described below as an example.

図1に示す歯車対の評価装置1は、例えば、互いに噛み合う駆動歯車101と被動歯車102がそれぞれはすば歯車(ヘリカルギヤ)で構成される歯車対100(はすば歯車対:図4,13参照)の評価を行う。具体的には、評価装置1は、例えば、駆動歯車101と被動歯車102とを所定荷重を付与ながら噛み合わせたときの各噛み合い瞬間に歯対の接触線上に実際に作用する分布荷重(実分布荷重)を演算するとともに、演算した実分布荷重に基づいて応力分布を演算し、これらに基づいて歯車対100の耐久性評価等を行う。   The gear pair evaluation apparatus 1 shown in FIG. 1 includes, for example, a gear pair 100 (helical gear pair: FIGS. 4 and 13) in which the driving gear 101 and the driven gear 102 that mesh with each other are each a helical gear. Evaluation). Specifically, the evaluation device 1 is, for example, a distributed load (actual distribution) that actually acts on the contact line of the tooth pair at the moment of meshing when the driving gear 101 and the driven gear 102 are meshed while applying a predetermined load. Load), a stress distribution is calculated based on the calculated actual distribution load, and durability evaluation of the gear pair 100 is performed based on these.

ここで、本評価装置1で評価対象となるはすば歯車対100において、駆動歯車101及び被動歯車102の各歯面は、例えば、基本諸元に基づいて規定されるマクロ形状の各歯面(基準歯面としてのインボリュート歯面)に対し、各種歯面修正量(設定歯面修正量)に基づく三次元的な歯面修正がそれぞれ施されることにより形成されている。   Here, in the helical gear pair 100 to be evaluated by the evaluation apparatus 1, the tooth surfaces of the driving gear 101 and the driven gear 102 are, for example, macro-shaped tooth surfaces defined based on basic specifications. It is formed by performing three-dimensional tooth surface correction based on various tooth surface correction amounts (set tooth surface correction amounts) on (involute tooth surfaces as reference tooth surfaces).

なお、歯車対100の基本諸元としては、例えば、各歯車101,102の歯数z、歯直角モジュールmn、歯丈係数Ks、圧力角αn、歯幅b、及び、ねじれ角β等が設定される。また、設定歯面修正量としては、各歯面に対して、例えば、歯先修正量Tm、歯元修正量Rm、クラウニング修正量Cm、歯筋タオレ量Lm、及び、左右バイアス修正量Blm,Brm等(図6乃至図8参照)等が設定される。なお、以下の説明において、駆動歯車101の歯面に設定される歯面修正量等に対して必要に応じて添字’Dv’を付し、被動歯車102の歯面に設定される歯面修正量等に対して必要に応じて添字’Dn’を付す。 The basic specifications of the gear pair 100 include, for example, the number of teeth z of each gear 101, 102, the tooth right angle module m n , the tooth height coefficient K s , the pressure angle α n , the tooth width b, and the torsion angle β. 0 etc. are set. As the set tooth surface correction amount, for each tooth surface, for example, the tip correction amount T m , the tooth root correction amount R m , the crowning correction amount C m , the tooth trace Taole amount L m , and the left and right bias Correction amounts Bl m , Br m and the like (see FIGS. 6 to 8) are set. In the following description, the suffix “ Dv ” is attached to the tooth surface correction amount set on the tooth surface of the drive gear 101 as necessary, and the tooth surface correction set on the tooth surface of the driven gear 102 is added. Subscript ' Dn ' is added to the quantity etc. as necessary.

評価装置1は、歯車対100等についての各種情報を入力する入力部5と、入力部5からの入力情報に基づいて歯車対100の評価(実分布荷重及び応力分布の演算等)を行う演算部6と、演算部6で実行される応力分布演算ルーチン等のプログラムを格納するとともに入力部5からの入力情報や演算部6での演算結果等を適宜記憶する記憶部7と、演算部6での演算結果等を出力する出力部8とを有して構成されている。   The evaluation apparatus 1 is an input unit 5 for inputting various information about the gear pair 100 and the like, and an operation for evaluating the gear pair 100 (calculation of actual distribution load and stress distribution, etc.) based on the input information from the input unit 5 A storage unit 7 for storing a program such as a stress distribution calculation routine executed by the calculation unit 6 and the information input from the input unit 5 and a calculation result by the calculation unit 6 as appropriate; and a calculation unit 6 And an output unit 8 for outputting a calculation result or the like.

なお、評価装置1は、例えば図2に示すコンピュータシステム10で実現される。このコンピュータシステム10は、例えば、コンピュータ本体11に、キーボード12と、表示手段としてのディスプレイ装置13と、プリンタ14とを有し、これらが接続ケーブル15を介して接続されて要部が構成されている。そして、このコンピュータシステム10において、例えば、コンピュータ本体11に配設された各種ドライブ装置やCPU,ROM、RAM等が演算部6として機能する。また、コンピュータ本体11に内臓されたハードディスク等が記憶部7として機能するとともに、ディスプレイ装置13やプリンタ14等が出力部8として機能する。   The evaluation apparatus 1 is realized by a computer system 10 shown in FIG. 2, for example. The computer system 10 has, for example, a computer main body 11, a keyboard 12, a display device 13 as a display means, and a printer 14, which are connected via a connection cable 15 to constitute a main part. Yes. In the computer system 10, for example, various drive devices, CPU, ROM, RAM, and the like arranged in the computer main body 11 function as the calculation unit 6. A hard disk or the like built in the computer main body 11 functions as the storage unit 7, and the display device 13, the printer 14, and the like function as the output unit 8.

ここで、評価装置1には、歯車対100の基本諸元及び設定歯面修正量の他、歯車対100を使用する際に想定される最大トルク(すなわち、歯車対100に作用することが想定される最大荷重)等の情報が入力部5を通じて入力される。そして、演算部6は、例えば、記憶部7に記憶された応力分布演算ルーチンのプログラムを実行し、上記各入力情報に基づく演算を行うことにより、相対歯面誤差演算手段、単位分布荷重演算手段、噛合剛性値演算手段、分担荷重演算手段、実分布荷重演算手段、及び、応力分布演算手段としての各機能を実現する。   Here, in addition to the basic specifications of the gear pair 100 and the set tooth surface correction amount, the evaluation device 1 assumes the maximum torque assumed when using the gear pair 100 (that is, acting on the gear pair 100). Information such as the maximum load) is input through the input unit 5. And the calculating part 6 performs the program of the stress distribution calculating routine memorize | stored in the memory | storage part 7, for example, and performs a calculation based on said each input information, A relative tooth surface error calculating means, a unit distribution load calculating means The functions as the meshing rigidity value calculating means, the shared load calculating means, the actual distributed load calculating means, and the stress distribution calculating means are realized.

すなわち、演算部6は、例えば、歯車対100の互いに噛み合う歯対の歯面間の相対的な誤差である相対歯面誤差の分布情報を、基本諸元及び設計歯面修正量等に基づくシミュレーションによって演算する。なお、この相対歯面誤差は、例えば、本出願人による特開2005−193560号公報に開示されているように、実際の歯車対の各歯面に対して触針を走査させることによって各歯面の基準歯面に対する歯面誤差データを測定し、これら歯面誤差データに基づいて演算されるものであってもよい。   That is, the calculation unit 6 performs, for example, a simulation based on the basic specifications, the design tooth surface correction amount, and the like on the distribution information of the relative tooth surface error, which is a relative error between the tooth surfaces of the tooth pairs meshing with each other. Calculate by The relative tooth surface error is caused by scanning the stylus with respect to each tooth surface of the actual gear pair as disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-193560 by the present applicant. The tooth surface error data with respect to the reference tooth surface of the surface may be measured and calculated based on the tooth surface error data.

