JP2010165181A - Device, program and method for designing gear pair, and the gear pair - Google Patents

Device, program and method for designing gear pair, and the gear pair Download PDF

Info

Publication number
JP2010165181A
JP2010165181A JP2009006964A JP2009006964A JP2010165181A JP 2010165181 A JP2010165181 A JP 2010165181A JP 2009006964 A JP2009006964 A JP 2009006964A JP 2009006964 A JP2009006964 A JP 2009006964A JP 2010165181 A JP2010165181 A JP 2010165181A
Authority
JP
Japan
Prior art keywords
tooth surface
correction amount
error
gear
surface correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009006964A
Other languages
Japanese (ja)
Other versions
JP5330837B2 (en
Inventor
Yoshikazu Miyoshi
慶和 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2009006964A priority Critical patent/JP5330837B2/en
Publication of JP2010165181A publication Critical patent/JP2010165181A/en
Application granted granted Critical
Publication of JP5330837B2 publication Critical patent/JP5330837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a design device for a gear pair easily setting design information for efficiently machining the excellent gear pair for practical use with a high yield. <P>SOLUTION: An arithmetic part 6 sets a plurality of patterns of tooth surface correction amount groups G each comprising a combination of values of respective tooth surface correction amounts, simulates a plurality of patterns of the gear paris capable of being produced within a machining error range when performing tooth surface machining by use of elements wherein each tooth surface correction amount is imparted to a basic elements in each tooth surface correction group G, and calculates tooth surface error distribution information of each tooth surface in each gear pair. Each transmission error amount E under a plurality of meshing conditions is calculated to all the gear pairs simulated within a set machining range in each tooth surface correction amount group G based on each corresponding tooth surface error distribution information, and the optimal tooth surface correction amount group is extracted. At that time, an installation error amount D occurring according to torque Tq is calculated in each prescribed torque based on a displacement amount of each gear in a meshing model, and the installation error amounts D are used as the meshing conditions. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、スパーギヤやヘリカルギヤ等からなる歯車対の基準歯面に対して歯面修正量を設定する歯車対の設計装置、歯車対の設計プログラム、歯車対の設計方法、及び歯車対に関する。   The present invention relates to a gear pair design apparatus, a gear pair design program, a gear pair design method, and a gear pair that set a tooth surface correction amount with respect to a reference tooth surface of a gear pair composed of a spur gear, a helical gear, or the like.

一般に、歯車対の歯当り分布の良否やギヤノイズのレベル等の性能は、歯面形状のミクロン単位の違いによっても大きく左右される。従って、歯車対の設計においては、所望の歯車対の基本形状等を規定するための基本諸元が設定された後、この基本諸元に基づいて一義的に定まる各歯車の基準歯面を3次元的に修正するための各種歯面修正量がミクロン単位で設定される。そして、基準歯面に対して各種歯面修正量等が付与されることにより、歯車対の加工に供する最終的な設計歯面修正量が設定される。   In general, the performance such as the quality of tooth contact distribution of gear pairs and the level of gear noise greatly depend on the difference in micron units of tooth surface shape. Therefore, in the design of the gear pair, after the basic specifications for defining the basic shape and the like of the desired gear pair are set, the reference tooth surface of each gear that is uniquely determined based on the basic specifications is set to 3 Various tooth surface correction amounts for dimensional correction are set in units of microns. Then, by applying various tooth surface correction amounts and the like to the reference tooth surface, the final design tooth surface correction amount used for processing the gear pair is set.

この種の歯車対を設計するための技術として、例えば、特許文献1には、歯車対の各基本諸元に対する各歯面修正量をそれぞれ変化させた値の組み合わせからなる歯面修正量群を複数パターン設定し、基本諸元に各歯面修正量を付与した諸元を用いて歯面加工を行った際に加工誤差範囲内で製造され得る複数パターンの歯車対を歯面修正量群毎にシミュレーションして各歯車対における各歯面の歯面誤差分布情報を演算する技術が開示されている。さらに、特許文献1には、歯面修正量群毎に設定加工誤差範囲内でシミュレーションされた全ての歯車対に対して、予め設定された複数パターンの噛み合い条件での各伝達誤差量を対応する各歯面誤差分布情報に基づいてそれぞれ演算し、各伝達誤差量のうちの設定割合以上が閾値内となる歯面修正量群の中から最終的な歯面修正量群を抽出する技術が開示されている。
特開2008−123117号公報
As a technique for designing this type of gear pair, for example, Patent Document 1 discloses a tooth surface correction amount group composed of a combination of values obtained by changing each tooth surface correction amount for each basic specification of the gear pair. Multiple tooth patterns can be manufactured within the range of machining errors when tooth surface processing is performed using specifications with multiple patterns set and each tooth surface correction amount added to the basic specifications for each tooth surface correction amount group. A technique for calculating tooth surface error distribution information of each tooth surface in each gear pair by simulation is disclosed. Further, Patent Document 1 corresponds to each transmission error amount under a plurality of patterns of meshing conditions set in advance for all gear pairs simulated within a set machining error range for each tooth surface correction amount group. Disclosed is a technique for calculating a final tooth surface correction amount group from tooth surface correction amount groups that are calculated based on each tooth surface error distribution information and within which a set ratio of each transmission error amount is within a threshold value. Has been.
JP 2008-123117 A

ところで、上述のような歯車対の設計において、実用に耐え得る良好な歯車対を設計するためには、実際に歯車対に付与するトルク等の噛み合い条件を十分に考慮することが重要となる。   By the way, in designing the gear pair as described above, in order to design a good gear pair that can withstand practical use, it is important to sufficiently consider the meshing conditions such as torque actually applied to the gear pair.

本発明は上記事情に鑑みてなされたもので、実用に耐え得る良好な歯車対を歩留まり良く加工するための設計情報を容易に設定することができる歯車対の設計装置、歯車対の設計プログラム、歯車対の設計方法、及び歯車対を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a gear pair design apparatus, a gear pair design program capable of easily setting design information for processing a good gear pair that can withstand practical use with high yield, An object of the present invention is to provide a gear pair design method and a gear pair.

本発明は、互いに噛み合う駆動歯車及び被動歯車の基本諸元により設定される各基準歯面に対して複数項目の歯面修正量を付与することで歯車対の加工に供する最終的な設計歯面修正量を設定する歯車対の設計装置であって、上記各歯面修正量をそれぞれ変化させた値の組み合わせからなる歯面修正量群を複数パターン設定する歯面修正量群設定手段と、上記基準歯面に上記各歯面修正量を付与して歯面加工を行った際に設定加工誤差範囲内で製造され得る複数パターンの歯車対を上記歯面修正量群毎にシミュレーションし、当該各歯車対における駆動歯車の上記基準歯面に対する歯面誤差分布情報と被動歯車の上記基準歯面に対する歯面誤差分布情報とをそれぞれ演算する歯面誤差情報演算手段と、歯車対に付与したトルクに応じて発生する動的な組付誤差量を上記駆動歯車及び上記被動歯車の変位量に基づいて所定トルク毎に演算する組付誤差量演算手段と、上記歯面修正量群毎に上記設定加工誤差範囲内でシミュレーションされた全ての上記歯車対について、上記組付誤差量をパラメータとして含む複数パターンの噛み合い条件で上記駆動歯車と上記被動歯車とを噛み合わせたときの各伝達誤差量を、対応する上記各歯面誤差分布情報に基づいてそれぞれ演算する伝達誤差量演算手段と、演算した各伝達誤差量が設定条件を満たす上記歯面修正量群が存在する場合に、当該歯面修正量群の中から最良の歯面修正量群を抽出する歯面修正量群抽出手段と、を備えたことを特徴とする。   The present invention provides a final design tooth surface that is used for gear pair machining by giving a plurality of tooth surface correction amounts to each reference tooth surface that is set based on the basic specifications of the driving gear and the driven gear that mesh with each other. A gear pair design apparatus for setting a correction amount, a tooth surface correction amount group setting means for setting a plurality of tooth surface correction amount groups each consisting of a combination of values obtained by changing the respective tooth surface correction amounts, and the above A plurality of patterns of gear pairs that can be manufactured within a set machining error range when performing tooth surface machining by applying each tooth surface correction amount to the reference tooth surface for each tooth surface correction amount group, Tooth surface error information calculating means for calculating tooth surface error distribution information with respect to the reference tooth surface of the driving gear in the gear pair and tooth surface error distribution information with respect to the reference tooth surface of the driven gear, and torque applied to the gear pair Generated according to An assembly error amount calculation means for calculating a dynamic assembly error amount for each predetermined torque based on the displacement amounts of the drive gear and the driven gear, and within the set machining error range for each tooth surface correction amount group. For each of the simulated gear pairs, the transmission error amounts when the driving gear and the driven gear are meshed with each other under meshing conditions of a plurality of patterns including the assembly error amount as a parameter are represented by the corresponding teeth. When there is a transmission error amount calculating means for calculating each based on the surface error distribution information and the tooth surface correction amount group satisfying the setting condition for each calculated transmission error amount, the best from among the tooth surface correction amount group. And a tooth surface correction amount group extracting means for extracting the tooth surface correction amount group.

また、本発明は、互いに噛み合う駆動歯車及び被動歯車の基本諸元により設定される各基準歯面に対して複数項目の歯面修正量を付与することで歯車対の加工に供する最終的な設計歯面修正量を設定する歯車対の設計プログラムであって、上記各歯面修正量をそれぞれ変化させた値の組み合わせからなる歯面修正量群を複数パターン設定する歯面修正量群設定ステップと、上記基準歯面に上記各歯面修正量を付与して歯面加工を行った際に設定加工誤差範囲内で製造され得る複数パターンの歯車対を上記歯面修正量群毎にシミュレーションし、当該各歯車対における駆動歯車の上記基準歯面に対する歯面誤差分布情報と被動歯車の上記基準歯面に対する歯面誤差分布情報とをそれぞれ演算する歯面誤差情報演算ステップと、歯車対に付与したトルクに応じて発生する動的な組付誤差量を上記駆動歯車及び上記被動歯車の変位量に基づいて所定トルク毎に演算する組付誤差量演算ステップと、上記歯面修正量群毎に上記設定加工誤差範囲内でシミュレーションされた全ての上記歯車対について、上記組付誤差量をパラメータとして含む複数パターンの噛み合い条件で上記駆動歯車と上記被動歯車とを噛み合わせたときの各伝達誤差量を、対応する上記各歯面誤差分布情報に基づいてそれぞれ演算する伝達誤差量演算ステップと、演算した各伝達誤差量が設定条件を満たす上記歯面修正量群が存在する場合に、当該歯面修正量群の中から最良の歯面修正量群を抽出する歯面修正量群抽出ステップと、を備えたことを特徴とする。   In addition, the present invention provides a final design for gear pair machining by giving a plurality of tooth surface correction amounts to each reference tooth surface set by the basic specifications of the driving gear and the driven gear that mesh with each other. A gear pair design program for setting a tooth surface correction amount, a tooth surface correction amount group setting step for setting a plurality of patterns of tooth surface correction amount groups each consisting of a combination of values obtained by changing the respective tooth surface correction amounts, and Simulating a plurality of patterns of gear pairs that can be manufactured within a set machining error range when the tooth surface machining is performed by applying each tooth surface correction amount to the reference tooth surface for each tooth surface correction amount group, Tooth surface error information calculation step for calculating tooth surface error distribution information for the reference tooth surface of the driving gear and tooth surface error distribution information for the reference tooth surface of the driven gear in each gear pair, and a gear pair. An assembling error amount calculating step for calculating a dynamic assembling error amount generated according to torque for each predetermined torque based on the displacement amount of the driving gear and the driven gear, and for each tooth surface correction amount group For all the gear pairs simulated within the set machining error range, the transmission error amounts when the driving gear and the driven gear are meshed with each other in meshing conditions of a plurality of patterns including the assembly error amount as a parameter. , When there is a transmission error amount calculation step for calculating each of the corresponding tooth surface error distribution information based on the corresponding tooth surface error distribution information and the tooth surface correction amount group for which the calculated transmission error amount satisfies the setting condition, And a tooth surface correction amount group extracting step for extracting the best tooth surface correction amount group from the amount group.

また、本発明は、互いに噛み合う駆動歯車及び被動歯車の基本諸元により設定される各基準歯面に対して複数項目の歯面修正量を付与することで歯車対の加工に供する最終的な設計歯面修正量を設定する歯車対の設計方法であって、上記各歯面修正量をそれぞれ変化させた値の組み合わせからなる歯面修正量群を複数パターン設定する歯面修正量群設定工程と、上記基準歯面に上記各歯面修正量を付与して歯面加工を行った際に設定加工誤差範囲内で製造され得る複数パターンの歯車対を上記歯面修正量群毎にシミュレーションし、当該各歯車対における駆動歯車の上記基準歯面に対する歯面誤差分布情報と被動歯車の上記基準歯面に対する歯面誤差分布情報とをそれぞれ演算する歯面誤差情報演算ステップと、歯車対に付与したトルクに応じて発生する動的な組付誤差量を上記駆動歯車及び上記被動歯車の変位量に基づいて所定トルク毎に演算する組付誤差量演算工程と、上記歯面修正量群毎に上記設定加工誤差範囲内でシミュレーションされた全ての上記歯車対について、上記組付誤差量をパラメータとして含む複数パターンの噛み合い条件で上記駆動歯車と上記被動歯車とを噛み合わせたときの各伝達誤差量を、対応する上記各歯面誤差分布情報に基づいてそれぞれ演算する伝達誤差量演算工程と、演算した各伝達誤差量が設定条件を満たす上記歯面修正量群が存在する場合に、当該歯面修正量群の中から最良の歯面修正量群を抽出する歯面修正量群抽出工程と、を備えたことを特徴とする。   In addition, the present invention provides a final design for gear pair machining by giving a plurality of tooth surface correction amounts to each reference tooth surface set by the basic specifications of the driving gear and the driven gear that mesh with each other. A gear pair design method for setting a tooth surface correction amount, a tooth surface correction amount group setting step for setting a plurality of patterns of tooth surface correction amount groups each consisting of a combination of values obtained by changing the respective tooth surface correction amounts, and Simulating a plurality of patterns of gear pairs that can be manufactured within a set machining error range when the tooth surface machining is performed by applying each tooth surface correction amount to the reference tooth surface for each tooth surface correction amount group, Tooth surface error information calculation step for calculating tooth surface error distribution information for the reference tooth surface of the driving gear and tooth surface error distribution information for the reference tooth surface of the driven gear in each gear pair, and a gear pair. According to torque An assembly error amount calculating step for calculating a dynamic assembly error amount generated at a predetermined torque based on a displacement amount of the drive gear and the driven gear, and the set processing error for each tooth surface correction amount group. For all the gear pairs simulated within the range, the transmission error amounts when the driving gear and the driven gear are meshed with each other under meshing conditions of a plurality of patterns including the assembly error amount as a parameter correspond to A transmission error amount calculation step for calculating each tooth surface error distribution information based on the tooth surface error distribution information, and when the tooth surface correction amount group satisfies the setting condition for each calculated transmission error amount, And a tooth surface correction amount group extracting step for extracting the best tooth surface correction amount group from the inside.

また、本発明の歯車対は、上記歯車対の設計装置で抽出した最良の歯面修正量群に基づいて駆動歯車及び被動歯車の歯面加工を行ったことを特徴とする。   Further, the gear pair of the present invention is characterized in that the tooth surface processing of the driving gear and the driven gear is performed based on the best tooth surface correction amount group extracted by the gear pair design apparatus.

本発明によれば、実用に耐え得る良好な歯車対を歩留まり良く効率的に加工するための設計情報を容易に設定することができる。   ADVANTAGE OF THE INVENTION According to this invention, the design information for processing efficiently the good gear pair which can be used practically with a sufficient yield can be set easily.

以下、図面を参照して本発明の形態を説明する。図面は本発明の一形態に係わり、図1は歯車対の設計装置の概略構成図、図2は歯車対の設計装置を実現するためのコンピュータの一例を示す概略図、図3は歯車対の設計歯面修正量設定ルーチンを示すフローチャート、図4は歯面誤差演算サブルーチンを示すフローチャート、図5は伝達誤差量演算サブルーチンを示すフローチャート、図6は歯面上に設定された修正量入力点を示す説明図、図7は歯先修正量及び歯元修正量の説明図、図8(a)はクラウニング修正量の説明図,図8(b)は歯筋タオレ修正量の説明図、図9はバイアス修正量の説明図、図10は駆動歯車の歯幅が被動歯車の歯幅よりも大きい場合の歯面誤差データの抽出領域を示す説明図、図11は駆動歯車の歯幅が被動歯車の歯幅よりも小さい場合の歯面誤差データの抽出領域を示す説明図、図12は等高線表示された相対歯面誤差分布の一例を示す説明図、図13は相対歯面誤差分布から導き出される無負荷状態での伝達誤差量の説明図、図14は伝達誤差量の目標値の一例を示すマップ、図15は図14のI−I線に沿って伝達誤差量の目標値及び閾値を示すマップ、図16は図14のII−II線に沿って伝達誤差量の目標値及び閾値を示すマップ、図17は歯車対の概略構成図、図18は公差範囲入力画面の一例を示す説明図、図19は食違誤差と平行誤差の説明図、図20は各計測点における駆動歯車軸トルクと変位との関係の一例を示す説明図、図21は動的なデフレクションの一例を示す説明図、図22は実機上における歯車対の動的なデフレクションの一例を示す説明図、図23は実機上における所定負荷状態での歯車対のモーションカーブの一例を示す説明図、図24は伝達誤差変位の噛み合い次数成分(振幅値)の一例を示す説明図、図25は伝達誤差頻度マップの一例を示す説明図、図26は伝達誤差トルク特性の一例を示す説明図、図27は目標値以下の伝達誤差の発生頻度を示す頻度マップの一例を示す説明図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The drawings relate to an embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a gear pair design device, FIG. 2 is a schematic diagram showing an example of a computer for realizing the gear pair design device, and FIG. FIG. 4 is a flowchart showing a tooth surface error calculation subroutine, FIG. 5 is a flowchart showing a transmission error amount calculation subroutine, and FIG. 6 is a correction amount input point set on the tooth surface. FIG. 7 is an explanatory diagram of the tooth tip correction amount and the tooth base correction amount, FIG. 8 (a) is an explanatory diagram of the crowning correction amount, FIG. 8 (b) is an explanatory diagram of the tooth trace taole correction amount, FIG. Is an explanatory view of the bias correction amount, FIG. 10 is an explanatory view showing an extraction region of tooth surface error data when the tooth width of the driving gear is larger than the tooth width of the driven gear, and FIG. 11 is a drawing showing the tooth width of the driving gear. Tooth surface error data when the tooth width is smaller than FIG. 12 is an explanatory diagram showing an example of an extracted region, FIG. 12 is an explanatory diagram showing an example of a relative tooth surface error distribution displayed in contour lines, and FIG. 13 is an explanatory diagram of a transmission error amount in a no-load state derived from the relative tooth surface error distribution. 14 is a map showing an example of the target value of the transmission error amount, FIG. 15 is a map showing the target value and threshold value of the transmission error amount along the line II in FIG. 14, and FIG. 16 is a line II-II in FIG. FIG. 17 is a schematic configuration diagram of a gear pair, FIG. 18 is an explanatory diagram showing an example of a tolerance range input screen, and FIG. 19 is an explanatory diagram of a discrepancy error and a parallel error. 20 is an explanatory diagram showing an example of the relationship between the drive gear shaft torque and displacement at each measurement point, FIG. 21 is an explanatory diagram showing an example of dynamic deflection, and FIG. 22 is a diagram showing dynamics of a gear pair on an actual machine. Is an explanatory diagram showing an example of simple deflection, and FIG. FIG. 24 is an explanatory diagram showing an example of a meshing order component (amplitude value) of transmission error displacement, and FIG. 25 is an explanatory diagram showing an example of a transmission error frequency map. FIG. 26 is an explanatory diagram showing an example of transmission error torque characteristics, and FIG. 27 is an explanatory diagram showing an example of a frequency map showing the frequency of occurrence of transmission errors below the target value.