また、演算部6は、例えば、歯車対100の互いに噛み合う歯対に対して単位荷重(1Nの荷重)を付与したと仮定して歯対の各インボリュート歯面形状に基づくシミュレーションを行うことにより、歯対に単位荷重を付与したときの各噛合進行位置Iにおける接触線(噛合接触線)C−C’上の分布荷重である単位分布荷重Pn(I,j)を演算するとともに、歯対の各噛合進行位置Iにおける噛合剛性値K(I)を演算する。ここで、jは、接触線C−C’上の座標を示す。なお、図4に示すように、はすば歯車対100の接触線C−C’は歯車軸に対してねじれているため、これらの噛合は、平歯車と異なり点接触から始まる。すなわち、はすば歯車対100の噛合は、S点から始まり、斜めの噛合接触線C−C’が長さを変えながら作用平面103上を平行に進行し、最後にE点で終わる。作用平面103とは、歯対の各歯面上の有効噛み合い領域を示すものであり、本実施形態において、作用平面103は、例えば、駆動歯車101の歯面(駆動歯面)を基準として定義されている。 In addition, the calculation unit 6 performs, for example, a simulation based on each involute tooth surface shape of the tooth pair on the assumption that a unit load (1N load) is applied to the tooth pair engaged with each other of the gear pair 100. While calculating the unit distribution load P n (I, j) which is the distribution load on the contact line (mesh contact line) CC ′ at each meshing advance position I when the unit load is applied to the tooth pair, the tooth pair The meshing rigidity value K (I) at each meshing advance position I is calculated. Here, j indicates coordinates on the contact line CC ′. As shown in FIG. 4, since the contact line CC ′ of the helical gear pair 100 is twisted with respect to the gear shaft, the meshing thereof starts from point contact unlike the spur gear. That is, the meshing of the helical gear pair 100 starts from the point S, the oblique meshing contact line CC ′ advances in parallel on the working plane 103 while changing the length, and finally ends at the point E. The action plane 103 indicates an effective meshing region on each tooth surface of the tooth pair. In this embodiment, the action plane 103 is defined with reference to the tooth surface (drive tooth surface) of the drive gear 101, for example. Has been.

また、演算部6は、歯車対100に所定荷重(例えば,歯車対100を使用する際に想定される最大荷重)Psを付与したときの記歯対の各噛合進行位置Iにおける分担荷重f(I)を相対歯面誤差と噛合剛性値K(t)とに基づいて演算する。この分担荷重f(I)の演算において、演算部6は、先ず、歯車対100に所定荷重Psを付与した場合に、当該荷重Psが歯車対100の各噛合瞬間tにおいて同時に噛み合う各歯対それぞれに対して作用する荷重(分担荷重fq(q=1,2,…,Q)(t))を、相対歯面誤差と噛合剛性値K(t)とに基づいて演算する。ここで、歯車対100の噛合瞬間tとは、例えば、同時に噛み合う複数の歯対の各噛合進行位置を表すためのパラメータであり、各歯対の中から抽出した注目する歯対の噛合進行位置Iに対応付けて設定される。従って、噛合瞬間tにおいて、注目する歯対の噛合進行位置はIとなり、その前後の歯対の噛合進行位置はI±N(N=1ピッチ)となる。また、添字’q’は、噛合瞬間tに同時に噛み合う各歯対を識別するための番号であり、その最大値’Q’は、歯車対100の噛合状態(噛合瞬間t)に応じて異なる。例えば、噛合率3.5である場合、歯車対100は、その噛合の進行状態に応じて、3つの歯対の噛み合い(3歯噛み合い)と、4つの歯対の噛み合い(4歯噛み合い)とを繰り返すため、Qのとり得る値は、噛合瞬間tに応じて3又は4となる。そして、これらの関係から、演算部6は、各噛合瞬間の各歯対の分担荷重fq(t)に基づいて、歯対(1歯対)の各噛合進行位置Iでの分担荷重f(I)を求める。 In addition, the calculation unit 6 assigns a predetermined load (for example, a maximum load assumed when the gear pair 100 is used) P s to the gear pair 100, and a shared load f at each meshing advance position I of the tooth pair. (I) is calculated based on the relative tooth surface error and the meshing rigidity value K (t). In the calculation of the shared load f (I), when the calculation unit 6 first applies a predetermined load P s to the gear pair 100, each tooth that the load P s meshes simultaneously at each meshing instant t of the gear pair 100. A load acting on each pair (shared load f q (q = 1, 2,..., Q) (t)) is calculated based on the relative tooth surface error and the meshing rigidity value K (t). Here, the meshing instant t of the gear pair 100 is, for example, a parameter for representing each meshing progress position of a plurality of tooth pairs meshing simultaneously, and the meshing progress position of the target tooth pair extracted from each tooth pair. I is set in association with I. Therefore, at the meshing instant t, the meshing progress position of the target tooth pair is I, and the meshing progress positions of the front and rear tooth pairs are I ± N (N = 1 pitch). The subscript 'q' is a number for identifying each tooth pair that meshes simultaneously at the meshing instant t, and the maximum value 'Q' varies depending on the meshing state (meshing moment t) of the gear pair 100. For example, when the meshing rate is 3.5, the gear pair 100 has three tooth pairs meshing (three tooth meshing) and four tooth pair meshing (four tooth meshing) according to the meshing state. Since Q is repeated, the possible value of Q is 3 or 4 depending on the meshing instant t. Based on these relationships, the calculation unit 6 is based on the shared load f q (t) of each tooth pair at each meshing moment, and the shared load f ((1 tooth pair) at each meshing advance position I ( I) is determined.

また、演算部6は、歯車対100に所定荷重Psを付与したときの歯対の各噛合進行位置Iにおける接触線C−C’上の分布荷重である実分布荷重P(I,j)を単位分布荷重Pn(I,j)と分担荷重f(I)とに基づいて演算する。 Further, the calculation unit 6 is an actual distributed load P (I, j) that is a distributed load on the contact line CC ′ at each meshing advance position I of the tooth pair when the predetermined load P s is applied to the gear pair 100. Is calculated based on the unit distribution load P n (I, j) and the shared load f (I).

さらに、演算部6は、歯車対100に所定荷重Psを付与した場合の応力分布H(I,j)を、実分布荷重P(I,j)に基づいて演算する。 Further, the calculation unit 6 calculates the stress distribution H (I, j) when the predetermined load P s is applied to the gear pair 100 based on the actual distribution load P (I, j).

次に、演算部6で実行される歯車対100の応力分布の演算処理について、図3に示す応力分布演算ルーチンのフローチャートに従って詳細に説明する。
このルーチンがスタートすると、演算部6は、先ず、ステップS101において、オペレータ等により入力部5を通じて入力された歯車対100の基本諸元や設定歯面修正量等の各種情報を記憶部7から読み込む。
Next, the calculation process of the stress distribution of the gear pair 100 executed by the calculation unit 6 will be described in detail according to the flowchart of the stress distribution calculation routine shown in FIG.
When this routine is started, the calculation unit 6 first reads various information such as the basic specifications of the gear pair 100 and the set tooth surface correction amount input from the input unit 5 by the operator or the like from the storage unit 7 in step S101. .

続くステップS102において、演算部6は、歯車対100の基本諸元及び設定歯面修正量に基づくシミュレーションにより、歯対の歯面間の相対歯面誤差S(I,j)の分布情報を演算する。
この相対歯面誤差の演算では、先ず、歯車対100の各歯面(駆動歯車101及び被動歯車102の各歯面)の歯面誤差分布情報として、それぞれ3行×3列の歯面誤差分布情報が算出される。すなわち、図5に示すように、演算部6は、各基準歯面上における有効歯面の中心(D(1,1))と、有効歯面の四隅(D(0,0)、D(0,2)、D(2,0)、D(2,2))と、有効歯面を囲む各辺の中心(D(0,1)、D(1,0)、D(1,2)、D(2,1))に対し、それぞれ該当する各歯面修正量を付与することで、各基準歯面に対する3行×3列の歯面誤差分布情報を算出する。
In subsequent step S102, the calculation unit 6 calculates the distribution information of the relative tooth surface error S (I, j) between the tooth surfaces of the tooth pair by simulation based on the basic specifications of the gear pair 100 and the set tooth surface correction amount. To do.
In the calculation of the relative tooth surface error, first, as tooth surface error distribution information of each tooth surface of the gear pair 100 (each tooth surface of the driving gear 101 and the driven gear 102), the tooth surface error distribution of 3 rows × 3 columns, respectively. Information is calculated. That is, as shown in FIG. 5, the calculation unit 6 calculates the center of the effective tooth surface (D (1, 1)) on each reference tooth surface and the four corners (D (0, 0), D ( 0,2), D (2,0), D (2,2)) and the center (D (0,1), D (1,0)), D (1,2) surrounding each effective tooth surface ), D (2, 1)), the tooth surface error distribution information of 3 rows × 3 columns for each reference tooth surface is calculated by assigning each corresponding tooth surface correction amount.