図1に示す歯車対の設計装置1は、例えば、互いに噛み合う駆動歯車101と被動歯車102がそれぞれはすば歯車(ヘリカルギヤ)で構成される歯車対100(図17参照)の設計を行う。具体的には、設計装置1は、駆動歯車101及び被動歯車102の基本諸元により規定される各基準歯面に対して複数項目の歯面修正量をシミュレーション上で付与することにより歯車対100の加工に供する最終的な設計歯面修正量を設定する。   The gear pair design apparatus 1 shown in FIG. 1 designs, for example, a gear pair 100 (see FIG. 17) in which the driving gear 101 and the driven gear 102 that are meshed with each other are helical gears (helical gears). Specifically, the design apparatus 1 gives a gear pair 100 by giving a plurality of tooth surface correction amounts to each reference tooth surface defined by the basic specifications of the driving gear 101 and the driven gear 102 by simulation. The final design tooth surface correction amount to be used for machining is set.

ここで、基本諸元は、例えば、駆動歯車101及び被動歯車102の歯数z、歯直角モジュールmn、歯丈係数Ks、頂隙係数Ck、圧力角αn、歯幅b、及び、ねじれ角β0等を有する。そして、例えば、歯車対100がはすば歯車対である場合には、基本諸元に基づいて、駆動歯車101及び被動歯車102の各歯面のマクロ形状を示す基準歯面であるインボリュート歯面がそれぞれ一義的に定められる。 Here, the basic specifications are, for example, the number of teeth z of the driving gear 101 and the driven gear 102, the tooth right angle module m n , the tooth height coefficient K s , the apex coefficient C k , the pressure angle α n , the tooth width b, and And a twist angle β 0 and the like. For example, when the gear pair 100 is a helical gear pair, an involute tooth surface that is a reference tooth surface indicating the macro shape of each tooth surface of the driving gear 101 and the driven gear 102 based on the basic specifications. Are uniquely defined.

また、駆動歯車101及び被動歯車102のドライブ側及びコースト側の各歯面(各基準歯面)には、設計歯面修正量として、例えば、歯先修正量T、歯元修正量R、クラウニング修正量C、歯筋タオレ修正量L、及び、左右バイアス修正量Bl,Br等(図7乃至図9参照)をそれぞれ加味した値が個別に設定される。そして、歯面加工時に、各設計歯面修正量に基づく歯面修正が行われることにより、各歯面は基準歯面に対して三次元的に加工される。このような各歯面に対する歯面修正は、例えば、シェービング、ホーニング、或いは、歯研(歯面研削)等の各種仕上げ工法を適宜選択的に用いて行うことが可能である。ここで、仕上げ工法として歯研が選択される場合、当該歯研に対応する設計歯面修正量としては、例えば、歯先修正量T及び歯元修正量Rに代えて、歯形丸み量FFA及び圧力角誤差量FAが設定される。なお、以下の説明においては、仕上げ工法として歯研を採用する場合の個別的な説明については適宜省略するが、特に説明する場合を除き、歯研を対象とする解析等については、歯先修正量T及び歯元修正量Rを歯形丸み量FFA及び圧力角誤差量FAで読み替え、さらに、歯先修正量T及び歯元修正量Rに対応するパラメータ(例えば、後述する歯面修正量、公差範囲等)を歯形丸み量FFA及び圧力角誤差量FAに対応する同等の各パラメータで適宜読み替えるものとする。   In addition, for each tooth surface (each reference tooth surface) on the drive side and the coast side of the driving gear 101 and the driven gear 102, for example, a tooth tip correction amount T, a tooth root correction amount R, a crowning as design tooth surface correction amounts. Values that take into account the correction amount C, the tooth trace correction amount L, the left and right bias correction amounts Bl, Br, etc. (see FIGS. 7 to 9) are set individually. And at the time of tooth surface processing, each tooth surface is processed three-dimensionally with respect to a reference tooth surface by performing tooth surface correction based on each design tooth surface correction amount. Such tooth surface correction for each tooth surface can be performed by selectively using various finishing methods such as shaving, honing, or tooth grinding (tooth surface grinding) as appropriate. Here, when a toothpaste is selected as the finishing method, as a design tooth surface correction amount corresponding to the toothpaste, for example, instead of the tooth tip correction amount T and the tooth root correction amount R, the tooth profile round amount FFA and A pressure angle error amount FA is set. In the following explanation, the individual explanation when adopting a toothpaste as a finishing method is omitted as appropriate, but the tooth tip correction is performed for analysis etc. for the toothpaste unless otherwise explained. The amount T and the tooth base correction amount R are read as the tooth profile rounding amount FFA and the pressure angle error amount FA, and parameters corresponding to the tooth tip correction amount T and the tooth base correction amount R (for example, tooth surface correction amount and tolerance described later) Range, etc.) should be appropriately replaced with equivalent parameters corresponding to the tooth profile rounding amount FFA and the pressure angle error amount FA.

なお、以下の説明では、必要に応じて、駆動歯車101のドライブ側歯面に設定される歯面修正量等に添字”Dv1”を付し、コースト側歯面に設定される歯面修正量等に添字”Dv2”を付す。また、被動歯車102のドライブ側歯面に設定される歯面修正量等に添字”Dn1”を付し、コースト側歯面に設定される歯面修正量等に添字”Dn2”を付す。 In the following description, the subscript “ Dv1 ” is added to the tooth surface correction amount set on the drive side tooth surface of the drive gear 101 as necessary, and the tooth surface correction amount set on the coast side tooth surface. The subscript “ Dv2 ” is added to etc. Moreover, given the subscript "Dn1" the tooth surface modification amount or the like which is set on the drive side tooth surfaces of the driven gear 102, denoted by the subscript "Dn2" the tooth surface modification amount or the like which is set to coast side tooth surface.

設計装置1は、基本諸元を含む各種情報を入力するための入力部5と、入力部5からの入力情報に基づいて歯車対の設計歯面修正量を演算する演算部6と、演算部6で実行される設計歯面修正量設定ルーチン等のプログラムを格納するとともに入力部5からの入力情報や演算部6での演算結果等を適宜記憶する記憶部7と、演算部6での演算結果等を出力する出力部8とを有して構成されている。   The design apparatus 1 includes an input unit 5 for inputting various types of information including basic specifications, a calculation unit 6 for calculating a design tooth surface correction amount of a gear pair based on input information from the input unit 5, and a calculation unit 6 stores a program such as a design tooth surface correction amount setting routine executed in 6, and appropriately stores input information from the input unit 5, calculation results in the calculation unit 6, and calculation in the calculation unit 6. And an output unit 8 for outputting results and the like.

なお、設計装置1は、例えば図2に示すコンピュータシステム10で実現される。このコンピュータシステム10は、例えば、コンピュータ本体11に、キーボード12と、ディスプレイ装置13と、プリンタ14とが接続ケーブル15を介して接続されて要部が構成されている。そして、このコンピュータシステム10において、例えば、コンピュータ本体11に配設された各種ドライブ装置やCPU,ROM,RAM等が演算部6として機能する。また、コンピュータ本体11に内蔵されたハードディスク等が記憶部7として機能するとともに、ディスプレイ装置13やプリンタ14等が出力部8として機能する。   The design apparatus 1 is realized by a computer system 10 shown in FIG. 2, for example. In the computer system 10, for example, a keyboard 12, a display device 13, and a printer 14 are connected to a computer main body 11 via a connection cable 15 to constitute a main part. In the computer system 10, for example, various drive devices, CPU, ROM, RAM, and the like arranged in the computer main body 11 function as the calculation unit 6. Further, a hard disk or the like built in the computer main body 11 functions as the storage unit 7, and the display device 13, the printer 14, and the like function as the output unit 8.

ここで、設計装置1には、歯車対の用途や歯車対に要求される性能等に応じてオペレータが設定した各種情報が入力部5を通じて入力される。本実施形態において、具体的には、例えば、歯車対の設計歯面修正量の他、各基準歯面に対して付与する各歯面修正量T,R,C,L,Bl,Brの許容範囲(許容歯面修正量)T(r),R(r),C(r),L(r),Bl(r),Br(r)が入力される。また、設計装置1には、歯面加工時に各項目の歯面修正量T,R,C,L,Bl,Brを用いて歯面修正を行う際にそれぞれ想定される仕上げ工法毎の加工誤差量Te,Re,Ce,Le,Ble,Breの各公差範囲Te(r),Re(r),Ce(r),Le(r),Ble(r),Bre(r)が任意に設定される。なお、上述の各公差範囲の設定に際し、設計装置1は、例えば、図18に示す入力画面を、ディスプレイ装置13等の出力部8に表示することが可能となっている。この場合、図示のように、仕上げ工法が歯研である場合には、歯先修正量T及び歯元修正量Rの公差範囲Te(r),Re(r)代わるパラメータとして、歯形丸みFFA及び圧力角誤差FAの公差範囲FFAe(r),FAe(r)が入力可能となっている。また、本実施形態において、この入力画面上には、仕上げ工法毎に入力される項目毎の公差範囲を互いに関連付けて(具体的には、重ね合わせて)イメージ表示することが可能となっている。そして、このような表示機能を有することにより、オペレータは各仕上げ工法に対して設定した公差範囲を視覚的に確認することが可能となっている。 Here, various information set by the operator according to the use of the gear pair, the performance required for the gear pair, and the like are input to the design device 1 through the input unit 5. Specifically, in the present embodiment, for example, in addition to the design tooth surface correction amount of the gear pair, the permissible tooth surface correction amounts T, R, C, L, Bl, Br to be applied to the respective reference tooth surfaces. Ranges (allowable tooth surface correction amounts) T (r) , R (r) , C (r) , L (r) , Bl (r) , Br (r) are input. Further, the design device 1 includes a machining error for each finishing method assumed when performing tooth surface correction using the tooth surface correction amounts T, R, C, L, Bl, and Br of each item during tooth surface processing. The tolerance ranges Te (r) , Re (r) , Ce (r) , Le (r) , Ble (r) , Bre (r) of the quantities Te, Re, Ce, Le, Ble, Bre are arbitrarily set. The In setting the above-described tolerance ranges, the design apparatus 1 can display, for example, the input screen illustrated in FIG. 18 on the output unit 8 such as the display apparatus 13. In this case, as shown in the figure, when the finishing method is a tooth grinding, the tooth profile rounding FFA and the tooth profile correction amount T and the tolerance correction range Te (r) and Re (r) of the tooth base correction amount R are replaced by the tooth profile roundness FFA and The tolerance ranges FFAe (r) and FAe (r) of the pressure angle error FA can be input. In the present embodiment, on this input screen, it is possible to display an image by associating (specifically, overlapping) the tolerance ranges for each item input for each finishing method. . And by having such a display function, the operator can visually confirm the tolerance range set for each finishing method.

また、設計装置1には、実機に歯車対100を組み付ける際に想定される組付誤差Mis(噛み合い条件)の範囲Mis(r)が入力される。この組付誤差Misとは、例えば、歯車対100を実機に組み付けた際に、主としてベアリングのガタ等に起因して発生する静的な組付誤差であり、本実施形態において、具体的には、静的な組付誤差Misとして、歯車軸の食違方向の組付誤差(食違誤差:Deviation error)Misdeviと、歯車軸の平行方向の組付誤差(平行誤差:Inclination error)Misinclとを設定することが可能となっている。これに伴い、設計装置1には、食違誤差:Deviation error)Misdeviの範囲Misdevi(r)と、平行方向の組付誤差(平行誤差:Inclination error)Misinclの範囲Misincl(r)とが入力可能となっている。また、設計装置1には、実機で歯車対100を使用する際の入力トルクTq(噛み合い条件)の実用範囲(実用トルク範囲)Tq(r)が入力されるとともに、後述する伝達誤差量Eに対する評価マップ等が入力される。そして、これら入力部5等を通じて入力された各種入力情報は、記憶部7に格納される。 The design apparatus 1 receives a range Mis (r) of an assembly error Mis (meshing condition) assumed when the gear pair 100 is assembled to the actual machine. This assembly error Mis is, for example, a static assembly error that mainly occurs due to bearing play or the like when the gear pair 100 is assembled to an actual machine. In the present embodiment, specifically, , as a static assembly errors Mis, Shoku違direction of assembly error of the gear shaft (food違誤difference: Deviation error) Mis devi and, in the direction parallel to the gear shaft assembly error (parallel error: Inclination error) Mis incl And can be set. Accordingly, the designing apparatus 1, Food違誤difference: Deviation error) and Mis range devi Mis devi (r), the direction parallel assembly error (parallel error: Inclination error) range Mis incl Mis incl (r) Can be entered. In addition, the design device 1 receives a practical range (practical torque range) Tq (r) of an input torque Tq (meshing condition) when using the gear pair 100 in an actual machine, and is applied to a transmission error amount E described later. An evaluation map or the like is input. Various input information input through the input unit 5 and the like is stored in the storage unit 7.

ここで、伝達誤差量Eに対する評価マップとしては、例えば、図14乃至図16に示すように、食違方向の組付誤差Misdevi(食違誤差:Deviation error)及び入力トルクTq(Input Torque)と、伝達誤差量E(Transmission Error)の良否を判定するための閾値及び目標値との関係を示す3次元マップが入力される。なお、図14乃至図16の評価マップは、平行誤差Misinclを所定の固定値に設定して食違誤差Misdeviを変化させたときのドライブ側の噛み合いを評価するためのものであり、設計装置1には、その他、各種パターンについての評価マップを適宜入力することが可能である。例えば、食違誤差Misdeviを固定値に設定して平行誤差Misinclを変化させたときのドライブ側の噛み合いを評価するための評価マップや、コースト側の噛み合いを評価するための各評価マップ等(図示せず)についても入力することが可能である。 Here, the evaluation map for transmission error amount E, for example, as shown in FIGS. 14 to 16, with Shoku違direction set error Mis devi (Food違誤difference: Deviation error) and the input torque Tq (Input Torque) Then, a three-dimensional map indicating the relationship between the threshold value for determining whether the transmission error amount E (Transmission Error) is good and the target value is input. The evaluation map of FIG. 14 to 16 is intended to evaluate the engagement drive side when set parallel error Mis incl to a predetermined fixed value by varying the food違誤difference Mis devi, design In addition, the apparatus 1 can appropriately input evaluation maps for various patterns. For example, evaluation map and for evaluating the meshing of the drive side when changing the parallel error Mis incl set to a fixed value food違誤difference Mis devi, the evaluation map to evaluate the engagement of coast side such It is also possible to input (not shown).

そして、演算部6は、例えば、記憶部7に格納された設計歯面修正量設定ルーチンのプログラムを実行し、上記各入力情報に基づく各種演算を行うことにより、歯面修正量群設定手段、歯面誤差情報演算手段、伝達誤差量演算手段、歯面修正量群抽出手段、及び、組付誤差量演算手段としての各機能を実現する。   And the calculating part 6 performs the program of the design tooth surface correction amount setting routine stored in the memory | storage part 7, for example, and performs various calculations based on said each input information, A tooth surface correction amount group setting means, Each function as a tooth surface error information calculation unit, a transmission error amount calculation unit, a tooth surface correction amount group extraction unit, and an assembly error amount calculation unit is realized.

すなわち、演算部6は、記憶部7に格納された上述の各種入力情報を読み出し、歯車対の設計情報(設計条件)として設定する。そして、演算部6は、例えば、各歯面修正量T,R,C,L,Bl,Brを各許容修正量T(r),R(r),C(r),L(r),Bl(r),Br(r)の範囲内においてそれぞれ個別に変化させたとき値の組み合わせからなる複数パターンの歯面修正量群G(G,G、・・・、G)を設定する。そして、演算部6は、基本諸元に各歯面修正量T,R,C,L,Bl,Brを付与して歯面加工を行った際に各加工誤差範囲Te(r),Re(r),Ce(r),Le(r),Ble(r),Bre(r)内で製造され得る複数パターンの歯車対を歯面修正量群G毎にシミュレーションし、各歯車対における駆動歯車の基準歯面に対する歯面誤差の分布情報と被動歯車の基準歯面に対する歯面誤差の分布情報とをそれぞれ演算する。さらに、演算部6は、各加工誤差範囲Te(r),Re(r),Ce(r),Le(r),Ble(r),Bre(r)の範囲内でそれぞれ歯面修正量群G毎にシミュレーションされた全ての歯車対に対し、駆動歯車と被動歯車とを予め設定された複数パターンの噛み合い条件(組付誤差Mis,トルクTq)でそれぞれ噛み合わせたときの歯面間の各伝達誤差量Eを、対応する各歯面誤差分布情報に基づいてそれぞれ演算する。この場合において、演算部6は、例えば、実機上で歯車対を噛み合わせて所定トルクTqを付与したときに発生するデフレクションDを、シミュレーション等を用いて演算する。このデフレクションDとは歯車対に所定トルクTqを付与したときの各歯車軸の撓み等に起因する動的な組付誤差であり、具体的には、演算部6は、デフレクションDとして、食違誤差Ddevi及び平行誤差Dinclを、実用トルク範囲Tq(r)内で可変設定したトルク条件(トルクTq)毎にそれぞれ演算する。そして、演算部6は、トルク条件毎に演算した各デフレクションDを用いて各伝達誤差量Eを求める。 That is, the arithmetic unit 6 reads the above-described various input information stored in the storage unit 7 and sets it as gear pair design information (design conditions). Then, for example, the calculation unit 6 converts each tooth surface correction amount T, R, C, L, Bl, Br into each allowable correction amount T (r) , R (r) , C (r) , L (r) , Sets a plurality of patterns of tooth surface correction amount groups G (G 1 , G 2 ,..., G n ) that are combinations of values when individually changed within the range of Bl (r) and Br (r). To do. Then, when the tooth surface machining is performed by assigning each tooth surface correction amount T, R, C, L, Bl, Br to the basic specifications, the calculation unit 6 performs each machining error range Te (r) , Re ( r) , Ce (r) , Le (r) , Ble (r) , Bre (r) simulating a plurality of patterns of gear pairs for each tooth surface correction amount group G, and driving gears in each gear pair The tooth surface error distribution information with respect to the reference tooth surface and the tooth surface error distribution information with respect to the reference tooth surface of the driven gear are respectively calculated. Further, the calculation unit 6 includes a tooth surface correction amount group within each machining error range Te (r) , Re (r) , Ce (r) , Le (r) , Ble (r) , Bre (r). For each gear pair simulated for each G, each of the tooth surfaces when the driving gear and the driven gear are meshed with each other with a plurality of meshing conditions (assembly error Mis, torque Tq) set in advance. The transmission error amount E is calculated based on each corresponding tooth surface error distribution information. In this case, for example, the calculation unit 6 calculates the deflection D that occurs when the predetermined torque Tq is applied by meshing the gear pair on the actual machine, using simulation or the like. The deflection D is a dynamic assembly error caused by the deflection of each gear shaft when a predetermined torque Tq is applied to the gear pair. Specifically, the calculation unit 6 defines the deflection D as: food違誤difference D devi and parallel error D incl, respectively computed for each variable setting torque condition (torque Tq) in the practical torque range Tq (r). And the calculating part 6 calculates | requires each transmission error amount E using each deflection | deviation D calculated for every torque condition.

そして、演算部6は、伝達誤差量Eに対する評価マップを参照して、演算した各伝達誤差量Eのうちの設定割合以上が設定閾値内となる歯面修正量群Gの中から最終的な歯面修正量群Gを抽出する。その際、演算部6は、歯面修正量群Gに対応して演算される各伝達誤差量Eのうちの設定要件を満たす伝達誤差量E(例えば、全ての加工誤差量がゼロのときの各伝達誤差量E)を、予め設定された目標値に基づいて評価することで抽出対象とする歯面誤差修正量群Gを絞り込み、絞り込んだ歯面誤差修正量群Gの中から最良の歯面修正量群Gを適宜抽出する。   Then, the calculation unit 6 refers to the evaluation map for the transmission error amount E, and finally selects the tooth surface correction amount group G from which the set ratio or more of the calculated transmission error amounts E is within the set threshold value. The tooth surface correction amount group G is extracted. At that time, the calculation unit 6 transmits the transmission error amount E that satisfies the setting requirement among the transmission error amounts E calculated corresponding to the tooth surface correction amount group G (for example, when all the processing error amounts are zero). Each transmission error amount E) is evaluated based on a preset target value to narrow down the tooth surface error correction amount group G to be extracted, and the best tooth is selected from the narrowed tooth surface error correction amount group G. The surface correction amount group G is extracted as appropriate.

演算部6は、これらの演算を仕上げ工程毎にそれぞれ行うようになっており、これにより、最適な仕上げ工程を選定するとともに、当該選定した仕上げ工法における最良の歯面修正量群Gに基づいて設定される設計歯面修正量を最終的な設計歯面修正量として選定する。   The calculation unit 6 performs these calculations for each finishing process, thereby selecting an optimal finishing process and based on the best tooth surface correction amount group G in the selected finishing method. The set design tooth surface correction amount is selected as the final design tooth surface correction amount.

次に、演算部6で実行される歯車対の設計処理について、図3に示す設計歯面修正量設定ルーチンのフローチャートに従って詳細に説明する。
ここで、以下の説明においては、はすば歯車対の設計を例に説明する。このはすば歯車対の設計に際し、入力部5を通じたオペレータによる入力によって、記憶部7には、例えば、各歯先修正量Tに対して許容される修正量範囲T(r)として2〜10μmが、各歯元修正量Rに対して許容される修正量範囲R(r)として2〜10μmが、各クラウニング修正量Cに対して許容される修正量範囲C(r)として4〜14μmが、各歯筋タオレ修正量Lに対して許容される修正量範囲L(r)として2〜12μmが、各バイアス修正量Bl,Brに対して許容される修正量範囲Bl(r),Br(r)として0〜15μmが、それぞれ設定されている。また、例えば、図18に示すように、仕上げ工法がシェービングである場合において、歯先修正に対して想定される加工誤差範囲Te(r)として−7〜4μmが、歯元修正に対して想定される加工誤差範囲Re(r)として−4〜6μmが、クラウニング修正に対して想定される加工誤差範囲Ce(r)として−3〜3μmが、歯筋タオレ修正に対して想定される加工誤差範囲Le(r)として−5〜5μmが、バイアス修正に対して想定される加工誤差範囲Ble(r),Bre(r)として−8〜8μmが、それぞれ設定されている。また、仕上げ工法がホーニングである場合において、歯先修正に対して想定される加工誤差範囲Te(r)として−5〜2μmが、歯元修正に対して想定される加工誤差範囲Re(r)として−2〜4μmが、クラウニング修正に対して想定される加工誤差範囲Ce(r)として−2〜2μmが、歯筋タオレ修正に対して想定される加工誤差範囲Le(r)として−4〜4μmが、バイアス修正に対して想定される加工誤差範囲Ble(r),Bre(r)として−7〜7μmが、それぞれ設定されている。また、仕上げ工法が歯研である場合において、歯形丸み修正に対して想定される加工誤差範囲FFAe(r)として−1.5〜1.5μmが、圧力角誤差修正に対して想定される加工誤差範囲FAe(r)として−2〜2μmが、クラウニング修正に対して想定される加工誤差範囲Ce(r)として−1〜1μmが、歯筋タオレ修正に対して想定される加工誤差範囲Le(r)として−3〜3μmが、バイアス修正に対して想定される加工誤差範囲Ble(r),Bre(r)として−5〜5μmが、それぞれ設定されている。さらに、静的な組付誤差Misの範囲、及び入力トルクTqの実用範囲として、食違誤差Misdeviの範囲Misdevi(r)=−0.03〜0.17(deg)、Tq(r)=0〜20(kgfm)がそれぞれ設定されている。なお、以下の説明においては、説明を簡略化するため、静的な平行誤差Misinclを所定の固定値(例えば、Misincl=0)とした場合の一例について説明する。
Next, the gear pair design process executed by the calculation unit 6 will be described in detail with reference to the design tooth surface correction amount setting routine shown in FIG.
Here, in the following description, the design of a helical gear pair will be described as an example. When the helical gear pair is designed, an input by the operator through the input unit 5 causes the storage unit 7 to store, for example, a correction amount range T (r) allowable for each tooth tip correction amount T as 2 to 2. 10 μm is 2 to 10 μm as a correction amount range R (r) allowed for each root correction amount R, and 4 to 14 μm as a correction amount range C (r) allowed for each crowning correction amount C However, 2 to 12 μm is the correction amount range L (r) that is allowed for each tooth trace correction amount L, and the correction amount ranges Bl (r) and Br that are allowed for each bias correction amount Bl and Br. (R) is set to 0 to 15 μm. Further, for example, as shown in FIG. 18, when the finishing method is shaving, −7 to 4 μm is assumed for the tooth root correction as a processing error range Te (r) assumed for the tooth tip correction. -4 to 6 μm as the processing error range Re (r) to be processed, and −3 to 3 μm as the processing error range Ce (r) assumed for the crowning correction is assumed to be a processing error -5 to 5 μm is set as the range Le (r) , and −8 to 8 μm is set as the processing error ranges Ble (r) and Bre (r) assumed for the bias correction. Further, when the finishing method is honing, the processing error range Te (r) assumed for the tooth tip correction is −5 to 2 μm, and the processing error range Re (r) assumed for the tooth base correction. −2 to 4 μm is assumed as a processing error range Ce (r) assumed for the crowning correction, −2 to 2 μm is assumed as a processing error range Le (r) assumed for the tooth trace Taole correction −4 to 4 μm is set to −7 to 7 μm as processing error ranges Ble (r) and Bre (r) assumed for bias correction. Further, in the case where the finishing method is a tooth grinding, a processing error range FFAe (r) assumed for correction of the tooth profile roundness is −1.5 to 1.5 μm, and the processing assumed for the pressure angle error correction is assumed. An error range FAe (r) of −2 to 2 μm is assumed, and a machining error range Ce (r) of −1 to 1 μm assumed for the crowning correction is assumed to be a machining error range Le ( r) is set to −3 to 3 μm, and processing error ranges Ble (r) and Bre (r) assumed to be bias correction are set to −5 to 5 μm, respectively. Moreover, the scope of the static assembly errors Mis, and as a practical range of the input torque Tq, the range of food違誤difference Mis devi Mis devi (r) = -0.03~0.17 (deg), Tq (r) = 0 to 20 (kgfm) is set. In the following description, an example in which the static parallel error Mis incl is set to a predetermined fixed value (for example, Mis incl = 0) will be described in order to simplify the description.

このルーチンがスタートすると、演算部6は、先ず、ステップS101において、オペレータによって設定された各種入力情報を読み込む。すなわち、演算部6は、歯車対の基本諸元、許容修正量範囲T(r),R(r),C(r),L(r),Bl(r),Br(r)、仕上げ工程毎の公差範囲Te(r),Re(r),Ce(r),Le(r),Ble(r),Bre(r)、組付誤差範囲Mis(r)、実用トルク範囲Tq(r)、伝達誤差評価マップ等の各種情報を記憶部7から読み込む。 When this routine starts, the calculation unit 6 first reads various input information set by the operator in step S101. In other words, the calculation unit 6 includes basic specifications of the gear pair, allowable correction amount ranges T (r) , R (r) , C (r) , L (r) , Bl (r) , Br (r) , finishing process. Each tolerance range Te (r) , Re (r) , Ce (r) , Le (r) , Ble (r) , Bre (r) , assembly error range Mis (r) , practical torque range Tq (r) Various information such as a transmission error evaluation map is read from the storage unit 7.

続くステップS102において、演算部6は、シェービング、ホーニング、或いは、歯研の中から、未だ選択されていない仕上げ工法の何れか1つを選択する。   In subsequent step S102, the calculation unit 6 selects any one of the finishing methods that have not yet been selected from shaving, honing, and tooth grinding.

続くステップS103において、演算部6は、各許容修正量T(r),R(r),C(r),L(r),Bl(r),Br(r)に基づいて複数パターンの歯面修正量群Gを設定する。具体的には、演算部6は、歯面修正量群Gとして、例えば、各許容修正量T(r),R(r),C(r),L(r),Bl(r),Br(r)の範囲内で各歯面に対する各項目の歯面修正量TDv1,RDv1,CDv1,LDv1,BlDv1,BrDv1,TDv2,RDv2,CDv2,LDv2,BlDv2,BrDv2,TDn1,RDn1,CDn1,LDn1,BlDn1,BrDn1,TDn2,RDn2,CDn2,LDn2,BlDn2,BrDn2をそれぞれ個別に1μmずつ変化させたときの値の全ての組み合わせを設定する。 In the subsequent step S103, the calculation unit 6 determines a plurality of patterns of teeth based on the permissible correction amounts T (r) , R (r) , C (r) , L (r) , Bl (r) , Br (r). A surface correction amount group G is set. Specifically, the calculation unit 6 uses the allowable correction amounts T (r) , R (r) , C (r) , L (r) , Bl (r) , Br as the tooth surface correction amount group G, for example. Within the range of (r) , the tooth surface correction amount T Dv1 , R Dv1 , C Dv1 , L Dv1 , Bl Dv1 , Br Dv1 , T Dv2 , R Dv2 , C Dv2 , L Dv2 , Bl Dv2 , Br Dv2 , TDn1 , RDn1 , CDn1 , LDn1 , BlDn1 , BrDn1 , TDn2 , RDn2 , CDn2 , LDn2 , BlDn2 , Br Brn Set all combinations of values.

すなわち、演算部6は、歯面修正量群として、例えば、
=(TDv1=2,RDv1=2,CDv1=4,LDv1=2,BlDv1=0,BrDv1=0,TDv2=2,RDv2=2,CDv2=4,LDv2=2,BlDv2=0,BrDv2=0,TDn1=2,RDn1=2,CDn1=4,LDn1=2,BlDn1=0,BrDn1=0,TDn2=2,RDn2=2,CDn2=4,LDn2=2,BlDn2=0,BrDn2=0)、
=(TDv1=3,RDv1=2,CDv1=4,LDv1=2,BlDv1=0,BrDv1=0,TDv2=2,RDv2=2,CDv2=4,LDv2=2,BlDv2=0,BrDv2=0,TDn1=2,RDn1=2,CDn1=4,LDn1=2,BlDn1=0,BrDn1=0,TDn2=2,RDn2=2,CDn2=4,LDn2=2,BlDn2=0,BrDn2=0)、
=(TDv1=4,RDv1=2,CDv1=4,LDv1=2,BlDv1=0,BrDv1=0,TDv2=2,RDv2=2,CDv2=4,LDv2=2,BlDv2=0,BrDv2=0,TDn1=2,RDn1=2,CDn1=4,LDn1=2,BlDn1=0,BrDn1=0,TDn2=2,RDn2=2,CDn2=4,LDn2=2,BlDn2=0,BrDn2=0)、・・・、
n−1=(TDv1=10,RDv1=10,CDv1=14,LDv1=12,BlDv1=15,BrDv1=15,TDv2=10,RDv2=10,CDv2=14,LDv2=12,BlDv2=15,BrDv2=15,TDn1=10,RDn1=10,CDn1=14,LDn1=12,BlDn1=15,BrDn1=15,TDn2=10,RDn2=10,CDn2=14,LDn2=12,BlDn2=15,BrDn2=14)、
=(TDv1=10,RDv1=10,CDv1=14,LDv1=12,BlDv1=15,BrDv1=15,TDv2=10,RDv2=10,CDv2=14,LDv2=12,BlDv2=15,BrDv2=15,TDn1=10,RDn1=10,CDn1=14,LDn1=12,BlDn1=15,BrDn1=15,TDn2=10,RDn2=10,CDn2=14,LDn2=12,BlDn2=15,BrDn2=15)
を設定する。
That is, the calculation unit 6 has, as the tooth surface correction amount group, for example,
G 1 = (T Dv1 = 2, R Dv1 = 2, C Dv1 = 4, L Dv1 = 2, Bl Dv1 = 0, Br Dv1 = 0, T Dv2 = 2, R Dv2 = 2, C Dv2 = 4, L Dv2 = 2, Bl Dv2 = 0, Br Dv2 = 0, T Dn1 = 2, R Dn1 = 2, C Dn1 = 4, L Dn1 = 2, Bl Dn1 = 0, Br Dn1 = 0, T Dn2 = 2, R Dn2 = 2, CDn2 = 4, LDn2 = 2, BlDn2 = 0, BrDn2 = 0),
G 2 = (T Dv1 = 3, R Dv1 = 2, C Dv1 = 4, L Dv1 = 2, Bl Dv1 = 0, Br Dv1 = 0, T Dv2 = 2, R Dv2 = 2, C Dv2 = 4, L Dv2 = 2, Bl Dv2 = 0, Br Dv2 = 0, T Dn1 = 2, R Dn1 = 2, C Dn1 = 4, L Dn1 = 2, Bl Dn1 = 0, Br Dn1 = 0, T Dn2 = 2, R Dn2 = 2, CDn2 = 4, LDn2 = 2, BlDn2 = 0, BrDn2 = 0),
G 3 = (T Dv1 = 4, R Dv1 = 2, C Dv1 = 4, L Dv1 = 2, Bl Dv1 = 0, Br Dv1 = 0, T Dv2 = 2, R Dv2 = 2, C Dv2 = 4, L Dv2 = 2, Bl Dv2 = 0, Br Dv2 = 0, T Dn1 = 2, R Dn1 = 2, C Dn1 = 4, L Dn1 = 2, Bl Dn1 = 0, Br Dn1 = 0, T Dn2 = 2, R Dn2 = 2, CDn2 = 4, LDn2 = 2, BlDn2 = 0, BrDn2 = 0),...
G n-1 = (T Dv1 = 10, R Dv1 = 10, C Dv1 = 14, L Dv1 = 12, Bl Dv1 = 15, Br Dv1 = 15, T Dv2 = 10, R Dv2 = 10, C Dv2 = 14 , L Dv2 = 12, Bl Dv2 = 15, Br Dv2 = 15, T Dn1 = 10, R Dn1 = 10, C Dn1 = 14, L Dn1 = 12, Bl Dn1 = 15, Br Dn1 = 15, T Dn2 = 10 , R Dn2 = 10, C Dn2 = 14, L Dn2 = 12, Bl Dn2 = 15, Br Dn2 = 14),
G n = (T Dv1 = 10, R Dv1 = 10, C Dv1 = 14, L Dv1 = 12, Bl Dv1 = 15, Br Dv1 = 15, T Dv2 = 10, R Dv2 = 10, C Dv2 = 14, L Dv2 = 12, Bl Dv2 = 15, Br Dv2 = 15, T Dn1 = 10, R Dn1 = 10, C Dn1 = 14, L Dn1 = 12, Bl Dn1 = 15, Br Dn1 = 15, T Dn2 = 10, R Dn2 = 10, C Dn2 = 14, L Dn2 = 12, Bl Dn2 = 15, Br Dn2 = 15)
Set.

続くステップS104において、演算部6は、ステップS103で設定した歯面修正量群G〜Gの中から何れか1つの歯面修正量群Gを選択する。 In subsequent step S104, the calculation unit 6 selects any one tooth surface correction amount group G from the tooth surface correction amount groups G 1 to G n set in step S103.

そして、ステップS105に進むと、演算部6は、例えば、図4に示す歯面誤差演算サブルーチンのプログラムを実行し、選択した歯面修正量群Gに基づいて各加工誤差範囲Te(r),Re(r),Ce(r),Le(r),Ble(r),Bre(r)内で加工され得る各歯車対について、駆動歯車及び被動歯車のドライブ側及びコースト側それぞれの歯面誤差分布情報を演算する。 Then, when proceeding to step S105, the calculation unit 6 executes a program of a tooth surface error calculation subroutine shown in FIG. 4, for example, and based on the selected tooth surface correction amount group G, each processing error range Te (r) , For each gear pair that can be processed in Re (r) , Ce (r) , Le (r) , Ble (r) , Bre (r) , tooth surface errors on the drive side and the coast side of the drive gear and the driven gear, respectively. Calculate distribution information.