具体的には、駆動歯車101が右ネジレの場合、歯筋タオレ量は強ネジレ方向を正、バイアス修正量はバイアスインを正とすると、駆動歯車のドライブ側歯面における各点の歯面修正量は、
Dv(0,0)=TDv+CDv+LDv/2−BlDv/2
Dv(0,1)=TDv
Dv(0,2)=TDv+CDv−LDv/2+BrDv/2
Dv(1,0)=CDv+LDv/2
Dv(1,1)=0
Dv(1,2)=CDv−LDv/2
Dv(2,0)=RDv+CDv+LDv/2+BlDv/2
Dv(2,1)=RDv
Dv(2,2)=RDv+CDv−LDv/2
となる。一方、被動歯車102のドライブ側歯面における各点の歯面修正量は、
Dn(0,0)=TDn+CDn+LDn/2−BlDn/2
Dn(0,1)=TDn
Dn(0,2)=TDn+CDn−LDn/2+BrDn/2
Dn(1,0)=CDn+LDn/2
Dn(1,1)=0
Dn(1,2)=CDn−LDn/2
Dn(2,0)=RDn+CDn+LDn/2+BlDn/2
Dn(2,1)=RDn
Dn(2,2)=RDn+CDn−LDn/2
となる。なお、駆動歯車101が左ネジレの場合、上述の各点において、歯筋タオレ修正量、及び、バイアス修正量に係る加減算は逆となる。
Specifically, when the drive gear 101 is right-handed, the tooth trace correction amount is positive in the direction of strong twisting, and the bias correction amount is positive in bias-in. The amount is
D Dv (0,0) = T Dv + C Dv + L Dv / 2-Bl Dv / 2
D Dv (0,1) = T Dv
D Dv (0,2) = T Dv + C Dv −L Dv / 2 + Br Dv / 2
D Dv (1, 0) = C Dv + L Dv / 2
D Dv (1,1) = 0
D Dv (1,2) = C Dv −L Dv / 2
D Dv (2, 0) = R Dv + C Dv + L Dv / 2 + Bl Dv / 2
D Dv (2,1) = R Dv
D Dv (2, 2) = R Dv + C Dv −L Dv / 2
It becomes. On the other hand, the tooth surface correction amount at each point on the drive side tooth surface of the driven gear 102 is
D Dn (0,0) = T Dn + C Dn + L Dn / 2-Bl Dn / 2
D Dn (0,1) = T Dn
D Dn (0,2) = T Dn + C Dn -L Dn / 2 + Br Dn / 2
D Dn (1, 0) = C Dn + L Dn / 2
D Dn (1,1) = 0
D Dn (1,2) = C Dn -L Dn / 2
D Dn (2,0) = R Dn + C Dn + L Dn / 2 + Bl Dn / 2
D Dn (2,1) = R Dn
D Dn (2, 2) = R Dn + C Dn −L Dn / 2
It becomes. When the drive gear 101 is left-handed, the addition / subtraction related to the tooth trace correction amount and the bias correction amount is reversed at each point described above.

さらに、演算部6は、算出した各3行×3列の歯面誤差分布情報に対して、例えば、周知の多点スプライン補間法を用いた補間計算を行うことにより、各歯筋方向のサンプル間隔が例えば0.1mmとなる3行×lDv列、3行×lDn列の各歯面誤差分布情報を生成する。 Further, the calculation unit 6 performs, for example, interpolation calculation using a well-known multipoint spline interpolation method on the calculated tooth surface error distribution information of each 3 rows × 3 columns, and thereby samples of each tooth trace direction. Each tooth surface error distribution information of 3 rows × l Dv column, 3 rows × l Dn column with an interval of 0.1 mm, for example, is generated.

そして、演算部6は、駆動歯車101と被動歯車102の各ドライブ側歯面の有効噛合領域を算出し、駆動歯車101の歯面誤差分布情報(3行×lDv列の分布情報)及び被動歯車102の歯面誤差分布情報(3行×lDn列の分布情報)の中から、有効噛合領域内に存在する歯面誤差分布情報(3行×l’列の分布情報)をそれぞれ抽出する。 Then, the calculation unit 6 calculates the effective meshing region of each drive side tooth surface of the drive gear 101 and the driven gear 102, and the tooth surface error distribution information (distribution information of 3 rows × l Dv column) and the driven gear 101 Tooth surface error distribution information (3 row × l ′ column distribution information) existing in the effective meshing region is extracted from the tooth surface error distribution information of the gear 102 (3 row × l Dn column distribution information). .

次に、演算部6は、抽出した各歯面誤差分布情報に基づいて、駆動歯面と被動歯面との噛合時の相対的な歯面誤差である相対歯面誤差の分布情報を生成する。ここで、本実施形態において、演算部6は、例えば、駆動歯面を基準として、無負荷状態での相対歯面誤差分布情報を算出する。   Next, the computing unit 6 generates relative tooth surface error distribution information that is a relative tooth surface error at the time of meshing between the driving tooth surface and the driven tooth surface based on the extracted tooth surface error distribution information. . Here, in this embodiment, the calculating part 6 calculates the relative tooth surface error distribution information in a no-load state, for example on the basis of a drive tooth surface.

具体的に説明すると、3行×l’列の各歯面誤差分布情報において、駆動歯面側のm行n列目の歯面誤差データをDDv(m,n)、被動歯面側のm行n列目の歯面誤差データをDDn(m,n)とすると、歯面上の各点(m,n)での相対歯面誤差S(m,n)は、例えば(1)式に示す計算式を用いて算出される。
S(m,n)=DDv(m,n)+DDn(3−1−m,n)+Gosa(m,n)…(1)
ここで、Gosa(m,n)は、歯車対100の組付誤差及びデフレクションを歯面上に反映させた補正値である。
Specifically, in each tooth surface error distribution information of 3 rows × l ′ columns, the tooth surface error data of the m-th row and the n-th column on the driving tooth surface side is represented by D Dv (m, n), and the tooth surface error data on the driven tooth surface side. When the tooth surface error data in the m-th row and the n-th column is D Dn (m, n), the relative tooth surface error S (m, n) at each point (m, n) on the tooth surface is, for example, (1) It is calculated using the calculation formula shown in the formula.
S (m, n) = D Dv (m, n) + D Dn (3-1-m, n) + Gosa (m, n) (1)
Here, Gosa (m, n) is a correction value reflecting the assembly error and deflection of the gear pair 100 on the tooth surface.

例えば、抽出された各歯面誤差分布情報が3行×161列である場合、上述の(1)式に基づいて、
S(0,0)=DDv(0,0)+DDn(2,0)+Gosa(0,0),
S(0,1)=DDv(0,1)+DDn(2,1)+Gosa(0,1),・・・,
S(2,159)=DDv(2,159)+DDn(0、159)+Gosa(2,159),
S(2,160)=DDv(2,160)+DDn(0,160)+Gosa(2,160)
の各データからなる、3行×161列の相対歯面誤差S(m,n)のデータ群(相対歯面誤差分布情報)が算出される。
For example, when each tooth surface error distribution information extracted is 3 rows × 161 columns, based on the above equation (1),
S (0,0) = D Dv (0,0) + D Dn (2,0) + Gosa (0,0),
S (0,1) = D Dv (0,1) + D Dn (2,1) + Gosa (0,1),.
S (2,159) = D Dv (2,159) + D Dn (0,159) + Gosa (2,159),
S (2,160) = D Dv (2,160) + D Dn (0,160) + Gosa (2,160)
A data group (relative tooth surface error distribution information) of the relative tooth surface error S (m, n) of 3 rows × 161 columns is calculated.