すなわち、このサブルーチンがスタートすると、ステップS201において、演算部6は、現在選択中の仕上げ工法に対応する各加工誤差範囲Te(r),Re(r),Ce(r),Le(r),Ble(r),Bre(r)に基づいて複数パターンの加工誤差量群Geを設定する。具体的には、演算部6は、加工誤差量群Geとして、例えば、各加工誤差範囲Te(r),Re(r),Ce(r),Le(r),Ble(r),Bre(r)内で各歯面に対する各項目の加工誤差量TeDv1,ReDv1,CeDv1,LeDv1,BleDv1,BreDv1,TeDv2,ReDv2,CeDv2,LeDv2,BleDv2,BreDv2,TeDn1,ReDn1,CeDn1,LeDn1,BleDn1,BreDn1,TeDn2,ReDn2,CeDn2,LeDn2,BleDn2,BreDn2をそれぞれ個別に1μmずつ変化させたときの値の全ての組み合わせを設定する。 That is, when this subroutine is started, in step S201, the arithmetic unit 6 causes the machining error ranges Te (r) , Re (r) , Ce (r) , Le (r) , Le (r) , corresponding to the currently selected finishing method. Based on Ble (r) and Bre (r) , a processing error amount group Ge of a plurality of patterns is set. Specifically, the calculation unit 6 uses, for example, each processing error range Te (r) , Re (r) , Ce (r) , Le (r) , Ble (r) , Bre ( r) machining error amount of each item for each tooth surface in Te Dv1, Re Dv1, Ce Dv1 , Le Dv1, Ble Dv1, Bre Dv1, Te Dv2, Re Dv2, Ce Dv2, Le Dv2, Ble Dv2, Bre Dv2, Te Dn1, Re Dn1, Ce Dn1 , Le Dn1, Ble Dn1, Bre Dn1, Te Dn2, Re Dn2, Ce Dn2, Le Dn2, Ble Dn2, all of the values when the Bre Dn2 respectively allowed individually changed by 1μm Set the combination.

すなわち、演算部6は、例えば、仕上げ工法がシェービングである場合の加工誤差量群Geとして、例えば、
Ge=(TeDv1=−7,ReDv1=−4,CeDv1=−3,LeDv1=−5,BleDv1=−8,BreDv1=−8,TeDv2=−7,ReDv2=−4,CeDv2=−3,LeDv2=−5,BleDv2=−8,BreDv2=−8,TeDn1=−7,ReDn1=−4,CeDn1=−3,LeDn1=−5,BleDn1=−8,BreDn1=−8,TeDn2=−7,ReDn2=−4,CeDn2=−3,LeDn2=−5,BleDn2=−8,BreDn2=−8)、
Ge=(TeDv1=−6,ReDv1=−4,CeDv1=−3,LeDv1=−5,BleDv1=−8,BreDv1=−8,TeDv2=−7,ReDv2=−4,CeDv2=−3,LeDv2=−5,BleDv2=−8,BreDv2=−8,TeDn1=−7,ReDn1=−4,CeDn1=−3,LeDn1=−5,BleDn1=−8,BreDn1=−8,TeDn2=−7,ReDn2=−4,CeDn2=−3,LeDn2=−5,BleDn2=−8,BreDn2=−8)、
Ge=(TeDv1=−5,ReDv1=−4,CeDv1=−3,LeDv1=−5,BleDv1=−8,BreDv1=−8,TeDv2=−7,ReDv2=−4,CeDv2=−3,LeDv2=−5,BleDv2=−8,BreDv2=−8,TeDn1=−7,ReDn1=−4,CeDn1=−3,LeDn1=−5,BleDn1=−8,BreDn1=−8,TeDn2=−7,ReDn2=−4,CeDn2=−3,LeDn2=−5,BleDn2=−8,BreDn2=−8)、・・・、
Gem−1=(TeDv1=4,ReDv1=6,CeDv1=3,LeDv1=5,BleDv1=8,BreDv1=8,TeDv2=4,ReDv2=6,CeDv2=3,LeDv2=5,BleDv2=8,BreDv2=8,TeDn1=4,ReDn1=6,CeDn1=3,LeDn1=5,BleDn1=8,BreDn1=8,TeDn2=4,ReDn2=6,CeDn2=3,LeDn2=5,BleDn2=8,BreDn2=7)、
Ge=(TeDv1=4,ReDv1=6,CeDv1=3,LeDv1=5,BleDv1=8,BreDv1=8,TeDv2=4,ReDv2=6,CeDv2=3,LeDv2=5,BleDv2=8,BreDv2=8,TeDn1=4,ReDn1=6,CeDn1=3,LeDn1=5,BleDn1=8,BreDn1=8,TeDn2=4,ReDn2=6,CeDn2=3,LeDn2=5,BleDn2=8,BreDn2=8)
を設定する。
That is, for example, the calculation unit 6 has, for example, a processing error amount group Ge when the finishing method is shaving.
Ge 1 = (Te Dv1 = −7, Re Dv1 = −4, Ce Dv1 = −3, Le Dv1 = −5, Ble Dv1 = −8, Bre Dv1 = −8, Te Dv2 = −7, Re Dv2 = − 4, Ce Dv2 = -3, Le Dv2 = -5, Ble Dv2 = -8, Bre Dv2 = -8, Te Dn1 = -7, Re Dn1 = -4, Ce Dn1 = -3, Le Dn1 = -5 Ble Dn1 = -8, Bre Dn1 = -8, Te Dn2 = -7, Re Dn2 = -4, Ce Dn2 = -3, Le Dn2 = -5, Ble Dn2 = -8, Bre Dn2 = -8),
Ge 2 = (Te Dv1 = −6, Re Dv1 = −4, Ce Dv1 = −3, Le Dv1 = −5, Ble Dv1 = −8, Bre Dv1 = −8, Te Dv2 = −7, Re Dv2 = − 4, Ce Dv2 = -3, Le Dv2 = -5, Ble Dv2 = -8, Bre Dv2 = -8, Te Dn1 = -7, Re Dn1 = -4, Ce Dn1 = -3, Le Dn1 = -5 Ble Dn1 = -8, Bre Dn1 = -8, Te Dn2 = -7, Re Dn2 = -4, Ce Dn2 = -3, Le Dn2 = -5, Ble Dn2 = -8, Bre Dn2 = -8),
Ge 3 = (Te Dv1 = −5, Re Dv1 = −4, Ce Dv1 = −3, Le Dv1 = −5, Ble Dv1 = −8, Bre Dv1 = −8, Te Dv2 = −7, Re Dv2 = − 4, Ce Dv2 = -3, Le Dv2 = -5, Ble Dv2 = -8, Bre Dv2 = -8, Te Dn1 = -7, Re Dn1 = -4, Ce Dn1 = -3, Le Dn1 = -5 Ble Dn1 = -8, Bre Dn1 = -8, Te Dn2 = -7, Re Dn2 = -4, Ce Dn2 = -3, Le Dn2 = -5, Ble Dn2 = -8, Bre Dn2 = -8),・ ・,
Ge m-1 = (Te Dv1 = 4, Re Dv1 = 6, Ce Dv1 = 3, Le Dv1 = 5, Ble Dv1 = 8, Bre Dv1 = 8, Te Dv2 = 4, Re Dv2 = 6, Ce Dv2 = 3 , Le Dv2 = 5, Ble Dv2 = 8, Bre Dv2 = 8, Te Dn1 = 4, Re Dn1 = 6, Ce Dn1 = 3, Le Dn1 = 5, Ble Dn1 = 8, Bre Dn1 = 8, Te Dn2 = 4 , Re Dn2 = 6, Ce Dn2 = 3, Le Dn2 = 5, Ble Dn2 = 8, Bre Dn2 = 7),
Ge m = (Te Dv1 = 4, Re Dv1 = 6, Ce Dv1 = 3, Le Dv1 = 5, Ble Dv1 = 8, Bre Dv1 = 8, Te Dv2 = 4, Re Dv2 = 6, Ce Dv2 = 3, Le Dv2 = 5, Ble Dv2 = 8, Bre Dv2 = 8, Te Dn1 = 4, Re Dn1 = 6, Ce Dn1 = 3, Le Dn1 = 5, Ble Dn1 = 8, Bre Dn1 = 8, Te Dn2 = 4, Re Dn2 = 6, Ce Dn2 = 3, Le Dn2 = 5, Ble Dn2 = 8, Bre Dn2 = 8)
Set.

続くステップS202において、演算部6は、ステップS201で設定した加工誤差量群Ge〜Geの中から何れか1つの加工誤差量群Geを選択する。 In subsequent step S202, the calculation unit 6 selects any one processing error amount group Ge from the processing error amount groups Ge 1 to Ge m set in step S201.

そして、ステップS203において、演算部6は、現在選択されている歯面修正量群Gと加工誤差量群Geとに基づいて製造される(シミュレーションされる)歯車対の各歯面(駆動歯車及び被動歯車のドライブ側及びコースト側の各歯面)の歯面誤差分布情報として、それぞれ3行×3列の歯面誤差分布情報を算出する。すなわち、図6に示すように、演算部6は、各基準歯面上における有効歯面の中心(P(1,1))と、有効歯面の四隅(P(0,0)、P(0,2)、P(2,0)、P(2,2))と、有効歯面を囲む各辺の中心(P(0,1)、P(1,0)、P(1,2)、P(2,1))に対し、それぞれ該当する各歯面修正量及び各加工誤差量を付与することで、各基準歯面に対する3行×3列の歯面誤差分布情報を算出する。   Then, in step S203, the calculation unit 6 manufactures (simulates) each tooth surface (drive gear and drive gear) manufactured (simulated) based on the currently selected tooth surface correction amount group G and machining error amount group Ge. The tooth surface error distribution information of 3 rows × 3 columns is calculated as the tooth surface error distribution information of each tooth surface of the driven gear (drive side and coast side tooth surfaces). That is, as shown in FIG. 6, the calculation unit 6 includes the center (P (1, 1)) of the effective tooth surface on each reference tooth surface and the four corners (P (0, 0), P ( 0,2), P (2,0), P (2,2)) and the center of each side (P (0,1), P (1,0)), P (1,2) surrounding the effective tooth surface ), P (2,1)), the tooth surface error distribution information of 3 rows × 3 columns with respect to each reference tooth surface is calculated by giving each corresponding tooth surface correction amount and each processing error amount. .

具体的には、駆動歯車が右ネジレの場合、歯筋タオレ量は強ネジレ方向を正、バイアス修正量はバイアスインを正とすると、駆動歯車のドライブ側歯面における各点の歯面修正量は、
Dv1(0,0)=TDv1+CDv1+LDv1/2−BlDv1/2+TeDv1+CeDv1+LeDv1/2−BleDv1/2
Dv1(0,1)=TDv1+TeDv1
Dv1(0,2)=TDv1+CDv1−LDv1/2+BrDv1/2+TeDv1+CeDv1−LeDv1/2+BreDv1/2
Dv1(1,0)=CDv1+LDv1/2+CeDv1+LeDv1/2
Dv1(1,1)=0
Dv1(1,2)=CDv1−LDv1/2+CeDv1−LeDv1/2
Dv1(2,0)=RDv1+CDv1+LDv1/2+BlDv1/2+ReDv1+CeDv1+LeDv1/2+BleDv1/2
Dv1(2,1)=RDv1+ReDv1
Dv1(2,2)=RDv1+CDv1−LDv1/2−BreDv1/2+ReDv1+CeDv1−LeDv1/2−BreDv1/2
となる。
Specifically, when the drive gear is right-twisted, the tooth trace amount is positive in the direction of strong twist, and the bias correction amount is positive in bias-in. Is
P Dv1 (0,0) = T Dv1 + C Dv1 + L Dv1 / 2-Bl Dv1 / 2 + Te Dv1 + Ce Dv1 + Le Dv1 / 2-Ble Dv1 / 2
P Dv1 (0,1) = T Dv1 + Te Dv1
P Dv1 (0,2) = T Dv1 + C Dv1 −L Dv1 / 2 + Br Dv1 / 2 + Te Dv1 + Ce Dv1 −Le Dv1 / 2 ++ Bre Dv1 / 2
P Dv1 (1, 0) = C Dv1 + L Dv1 / 2 + Ce Dv1 + Le Dv1 / 2
P Dv1 (1,1) = 0
P Dv1 (1,2) = C Dv1 −L Dv1 / 2 + Ce Dv1 −Le Dv1 / 2
P Dv1 (2,0) = R Dv1 + C Dv1 + L Dv1 / 2 + Bl Dv1 / 2 + Re Dv1 + Ce Dv1 + Le Dv1 / 2 + Ble Dv1 / 2
P Dv1 (2,1) = R Dv1 + Re Dv1
P Dv1 (2,2) = R Dv1 + C Dv1 −L Dv1 / 2−Bre Dv1 / 2 + Re Dv1 + Ce Dv1 −Le Dv1 / 2−Bre Dv1 / 2
It becomes.

また、駆動歯車のコースト側歯面における各点の歯面修正量は、
Dv2(0,0)=TDv2+CDv2+LDv2/2−BlDv2/2+TeDv2+CeDv2+LeDv2/2−BleDv2/2
Dv2(0,1)=TDv2+TeDv2
Dv2(0,2)=TDv2+CDv2−LDv2/2+BrDv2/2+TeDv2+CeDv2−LeDv2/2+BreDv2/2
Dv2(1,0)=CDv2+LDv2/2+CeDv2+LeDv2/2
Dv2(1,1)=0
Dv2(1,2)=CDv2−LDv2/2+CeDv2−LeDv2/2
Dv2(2,0)=RDv2+CDv2+LDv2/2+BlDv2/2+ReDv2+CeDv2+LeDv2/2+BleDv2/2
Dv2(2,1)=RDv2+ReDv2
Dv2(2,2)=RDv2+CDv2−LDv2/2−BreDv2/2+ReDv2+CeDv2−LeDv2/2−BreDv2/2
となる。
In addition, the tooth surface correction amount of each point on the coast side tooth surface of the drive gear is
P Dv2 (0,0) = T Dv2 + C Dv2 + L Dv2 / 2-Bl Dv2 / 2 + Te Dv2 + Ce Dv2 + Le Dv2 / 2-Ble Dv2 / 2
P Dv2 (0,1) = T Dv2 + Te Dv2
P Dv2 (0,2) = T Dv2 + C Dv2 −L Dv2 / 2 + Br Dv2 / 2 + Te Dv2 + Ce Dv2 −Le Dv2 / 2 ++ Bre Dv2 / 2
P Dv2 (1, 0) = C Dv2 + L Dv2 / 2 + Ce Dv2 + Le Dv2 / 2
P Dv2 (1,1) = 0
P Dv2 (1,2) = C Dv2 −L Dv2 / 2 + Ce Dv2 −Le Dv2 / 2
P Dv2 (2,0) = R Dv2 + C Dv2 + L Dv2 / 2 + Bl Dv2 / 2 + Re Dv2 + Ce Dv2 + Le Dv2 / 2 + Ble Dv2 / 2
P Dv2 (2,1) = R Dv2 + Re Dv2
P Dv2 (2,2) = R Dv2 + C Dv2 −L Dv2 / 2−Bre Dv2 / 2 + Re Dv2 + Ce Dv2 −Le Dv2 / 2−Bre Dv2 / 2
It becomes.

また、被動歯車のドライブ側歯面における各点の歯面修正量は、
Dn1(0,0)=TDn1+CDn1−LDn1/2+BlDn1/2+TeDn1+CeDn1−LeDn1/2+BleDn1/2
Dn1(0,1)=TDn1+TeDn1
Dn1(0,2)=TDn1+CDn1+LDn1/2−BrDn1/2+TeDn1+CeDn1+LeDn1/2−BreDn1/2
Dn1(1,0)=CDn1−LDn1/2+CeDn1−LeDn1/2
Dn1(1,1)=0
Dn1(1,2)=CDn1+LDn1/2+CeDn1+LeDn1/2
Dn1(2,0)=RDn1+CDn1−LDn1/2−BlDn1/2+ReDn1+CeDn1−LeDn1/2−BleDn1/2
Dn1(2,1)=RDn1+ReDn1
Dn1(2,2)=RDn1+CDn1+LDn1/2+BrDn1/2+ReDn1+CeDn1+LeDn1/2+BreDn1/2
となる。
In addition, the tooth surface correction amount of each point on the drive side tooth surface of the driven gear is
P Dn1 (0,0) = T Dn1 + C Dn1 −L Dn1 / 2 + Bl Dn1 / 2 + Te Dn1 + Ce Dn1 −Le Dn1 / 2 + Ble Dn1 / 2
P Dn1 (0,1) = T Dn1 + Te Dn1
P Dn1 (0,2) = T Dn1 + C Dn1 + L Dn1 / 2-Br Dn1 / 2 + Te Dn1 + Ce Dn1 + Le Dn1 / 2-Bre Dn1 / 2
P Dn1 (1, 0) = C Dn1 −L Dn1 / 2 + Ce Dn1 −Le Dn1 / 2
P Dn1 (1,1) = 0
P Dn1 (1,2) = C Dn1 + L Dn1 / 2 + Ce Dn1 + Le Dn1 / 2
P Dn1 (2,0) = R Dn1 + C Dn1 −L Dn1 / 2−Bl Dn1 / 2 + Re Dn1 + Ce Dn1 −Le Dn1 / 2−Ble Dn1 / 2
P Dn1 (2,1) = R Dn1 + Re Dn1
P Dn1 (2,2) = R Dn1 + C Dn1 + L Dn1 / 2 + Br Dn1 / 2 + Re Dn1 + Ce Dn1 + Le Dn1 / 2 + Bre Dn1 / 2
It becomes.

また、被動歯車のコースト側歯面における各点の歯面修正量は、
Dn2(0,0)=TDn2+CDn2−LDn2/2+BlDn2/2+TeDn2+CeDn2−LeDn2/2+BleDn2/2
Dn2(0,1)=TDn2+TeDn2
Dn2(0,2)=TDn2+CDn2+LDn2/2−BrDn2/2+TeDn2+CeDn2+LeDn2/2−BreDn2/2
Dn2(1,0)=CDn2−LDn2/2+CeDn2−LeDn2/2
Dn2(1,1)=0
Dn2(1,2)=CDn2+LDn2/2+CeDn2+LeDn2/2
Dn2(2,0)=RDn2+CDn2−LDn2/2−BlDn2/2+ReDn2+CeDn2−LeDn2/2−BleDn2/2
Dn2(2,1)=RDn2+ReDn2
Dn2(2,2)=RDn2+CDn2+LDn2/2+BrDn2/2+ReDn2+CeDn2+LeDn2/2+BreDn2/2
となる。
In addition, the tooth surface correction amount of each point on the coast side tooth surface of the driven gear is
P Dn2 (0,0) = T Dn2 + C Dn2 −L Dn2 / 2 + Bl Dn2 / 2 + Te Dn2 + Ce Dn2 −Le Dn2 / 2 + Ble Dn2 / 2
P Dn2 (0,1) = T Dn2 + Te Dn2
P Dn2 (0,2) = T Dn2 + C Dn2 + L Dn2 / 2-Br Dn2 / 2 + Te Dn2 + Ce Dn2 + Le Dn2 / 2-Bre Dn2 / 2
P Dn2 (1, 0) = C Dn2 −L Dn2 / 2 + Ce Dn2 −Le Dn2 / 2
P Dn2 (1,1) = 0
P Dn2 (1,2) = C Dn2 + L Dn2 / 2 + Ce Dn2 + Le Dn2 / 2
P Dn2 (2,0) = R Dn2 + C Dn2 −L Dn2 / 2−Bl Dn2 / 2 + Re Dn2 + Ce Dn2 −Le Dn2 / 2−Ble Dn2 / 2
P Dn2 (2,1) = R Dn2 + Re Dn2
P Dn2 (2,2) = R Dn2 + C Dn2 + L Dn2 / 2 + Br Dn2 / 2 + Re Dn2 + Ce Dn2 + Le Dn2 / 2 + Bre Dn2 / 2
It becomes.

なお、仕上げ工法が歯研である場合、上述の各点の歯面修正量の計算式中において、TDv1に対して(FFADv1+FADv1/2)が、TeDv1に対して(FFAeDv1+FAeDv1/2)が、RDv1に対して(FFADv1−FADv1/2)が、ReDv1に対して(FFAeDv1−FAeDv1/2)が、TDv2に対して(FFADv2+FADv2/2)が、TeDv2に対して(FFAeDv2+FAeDv2/2)が、RDv2に対して(FFADv2−FADv2/2)が、ReDv2に対して(FFAeDv2−FAeDv2/2)が、それぞれ代入される。また、駆動歯車が左ネジレの場合、上述の各点において、歯筋タオレ修正量、及び、バイアス修正量に係る加減算は逆となる。 When the finishing method is tooth grinding, in the above calculation formula of the tooth surface correction amount at each point, (FFA Dv1 + FA Dv1 / 2) for T Dv1 and (FFAe Dv1 + FAe) for Te Dv1 . Dv1 / 2) is, with respect to R Dv1 (FFA Dv1 -FA Dv1 / 2) is, with respect to Re Dv1 is (FFAe Dv1 -FAe Dv1 / 2) , with respect to T Dv2 (FFA Dv2 + FA Dv2 / 2 ) For Te Dv2 , (FFAe Dv2 + FAe Dv2 / 2), for R Dv2 , (FFA Dv2- FA Dv2 / 2), for Re Dv2 , (FFAe Dv2- FAe Dv2 / 2), Assigned respectively. When the drive gear is left-handed, the addition / subtraction relating to the tooth trace correction amount and the bias correction amount is reversed at each point described above.

続くステップS204において、演算部6は、例えば多点スプライン補間法を用いてステップS203で算出された各歯面における歯面誤差分布情報の補間計算を行い、各歯筋方向のサンプル間隔が例えば0.1mmとなる3行×oDv1列、3行×oDv2列、3行×oDn1列、3行×oDn2列の各歯面誤差分布情報を演算する。 In subsequent step S204, the calculation unit 6 performs interpolation calculation of the tooth surface error distribution information in each tooth surface calculated in step S203 using, for example, a multipoint spline interpolation method, and the sample interval in each tooth trace direction is, for example, 0. Each tooth surface error distribution information of 3 rows × o Dv1 column, 3 rows × o Dv2 column, 3 rows × o Dn1 column, 3 rows × o Dn2 column to be 1 mm is calculated.

すなわち、演算部6は、例えば、(1)式に示すように、歯面誤差の各データ列を用いて、歯筋方向をx軸とするスプライン近似式を列毎にそれぞれ求め、この近似式から補間データを算出することで所望サンプル間隔のデータ群を取得する。

Figure 2010165181
That is, for example, as shown in Equation (1), the calculation unit 6 uses each data sequence of tooth surface errors to obtain a spline approximation formula with the tooth trace direction as the x axis for each column, and this approximation formula A data group of a desired sample interval is obtained by calculating interpolation data from
Figure 2010165181

ここで、(1)式において、前段の関数は近似式全体の傾向を表す項であり、同項のAk-1〜A0は、データ列の中から所定に抽出したk個の歯面誤差データに基づいてそれぞれ設定される係数である。また、(1)式において、後段の関数は隣り合うデータ間を滑らかに連結するための項であり、同項のCiは、互いに隣り合うデータ対に基づいてそれぞれ設定される係数である。   Here, in the expression (1), the preceding function is a term representing the tendency of the approximate expression as a whole, and Ak-1 to A0 in the same term are k tooth surface error data extracted in advance from the data string. Is a coefficient set based on each. In equation (1), the latter function is a term for smoothly connecting adjacent data, and Ci in the same term is a coefficient set based on adjacent data pairs.

ステップS204からステップS205に進むと、全ての加工誤差量群Geに対応する歯車対の各歯面誤差分布情報を演算したか否かを調べる。その結果、演算部6は、全ての加工誤差量群Geに対応する歯車対の各歯面誤差分布情報が演算されていないと判定した場合には、ステップS202に戻る。一方、全ての加工誤差量群Geに対応する歯車対の各歯面誤差分布情報が演算されたと判定した場合には、サブルーチンを抜ける。   When the process proceeds from step S204 to step S205, it is checked whether or not the tooth surface error distribution information of the gear pairs corresponding to all the processing error amount groups Ge has been calculated. As a result, when it is determined that the tooth surface error distribution information of the gear pairs corresponding to all the processing error amount groups Ge is not calculated, the calculation unit 6 returns to step S202. On the other hand, if it is determined that the tooth surface error distribution information of the gear pairs corresponding to all the processing error amount groups Ge has been calculated, the subroutine is exited.

メインルーチンにおいて、ステップS104からステップS105に進むと、演算部6は、例えば、図5に示す伝達誤差量演算サブルーチンのプログラムを実行し、選択した歯面修正量群Gに基づいて加工され得る各歯車対を複数パターンの噛み合い条件で噛み合わせたときの各伝達誤差量Eをそれぞれ演算する。   In the main routine, when proceeding from step S104 to step S105, the calculation unit 6 executes a program of a transmission error amount calculation subroutine shown in FIG. 5, for example, and can be processed based on the selected tooth surface correction amount group G. Each transmission error amount E when the gear pair is meshed with a plurality of patterns of meshing conditions is calculated.

このサブルーチンにおいて、演算部6は、先ず、ステップS301〜306の処理により、歯車対(例えば、基本諸元に基づいて得られる歯車対)に対して実用トルク範囲Tq(r)内の各トルクTqを付与したときの各デフレクションDを演算する。すなわち、サブルーチンがスタートすると、演算部6は、ステップS301において、歯車対100に対して付与するトルクTqの初期値として、例えば、実用トルク範囲Tq(r)内におけるトルクの最小値(例えば、Tq=0(kgfm))を設定する。 In this subroutine, first, the calculation unit 6 performs each of the torques Tq within the practical torque range Tq (r) with respect to a gear pair (for example, a gear pair obtained based on basic specifications) by the processing in steps S301 to S306. Each deflection D is calculated when. That is, when the subroutine is started, the calculation unit 6 determines, as the initial value of the torque Tq to be applied to the gear pair 100 in step S301, for example, the minimum value of torque within the practical torque range Tq (r) (for example, Tq = 0 (kgfm)).

続くステップS302において、演算部6は、シミュレーション上において、歯車対にトルクTqを付与したときの噛み合いモデルを演算する。   In subsequent step S302, the calculation unit 6 calculates a meshing model when the torque Tq is applied to the gear pair on the simulation.

そして、ステップS303に進むと、演算部6は、ステップ302で演算した噛み合いモデル上において、駆動ギヤ及び被動ギヤの各変位量(すなわち、駆動ギヤ及び被動ギヤの無負荷状態からの各タオレ量)を計測する。ここで、演算部6は、駆動ギヤの一側面において、駆動ギヤ軸を中心とする同一円上の対象位置4点での各変位量を計測すると共に、被動ギヤの一側面において、被動ギヤ軸を中心とする同一円上の対象位置4点での各変位量を計測する。   Then, when the process proceeds to step S303, the calculation unit 6 determines each displacement amount of the driving gear and the driven gear on the meshing model calculated in step 302 (that is, each amount of displacement from the unloaded state of the driving gear and the driven gear). Measure. Here, the calculation unit 6 measures each displacement amount at four target positions on the same circle centered on the drive gear shaft on one side of the drive gear, and on one side of the driven gear, the driven gear shaft. Each displacement amount is measured at four target positions on the same circle centered on.

より具体的には、例えば、図19に示すように、シミュレーション上の歯車対において、演算部6は、駆動ギヤ(Drive)の一側面上の被動ギヤ(Driven)との噛み合い位置の直近傍に、第1計測点M1Dvを設定するとともに、駆動ギヤの回転軸を基準とする第1計測点M1Dvの2回対称位置(すなわち、第1計測点M1Dvを180°回転移動させた位置)に第2計測点M2Dvを設定する。さらに、駆動ギヤの回転軸を基準とする第1,第2計測点M1Dv,M2Dvの各4回対称位置(すなわち、第1,第2計測点M1Dv,M2Dvをそれぞれ90°回転移動させた位置)に第3,第4計測点M3Dv,M4Dvをそれぞれ設定する。そして、演算部6は、設定した各計測点M1Dv〜M4Dvにおける駆動ギヤの各変位量を計測する(すなわち、シミュレーション上において演算する)。また、演算部6は、被動ギヤの一側面上の駆動ギヤとの噛み合い位置の直近傍に、第2計測点M2Dnを設定するとともに、被動ギヤの回転軸を基準とする第2計測点M2Dnの2回対称位置に第1計測点M1Dnを設定する。さらに、駆動ギヤの回転軸を基準とする第1,第2計測点M1Dn,M2Dnの各4回対称位置に第3,第4計測点M3Dn,M4Dnをそれぞれ設定する。そして、演算部6は、設定した各計測点M1Dn〜M4Dnにおける被動ギヤの各変位量を計測する(すなわち、シミュレーション上において演算する)。 More specifically, for example, as shown in FIG. 19, in the gear pair in the simulation, the calculation unit 6 is located in the immediate vicinity of the meshing position with the driven gear (Driven) on one side of the drive gear (Drive). The first measurement point M1 Dv is set, and the two-fold symmetrical position of the first measurement point M1 Dv with respect to the rotation axis of the drive gear (that is, the position where the first measurement point M1 Dv is rotated 180 °) To the second measurement point M2 Dv . Further, first, second measurement point M1 Dv, M2 each four symmetrical positions of Dv (i.e., first, second measurement point M1 Dv, M2 Dv each 90 ° rotational movement relative to the axis of rotation of the drive gear The third and fourth measurement points M3 Dv and M4 Dv are set at the position). And the calculating part 6 measures each displacement amount of the drive gear in each set measurement point M1 Dv- M4 Dv (namely, it calculates on simulation). The calculation unit 6 sets the second measurement point M2 Dn in the immediate vicinity of the meshing position with the drive gear on one side of the driven gear, and the second measurement point M2 based on the rotation axis of the driven gear. A first measurement point M1 Dn is set at a two-fold symmetrical position of Dn . Further, the third and fourth measurement points M3 Dn and M4 Dn are set at the four-fold symmetrical positions of the first and second measurement points M1 Dn and M2 Dn with respect to the rotation axis of the drive gear. The calculation unit 6 measures the respective displacement of the driven gear at each measurement point M1 Dn through M4 Dn set (i.e., calculated in the simulation).

ステップS304に進むと、演算部6は、例えば、現在のトルクTqを所定トルクΔTq(例えば、ΔTq=1.2(kgfm))増量側に更新する(Tq←Tq+ΔTq)。   In step S304, for example, the calculation unit 6 updates the current torque Tq to a predetermined torque ΔTq (for example, ΔTq = 1.2 (kgfm)) increase side (Tq ← Tq + ΔTq).

続くステップS305において、演算部6は、例えば、更新したトルクTqが実用トルク範囲Tq(r)外の値であるか否かを調べることにより、実用トルク範囲Tq(r)内でトルクTqを所定トルクΔTq変化させた毎の駆動ギヤ及び被動ギヤの各変位量の計測が終了したか否かを調べる。 In subsequent step S305, the calculation unit 6 determines the torque Tq within the practical torque range Tq (r) by, for example, checking whether or not the updated torque Tq is outside the practical torque range Tq (r) . It is checked whether or not the measurement of each displacement amount of the driving gear and the driven gear for each change of the torque ΔTq is completed.

そして、ステップS305において、更新したトルクTqが未だ実用トルク範囲Tq(r)以内の値であり、未だ所定トルクΔTq毎の駆動ギヤ及び被動ギヤの各変位量の計測が終了していないと判定すると、演算部6は、ステップS302に戻る。 In step S305, when it is determined that the updated torque Tq is still a value within the practical torque range Tq (r) , and the measurement of the displacement amounts of the drive gear and the driven gear for each predetermined torque ΔTq has not been completed yet. The calculation unit 6 returns to step S302.

一方、ステップS305において、更新したトルクTqが実用トルク範囲Tq(r)外の値であり、所定トルクΔTq毎の駆動ギヤ及び被動ギヤの各変位量の計測が終了したと判定すると、演算部6は、ステップS306に進み、計測した各変位量に基づき、トルクTq毎に歯車対に発生する動的なデフレクションDを演算する。 On the other hand, when it is determined in step S305 that the updated torque Tq is a value outside the practical torque range Tq (r) and measurement of each displacement amount of the drive gear and the driven gear for each predetermined torque ΔTq is completed, the calculation unit 6 Advances to step S306 to calculate the dynamic deflection D generated in the gear pair for each torque Tq based on the measured displacements.

すなわち、演算部6は、上述のステップS301〜S305の処理により、例えば、図20に示すように、各計測点M1Dv〜M4Dv及びM1Dn〜M4DnにおけるトルクTqと変位量との関係を所得する。そして、ステップS306において、演算部6は、これら取得したトルクTq毎の各変位量情報と、駆動ギヤ及び被動ギヤの有効噛み合い半径等に基づき、例えば、トルクTqに対する歯車対の動的なデフレクションとして、例えば、図19,21に示すように、動的な食違誤差Ddevi(Tq)及び平行誤差Dincl(Tq)を演算する。なお、図21中等に示すDdevi(Tq)及びDincl(Tq)は、食違誤差Ddevi及び平行誤差DinclをトルクTqの関数として表記したものである。 That is, the arithmetic unit 6 performs the above-described processing in steps S301 to S305, for example, as shown in FIG. 20, to determine the relationship between the torque Tq and the displacement at each of the measurement points M1 Dv to M4 Dv and M1 Dn to M4 Dn . To earn. In step S306, the calculation unit 6 determines, for example, dynamic deflection of the gear pair with respect to the torque Tq based on the obtained displacement information for each torque Tq and the effective meshing radius of the driving gear and the driven gear. as, for example, as shown in FIG. 19 and 21, calculates the dynamic eating違誤difference D devi (Tq) and the parallel error D incl (Tq). Incidentally, D devi (Tq) and D incl shown in FIG. 21 secondary (Tq) is obtained by notation food違誤difference D devi and parallel error D incl as a function of the torque Tq.

ここで、より詳細なデフレクションDの演算を実現するため、演算部6は、例えば、上述のステップS302において、例えば、トランスミッション等に搭載された歯車対の噛み合いモデルを生成することも可能である。また、実用トルク範囲Tq(r)についても、正値側(すなわち、ドライブ側)のみならず、負値側(すなわち、コースト側)にも拡張することが可能である。なお、これらの条件下において、上述のステップS301〜306の処理を行ったときの歯車対の動的な食違誤差Ddevi(Tq)及び平行誤差Dincl(Tq)の演算結果を、例えば、図22に示す。 Here, in order to realize a more detailed calculation of the deflection D, for example, in the above-described step S302, the calculation unit 6 can also generate a meshing model of a gear pair mounted on a transmission or the like, for example. . Further, the practical torque range Tq (r) can be extended not only to the positive value side (that is, the drive side) but also to the negative value side (that is, the coast side). In these conditions, the calculation results of the dynamic eating違誤difference D devi gear pair when performing the above-described processing of step S301~306 (Tq) and the parallel error D incl (Tq), for example, As shown in FIG.

ステップS306からステップS307に進むと、演算部6は、静的な食違誤差範囲Misdevi(r)と実用トルク範囲Tq(r)(すなわち、動的な食違誤差Ddevi(Tq)及び平行誤差Dincl(Tq))に基づいて複数パターンの噛み合い条件群Gcを設定する。具体的には、演算部6は、噛み合い条件群Gcとして、例えば、静的な平行誤差Misinclを固定値(Misincl=0)とし、静的な食違誤差Misdeviを誤差範囲Misdevi(r)内で0.02degずつ変化させた値と、入力トルクTqを実用トルク範囲Tq(r)内で1.2kgfmずつ変化させた値との全ての組み合わせを設定する。 Proceeding from step S306 to step S307, the arithmetic unit 6, a static eating違誤difference range Mis devi (r) and practical torque range Tq (r) (i.e., dynamic food違誤difference D devi (Tq) and parallel A plurality of patterns of engagement condition groups Gc are set based on the error D incl (Tq)). Specifically, the arithmetic unit 6, a condition group Gc engagement, for example, a fixed value static parallel error Mis incl (Mis incl = 0) , the error range of static eating違誤difference Mis devi Mis devi ( the value was changed by 0.02deg within r), set all combinations of the values is varied by 1.2kgfm within practical torque range input torque Tq Tq (r).

すなわち、演算部6は、噛み合い条件群として、例えば、
Gc=(Misdevi=−0.03,Misincl=0,Ddevi(Tq=0),Dincl(Tq=0))、
Gc=(Misdevi=−0.01,Misincl=0,Ddevi(Tq=0),Dincl(Tq=0))、
Gc=(Misdevi=0.01,Misincl=0,Ddevi(Tq=0),Dincl(Tq=0))、・・・、
Gcl−1=(Misdevi=0.17,Misincl=0,Ddevi(Tq=58.8),Dincl(Tq=18.8))、
Gc=(Misdevi=0.17,Misincl=0,Ddevi(Tq=60),Dincl(Tq=20))
を設定する。
That is, the calculation unit 6 includes, for example, the engagement condition group as follows:
Gc 1 = (Mis devi = −0.03, Mis incl = 0, D devi (Tq = 0), D incl (Tq = 0)),
Gc 2 = (Mis dev = −0.01, Mis incl = 0, D devi (Tq = 0), D incl (Tq = 0)),
Gc 3 = (Mis devi = 0.01, Mis incl = 0, D devi (Tq = 0), D incl (Tq = 0)), ...
Gc l−1 = (Mis dev = 0.17, Mis incl = 0, D devi (Tq = 58.8), D incl (Tq = 18.8)),
Gc l = (Mis devi = 0.17 , Mis incl = 0, D devi (Tq = 60), D incl (Tq = 20))
Set.

ステップS307からステップS308に進むと、演算部6は、ステップS105で演算した各歯車対(現在の歯面修正量群Gに基づいて設定加工誤差範囲内で製造され得る各歯車対)の中から何れか1つの歯車対を選択し、続くステップS309において、ステップ307で設定した噛み合い条件群の中から何れか1つの噛み合い条件群Gcを選択する。   When the process proceeds from step S307 to step S308, the calculation unit 6 selects each gear pair (each gear pair that can be manufactured within the set machining error range based on the current tooth surface correction amount group G) calculated in step S105. Any one gear pair is selected, and in the subsequent step S309, any one engagement condition group Gc is selected from the engagement condition group set in step 307.