さらに、演算部6は、相対歯面誤差分布情報に対し、多点スプライン補完法を用いて行補完及び列補完を行い、より詳細な相対歯面誤差分布情報(例えば、241行×241列の分布情報)を生成する。なお、演算部6は、この相対歯面誤差分布情報を、例えば、図9(a)に示すように、出力部8(例えば、ディスプレイ装置13)を通じて等高線表示することも可能である。   Further, the calculation unit 6 performs row complementation and column complementation on the relative tooth surface error distribution information using a multipoint spline interpolation method, and more detailed relative tooth surface error distribution information (for example, 241 rows × 241 columns). Distribution information). The calculation unit 6 can also display the relative tooth surface error distribution information in a contour line through the output unit 8 (for example, the display device 13) as shown in FIG. 9A, for example.

続くステップS103において、演算部6は、歯対の各噛合進行位置Iにおける単位分布荷重Pn(I,j)を演算するとともに、歯対の各噛合進行位置Iにおける噛合剛性値K(I)を演算する。 In the subsequent step S103, the calculation unit 6 calculates the unit distribution load P n (I, j) at each meshing advance position I of the tooth pair, and the meshing rigidity value K 0 (I) at each meshing progress position I of the tooth pair. ) Is calculated.

これら単位分布荷重Pn(I,j)及び噛合剛性値K(I)は、例えば、各噛合進行位置Iにおいて、歯車対100の基本諸元に基づいて定められる各歯面のマクロ形状に基づいて以下の(2)〜(4)式に示す歯の曲げ撓みと歯面接触撓みの積分方程式を作成し、当該積分方程式を解くことにより得られる。 These unit distributed loads P n (I, j) and meshing rigidity values K (I) are based on, for example, the macro shape of each tooth surface determined based on the basic specifications of the gear pair 100 at each meshing advance position I. Then, an integral equation of tooth bending deflection and tooth surface contact deflection shown in the following equations (2) to (4) is created, and obtained by solving the integral equation.

具体的に説明すると、演算部6は、荷重Ps=1N(単位荷重)であると仮定して、(2)式〜(4)式をガウス処理を用いて解くことにより、噛合接触線C−C’上の単位分布荷重Pc(ξ)及び撓み量δを算出する。そして、演算部6は、単位分布荷重Pc(ξ)を接触線C−C’上に設定された計算分割幅ΔBで除算して正規化することにより最終的な単位分布荷重Pn(I,j)を算出するとともに(Pn(I,j)=Pc(ξ)/ΔB)、撓み量δの逆数である噛合剛性値K(I)を算出する。 More specifically, the calculation unit 6 assumes that the load P s = 1N (unit load), and solves the equations (2) to (4) using a Gaussian process, whereby the meshing contact line C -C units distributed loads P c (ξ) on 'calculates a and deflection amount [delta] I. Then, the calculation unit 6 divides and normalizes the unit distribution load P c (ξ) by the calculated division width ΔB set on the contact line CC ′, thereby finalizing the unit distribution load P n (I , J) (P n (I, j) = P c (ξ) / ΔB) and a meshing rigidity value K 0 (I) which is the reciprocal of the deflection amount δ I.

δ=∫Kb(x,ξ)・Pc(ξ)dξ+Kc(x=ξ)・Pc(ξ)dξ…(2)
s=∫Pc(ξ)dξ…(3)
K(I)=Ps/δ…(4)
ここで、(2)式において、面接触撓みの影響関数であるKcには、鈴木ら(鈴木・梅沢、「片当りする歯車の歯面接触による近寄り」、日本機械学会論文集(C編)52巻481号(1986)、P2449 参照)によって提案されている自由端荷重分布の影響を考慮したローラ同士の理論式を使用することが可能である。
c[x=ξ,y=η=fuc(x)]
=25・(1−γ)・∫(1−x1/4dx
/π・E・ΔB・(1−x1/4…(5)
(但し、積分範囲は0〜1)
また、歯の曲げ撓み影響関数であるKbは、狩野ら(狩野・斎木、「歯車用ラックの新しい曲げ撓み影響関数」、日本機械学会2002年度年次大会講演論文集(V)2314号、P27 参照)によって提案されている歯幅方向と歯丈方向の違った撓み特性を考慮した高精度な式を使用することが可能である。
b(x,y,ξ,η)
=U・G(η)・〔ν(r)/ν(η)〕
・[〔F(x)・F(ξ)〕/F(|x−ξ|)]1/2 …(6)
γ=η+[〔λ・(x−ξ)〕+(y−η)]1/2 …(7)
ここで、式(2)〜(7)中の変数等は以下の通りである。
(x,y):撓み観測点の座標値
(ξ,η):単位集中荷重点の座標値
c(ξ):噛合接触線上の荷重分布
E:ヤング率[2.068×1011N/m
γ:ポアソン比[0.3]
I:接触歯幅中央を0とするはすば歯車対の等価作用線(図4参照)上の座標値
U:原点集中荷重時の原点での撓みの絶対値
λ:撓み楕円状分布の同心円分布への座標変換係数
r:歯先を原点とする撓み同心円分布の半径
ν(r):等価同心円分布の撓み特性関数
G(η):歯丈方向の集中荷重点直下の撓み特性関数
F(ξ):歯幅方向の集中荷重点直下の撓み特性関数
なお、本実施形態においては、単位分布荷重Pn(I,j)及び噛合剛性値K(I)を歯の曲げ撓みと歯面接触撓みの積分方程式を用いて演算する一例について説明したが、これら単位分布荷重Pn(I,j)及び噛合剛性値K(I)は、個別に求められるものであってもよい。
δ I = ∫K b (x, ξ) · P c (ξ) dξ + K c (x = ξ) · P c (ξ) dξ (2)
P s = ∫P c (ξ) dξ (3)
K (I) = P s / δ I (4)
Here, in equation (2), the K c is the effect function of the deflection surface contact, Suzuki et al. (Suzuki Umezawa "unapproachable by tooth surface contact gears per piece", Japan Society of Mechanical Engineers (C ed 52) No. 481 (1986), P2449). It is possible to use a theoretical formula between rollers in consideration of the influence of the free end load distribution.
K c [x = ξ, y = η = fuc (x)]
= 25 · (1-γ 2 ) · ∫ (1-x 4 ) 1/4 dx
/ Π · E · ΔB · (1-x 4 ) 1/4 (5)
(However, the integration range is 0 to 1)
In addition, K b , which is the bending bending influence function of the tooth, is Kano et al. (Kano / Saiki, “New bending bending influence function of gear rack”, Japanese Society of Mechanical Engineers 2002 Annual Conference Proceedings (V) No. 2314, It is possible to use a high-accuracy formula that takes into account the flexural characteristics that differ between the tooth width direction and the tooth height direction proposed by P27).
K b (x, y, ξ, η)
= U · G (η) · [ν (r) / ν (η)]
・ [[F (x) · F (ξ)] / F (| x−ξ |)] 1/2 (6)
γ = η + [[λ · (x−ξ)] 2 + (y−η) 2 ] 1/2 (7)
Here, variables and the like in the equations (2) to (7) are as follows.
(X, y): coordinate value of deflection observation point (ξ, η): coordinate value of unit concentrated load point P c (ξ): load distribution on meshing contact line E: Young's modulus [2.068 × 10 11 N / m 2 ]
γ: Poisson's ratio [0.3]
I: Coordinate value U on the equivalent action line of the helical gear pair (see FIG. 4) with the center of the contact tooth width being 0: Absolute value of the deflection at the origin at the origin concentrated load λ: Concentric circle of the deflection elliptical distribution Coordinate conversion coefficient to distribution r: Radius ν (r) of deflection concentric distribution with tooth tip as origin: Deflection characteristic function G (η) of equivalent concentric distribution: Deflection characteristic function F (immediately below concentrated load point in tooth height direction) ξ): Deflection characteristic function just below the concentrated load point in the tooth width direction In this embodiment, the unit distributed load P n (I, j) and the meshing rigidity value K 0 (I) are expressed by the bending bending of the tooth and the tooth surface. Although an example of calculation using the integral equation of contact deflection has been described, the unit distribution load P n (I, j) and the meshing rigidity value K 0 (I) may be obtained individually.