そして、ステップS310に進むと、演算部6は、ステップS308で選択した歯車対をステップS309で選択した噛み合い条件群Gcを用いて噛み合わせたときの歯面間の相対歯面誤差分布情報を算出する。   In step S310, the calculation unit 6 calculates relative tooth surface error distribution information between the tooth surfaces when the gear pair selected in step S308 is engaged using the engagement condition group Gc selected in step S309. To do.

この相対歯面誤差分布情報の演算において、演算部6は、先ず、駆動歯車と被動歯車の各ドライブ側歯面の有効噛み合い領域を算出し、駆動歯面の歯面誤差分布情報(3行×oDv1列の分布情報)及び被動歯車の歯面誤差分布情報(3行×oDn1列の分布情報)の中から、有効噛み合い領域内に存在する歯面誤差分布情報(3行×p列の分布情報)をそれぞれ抽出する。 In the calculation of the relative tooth surface error distribution information, the calculation unit 6 first calculates the effective meshing region of each drive side tooth surface of the driving gear and the driven gear, and the tooth surface error distribution information (3 rows ×× o Dv1 column distribution information) and driven gear tooth surface error distribution information (3 rows × o Dn1 column distribution information), tooth surface error distribution information (3 rows × p columns) existing in the effective meshing region. Distribution information) is extracted.

ここで、駆動歯面及び被動歯面の有効噛み合い領域は、具体的には、歯車諸元である各歯面の歯幅及び両歯面間の歯幅ズレ量(駆動歯面の中心と被動歯面の中心との歯幅方向のズレ量)ΔBに基づいて算出される。この場合、図10(a)及び(b)から明らかなように、駆動歯面Dvの歯幅が被動歯面Dnの歯幅よりも大きい場合であって、且つ、駆動歯面Dvと被動歯面Dnとが完全に重なる場合には、抽出される各歯面の歯幅方向のデータ数は、p=oDn1となる。また、図10(c)及び(d)から明らかなように、駆動歯面Dvの歯幅が被動歯面Dnの歯幅よりも大きい場合であって、且つ、駆動歯面Dvと被動歯面Dnとが完全に重ならない場合には、抽出される各歯面の歯幅方向のデータ数は、p<oDn1となる。また、図11(a)及び(b)から明らかなように、駆動歯面Dvの歯幅が被動歯面Dnの歯幅よりも小さい場合であって、且つ、駆動歯面Dvと被動歯面Dnとが完全に重なる場合には、抽出される各歯面の歯幅方向のデータ数は、p=oDv1となる。また、図11(c)及び図6(d)から明らかなように、駆動歯面Dvの歯幅が被動歯面Dnの歯幅よりも小さい場合であって、且つ、駆動歯面Dvと被動歯面Dnとが完全に重ならない場合には、抽出される各歯面の歯幅方向のデータ数は、p<oDv1となる。なお、図10及び図11は、噛み合い時に重畳される駆動歯面Dvと被動歯面Dnとを上下に並べて表示したものである。 Here, the effective meshing region of the driving tooth surface and the driven tooth surface is specifically the tooth width of each tooth surface that is the gear specification and the tooth width deviation amount between both tooth surfaces (the center of the driving tooth surface and the driven tooth surface). It is calculated based on the amount of deviation ΔB in the tooth width direction from the center of the tooth surface. In this case, as apparent from FIGS. 10A and 10B, the tooth width of the driving tooth surface Dv is larger than the tooth width of the driven tooth surface Dn, and the driving tooth surface Dv and the driven tooth When the surface Dn completely overlaps, the number of data in the tooth width direction of each tooth surface extracted is p = o Dn1 . Further, as apparent from FIGS. 10C and 10D, the tooth width of the driving tooth surface Dv is larger than the tooth width of the driven tooth surface Dn, and the driving tooth surface Dv and the driven tooth surface are the same. When Dn does not completely overlap, the number of data in the tooth width direction of each tooth surface extracted is p <o Dn1 . Further, as is clear from FIGS. 11A and 11B, the tooth width of the driving tooth surface Dv is smaller than the tooth width of the driven tooth surface Dn, and the driving tooth surface Dv and the driven tooth surface. When Dn completely overlaps, the number of data in the tooth width direction of each tooth surface extracted is p = o Dv1 . Further, as apparent from FIGS. 11C and 6D, the tooth width of the driving tooth surface Dv is smaller than the tooth width of the driven tooth surface Dn, and the driving tooth surface Dv and the driven tooth surface are driven. When the tooth surface Dn does not completely overlap, the number of data in the tooth width direction of each tooth surface to be extracted is p <o Dv1 . 10 and 11 show the driving tooth surface Dv and the driven tooth surface Dn that are superimposed at the time of meshing arranged side by side.

次に、演算部6は、抽出された各歯面誤差分布情報(3行×p列の分布情報)に基づいて、駆動歯面と被動歯面との噛み合い時の相対的な歯面誤差である相対歯面誤差の分布情報を生成する。ここで、相対歯面誤差分布情報は、例えば、駆動歯面を基準として算出される。   Next, based on the extracted tooth surface error distribution information (3 row × p column distribution information), the calculation unit 6 calculates the relative tooth surface error when the driving tooth surface and the driven tooth surface mesh with each other. The distribution information of a certain relative tooth surface error is generated. Here, the relative tooth surface error distribution information is calculated on the basis of the driving tooth surface, for example.

具体的に説明すると、3行×p列の各歯面誤差分布情報において、駆動歯面側のi行j列目の歯面誤差データをDriveData(i,j)、被動歯面側のi行j列目の歯面誤差データをDrivenData(i,j)とすると、各相対歯面誤差データ(HukaSoutaiData(i,j))は、例えば(2)式に示す計算式を用いて算出される。
HukaSoutaiData(i,j)=DriveData(i,j)+DrivenData(7-1-i,j)+EASSY …(2)
ここで、(2)式において、EASSYは静的な食違誤差Misdevi及び平行誤差MisinclとトルクTq(すなわち、動的な食違誤差Ddevi(Tq)及び平行誤差Dincl(Tq))から算出される歯筋タオレ量であり、例えば、以下の(3)式を用いて算出される。
EASSY=(Ddevi(Tq)+Misdevi+(Dincl(Tq)+Misincl
×tanαbs)×B …(3)
ここで、(3)式中のBは、噛み合い歯幅(図10,11参照)である。また、(3)式中のαbsは、圧力角αnをギヤ中心間距離、歯数、及び、モジュール等で補正して求まる正面噛み合い圧力角である。
More specifically, in each tooth surface error distribution information of 3 rows × p columns, the tooth surface error data of the i-th row and j-th column on the driving tooth surface side is DriveData (i, j), and the i-th row on the driven tooth surface side. If the tooth surface error data in the j-th column is DrivenData (i, j), each relative tooth surface error data (HukaSoutaiData (i, j)) is calculated using, for example, the calculation formula shown in Equation (2).
HukaSoutaiData (i, j) = DriveData (i, j) + DrivenData (7-1-i, j) + EASSY (2)
Here, in equation (2), EASSY static eating違誤difference Mis devi and parallel error Mis incl torque Tq (i.e., dynamic food違誤difference D devi (Tq) and the parallel error D incl (Tq)) Is calculated from the following equation (3), for example.
EASSY = (D devi (Tq) + Mis dev + (D incl (Tq) + Mis incl )
× tan α bs ) × B (3)
Here, B in the equation (3) is the meshing tooth width (see FIGS. 10 and 11). Further, α bs in the expression (3) is a front meshing pressure angle obtained by correcting the pressure angle αn with the gear center distance, the number of teeth, a module, and the like.

なお、ステップS310では、コースト側歯面についても、駆動歯車の歯面誤差分布情報(3行×oDv2列の分布情報)及び被動歯車の歯面誤差分布情報(3行×oDn2列の分布情報)を用いて同様の処理が行われる。 In step S310, the tooth surface error distribution information of the driving gear (3 rows × o Dv2 column distribution information) and the driven gear tooth surface error distribution information (3 rows × o Dn2 column distribution) are also obtained for the coast side tooth surface. The same processing is performed using (information).

そして、ステップS310からステップS311に進むと、演算部6は、各相対歯面誤差分布情報に対し、上述の多点スプライン補間法を用いて行補間及び列補間を行い、より詳細な相対歯面誤差分布情報(例えば、241行×241列の分布情報)を生成する。   Then, when the process proceeds from step S310 to step S311, the calculation unit 6 performs row interpolation and column interpolation on each relative tooth surface error distribution information using the above-described multipoint spline interpolation method, and more detailed relative tooth surfaces. Error distribution information (for example, distribution information of 241 rows × 241 columns) is generated.

ここで、演算部6は、例えば、図12に示すように、生成した相対歯面誤差の分布情報を、出力部8(例えば、モニタ13)を通じて等高線状に可視化表示することも可能である。なお、図12中において、破線は、駆動歯面と被動歯面との接触経路を示す。また、図12中において、一点鎖線は、ある瞬間での駆動歯面と被動歯面との接触線を示し、この接触線は、歯面間の噛み合いの進行に伴って接触経路上を平行移動する。   Here, for example, as shown in FIG. 12, the calculation unit 6 can also visualize and display the generated relative tooth surface error distribution information in a contour line shape through the output unit 8 (for example, the monitor 13). In FIG. 12, a broken line indicates a contact path between the driving tooth surface and the driven tooth surface. In FIG. 12, the alternate long and short dash line indicates the contact line between the driving tooth surface and the driven tooth surface at a certain moment, and this contact line translates on the contact path as the meshing between the tooth surfaces proceeds. To do.

ステップS311からステップS312に進むと、演算部6は、ステップS311で生成した相対歯面誤差分布情報に基づいて、歯車対の伝達誤差量Eを演算する。   When the process proceeds from step S311 to step S312, the calculation unit 6 calculates the transmission error amount E of the gear pair based on the relative tooth surface error distribution information generated in step S311.

この伝達誤差量Eの演算として、演算部6は、例えば、ステップS311で生成した相対歯面誤差分布情報に基づいて、歯車対の噛み合いタイミング(回転角)と各歯の等価歯形誤差との関係を求める(図13参照)。ここで、無負荷状態の場合、等価歯形誤差としては、相対歯面誤差分布情報において、各噛み合いタイミングで各接触線上に分布する相対歯面誤差の最大値が用いられる。そして、演算部6は、例えば、被動歯車の回転角の1ピッチNにおける、複数本の同時接触線についての等価歯形誤差の最大値と最小値の差dを伝達誤差量Eとして求める。なお、相対歯面誤差分布情報に基づく伝達誤差量Eの演算については、上述のものに限定されないことは勿論である。   As a calculation of the transmission error amount E, the calculation unit 6 uses, for example, the relationship between the meshing timing (rotation angle) of the gear pair and the equivalent tooth profile error of each tooth based on the relative tooth surface error distribution information generated in step S311. Is obtained (see FIG. 13). Here, in the no-load state, as the equivalent tooth profile error, the maximum value of the relative tooth surface error distributed on each contact line at each meshing timing is used in the relative tooth surface error distribution information. And the calculating part 6 calculates | requires the difference d of the maximum value and minimum value of the equivalent tooth profile error about several simultaneous contact lines in 1 pitch N of the rotation angle of a driven gear as the transmission error amount E, for example. Of course, the calculation of the transmission error amount E based on the relative tooth surface error distribution information is not limited to the above.

ステップS312からステップS313に進むと、演算部6は、現在選択されている歯車対に対し、ステップS308で設定された全噛み合い条件群Gcについての各伝達誤差量Eが演算されたか否かを調べる。その結果、演算部6は、全ての噛み合い条件群Gcについての伝達誤差量Eが演算されていないと判定した場合には、ステップS309に戻る。   When the process proceeds from step S312 to step S313, the calculation unit 6 checks whether or not each transmission error amount E for the total meshing condition group Gc set in step S308 has been calculated for the currently selected gear pair. . As a result, when the calculation unit 6 determines that the transmission error amount E for all the meshing condition groups Gc has not been calculated, the calculation unit 6 returns to step S309.

一方、ステップS313において、全ての噛み合い条件群Gcについての伝達誤差量Eが演算されていると判定した場合、演算部6は、ステップS314に進み、全ての歯車対についての各伝達誤差量Eが演算されたか否かを調べる。その結果、演算部6は、全ての歯車対についての伝達誤差量Eが演算されていないと判定した場合には、ステップS308に戻る。一方、全ての歯車対についての伝達誤差量Eが演算されていると判定した場合、演算部6は、サブルーチンを抜ける。   On the other hand, when it is determined in step S313 that the transmission error amount E for all the meshing condition groups Gc has been calculated, the calculation unit 6 proceeds to step S314, and the transmission error amounts E for all the gear pairs are calculated. Check if it has been computed. As a result, when it is determined that the transmission error amount E for all gear pairs has not been calculated, the calculation unit 6 returns to step S308. On the other hand, when it is determined that the transmission error amount E for all gear pairs has been calculated, the calculation unit 6 exits the subroutine.

メインルーチンにおいて、ステップS106からステップS107に進むと、演算部6は、ステップS103で設定した全ての歯面修正量群Gに対して、各加工誤差及び各噛み合い条件に基づく各伝達誤差量Eの演算を行ったか否かを調べる。その結果、演算部6は、全ての歯面修正量群Gに対して各伝達誤差量Eの演算を行っていないと判定すると、ステップS104に戻る。   In the main routine, when the process proceeds from step S106 to step S107, the calculation unit 6 sets each transmission error amount E based on each machining error and each meshing condition for all the tooth surface correction amount groups G set in step S103. Check whether the operation has been performed. As a result, when the calculation unit 6 determines that the calculation of each transmission error amount E is not performed on all the tooth surface correction amount groups G, the process returns to step S104.

なお、ステップS107からステップS104に戻り、新たに選択した歯面修正量群Gに基づいて上述のステップS105及びステップS106の処理を行う際に、歯面誤差分布情報等が以前のものと重複する場合には、当該歯面誤差分布情報に基づく各演算を適宜省略することが可能である。すなわち、歯面誤差分布情報は、各種歯面修正量と各種加工誤差とに基づいて演算されるため、歯面修正量群Gが異なる場合でも、同一の歯面誤差分布情報等が得られる場合がある。特に、本実施形態では、各種歯面修正量及び各種加工誤差を同じ値ずつ変化させているため、多くの歯面誤差分布情報等が重複する。そこで、このような場合に重複する演算を省略することにより、各種演算を大幅に簡略化することができる。   In addition, when returning to step S104 from step S107 and performing the process of above-mentioned step S105 and step S106 based on the newly selected tooth surface correction amount group G, tooth surface error distribution information etc. overlap with the previous one. In this case, each calculation based on the tooth surface error distribution information can be omitted as appropriate. That is, since the tooth surface error distribution information is calculated based on various tooth surface correction amounts and various machining errors, even when the tooth surface correction amount group G is different, the same tooth surface error distribution information can be obtained. There is. In particular, in the present embodiment, since various tooth surface correction amounts and various machining errors are changed by the same value, a lot of tooth surface error distribution information and the like overlap. Therefore, by omitting redundant operations in such a case, various operations can be greatly simplified.

一方、ステップS107において、全ての歯面修正量群Gに対して各伝達誤差量Eの演算を行ったと判定すると、演算部6は、ステップS108に進み、全ての仕上げ工法に対して上述のステップS103乃至ステップS107による伝達誤差量Eの演算を行ったか否かを調べる。   On the other hand, if it is determined in step S107 that the transmission error amounts E have been calculated for all the tooth surface correction amount groups G, the calculation unit 6 proceeds to step S108, and the above-described steps for all finishing methods are performed. It is checked whether or not the transmission error amount E has been calculated in S103 to S107.

そして、ステップS108において、未だ全ての仕上げ工法に対して伝達誤差量Eの演算を行っていないと判定すると、演算部6は、ステップS102に戻る。一方、ステップS108において、全ての仕上げ工法に対して伝達誤差量Eの演算を行ったと判定した場合、演算部6は、ステップS109に進む。   If it is determined in step S108 that the transmission error amount E has not yet been calculated for all finishing methods, the calculation unit 6 returns to step S102. On the other hand, when it is determined in step S108 that the transmission error amount E has been calculated for all finishing methods, the calculation unit 6 proceeds to step S109.

ステップS108からステップS109に進むと、演算部6は、シェービング、ホーニング、或いは、歯研の中から何れか1つの仕上げ工法を選択し、続くステップS110において、伝達誤差量Eの目標値マップ(図14乃至図16参照)を参照し、例えば、現在選択中の仕上げ工法における加工誤差を考慮しないときの各伝達誤差量Eの全てが目標値内に分布する歯面修正量群Gが存在するか否かを調べる。すなわち、演算部6は、ステップS110において、現在選択中の仕上げ工法について、歯面修正量群G毎に演算された各伝達誤差量Eの中から、各加工誤差がゼロ(すなわち、TeDv1=ReDv1=CeDv1=LeDv1=BleDv1=BreDv1=TeDv2=ReDv2=CeDv2=LeDv2=BleDv2=BreDv2=TeDn1=ReDn1=CeDn1=LeDn1=BleDn1=BreDn1=TeDn2=ReDn2=CeDn2=LeDn2=BleDn2=BreDn2=0)である歯車対を各噛み合い条件で噛み合わせたときの各伝達誤差量を抽出する(以下、抽出された各伝達誤差量を特にEと表記する)。そして、抽出した伝達誤差量Eの全てが目標値内に分布する歯面修正量群Gが存在するか否かを調べる。 When the process proceeds from step S108 to step S109, the calculation unit 6 selects any one finishing method from shaving, honing, or dental grinding, and in the subsequent step S110, a target value map (see FIG. 14 to 16), for example, is there a tooth surface correction amount group G in which all the transmission error amounts E when the processing error in the currently selected finishing method is not considered are distributed within the target value? Check for no. That is, in step S110, the calculation unit 6 determines that each machining error is zero (that is, Te Dv1 = from among the transmission error amounts E calculated for each tooth surface correction amount group G for the currently selected finishing method). Re Dv1 = Ce Dv1 = Le Dv1 = Ble Dv1 = Bre Dv1 = Te Dv2 = Re Dv2 = Ce Dv2 = Le Dv2 = Ble Dv2 = Bre Dv2 = Te Dn1 = Re Dn1 = Ce Dn1 = Le Dn1 = Ble Dn1 = Bre Dn1 = Te Dn2 = Re Dn2 = Ce Dn2 = Le Dn2 = Ble Dn2 = Bre Dn2 = 0) Each transmission error amount when the gear pairs are meshed under each meshing condition is extracted (hereinafter each extracted transmission The error amount is expressed as E 0 in particular). Then, it is examined whether or not there is a tooth surface correction amount group G in which all of the extracted transmission error amounts E 0 are distributed within the target value.

その結果、ステップS110において、伝達誤差量Eの全てが目標値内に分布する歯面修正量群Gが存在しないと判定した場合、演算部6は、ステップS114に進む。一方、ステップS110において、伝達誤差量Eの全てが目標値内に分布する歯面修正量群Gが存在すると判定すると、演算部6は、ステップS111に進む。 As a result, in step S110, if all the transmission error amount E 0 is determined to tooth surface modification amount group G distributed in the target value does not exist, calculating unit 6 moves to step S114. On the other hand, when it is determined in step S110 that there is a tooth surface correction amount group G in which all of the transmission error amount E 0 is distributed within the target value, the arithmetic unit 6 proceeds to step S111.

ステップS110からステップS111に進むと、演算部6は、現在選択中の仕上げ工法において、伝達誤差量Eの全てが目標値内に分布する歯面修正量群Gの中から、最良の歯面修正量群Gを抽出する。なお、最良の歯面修正量群Gの抽出は、例えば、各歯面修正量群Gに対応する各伝達誤差量Eの最悪値(最大値)同士を比較することによって行うことが可能である。その他、例えば、各歯面修正量群Gに対応する各伝達誤差量Eの平均値同士を比較することによって、最良の歯面誤差修正量Gを抽出してもよい。 When the process proceeds from step S110 to step S111, the calculation unit 6 selects the best tooth surface from the tooth surface correction amount group G in which all of the transmission error amount E 0 is distributed within the target value in the currently selected finishing method. The correction amount group G is extracted. The extraction of the best tooth surface correction amount group G can be performed, for example, by comparing the worst values (maximum values) of the transmission error amounts E 0 corresponding to the tooth surface correction amount groups G. is there. In addition, for example, the best tooth surface error correction amount G may be extracted by comparing the average values of the transmission error amounts E 0 corresponding to the tooth surface correction amount groups G.

そして、ステップS112に進むと、演算部6は、伝達誤差量Eの閾値マップ(図15,図16参照)を参照し、ステップS111で抽出した歯面修正量群Gに対応する全ての伝達誤差量Eのうちの設定割合以上(例えば、99.7%以上)が閾値内に分布しているか否かを調べる。   In step S112, the calculation unit 6 refers to the threshold map of the transmission error amount E (see FIGS. 15 and 16), and all the transmission errors corresponding to the tooth surface correction amount group G extracted in step S111. It is checked whether or not a set ratio or more (for example, 99.7% or more) of the amount E is distributed within the threshold value.

その結果、ステップS111で抽出した歯面修正量群Gに対応する全ての伝達誤差量Eのうちの設定割合以上が閾値内に分布していないと判定すると、演算部6は、ステップS110に戻り、抽出した歯面修正量群Gを除く各歯面修正量群に基づいて同様の処理を繰り返す。   As a result, when it is determined that the set ratio or more of all the transmission error amounts E corresponding to the tooth surface correction amount group G extracted in step S111 is not distributed within the threshold value, the arithmetic unit 6 returns to step S110. The same processing is repeated based on each tooth surface correction amount group excluding the extracted tooth surface correction amount group G.

一方、ステップS111で抽出した歯面修正量群Gに対応する全ての伝達誤差量Eのうちの設定割合以上が閾値内に分布していると判定すると、演算部6は、ステップS113に進み、現在抽出中の歯面修正量群Gに基づいて歯車対の設計歯面修正量を設定した後、ステップS114に進む。   On the other hand, when it is determined that the set ratio or more of all the transmission error amounts E corresponding to the tooth surface correction amount group G extracted in step S111 is distributed within the threshold, the calculation unit 6 proceeds to step S113. After the design tooth surface correction amount of the gear pair is set based on the tooth surface correction amount group G currently being extracted, the process proceeds to step S114.

ステップS110或いはステップS113からステップS114に進むと、演算部6は、上述のステップS109の処理により全ての仕上げ工法の選択が終了したか否かを調べる。そして、ステップS114において、全ての仕上げ工法の選択が終了していないと判定すると、演算部6は、ステップS109に戻る。   When the process proceeds from step S110 or step S113 to step S114, the calculation unit 6 checks whether or not all finishing methods have been selected by the process of step S109 described above. If it is determined in step S114 that selection of all finishing methods has not been completed, the arithmetic unit 6 returns to step S109.

一方、ステップS114において、全ての仕上げ工法の選択が終了したと判定すると、演算部6は、ステップS115に進み、シェービング、ホーニング、或いは、歯研の中から最良の仕上げ工法及び設計歯面修正量を決定した後、ルーチンを抜ける。この場合において、演算部6は、例えば、上述のステップS113において有効な設計歯面修正量が設定された仕上げ工法の中から、シェービング、ホーニング、歯研の優先順位で仕上げ工法を選択する。すなわち、例えば、全ての仕上げ工法について有効な設計歯面修正量が設定されている場合、演算部6は、最も安価且つ容易に歯面加工を行うことが可能なシェービングを最終的な仕上げ工法として選択し、当該シェービングに対応する設計歯面修正量を最終的な設計歯面修正量として決定する。また、例えば、シェービングについて有効な設計歯面修正量が設定されておらず、ホーニング及び歯研について有効な設計歯面修正量が設定されている場合、演算部6は、歯研よりも安価且つ容易に歯面加工を行うことが可能なホー二ングを最終的な仕上げ工法として選択し、当該ホー二ングに対応する設計歯面修正量を最終的な設計歯面修正量として決定する。一方、例えば、シェービング及びホー二ングについて有効な設計歯面修正量が設定されておらず、歯研にのみ有効な設計歯面修正量が設定されている場合、演算部6は、歯研を最終的な仕上げ工法として選択し、当該歯研に対応する設計歯面修正量を最終的な設計歯面修正量として決定する。   On the other hand, when it is determined in step S114 that selection of all finishing methods has been completed, the calculation unit 6 proceeds to step S115, and the best finishing method and design tooth surface correction amount are selected from shaving, honing, or tooth grinding. After determining, exit the routine. In this case, for example, the calculation unit 6 selects the finishing method in the priority order of shaving, honing, and tooth polishing from the finishing methods in which the effective design tooth surface correction amount is set in step S113 described above. That is, for example, when an effective design tooth surface correction amount is set for all finishing methods, the calculation unit 6 uses shaving that can be processed most easily and easily as the final finishing method. The design tooth surface correction amount corresponding to the shaving is selected and determined as the final design tooth surface correction amount. Further, for example, when the design tooth surface correction amount effective for shaving is not set and the design tooth surface correction amount effective for honing and tooth polishing is set, the calculation unit 6 is less expensive than tooth polishing. A honing capable of easily performing tooth surface processing is selected as a final finishing method, and a design tooth surface correction amount corresponding to the honing is determined as a final design tooth surface correction amount. On the other hand, for example, when a design tooth surface correction amount effective for shaving and honing is not set and a design tooth surface correction amount effective only for tooth grinding is set, the arithmetic unit 6 performs tooth grinding. The final finishing method is selected, and the design tooth surface correction amount corresponding to the tooth grinding is determined as the final design tooth surface correction amount.

ここで、設計装置1は、最終的な仕上げ工法及び設計歯面修正量等の情報の他に、上述の各種演算結果等に基づいて他の各種情報を生成し、ディスプレイ装置13等の出力部8を通じて表示することも可能である。すなわち、設計装置1は、例えば、図23に示すように、所定トルク条件におけるモーションカーブ(伝達誤差変位波形)を表示することが可能である。また、例えば、図24に示すように、モーションカーブをFFT(高速フーリエ変換)処理し、次数毎の振幅を表示することも可能である。また、例えば、図25に示すように、所定伝達誤差範囲毎の発生頻度を示す伝達誤差頻度マップを所定のトルク範囲毎に表示することも可能である。また、例えば、図26に示すように、伝達誤差の発生頻度が設定頻度(例えば、99.7%)以上となる伝達誤差範囲のトルク特性を示す伝達誤差トルク特性を狙い歯面の目標値とともに表示することも可能である。また、例えば、図27に示すように、目標値(例えば、0.45μm)以下の伝達誤差の発生頻度を示す頻度マップを所定トルク域毎或いは所定トルク毎に表示することも可能である。   Here, the design apparatus 1 generates other various information based on the above-described various calculation results in addition to the information such as the final finishing method and the design tooth surface correction amount, and outputs the output unit such as the display apparatus 13 or the like. 8 can also be displayed. That is, for example, as shown in FIG. 23, the design apparatus 1 can display a motion curve (transmission error displacement waveform) under a predetermined torque condition. Also, for example, as shown in FIG. 24, the motion curve can be subjected to FFT (Fast Fourier Transform) processing, and the amplitude for each order can be displayed. Also, for example, as shown in FIG. 25, a transmission error frequency map indicating the frequency of occurrence for each predetermined transmission error range can be displayed for each predetermined torque range. Also, for example, as shown in FIG. 26, the transmission error torque characteristic indicating the torque characteristic in the transmission error range where the transmission error occurrence frequency is equal to or higher than the set frequency (for example, 99.7%) is set together with the target value of the tooth surface. It is also possible to display. Further, for example, as shown in FIG. 27, a frequency map indicating the frequency of occurrence of a transmission error below a target value (for example, 0.45 μm) can be displayed for each predetermined torque range or for each predetermined torque.

このような実施形態によれば、各歯面修正量TDv1,RDv1,CDv1,LDv1,BlDv1,BrDv1,TDv2,RDv2,CDv2,LDv2,BlDv2,BrDv2,TDn1,RDn1,CDn1,LDn1,BlDn1,BrDn1,TDn2,RDn2,CDn2,LDn2,BlDn2,BrDn2をそれぞれ変化させた値の組み合わせからなる歯面修正量群Gを複数パターン設定し、基準歯面に各歯面修正量を付与して歯面加工を行った際に加工誤差範囲内で製造され得る複数パターンの歯車対を歯面修正量群G毎にシミュレーションして各歯車対における各歯面の歯面誤差分布情報をそれぞれ演算し、歯面修正量群G毎に設定加工誤差範囲内でシミュレーションされた全ての歯車対に対して駆動歯車と被動歯車とを予め設定された複数の噛み合い条件でそれぞれ噛み合わせたときの各伝達誤差量Eを対応する各歯面誤差分布情報に基づいてそれぞれ演算し、各伝達誤差量Eのうちの設定割合以上が閾値内となる歯面修正量群Gの中から最良の歯面修正量群Gを抽出することにより、実用に耐え得る良好な歯車対を歩留まりよく加工するために好適な歯面修正量群Gを、オペレータの経験に依存することなく容易に設定することができる。そして、このような演算を仕上げ工法毎に設定した各加工誤差範囲を用いて行うことで各仕上げ工法についての最良の歯面修正量群Gを求め、最良の歯面修正量群Gが設定された仕上げ工法の中から予め設定された優先順位に従って最終的な仕上げ工法を選定することにより、オペレータの経験等に依存することなく、実用に耐え得る良好な歯車対を歩留まり良く効率的に加工するために設計情報を容易に設定することができる。 According to such an embodiment, each tooth surface correction amount T Dv1 , R Dv1 , C Dv1 , L Dv1 , Bl Dv1 , Br Dv1 , T Dv2 , R Dv2 , C Dv2 , L Dv2 , Bl Dv2 , Br Dv2 , Br Dv2 , Br Dv2 T Dn1 , R Dn1 , C Dn1 , L Dn1 , Bl Dn1 , Br Dn1 , T Dn2 , R Dn2 , C Dn2 , L Dn2 , Bl Dn2 , Br Dn2 is a combination of the amounts of teeth that are changed. For each tooth surface correction amount group G, a plurality of patterns of gear pairs that can be manufactured within a processing error range when a plurality of G patterns are set, and each tooth surface correction amount is given to the reference tooth surface and the tooth surface processing is performed. Simulation is performed to calculate tooth surface error distribution information of each tooth surface in each gear pair, and all simulations are performed within the set machining error range for each tooth surface correction amount group G. Each transmission error amount E when the driving gear and the driven gear are engaged with each other under a plurality of preset meshing conditions is calculated based on the corresponding tooth surface error distribution information, and each transmission is performed. By extracting the best tooth surface correction amount group G from the tooth surface correction amount group G in which the set ratio or more of the error amount E is within the threshold value, a good gear pair that can withstand practical use is processed with high yield. Therefore, a suitable tooth surface correction amount group G can be easily set without depending on the experience of the operator. Then, by performing such calculation using each machining error range set for each finishing method, the best tooth surface correction amount group G for each finishing method is obtained, and the best tooth surface correction amount group G is set. By selecting the final finishing method according to the preset priorities from among the finishing methods that have been used, it is possible to efficiently process good gear pairs that can withstand practical use without depending on the operator's experience, etc. Therefore, design information can be easily set.

その際、駆動歯車及び被動歯車のドライブ側及びコースト側の各基準歯面上における有効歯面の中心と有効歯面の四隅と有効歯面を囲む各辺の中心に対してそれぞれ該当する各歯面修正量を付与すると共に各加工誤差量を付与して3行×3列の歯面誤差分布情報を生成し、当該歯面誤差分布情報を補間することにより、簡単な演算によって有効歯面全域に亘る歯面誤差分布情報を演算することができる。   At that time, each tooth corresponding to the center of the effective tooth surface, the four corners of the effective tooth surface, and the center of each side surrounding the effective tooth surface on the drive side and coast side reference tooth surfaces of the driving gear and the driven gear, respectively. By adding a surface correction amount and each processing error amount, generating tooth surface error distribution information of 3 rows × 3 columns and interpolating the tooth surface error distribution information makes it possible to perform effective calculation over the entire effective tooth surface Can be calculated.

また、設計歯面修正量を設定するための最終的な歯面修正量群Gの抽出に際し、歯面修正量群Gに対応する各伝達誤差量Eのうちの設定要件を満たす伝達誤差量Eを、目標値に基づいて評価することで抽出対象とする歯面誤差修正量群Gを絞り込み、絞り込んだ歯面誤差修正量群Gの中から最終的な歯面修正量群Gを抽出することにより、好適な歯面修正量群Gの抽出を実現することができる。すなわち、歯面修正量群Gに基づいて加工され得る各歯車対のうち、実際に加工される可能性が特に高い歯車対(例えば、各項目の加工誤差がゼロの歯車対)の各伝達誤差量Eを、閾値よりも条件の厳しい目標値に基づいて評価し、この評価結果に基づいて抽出対象とする歯面誤差修正量群Gを絞り込むことにより、好適な歯面修正量群Gの抽出を実現することができる。   Further, when extracting the final tooth surface correction amount group G for setting the design tooth surface correction amount, the transmission error amount E satisfying the setting requirement among the transmission error amounts E corresponding to the tooth surface correction amount group G. Is evaluated based on the target value to narrow down the tooth surface error correction amount group G to be extracted, and the final tooth surface correction amount group G is extracted from the narrowed tooth surface error correction amount group G. Thus, it is possible to realize extraction of a preferred tooth surface correction amount group G. That is, among the gear pairs that can be machined based on the tooth surface correction amount group G, each transmission error of a gear pair that is particularly likely to be machined (for example, a gear pair with zero machining error for each item). The amount E is evaluated based on a target value that is stricter than the threshold, and the tooth surface error correction amount group G to be extracted is narrowed down based on the evaluation result, thereby extracting a suitable tooth surface correction amount group G. Can be realized.

また、歯車対に付与したトルクTqに応じて発生する動的な組付誤差量D(食違誤差Ddevi及び平行誤差Dincl)を、シミュレーション上の噛み合いモデルにおける駆動ギヤ及び被動ギヤの各変位量(すなわち、駆動ギヤ及び被動ギヤの無負荷状態からの各タオレ量)に基づいて所定トルク毎に演算し、これら動的な組付誤差を伝達誤差解析時の噛み合い条件として用いることにより、最良の歯面修正量群Gの抽出等を精度良く実現することができる。すなわち、組付誤差Dは、一般に、実機上においては、トルクTqに対して非線形に変化するものであるが、このような組付誤差Dを駆動ギヤ及び被動ギヤの変位量に基づいて高精度に求めることにより好適な解析等を実現することができる。 Further, a dynamic assembly error amount D generated in accordance with the torque Tq granted to gear pair (food違誤difference D devi and parallel error D incl), the displacement of the drive gear and the driven gear in meshing model on simulation It is best to calculate for each predetermined torque based on the amount (that is, each amount of the drive gear and the driven gear from the no-load state), and use these dynamic assembly errors as meshing conditions in the transmission error analysis. The extraction of the tooth surface correction amount group G can be realized with high accuracy. That is, the assembly error D generally varies nonlinearly with respect to the torque Tq on an actual machine, but such an assembly error D is highly accurate based on the displacement amounts of the drive gear and the driven gear. It is possible to realize suitable analysis and the like by obtaining the above.

なお、歯面修正量として設定される項目は、上述のものに限定されないことは勿論である。   Of course, the items set as the tooth surface correction amount are not limited to those described above.

また、上述の実施形態においては、各伝達誤差量Eに基づいて歯面修正量群Gを抽出する際に目標値と閾値を併用する一例について説明したが、本発明はこれに限定されるものではなく、例えば、閾値のみに基づいて歯面修正量群Gを抽出してもよい。   Further, in the above-described embodiment, an example in which the target value and the threshold value are used together when extracting the tooth surface correction amount group G based on each transmission error amount E has been described, but the present invention is limited to this. Instead, for example, the tooth surface correction amount group G may be extracted based only on the threshold value.