続くステップS104において、演算部6は、図12に示すはすば歯車対の解析モデルに基づいて以下の(8)〜(11)式に示すはすば歯車対の負荷噛合方程式(静的な負荷噛合方程式)を噛合瞬間t毎に作成し、この負荷噛合方程式を解くことにより、各噛合瞬間tにおいて同時に噛み合う各歯対の分担荷重fq(t)を演算する。
In the subsequent step S104, the calculation unit 6 loads the helical gear pair load meshing equation (static) shown in the following equations (8) to (11) based on the helical gear pair analysis model shown in FIG. Load meshing equation) is created at each meshing moment t, and by solving this load meshing equation, the shared load f q (t) of each tooth pair meshing simultaneously at each meshing moment t is calculated.

ここで、式(8)〜(11)中において、kq(t)は、噛合瞬間tにおいて同時に噛み合う各歯対の噛合剛性値であり、各噛合剛性値kq(t)は、上述のステップS103で求めた1歯対あたりの噛合剛性値K(I)に基づいて求められる。具体的に説明すると、演算部6は、例えば、図10に示すように、1歯対あたりの噛合剛性値K(I)の特性線を各歯対に対応付けて1ピッチずつずらして配置した検索マップを生成し、当該検索マップに基づいて、噛合瞬間tにおける各歯対噛合剛性値kq(t)を検索する。なお、図10に示す検索マップは、歯車対100の噛合率が3.5である場合の検索マップを示す。 Here, in the equations (8) to (11), k q (t) is the meshing rigidity value of each tooth pair that meshes simultaneously at the meshing instant t, and each meshing rigidity value k q (t) It is obtained based on the meshing rigidity value K 0 (I) per tooth pair obtained in step S103. Specifically, for example, as shown in FIG. 10, the calculation unit 6 is arranged by shifting the characteristic line of the meshing rigidity value K 0 (I) per tooth pair by one pitch in association with each tooth pair. The search map is generated, and each tooth-to-tooth meshing stiffness value k q (t) at the meshing instant t is retrieved based on the search map. In addition, the search map shown in FIG. 10 shows a search map when the meshing rate of the gear pair 100 is 3.5.

また、eq(t)は、各歯対の等価歯形誤差であり、各等価歯形誤差eq(t)は、歯対の相対歯面誤差S(m,n)と、歯車対の実質静撓みxs’とに基づいて演算される。具体的に説明すると、演算部6は、先ず、ステップS102で求めた相対歯面誤差S(m,n)を、歯対の噛合進行方向と接触線C−C’方向とを座標軸とする非直交座標系の相対歯面誤差S(I,j)に変換する。そして、例えば、図11(a)〜(c)に示すように、相対歯面誤差S(I,j)の分布情報から、噛合瞬間tにおける各歯対の接触線C−C’上の相対歯面誤差Sq=1(j)、…、Sq=Q(j)を抽出し、各接触線上の実際の接触範囲での各相対歯面誤差Sq(j)の平均値(すなわち、相対歯面誤差Sq(j)の曲線内において実質静撓みxs’以上となる領域の面積)を、等価歯形誤差eq(t)として算出する。また、tZは、はすば歯車対の1正面法線ピッチを通過する時間で噛み合い周期と呼ぶ。 この場合において、演算部6は、実質静撓みxs’の初期値として、例えば、誤差を考慮しない静撓み量xs0を、以下の式(12)、(13)に基づいて設定する。
Further, e q (t) is an equivalent tooth profile error of each tooth pair, and each equivalent tooth profile error e q (t) is a relative tooth surface error S (m, n) of the tooth pair and a substantial static of the gear pair. Calculated based on the deflection x s '. More specifically, the calculation unit 6 first calculates the relative tooth surface error S (m, n) obtained in step S102 as a coordinate axis with the tooth pair meshing direction and the contact line CC ′ direction as coordinate axes. The relative tooth surface error S (I, j) in the orthogonal coordinate system is converted. For example, as shown in FIGS. 11A to 11C, the relative information on the contact line CC ′ of each tooth pair at the meshing instant t is obtained from the distribution information of the relative tooth surface error S (I, j). Tooth surface errors S q = 1 (j),..., S q = Q (j) are extracted, and the average value of each relative tooth surface error S q (j) in the actual contact range on each contact line (ie, The area of the region of the relative tooth surface error S q (j) where the actual static deflection is greater than or equal to x s ′ is calculated as the equivalent tooth profile error e q (t). Also, t Z is the time required to pass one front normal pitch of the helical gear pair and is called the meshing cycle. In this case, the calculation unit 6 sets, for example, a static deflection amount x s0 that does not consider an error as an initial value of the substantial static deflection x s ′ based on the following equations (12) and (13).

そして、演算部6は、これら各歯対の噛合剛性値kq(t)及び等価歯形誤差eq(t)を代入した上述の(8)〜(11)式を解くことにより、各歯対に対する分担荷重fq(t)を算出すると共に、新たな実質静撓みxs’を算出する。 Then, the calculation unit 6 solves the above formulas (8) to (11) by substituting the meshing rigidity value k q (t) and the equivalent tooth profile error e q (t) of each tooth pair, thereby obtaining each tooth pair. A shared load f q (t) is calculated, and a new substantial static deflection x s ′ is calculated.

そして、演算部6は、新たに算出した実質静撓みxs’が、前回の実質静撓みxs(n-1)に対して、以下の(14)式の関係を満たすよう収束したか否かを調べる。 Then, has the arithmetic unit 6 converged so that the newly calculated substantial static deflection x s ′ satisfies the relationship of the following expression (14) with respect to the previous substantial static deflection x s(n−1) ? Check for no.

|(xs’−xs(n-1))/xs (n-1)|<10−6 …(14)
その結果、実質静撓みxs’(t)が収束していないと判定した場合、演算部6は、今回新たに算出したxs’を用いて等価歯形誤差eq(t)を再演算する。そして、再演算した等価歯形誤差eq(t)を代入した上述の(8)〜(11)式を解くことにより、各歯対に対する分担荷重fq(t)及び実質静撓みxs’を再び算出する。これらの処理は、例えば、3回を限度として、実質静撓みxs’が収束するまで繰り返し行われる。そして、演算部6は、実質静撓みxs’が収束したときの各歯対の分担荷重fq(t)を、最終的な分担荷重fq(t)として設定する。
| (X s ′ −x s(n−1) ) / x s(n−1) | <10 −6 (14)
As a result, when it is determined that the substantial static deflection x s ′ (t) has not converged, the calculation unit 6 recalculates the equivalent tooth profile error e q (t) using the newly calculated x s ′. . Then, by solving the above equations (8) to (11) in which the recalculated equivalent tooth profile error e q (t) is substituted, the shared load f q (t) and the substantial static deflection x s ′ for each tooth pair are obtained. Calculate again. These processes are repeated, for example, up to three times until the substantially static deflection x s ′ converges. Then, the calculation unit 6 sets the shared load f q (t) of each tooth pair when the substantial static deflection x s ′ is converged as the final shared load f q (t).

さらに、演算部6は、各噛合瞬間tにおいて演算した各歯対の分担荷重fq(t)から、各噛合進行位置Iにおける歯対の分担荷重f(I)を求める。なお、上述の(8)〜(11)式から同時に算出される各分担荷重fq(t)は、それぞれ1ピッチずれた噛合進行位置で噛み合う各歯対の分担荷重であるため、演算部6は、歯車対100に予め設定された1ピッチ分の噛合区間内において各噛合瞬間tの分担荷重fq(t)を演算するだけで、歯対の噛み合い開始から終了までの各噛合進行位置Iでの分担荷重f(I)を求めることができる。 Furthermore, the calculating part 6 calculates | requires the sharing load f (I) of the tooth pair in each meshing advance position I from the sharing load fq (t) of each tooth pair calculated in each meshing moment t. The shared loads f q (t) calculated simultaneously from the above equations (8) to (11) are the shared loads of the respective tooth pairs meshing at the meshing advance position shifted by 1 pitch, and therefore the calculation unit 6 Merely calculates the shared load f q (t) at each meshing instant t within the meshing section for one pitch preset in the gear pair 100, and each meshing advance position I from the start to the end of meshing of the toothpairs. The shared load f (I) can be obtained.

続くステップS105において、演算部6は、単位分布荷重Pn(I,j)と、分担荷重f(I)とを用い、歯車対100に所定荷重Psを付与したときの各噛合進行位置Iにおける接触線C−C’上の実分布荷重P(I)を、以下の(15)式に基づいて演算する。 In subsequent step S105, the calculation unit 6 uses the unit distribution load P n (I, j) and the shared load f (I), and each meshing advance position I when the predetermined load P s is applied to the gear pair 100. The actual distribution load P (I) on the contact line CC ′ at is calculated based on the following equation (15).

P(I,j)=Pn(I,j)×f(I) …(15)
なお、演算部6は、例えば、接触線C−C’毎に演算される全ての実分布荷重P(I,j)を、歯面全体に亘る実分布荷重の情報として、出力部8(例えば、ディスプレイ装置13)を通じて等高線表示することも可能である。
P (I, j) = P n (I, j) × f (I) (15)
For example, the calculation unit 6 uses all the actual distribution loads P (I, j) calculated for each contact line CC ′ as information on the actual distribution loads over the entire tooth surface, for example, the output unit 8 (for example, It is also possible to display contour lines through the display device 13).

続くステップS106において、演算部6は、実分布荷重P(I,j)を用い、以下の(16)、(17)式に示すヘルツの歯面接触応力計算式(接触線C−C’に対して垂直方向の応力分布(図13参照))に基づいて、歯車対100に所定荷重Psを付与したときの各噛合進行位置Iにおける応力分布H(I,j)を演算した後、ルーチンを抜ける。
In the subsequent step S106, the calculation unit 6 uses the actual distribution load P (I, j) and calculates the Hertz tooth surface contact stress calculation formula (contact line CC ′) shown in the following formulas (16) and (17). after calculating the stress distribution in the vertical direction on the basis of (see FIG. 13)), the stress distribution H at each meshing advancing position I when imparted with a predetermined load P s to a gear pair 100 (I, j) for the routine Exit.

ここで、(16)、(17)式において、Νはポアソン比である。また、ρDv(I,j)は駆動歯面上の点の曲率半径、ρDn(I,j)は被動歯面上の点の曲率半径であり、これらは、歯車対100の基本諸元に基づいて定められる。 Here, in the equations (16) and (17), Ν is Poisson's ratio. Ρ Dv (I, j) is the radius of curvature of the point on the driving tooth surface, and ρ Dn (I, j) is the radius of curvature of the point on the driven tooth surface. These are the basic specifications of the gear pair 100. It is determined based on.

なお、例えば、図9(b)に示すように、演算部6は、接触線C−C’毎に演算される全ての応力分布H(I,j)を、歯面全体に亘る応力分布の情報として、出力部8(例えば、ディスプレイ装置13)を通じて等高線表示することも可能である。   For example, as shown in FIG. 9B, the calculation unit 6 calculates all stress distributions H (I, j) calculated for each contact line CC ′ to the stress distribution over the entire tooth surface. As information, it is also possible to display contour lines through the output unit 8 (for example, the display device 13).

また、例えば、図14に示すように、演算部6は、得られた応力分布H(I,j)の情報を加工することにより、歯車対100の各噛合瞬間tにおいて同時に噛み合う各歯対の応力分布をそれぞれ表示することも可能である。   Further, for example, as shown in FIG. 14, the calculation unit 6 processes the information of the obtained stress distribution H (I, j) to thereby obtain the tooth pairs simultaneously meshed at each meshing instant t of the gear pair 100. It is also possible to display each stress distribution.

また、演算部6は、例えば、図15(a)に示すように、1歯対における噛合進行位置Iと最大応力との関係を表示することも可能であり、さらに、図15(b)に示すように、歯車対100全体としての噛合瞬間tにおける最大応力との関係を表示することも可能である。   Further, for example, as shown in FIG. 15A, the calculation unit 6 can also display the relationship between the meshing advance position I and the maximum stress in one tooth pair, and further, in FIG. 15B. As shown, it is also possible to display the relationship with the maximum stress at the meshing instant t as the gear pair 100 as a whole.

このような実施形態によれば、歯車対100の互いに噛み合う歯対に単位荷重を付与したときの各噛合進行位置Iにおける接触線C−C’上の分布荷重である単位分布荷重Pn(I,j)と噛合剛性値K(I)を歯対の各インボリュート歯面形状に基づいて演算するとともに、歯車対100に所定荷重Psを付与したときの歯対の各噛合進行位置Iにおける分担荷重f(I)を歯対の相対歯面誤差S(I,j)と噛合剛性値K(I)に基づいて演算し、歯車対100に所定荷重Psを付与したときの歯対の各噛合進行位置Iにおける接触線C−C’上の分布荷重である実分布荷重P(I,j)を単位分布荷重Pn(I,j)と分担荷重f(I)とに基づいて演算することにより、実測することが困難な歯車対100の歯対に作用する荷重を、歯面全体に亘って詳細に演算することができる。 According to such an embodiment, the unit distributed load P n (I) which is a distributed load on the contact line CC ′ at each meshing advance position I when the unit load is applied to the tooth pairs engaged with each other of the gear pair 100. , J) and the meshing rigidity value K 0 (I) based on each involute tooth surface shape of the tooth pair, and at each meshing advance position I of the tooth pair when a predetermined load P s is applied to the gear pair 100. The shared load f (I) is calculated based on the relative tooth surface error S (I, j) of the tooth pair and the meshing rigidity value K 0 (I), and the tooth pair when the predetermined load P s is applied to the gear pair 100. The actual distribution load P (I, j), which is the distribution load on the contact line CC ′ at each meshing advance position I, is based on the unit distribution load P n (I, j) and the shared load f (I). By calculating, the load acting on the tooth pair of the gear pair 100 that is difficult to actually measure is calculated. It can be calculated in detail over the entire tooth surface.

その際、歯車対100の基本諸元に基づいて定められる各歯面のマクロ形状に基づいて歯の曲げ撓みと歯面接触撓みの積分方程式を設定し、歯対間に作用する荷重が単位荷重であると仮定して前記積分方程式を解くことにより、単位分布荷重Pn(I,j)及び噛合剛性値K(I)を容易に求めることができる。 At that time, an integral equation of the bending bending of the tooth and the contact bending of the tooth surface is set based on the macro shape of each tooth surface determined based on the basic specifications of the gear pair 100, and the load acting between the tooth pairs is a unit load. The unit distribution load P n (I, j) and the meshing rigidity value K 0 (I) can be easily obtained by solving the integral equation assuming that

この場合において、各歯面誤差(相対歯面誤差S(I,j))が考慮されていない歯面のマクロ形状に基づいて単位分布荷重Pn(I,j)を演算した場合であっても、相対歯面誤差S(I,j)は分担荷重f(I)の演算に反映されており、このような分担荷重f(I)を実分布荷重P(I,j)の演算に用いることにより、精度の高い実分布荷重P(I,j)を得ることができる。すなわち、単位分布荷重Pn(I,j)の演算を簡略化することにより、必要以上に複雑な演算を行うことなく、相対歯面誤差S(I,j)を好適に反映させた精度の高い実分布荷重P(I,j)を得ることができる。 In this case, the unit distribution load P n (I, j) is calculated based on the macro shape of the tooth surface where each tooth surface error (relative tooth surface error S (I, j)) is not considered. However, the relative tooth surface error S (I, j) is reflected in the calculation of the shared load f (I), and such shared load f (I) is used in the calculation of the actual distribution load P (I, j). As a result, a highly accurate actual distribution load P (I, j) can be obtained. In other words, by simplifying the calculation of the unit distribution load P n (I, j), the accuracy of reflecting the relative tooth surface error S (I, j) suitably without performing an unnecessarily complicated calculation. A high actual distribution load P (I, j) can be obtained.

また、上述のように高精度に演算された実分布荷重P(I,j)に基づいて歯対の応力分布H(I,j)を演算することにより、精度の高い応力分布H(I,j)を得ることができる。   Further, by calculating the stress distribution H (I, j) of the tooth pair based on the actual distribution load P (I, j) calculated with high accuracy as described above, the stress distribution H (I, j, with high accuracy is calculated. j) can be obtained.

そして、このように歯面全体に亘って詳細に求められた高精度な実分布荷重P(I,j)や応力分布H(I,j)を用いることにより、シミュレーションによって各種評価を精度よく行うことができる。例えば、上述の応力分布H(I,j)を用いることにより、ピッチングの発生の有無やピッチングの発生位置等について、実際に作成した歯車対100による耐久試験と同等の結果を得ることができる。   Then, by using the highly accurate actual distribution load P (I, j) and stress distribution H (I, j) obtained in detail over the entire tooth surface in this way, various evaluations are accurately performed by simulation. be able to. For example, by using the above-described stress distribution H (I, j), the same results as the endurance test using the actually created gear pair 100 can be obtained with respect to the presence / absence of pitching, the position where pitching occurs, and the like.

さらに、実分布荷重P(I,j)や応力分布H(I,j)を、各種形態に加工して表示することにより(例えば、等高線表示等することにより)、ユーザにとって有意義な情報を可視化して提示することができる。   Furthermore, by processing the actual distribution load P (I, j) and stress distribution H (I, j) into various forms and displaying them (for example, by displaying contour lines), information meaningful to the user is visualized. Can be presented.

歯車対の評価装置の概略構成図Schematic configuration diagram of gear pair evaluation device 歯車対の評価装置を実現するためのコンピュータの一例を示す概略図Schematic which shows an example of the computer for implement | achieving the evaluation apparatus of a gear pair 応力分布演算ルーチンを示すフローチャートFlow chart showing stress distribution calculation routine はすば歯車対の作用平面を示す説明図Explanatory drawing showing the working plane of the helical gear pair 歯面上に設定された修正量入力点を示す説明図Explanatory drawing which shows the correction amount input point set on the tooth surface 歯先修正量及び歯元修正量の説明図Explanation of tooth tip correction amount and tooth base correction amount (a)はクラウニング修正量の説明図、(b)は歯筋タオレ修正量の説明図(A) is explanatory drawing of crowning correction amount, (b) is explanatory drawing of tooth trace taole correction amount. バイアス修正量の説明図Illustration of bias correction amount (a)は等高線表示された相対歯面誤差分布の一例を示す説明図、(b)は等高線表示された応力分布の一例を示す説明図(A) is explanatory drawing which shows an example of relative tooth surface error distribution displayed by contour line, (b) is explanatory drawing which shows an example of stress distribution displayed by contour line 各噛み合い瞬間における各歯対の噛み合い剛性値の推移を示す説明図Explanatory drawing which shows transition of the meshing rigidity value of each tooth pair at each meshing moment 接触線上での相対歯面誤差と等価歯形誤差を示す説明図Explanatory drawing showing relative tooth surface error and equivalent tooth profile error on contact line はすば歯車対の解析モデルを示す説明図Explanatory drawing showing analysis model of helical gear pair 接触線に対する垂直方向の応力分布を示す説明図Explanatory drawing showing the stress distribution in the direction perpendicular to the contact line 各噛み合い瞬間における各歯対の応力分布を示す説明図Explanatory drawing which shows stress distribution of each tooth pair at each meshing moment 歯面応力最大値の推移を示す説明図Explanatory drawing showing transition of maximum tooth surface stress

符号の説明Explanation of symbols

1 … 評価装置
5 … 入力部
6 … 演算部(相対歯面誤差演算手段、単位分布荷重演算手段、噛合剛性値演算手段、分担荷重演算手段、実分布荷重演算手段、応力分布演算手段)
7 … 記憶部
8 … 出力部(表示手段)
100 … 歯車対
101 … 駆動歯車
102 … 被動歯車
DESCRIPTION OF SYMBOLS 1 ... Evaluation apparatus 5 ... Input part 6 ... Calculation part (Relative tooth surface error calculation means, unit distribution load calculation means, meshing rigidity value calculation means, shared load calculation means, actual distribution load calculation means, stress distribution calculation means)
7: Storage unit 8: Output unit (display means)
DESCRIPTION OF SYMBOLS 100 ... Gear pair 101 ... Drive gear 102 ... Driven gear

Claims (6)

歯車対の互いに噛み合う歯対の歯面間の相対的な誤差である相対歯面誤差の分布情報を演算する相対歯面誤差演算手段と、
前記歯対に単位荷重を付与したときの当該歯対の各噛合進行位置における接触線上の分布荷重である単位分布荷重を前記歯対の各インボリュート歯面形状に基づいて演算する単位分布荷重演算手段と、
前記歯対の前記各噛合進行位置における噛合剛性値を前記歯対の各インボリュート歯面形状に基づいて演算する噛合剛性値演算手段と、
前記歯車対に所定荷重を付与したときの前記歯対の各噛合進行位置における分担荷重を前記相対歯面誤差と前記噛合剛性値とに基づいて演算する分担荷重演算手段と、
前記歯車対に所定荷重を付与したときの前記歯対の各噛合進行位置における接触線上の分布荷重である実分布荷重を前記単位分布荷重と前記分担荷重とに基づいて演算する実分布荷重演算手段と、を備えたことを特徴とする歯車対の評価装置。
A relative tooth surface error calculating means for calculating distribution information of a relative tooth surface error, which is a relative error between the tooth surfaces of the tooth pairs meshing with each other;
Unit distributed load calculating means for calculating a unit distributed load that is a distributed load on the contact line at each meshing advance position of the tooth pair when a unit load is applied to the tooth pair based on each involute tooth surface shape of the tooth pair. When,
A meshing rigidity value calculating means for calculating a meshing rigidity value at each meshing advance position of the tooth pair based on each involute tooth surface shape of the tooth pair;
A shared load calculating means for calculating a shared load at each meshing advance position of the tooth pair when a predetermined load is applied to the gear pair based on the relative tooth surface error and the meshing rigidity value;
Actual distributed load calculating means for calculating an actual distributed load, which is a distributed load on the contact line at each meshing advance position of the tooth pair when a predetermined load is applied to the gear pair, based on the unit distributed load and the shared load. And a gear pair evaluation device.
前記単位分布荷重及び前記噛合剛性値は、前記歯車対の基本諸元に基づいて定められる各歯面のマクロ形状に基づいて歯の曲げ撓みと歯面接触撓みの積分方程式を設定し、当該積分方程式を解くことにより求められることを特徴とする請求項1記載の歯車対の評価装置。   The unit distribution load and the meshing stiffness value are set by integrating integral equations of tooth bending deflection and tooth surface contact deflection based on the macro shape of each tooth surface determined based on the basic specifications of the gear pair. 2. The gear pair evaluation device according to claim 1, wherein the gear pair evaluation device is obtained by solving an equation. 前記歯車対に前記所定荷重を付与したときの前記歯対の各噛合進行位置における応力分布を前記実分布荷重に基づいて演算する応力分布演算手段とを備えたことを特徴とする請求項1または請求項2に記載の歯車対の評価装置。   2. A stress distribution calculating means for calculating a stress distribution at each meshing advance position of the tooth pair when the predetermined load is applied to the gear pair based on the actual distribution load. The gear pair evaluation apparatus according to claim 2. 前記実分布荷重及び前記応力分布を等高線表示する表示手段を備えたことを特徴とする請求項3記載の歯車対の評価装置。   4. The gear pair evaluation apparatus according to claim 3, further comprising display means for displaying the actual distribution load and the stress distribution in contour lines. 歯車対の互いに噛み合う歯対の歯面間の相対的な誤差である相対歯面誤差の分布情報を演算する相対歯面誤差演算ステップと、
前記歯対に単位荷重を付与したときの当該歯対の各噛合進行位置における接触線上の分布荷重である単位分布荷重を前記歯対の各インボリュート歯面形状に基づいて演算する単位分布荷重演算ステップと、
前記歯対の前記各噛合進行位置における噛合剛性値を前記歯対の各インボリュート歯面形状に基づいて演算する噛合剛性値演算ステップと、
前記歯車対に所定荷重を付与したときの前記歯対の各噛合進行位置における分担荷重を前記相対歯面誤差と前記噛合剛性値とに基づいて演算する分担荷重演算ステップと、
前記歯車対に所定荷重を付与したときの前記歯対の各噛合進行位置における接触線上の分布荷重である実分布荷重を前記単位分布荷重と前記分担荷重とに基づいて演算する実分布荷重演算ステップと、を備えたことを特徴とする歯車対の評価装置。
A relative tooth surface error calculating step for calculating distribution information of a relative tooth surface error, which is a relative error between the tooth surfaces of the tooth pairs meshing with each other;
A unit distributed load calculating step for calculating a unit distributed load that is a distributed load on the contact line at each meshing advance position of the tooth pair when a unit load is applied to the tooth pair based on each involute tooth surface shape of the tooth pair. When,
A meshing rigidity value calculating step for calculating a meshing rigidity value at each meshing advance position of the tooth pair based on each involute tooth surface shape of the tooth pair;
A shared load calculation step of calculating a shared load at each meshing advance position of the tooth pair when a predetermined load is applied to the gear pair based on the relative tooth surface error and the meshing rigidity value;
An actual distributed load calculation step of calculating an actual distributed load that is a distributed load on the contact line at each meshing advance position of the tooth pair when a predetermined load is applied to the gear pair based on the unit distributed load and the shared load. And a gear pair evaluation device.
歯車対の互いに噛み合う歯対の歯面間の相対的な誤差である相対歯面誤差の分布情報を演算する相対歯面誤差演算工程と、
前記歯対に単位荷重を付与したときの当該歯対の各噛合進行位置における接触線上の分布荷重である単位分布荷重を前記歯対の各インボリュート歯面形状に基づいて演算する単位分布荷重演算工程と、
前記歯対の前記各噛合進行位置における噛合剛性値を前記歯対の各インボリュート歯面形状に基づいて演算する噛合剛性値演算工程と、
前記歯車対に所定荷重を付与したときの前記歯対の各噛合進行位置における分担荷重を前記相対歯面誤差と前記噛合剛性値とに基づいて演算する分担荷重演算工程と、
前記歯車対に所定荷重を付与したときの前記歯対の各噛合進行位置における接触線上の分布荷重である実分布荷重を前記単位分布荷重と前記分担荷重とに基づいて演算する実分布荷重演算工程と、を備えたことを特徴とする歯車対の評価装置。
A relative tooth surface error calculating step for calculating distribution information of a relative tooth surface error, which is a relative error between tooth surfaces of the tooth pairs engaged with each other in the gear pair;
Unit distributed load calculation step of calculating a unit distributed load that is a distributed load on the contact line at each meshing advance position of the tooth pair when a unit load is applied to the tooth pair based on each involute tooth surface shape of the tooth pair When,
A meshing rigidity value calculating step of calculating a meshing rigidity value at each meshing advance position of the tooth pair based on each involute tooth surface shape of the tooth pair;
A shared load calculating step of calculating a shared load at each meshing advance position of the tooth pair when a predetermined load is applied to the gear pair based on the relative tooth surface error and the meshing rigidity value;
An actual distributed load calculating step of calculating an actual distributed load that is a distributed load on the contact line at each meshing advance position of the tooth pair when a predetermined load is applied to the gear pair based on the unit distributed load and the shared load. And a gear pair evaluation device.
JP2007009481A 2007-01-18 2007-01-18 Evaluation device of gear pair, evaluation program, and evaluation method of gear pair using this Pending JP2008175694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009481A JP2008175694A (en) 2007-01-18 2007-01-18 Evaluation device of gear pair, evaluation program, and evaluation method of gear pair using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009481A JP2008175694A (en) 2007-01-18 2007-01-18 Evaluation device of gear pair, evaluation program, and evaluation method of gear pair using this

Publications (1)

Publication Number Publication Date
JP2008175694A true JP2008175694A (en) 2008-07-31

Family

ID=39702822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009481A Pending JP2008175694A (en) 2007-01-18 2007-01-18 Evaluation device of gear pair, evaluation program, and evaluation method of gear pair using this

Country Status (1)

Country Link
JP (1) JP2008175694A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915667A (en) * 2010-07-23 2010-12-15 北京工业大学 Integrated error measuring technology and method thereof of gear pair
JP2012063145A (en) * 2010-09-14 2012-03-29 Hino Motors Ltd Gear strength evaluation method
CN104502095A (en) * 2015-01-05 2015-04-08 盐城工学院 Method for measuring meshing damping of straight gear and damping composition thereof
JP2018128335A (en) * 2017-02-08 2018-08-16 トヨタ自動車株式会社 Evaluation method of tooth contact
CN110321656A (en) * 2019-07-11 2019-10-11 西北工业大学 Double helical tooth wheel set axial modification Compensation Design method
CN112036049A (en) * 2020-09-15 2020-12-04 株洲齿轮有限责任公司 Rapid calculation method for time-varying meshing stiffness of bevel gear pair under actual working condition
CN113051681A (en) * 2021-03-25 2021-06-29 天津职业技术师范大学(中国职业培训指导教师进修中心) Gear pair meshing stiffness calculation method and terminal equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915667A (en) * 2010-07-23 2010-12-15 北京工业大学 Integrated error measuring technology and method thereof of gear pair
JP2012063145A (en) * 2010-09-14 2012-03-29 Hino Motors Ltd Gear strength evaluation method
CN104502095A (en) * 2015-01-05 2015-04-08 盐城工学院 Method for measuring meshing damping of straight gear and damping composition thereof
JP2018128335A (en) * 2017-02-08 2018-08-16 トヨタ自動車株式会社 Evaluation method of tooth contact
CN110321656A (en) * 2019-07-11 2019-10-11 西北工业大学 Double helical tooth wheel set axial modification Compensation Design method
CN112036049A (en) * 2020-09-15 2020-12-04 株洲齿轮有限责任公司 Rapid calculation method for time-varying meshing stiffness of bevel gear pair under actual working condition
CN112036049B (en) * 2020-09-15 2024-04-23 株洲齿轮有限责任公司 Rapid calculation method for time-varying meshing stiffness of helical gear pair under actual working condition
CN113051681A (en) * 2021-03-25 2021-06-29 天津职业技术师范大学(中国职业培训指导教师进修中心) Gear pair meshing stiffness calculation method and terminal equipment

Similar Documents

Publication Publication Date Title
JP2008175694A (en) Evaluation device of gear pair, evaluation program, and evaluation method of gear pair using this
Versluis et al. Flexural stiffness and stresses in nickel-titanium rotary files for various pitch and cross-sectional geometries
Zhan et al. A CAD-FEM-QSA integration technique for determining the time-varying meshing stiffness of gear pairs
Ma et al. Improved time-varying mesh stiffness model of cracked spur gears
Wan et al. Mesh stiffness calculation using an accumulated integral potential energy method and dynamic analysis of helical gears
Guingand et al. Quasi-static analysis of a face gear under torque
JP5140007B2 (en) Gear pair design apparatus, gear pair design program, gear pair design method, and gear pair
Bruyère et al. On the analytical definition of profile modifications minimising transmission error variations in narrow-faced spur helical gears
CN107451359B (en) Gear meshing characteristic finite element analysis method considering matrix crack influence
Spitas et al. Experimental investigation of load sharing in multiple gear tooth contact using the stress‐optical method of caustics
Han et al. Influences of tooth spalling or local breakage on time-varying mesh stiffness of helical gears
Beinstingel et al. A hybrid analytical-numerical method based on isogeometric analysis for determination of time varying gear mesh stiffness
CN108846189B (en) Gear pair meshing characteristic analysis method
JP5330837B2 (en) Gear pair design device and gear pair
JP2008123117A (en) Design device for gearwheel pair, design program thrtrfor, and gearwheel pair design method of using the same
JP5481219B2 (en) Gear pair evaluation device
JP2014119042A (en) Design device of gear pair
JP2005195360A (en) Tooth surface error evaluation device for gearwheel pair, evaluation program therefor, and manufacturing method for gearwheel pair using the same
JP2006090466A (en) Conical shape involute gear pair
CN113255084A (en) Rapid optimization method of gear noise radiation based on response surface method
JP2006090468A (en) Design evaluation device for conical shape involute gear pair
JP4474251B2 (en) Conical involute gear pair
Constantin Virtual Parametric Mechanical Design Associated with CAD Environment and Database
JP2012063145A (en) Gear strength evaluation method
CN117094200B (en) Gear time-varying meshing stiffness calculation method considering misalignment error