歯車対の設計装置の概略構成図Schematic configuration diagram of gear pair design device 歯車対の設計装置を実現するためのコンピュータの一例を示す概略図Schematic showing an example of a computer for realizing a gear pair design device 歯車対の設計歯面修正量設定ルーチンを示すフローチャートFlow chart showing design tooth surface correction amount setting routine of gear pair 歯面誤差演算サブルーチンを示すフローチャートFlow chart showing tooth surface error calculation subroutine 伝達誤差量演算サブルーチンを示すフローチャートFlow chart showing transmission error amount calculation subroutine 歯面上に設定された修正量入力点を示す説明図Explanatory drawing which shows the correction amount input point set on the tooth surface 歯先修正量及び歯元修正量の説明図Explanation of tooth tip correction amount and tooth base correction amount (a)はクラウニング修正量の説明図,(b)は歯筋タオレ修正量の説明図(A) is explanatory drawing of crowning correction amount, (b) is explanatory drawing of tooth trace taole correction amount. バイアス修正量の説明図Illustration of bias correction amount 駆動歯車の歯幅が被動歯車の歯幅よりも大きい場合の歯面誤差データの抽出領域を示す説明図Explanatory drawing which shows the extraction area | region of tooth surface error data when the tooth width of a drive gear is larger than the tooth width of a driven gear 駆動歯車の歯幅が被動歯車の歯幅よりも小さい場合の歯面誤差データの抽出領域を示す説明図Explanatory drawing which shows the extraction area | region of tooth surface error data when the tooth width of a drive gear is smaller than the tooth width of a driven gear 等高線表示された相対歯面誤差分布の一例を示す説明図Explanatory drawing which shows an example of relative tooth surface error distribution displayed by contour lines 相対歯面誤差分布から導き出される無負荷状態での伝達誤差量の説明図Explanatory drawing of the amount of transmission error in the no-load state derived from the relative tooth surface error distribution 伝達誤差量の目標値の一例を示すマップMap showing an example of target value of transmission error 図14のI−I線に沿って伝達誤差量の目標値及び閾値を示すマップMap showing target value and threshold value of transmission error amount along line II in FIG. 図14のII−II線に沿って伝達誤差量の目標値及び閾値を示すマップMap showing target value and threshold value of transmission error along line II-II in FIG. 歯車対の概略構成図Schematic configuration diagram of gear pairs 公差範囲入力画面の一例を示す説明図Explanatory drawing showing an example of tolerance range input screen 食違誤差と平行誤差の説明図Illustration of the difference error and parallel error 各計測点における駆動歯車軸トルクと変位との関係の一例を示す説明図Explanatory drawing which shows an example of the relationship between the drive gear shaft torque and displacement at each measurement point 動的なデフレクションの一例を示す説明図Explanatory drawing showing an example of dynamic deflection 実機上における歯車対の動的なデフレクションの一例を示す説明図An explanatory view showing an example of dynamic deflection of a gear pair on an actual machine 実機上における所定負荷状態での歯車対のモーションカーブの一例を示す説明図Explanatory drawing showing an example of a motion curve of a gear pair in a predetermined load state on an actual machine 伝達誤差変位の噛み合い次数成分(振幅値)の一例を示す説明図Explanatory drawing which shows an example of the meshing order component (amplitude value) of a transmission error displacement 伝達誤差頻度マップの一例を示す説明図Explanatory diagram showing an example of a transmission error frequency map 伝達誤差トルク特性の一例を示す説明図Explanatory drawing showing an example of transmission error torque characteristics 目標値以下の伝達誤差の発生頻度を示す頻度マップの一例を示す説明図Explanatory drawing which shows an example of the frequency map which shows the generation frequency of the transmission error below a target value

1 … 設計装置
5 … 入力部
6 … 演算部(歯面修正量群設定手段、歯面誤差情報演算手段、伝達誤差量演算手段、歯面修正量群抽出手段、組付誤差量演算手段)
7 … 記憶部
8 … 出力部
100 … 歯車対
101 … 駆動歯車(駆動ギヤ)
102 … 被動歯車(被動ギヤ)
DESCRIPTION OF SYMBOLS 1 ... Design apparatus 5 ... Input part 6 ... Calculation part (tooth surface correction amount group setting means, tooth surface error information calculation means, transmission error amount calculation means, tooth surface correction amount group extraction means, assembly error amount calculation means)
DESCRIPTION OF SYMBOLS 7 ... Memory | storage part 8 ... Output part 100 ... Gear pair 101 ... Drive gear (drive gear)
102 ... Driven gear (driven gear)

Claims (5)

互いに噛み合う駆動歯車及び被動歯車の基本諸元により設定される各基準歯面に対して複数項目の歯面修正量を付与することで歯車対の加工に供する最終的な設計歯面修正量を設定する歯車対の設計装置であって、
上記各歯面修正量をそれぞれ変化させた値の組み合わせからなる歯面修正量群を複数パターン設定する歯面修正量群設定手段と、
上記基準歯面に上記各歯面修正量を付与して歯面加工を行った際に設定加工誤差範囲内で製造され得る複数パターンの歯車対を上記歯面修正量群毎にシミュレーションし、当該各歯車対における駆動歯車の上記基準歯面に対する歯面誤差分布情報と被動歯車の上記基準歯面に対する歯面誤差分布情報とをそれぞれ演算する歯面誤差情報演算手段と、
歯車対に付与したトルクに応じて発生する動的な組付誤差量を上記駆動歯車及び上記被動歯車の変位量に基づいて所定トルク毎に演算する組付誤差量演算手段と、
上記歯面修正量群毎に上記設定加工誤差範囲内でシミュレーションされた全ての上記歯車対について、上記組付誤差量をパラメータとして含む複数パターンの噛み合い条件で上記駆動歯車と上記被動歯車とを噛み合わせたときの各伝達誤差量を、対応する上記各歯面誤差分布情報に基づいてそれぞれ演算する伝達誤差量演算手段と、
演算した各伝達誤差量が設定条件を満たす上記歯面修正量群が存在する場合に、当該歯面修正量群の中から最良の歯面修正量群を抽出する歯面修正量群抽出手段と、を備えたことを特徴とする歯車対の設計装置。
Set the final design tooth surface correction amount to be used for gear pair processing by giving multiple items of tooth surface correction amount to each reference tooth surface set by the basic specifications of the driving gear and driven gear meshing with each other A gear pair design device,
Tooth surface correction amount group setting means for setting a plurality of patterns of tooth surface correction amount groups each consisting of a combination of values obtained by changing the respective tooth surface correction amounts;
A plurality of patterns of gear pairs that can be manufactured within a set machining error range when performing tooth surface processing by applying each tooth surface correction amount to the reference tooth surface, for each tooth surface correction amount group, Tooth surface error information calculating means for calculating tooth surface error distribution information for the reference tooth surface of the driving gear and tooth surface error distribution information for the reference tooth surface of the driven gear in each gear pair;
An assembly error amount calculating means for calculating a dynamic assembly error amount generated according to the torque applied to the gear pair for each predetermined torque based on the displacement amounts of the drive gear and the driven gear;
For all the gear pairs simulated within the set machining error range for each tooth surface correction amount group, the drive gear and the driven gear are meshed under a plurality of meshing conditions including the assembly error amount as a parameter. A transmission error amount calculating means for calculating each transmission error amount based on each corresponding tooth surface error distribution information;
A tooth surface correction amount group extracting means for extracting the best tooth surface correction amount group from the tooth surface correction amount group when the calculated tooth error amount group satisfies the set condition. And a gear pair design apparatus.
上記組付誤差量演算手段は、上記歯車対にトルクを付与したときの、駆動歯車軸を中心とする同心円上の対象位置4点での上記駆動歯車の各変位量と、被動歯車軸を中心とする同心円上の対象位置4点での上記被動歯車の各変位量とに基づいて、上記各歯車軸の食違方向の組付誤差量である食違誤差量と、上記各歯車軸の平行方向の組付誤差量である平行誤差量とを演算することを特徴とする請求項1記載の歯車対の設計装置。   The assembling error amount calculating means includes the displacement amounts of the drive gear at four target positions on a concentric circle centered on the drive gear shaft when torque is applied to the gear pair, and the driven gear shaft. Based on the displacement amounts of the driven gears at the four target positions on the concentric circles, and a misalignment error amount that is an assembling error amount in the misalignment direction of each gear shaft, and the parallelism of each gear shaft. 2. The gear pair design apparatus according to claim 1, wherein a parallel error amount that is an assembly error amount in a direction is calculated. 互いに噛み合う駆動歯車及び被動歯車の基本諸元により設定される各基準歯面に対して複数項目の歯面修正量を付与することで歯車対の加工に供する最終的な設計歯面修正量を設定する歯車対の設計プログラムであって、
上記各歯面修正量をそれぞれ変化させた値の組み合わせからなる歯面修正量群を複数パターン設定する歯面修正量群設定ステップと、
上記基準歯面に上記各歯面修正量を付与して歯面加工を行った際に設定加工誤差範囲内で製造され得る複数パターンの歯車対を上記歯面修正量群毎にシミュレーションし、当該各歯車対における駆動歯車の上記基準歯面に対する歯面誤差分布情報と被動歯車の上記基準歯面に対する歯面誤差分布情報とをそれぞれ演算する歯面誤差情報演算ステップと、
歯車対に付与したトルクに応じて発生する動的な組付誤差量を上記駆動歯車及び上記被動歯車の変位量に基づいて所定トルク毎に演算する組付誤差量演算ステップと、
上記歯面修正量群毎に上記設定加工誤差範囲内でシミュレーションされた全ての上記歯車対について、上記組付誤差量をパラメータとして含む複数パターンの噛み合い条件で上記駆動歯車と上記被動歯車とを噛み合わせたときの各伝達誤差量を、対応する上記各歯面誤差分布情報に基づいてそれぞれ演算する伝達誤差量演算ステップと、
演算した各伝達誤差量が設定条件を満たす上記歯面修正量群が存在する場合に、当該歯面修正量群の中から最良の歯面修正量群を抽出する歯面修正量群抽出ステップと、を備えたことを特徴とする歯車対の設計プログラム。
Set the final design tooth surface correction amount to be used for gear pair processing by giving multiple items of tooth surface correction amount to each reference tooth surface set by the basic specifications of the driving gear and driven gear meshing with each other A gear pair design program for
Tooth surface correction amount group setting step for setting a plurality of patterns of tooth surface correction amount groups each consisting of a combination of values obtained by changing the respective tooth surface correction amounts;
A plurality of patterns of gear pairs that can be manufactured within a set machining error range when performing tooth surface processing by applying each tooth surface correction amount to the reference tooth surface, for each tooth surface correction amount group, Tooth surface error information calculating step for calculating tooth surface error distribution information for the reference tooth surface of the driving gear and tooth surface error distribution information for the reference tooth surface of the driven gear in each gear pair,
An assembly error amount calculating step for calculating a dynamic assembly error amount generated according to the torque applied to the gear pair for each predetermined torque based on the displacement amounts of the drive gear and the driven gear;
For all the gear pairs simulated within the set machining error range for each tooth surface correction amount group, the drive gear and the driven gear are meshed under a plurality of meshing conditions including the assembly error amount as a parameter. A transmission error amount calculating step for calculating each transmission error amount when they are combined based on each corresponding tooth surface error distribution information;
A tooth surface correction amount group extracting step for extracting the best tooth surface correction amount group from the tooth surface correction amount group when the calculated tooth error amount group satisfies the set condition. And a gear pair design program.
互いに噛み合う駆動歯車及び被動歯車の基本諸元により設定される各基準歯面に対して複数項目の歯面修正量を付与することで歯車対の加工に供する最終的な設計歯面修正量を設定する歯車対の設計方法であって、
上記各歯面修正量をそれぞれ変化させた値の組み合わせからなる歯面修正量群を複数パターン設定する歯面修正量群設定工程と、
上記基準歯面に上記各歯面修正量を付与して歯面加工を行った際に設定加工誤差範囲内で製造され得る複数パターンの歯車対を上記歯面修正量群毎にシミュレーションし、当該各歯車対における駆動歯車の上記基準歯面に対する歯面誤差分布情報と被動歯車の上記基準歯面に対する歯面誤差分布情報とをそれぞれ演算する歯面誤差情報演算ステップと、
歯車対に付与したトルクに応じて発生する動的な組付誤差量を上記駆動歯車及び上記被動歯車の変位量に基づいて所定トルク毎に演算する組付誤差量演算工程と、
上記歯面修正量群毎に上記設定加工誤差範囲内でシミュレーションされた全ての上記歯車対について、上記組付誤差量をパラメータとして含む複数パターンの噛み合い条件で上記駆動歯車と上記被動歯車とを噛み合わせたときの各伝達誤差量を、対応する上記各歯面誤差分布情報に基づいてそれぞれ演算する伝達誤差量演算工程と、
演算した各伝達誤差量が設定条件を満たす上記歯面修正量群が存在する場合に、当該歯面修正量群の中から最良の歯面修正量群を抽出する歯面修正量群抽出工程と、を備えたことを特徴とする歯車対の設計方法。
Set the final design tooth surface correction amount to be used for gear pair processing by giving multiple items of tooth surface correction amount to each reference tooth surface set by the basic specifications of the driving gear and driven gear meshing with each other A gear pair design method for
Tooth surface correction amount group setting step of setting a plurality of patterns of tooth surface correction amount groups consisting of combinations of values obtained by changing the respective tooth surface correction amounts,
A plurality of patterns of gear pairs that can be manufactured within a set machining error range when performing tooth surface processing by applying each tooth surface correction amount to the reference tooth surface, for each tooth surface correction amount group, Tooth surface error information calculating step for calculating tooth surface error distribution information for the reference tooth surface of the driving gear and tooth surface error distribution information for the reference tooth surface of the driven gear in each gear pair,
An assembly error amount calculating step for calculating a dynamic assembly error amount generated according to the torque applied to the gear pair for each predetermined torque based on the displacement amounts of the drive gear and the driven gear;
For all the gear pairs simulated within the set machining error range for each tooth surface correction amount group, the drive gear and the driven gear are meshed under a plurality of meshing conditions including the assembly error amount as a parameter. A transmission error amount calculating step for calculating each transmission error amount when the two are combined based on the corresponding tooth surface error distribution information;
A tooth surface correction amount group extracting step of extracting the best tooth surface correction amount group from the tooth surface correction amount group when the calculated tooth error amount group satisfies the set condition. And a gear pair design method.
請求項1記載の歯車対の設計装置で抽出した最良の歯面修正量群に基づいて駆動歯車及び被動歯車の歯面加工を行ったことを特徴とする歯車対。   A gear pair obtained by performing tooth surface processing of a driving gear and a driven gear based on the best tooth surface correction amount group extracted by the gear pair design apparatus according to claim 1.
JP2009006964A 2009-01-15 2009-01-15 Gear pair design device and gear pair Expired - Fee Related JP5330837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009006964A JP5330837B2 (en) 2009-01-15 2009-01-15 Gear pair design device and gear pair

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009006964A JP5330837B2 (en) 2009-01-15 2009-01-15 Gear pair design device and gear pair

Publications (2)

Publication Number Publication Date
JP2010165181A true JP2010165181A (en) 2010-07-29
JP5330837B2 JP5330837B2 (en) 2013-10-30

Family

ID=42581285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009006964A Expired - Fee Related JP5330837B2 (en) 2009-01-15 2009-01-15 Gear pair design device and gear pair

Country Status (1)

Country Link
JP (1) JP5330837B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103942396A (en) * 2014-04-30 2014-07-23 武汉理工大学 Helical-gear precise modeling method involving tooth alignment errors
CN112182803A (en) * 2020-09-29 2021-01-05 南京高速齿轮制造有限公司 Excitation calibration method of dynamic model
CN113553672A (en) * 2021-07-08 2021-10-26 湖南磐钴传动科技有限公司 Spiral bevel gear contact track and transmission error optimization method based on installation dislocation
CN112182803B (en) * 2020-09-29 2024-05-14 南京高速齿轮制造有限公司 Excitation calibration method of dynamic model

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108563831B (en) * 2018-03-16 2019-12-24 浙江工业大学 Optimization method for transmission precision of RV reducer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315050A (en) * 1997-05-20 1998-12-02 Toyota Motor Corp Gear and tooth surface correcting method for gear
JP2005195360A (en) * 2003-12-26 2005-07-21 Fuji Heavy Ind Ltd Tooth surface error evaluation device for gearwheel pair, evaluation program therefor, and manufacturing method for gearwheel pair using the same
JP2007333421A (en) * 2006-06-12 2007-12-27 Toyota Motor Corp Dynamic gear misalignment measuring apparatus
JP2008123117A (en) * 2006-11-09 2008-05-29 Fuji Heavy Ind Ltd Design device for gearwheel pair, design program thrtrfor, and gearwheel pair design method of using the same
JP2010164134A (en) * 2009-01-15 2010-07-29 Fuji Heavy Ind Ltd Apparatus, program and method for designing gear pair and gear pair

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315050A (en) * 1997-05-20 1998-12-02 Toyota Motor Corp Gear and tooth surface correcting method for gear
JP2005195360A (en) * 2003-12-26 2005-07-21 Fuji Heavy Ind Ltd Tooth surface error evaluation device for gearwheel pair, evaluation program therefor, and manufacturing method for gearwheel pair using the same
JP2007333421A (en) * 2006-06-12 2007-12-27 Toyota Motor Corp Dynamic gear misalignment measuring apparatus
JP2008123117A (en) * 2006-11-09 2008-05-29 Fuji Heavy Ind Ltd Design device for gearwheel pair, design program thrtrfor, and gearwheel pair design method of using the same
JP2010164134A (en) * 2009-01-15 2010-07-29 Fuji Heavy Ind Ltd Apparatus, program and method for designing gear pair and gear pair

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103942396A (en) * 2014-04-30 2014-07-23 武汉理工大学 Helical-gear precise modeling method involving tooth alignment errors
CN103942396B (en) * 2014-04-30 2017-03-08 武汉理工大学 A kind of helical gear Precise modeling containing tooth alignment error
CN112182803A (en) * 2020-09-29 2021-01-05 南京高速齿轮制造有限公司 Excitation calibration method of dynamic model
CN112182803B (en) * 2020-09-29 2024-05-14 南京高速齿轮制造有限公司 Excitation calibration method of dynamic model
CN113553672A (en) * 2021-07-08 2021-10-26 湖南磐钴传动科技有限公司 Spiral bevel gear contact track and transmission error optimization method based on installation dislocation

Also Published As

Publication number Publication date
JP5330837B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5140007B2 (en) Gear pair design apparatus, gear pair design program, gear pair design method, and gear pair
Tiwari et al. Stress analysis of mating involute spur gear teeth
Li Effects of machining errors, assembly errors and tooth modifications on loading capacity, load-sharing ratio and transmission error of a pair of spur gears
Bruyère et al. On the analytical definition of profile modifications minimising transmission error variations in narrow-faced spur helical gears
Kiekbusch et al. Calculation of the combined torsional mesh stiffness of spur gears with two-and three-dimensional parametrical FE models
Simon Optimization of face-hobbed hypoid gears
Hotait et al. An investigation of root stresses of hypoid gears with misalignments
CN109145484B (en) Numerical load tooth surface contact analysis method based on hyperbolic shell unit model
JP5330837B2 (en) Gear pair design device and gear pair
Palmer et al. Evaluation of methods for calculating effects of tip relief on transmission error, noise and stress in loaded spur gears
JP2008175694A (en) Evaluation device of gear pair, evaluation program, and evaluation method of gear pair using this
JP2008123117A (en) Design device for gearwheel pair, design program thrtrfor, and gearwheel pair design method of using the same
Guingand et al. Analysis and optimization of the loaded meshing of face gears
Pasta et al. Finite element method analysis of a spur gear with a corrected profile
Brecher et al. Influence of the manufacturing method on the running behavior of beveloid gears
Hjelm et al. Gear tolerancing for simultaneous optimization of transmission error and contact pressure
CN108846189B (en) Gear pair meshing characteristic analysis method
Wink et al. Investigation of tooth contact deviations from the plane of action and their effects on gear transmission error
Curtis et al. An analytical method to reduce gear whine noise, including validation with test data
JP4474250B2 (en) Conical involute gear pair design method and conical involute gear pair
JP2005195360A (en) Tooth surface error evaluation device for gearwheel pair, evaluation program therefor, and manufacturing method for gearwheel pair using the same
CN103357967A (en) Design method of honing grinding wheel
CN108856910B (en) A kind of method and device of polishing gear edge by use
Handschuh An investigation into the impact of random spacing errors on static transmission error and root stresses of spur gear pairs
Houser The effect of manufacturing microgeometry variations on the load distribution factor and on gear contact and root stresses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Ref document number: 5330837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees