JP2005191093A - 半導体レーザ素子 - Google Patents

半導体レーザ素子 Download PDF

Info

Publication number
JP2005191093A
JP2005191093A JP2003427800A JP2003427800A JP2005191093A JP 2005191093 A JP2005191093 A JP 2005191093A JP 2003427800 A JP2003427800 A JP 2003427800A JP 2003427800 A JP2003427800 A JP 2003427800A JP 2005191093 A JP2005191093 A JP 2005191093A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
diffraction grating
semiconductor laser
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003427800A
Other languages
English (en)
Inventor
Kenji Uchida
憲治 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Opnext Japan Inc
Original Assignee
Opnext Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opnext Japan Inc filed Critical Opnext Japan Inc
Priority to JP2003427800A priority Critical patent/JP2005191093A/ja
Publication of JP2005191093A publication Critical patent/JP2005191093A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】 回折格子構造を備えた分布帰還型半導体レーザ素子の信頼性、歩留まりを向上させる。
【解決手段】 分布帰還型半導体レーザ素子は、半導体基板1上に少なくともn導電型のクラッド層3と活性層5とp導電型のクラッド層12とを有し、p導電型のクラッド層12中にn導電型の回折格子層8からなる回折格子構造10を備えている。このため、p導電型のクラッド層12の成長中にアクセプタとしてドーピングされたZnは、クラッド層12の成長時に多重量子井戸構造の活性層5を含む下地層領域への熱拡散が進行するが、回折格子層8にドーピングされたSiによってその熱拡散が大幅に抑制される。
【選択図】 図3

Description

本発明は、半導体レーザ素子に関し、特に、光通信データリンク用の光源として用いられる回折格子構造を備えた分布帰還型半導体レーザ素子に適用可能な有効な技術に関する。
一般に、光通信データリンク用の光源である半導体レーザにおいては、ある波長の光を導波させるために活性層の近傍領域に凹凸状の周期構造を形成し、屈折率の不連続性を持たせた分布帰還型レーザ構造が用いられる。この凹凸周期構造は、一般的に回折格子構造と呼ばれている。分布帰還型レーザでは、縦モードの次数(m)の増加と共にしきい利得が増大する。このため、発振スペクトルにおいては、縦モードの高い選択性が得られることから、回折格子構造により選択された単一縦モードでのレーザ発振が可能となる。この種の分布帰還型半導体レーザでは、"B. Chen et. al., JJAP38, 5096 (1999)"(非特許文献1参照)に記載されているように、活性層近傍領域のクラッド層中に、クラッド層と同導電型の回折格子構造を作り付けることが知られている。
B. Chen et. al., JJAP38, 5096 (1999)
一般に半導体レーザは、アクセプタ不純物を添加したp導電型のクラッド層と、不純物を添加していないアンドープ活性層(i層)、およびドナー不純物を添加したn型のクラッド層から構成されるpin構造の形態を取る。
この構造は、結晶成長工程を用いて作製されるが、その過程での基板加熱時の熱履歴作用によって、クラッド層成長中に添加した不純物が先に成長した下地であるアンドープ活性層領域に拡散するといった欠点がある。代表的なIII-V族化合物半導体であるG
aAs系やInP系等の結晶成長工程においては、一般的にn導電型不純物としてSi元素が、またp導電型不純物としてZn元素が用いられる。
両者を比較すると、その熱拡散の程度は後者のZn元素の方が顕著である。これは、半導体結晶を構成するIII族およびV族原子と比べて、ZnはSiよりもその原子サイズ
が大きいためであり、半導体結晶中のアクセプタ格子サイトに添加されたZnは半導体結晶格子間を拡散しやすいためである。このようなZnアクセプタのアンドープ活性層領域への熱拡散は、内部量子効率の低下を引き起こすと共に、しきい電流密度を増大させる等、半導体レーザ素子の基本特性を劣化させるといった問題があった。
本発明の目的は、光通信データリンク用の光源として用いられる分布帰還型半導体レーザ素子において、その回折格子構造のドーピング形態を利用することにより、製造工程を増加させることなく、p導電型クラッド層からアンドープ活性層領域へのアクセプタ不純物の熱拡散を抑制し、その素子特性を安定化させ、製造歩留まりを向上させることのできる技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
本発明による分布帰還型半導体レーザ素子は、半導体基板上に少なくともn導電型のクラッド層と、活性層と、p導電型のクラッド層とを有し、前記p導電型のクラッド層中に回折格子構造が形成された半導体レーザ素子において、前記回折格子構造の少なくとも一部の領域の導電型が前記第2導電型のクラッド層の導電型と異なるものである。
上記回折格子構造のドーピング形態は、ドナー不純物が一様にドーピングされたもの、ドナー不純物がドーピングされたn導電型領域と不純物がドーピングされていないアンドープ領域が交互に積層成長された変調ドーピング構造としたもの、またはドナー不純物がドーピングされたn導電型領域とアクセプタ不純物がドーピングされたp導電型領域が交互に積層成長された変調ドーピング構造としたもののいずれかとする。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
結晶成長工程において発生していたp導電型クラッド層から活性層領域へのZn拡散を大幅に低減することができるので、分布帰還型半導体レーザ素子の基本特性、信頼性および製造歩留まりが向上する。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態は、発振波長1.3μm帯の分布帰還型半導体レーザ素子であり、その製造方法を工程順に説明すれば、以下の通りである。
まず、図1に示すように、n導電型InPからなる半導体基板1上に、周知の有機金属気相成長法を用いて、膜厚200nmのn導電型InPからなるバッファ層2、膜厚500nmのn導電型InPからなるクラッド層3、膜厚80nmのn導電型InAlAsからなる光ガイド層4、膜厚6nmのInAlGaAsからなる圧縮歪み井戸層と膜厚8nmのInAlGaAsからなる引っ張り歪み障壁層とを積層したアンドープInAlGaAs系の歪み補償型多重量子井戸構造を有する活性層5、膜厚40nmのp導電型InAlAsからなる光ガイド層6、膜厚20nmのp導電型InPからなるスペーサ層7、膜厚25nmのn導電型InGaAsPからなる回折格子層8、膜厚20nmのp導電型InPからなるキャップ層9を順次結晶成長した。これらの結晶成長工程では、n導電型不純物としてSiをドーピングし、p導電型不純物としてZnをドーピングした。なお、図1および以下の図2、図3は、半導体レーザ素子の光軸方向に沿った断面図である。
次に、図2に示すように、周知のフォトリソグラフィ技術、電子線描画技術およびエッチング技術を用いてキャップ層9と回折格子層8とをパターニングし、約200nmのピッチ幅の繰り返しパターンからなる回折格子構造10を形成することにより、多層基板11を作製する。
次に、図3に示すように、上記回折格子構造10が形成された多層基板上11に、有機金属気相成長法を用いて、膜厚1600nmのp導電型InPからなるクラッド層12、膜厚30nmのp導電型InGaAsPからなるヘテロ障壁低減層13、膜厚250nmのp導電型InGaAsからなるコンタクト層14を順次結晶成長させる。
次に、図4に示すように、周知の熱CVD技術、フォトリソグラフィ技術、およびエッチング技術を用いて、光ガイド層6とスペーサ層7との界面近傍までクラッド層12のエッチングを行い、ストライプ幅約1.5μmのリッジ状光導波路構造15を形成する。
次に、図5に示すように、光導波路構造15にコンタクト層14を介して電気的に接続されるp側電極16を形成し、半導体基板1に電気的に接続されるn側電極17を形成する。p側電極16は、周知の電子ビーム蒸着法により形成し、n側電極17は、p側電極16を形成した後、半導体基板1の裏面側を研磨し、周知の電子ビーム蒸着法によって形成する。その後、半導体基板1を共振器長200μmのバー状にへき開し、この共振器面に周知のスパッタリング技術を用いて誘電体多層反射膜18を形成した後、幅350μmのレーザ素子にチップ化することによって、リッジ導波路タイプの分布帰還型半導体レーザ素子が完成する。
上記した素子構造は、p導電型のクラッド層12中にn導電型の回折格子層8からなる回折格子構造10が埋め込まれた状態であり、クラッド層12と回折格子構造10の導電型が互いに異なったドーピング形態となっている。このため、p導電型のクラッド層12の成長中にアクセプタとしてドーピングされたZnは、クラッド層12の成長時に多重量子井戸構造の活性層5を含む下地層領域への熱拡散が進行するが、回折格子構造10(回折格子層8)にドーピングされたSiによってその熱拡散が大幅に抑制される。これは、一般にpn接合界面において観測されるZnアクセプタの拡散抑制効果を利用したものである。
ここで、回折格子構造10とクラッド層12との導電型が異なるために、p側領域から注入されたホールキャリアの経路が狭まり素子抵抗が増大することが懸念される。これに関しては、以下に示す通り問題とはならない。
図6(a)は、前記図3のA−A’線(回折格子構造10が形成された領域)におけるバンドギャップ構造を示し、同図(b)は、前記図3のB−B’線(回折格子構造10が形成されていない領域)におけるバンドギャップ構造を示している。
図6(a)、(b)に示すように、屈折率の不連続性を持たせるために形成された回折格子構造10のバンドギャップは、クラッド層12のそれと比べて小さいために、回折格子構造10はポテンシャル領域となる。このため、もともと注入されたホールキャリアは、ポテンシャルのない領域、すなわち回折格子構造10がないクラッド層領域(p導電型のスペーサ層7およびクラッド層12)を介してその大部分が注入される。従って、たとえ本実施の形態のように、回折格子層8の導電型をp導電型クラッド層12と異なる導電型(n導電型)にしても素子抵抗が大幅に増加することはなく、p導電型のクラッド層12からのZn拡散を回折格子構造10で大幅に抑制する効果の方が大きい。
上記半導体レーザ素子に電流注入を行った結果、発振波長1.3μm帯での単一モード発振が観測され、そのしきい値電流は9mAと低く、内部量子効率は0.32W/Aと高い値が得られた。これに対し、回折格子層8の導電型をクラッド層12と同一のp導電型とした従来構造の場合、しきい値電流は13mAに増加し、その内部量子効率は0.24W/Aに低下した。これは、クラッド層12から拡散してきたZnが回折格子層8で止まることなく、下地層である活性層5領域まで拡散し、非発光再結合準位を生成したことを示唆している。また、しきい値電流および内部量子効率のばらつき量を含めたレーザ素子特性の歩留まりは、回折格子層8の導電型をp導電型とした従来構造の場合の40%から本実施の形態構造の場合には85%と飛躍的に向上し、絶大な効果が確認された。
上記レーザ素子を送受信電気光学系部品から構成される光モジュールに搭載し光伝送特性を評価した結果、緩和振動周波数24GHzの良好な変調特性を得た。
(実施の形態2)
本実施の形態は、前記実施の形態1と同じく発振波長1.3μm帯の分布帰還型半導体レーザ素子に適用したものであるが、回折格子層8のドーピングの形態が異なっている。本実施の形態のレーザ素子を製造する方法は、前記実施の形態1の製造方法と同じであるが、図7に示すように、膜厚25nmの回折格子層8のn導電型ドーピングを一様に行うのではなく、膜厚5nmのn導電型InGaAsPからなるn導電型層8nと膜厚5nmのInGaAsPからなるアンドープ層8uとを交互に複数周期(例えば5周期)積層成長した変調ドーピング構造としたものである。
上記半導体レーザ素子に電流注入を行ったところ、発振波長1.3μm帯での単一モード発振し、そのしきい値電流は8mA、内部量子効率は0.33W/Aと、実施の形態1と同様に従来構造に比べて明らかに良好な基本特性が得られた。これは、実施の形態1と同じく、回折格子層8のn導電型層8nによってクラッド層12からのZn拡散が抑制された効果であり、またn導電型層8nとアンドープ層8uを周期構造としたことによって、その抑制効果が高まったことを意味している。
しきい値電流および内部量子効率のばらつき量を含めた本実施の形態2のレーザ素子特性の歩留まりは、回折格子層8の導電型をp導電型とした従来構造の場合の40%から本発明構造の場合には90%とさらに飛躍的に向上し、絶大な効果が確認された。
(実施の形態3)
本実施の形態は、前記実施の形態1、2と同じく発振波長1.3μm帯の分布帰還型半導体レーザ素子に適用したものであるが、回折格子層8のドーピングの形態が異なっている。本実施の形態のレーザ素子を製造する方法は、前記実施の形態1、2の製造方法と同じであるが、図8に示すように、膜厚25nmの回折格子層8のn導電型ドーピングをInGaAsPからなる膜厚5nmのn導電型層8nとInGaAsPからなる膜厚5nmのp導電型層8pを交互に5周期積層成長した変調ドーピング構造としたものである。
本実施の形態の半導体レーザ素子に電流注入を行ったところ、発振波長1.3μm帯での単一モード発振を観測した。そのしきい値電流は10mA、内部量子効率は0.30W/Aと、実施の形態1、2と同様に、従来構造に比べて基本特性の向上が確認された。
本実施の形態の回折格子構造8は、ドーピングの形態がnpnpnの周期構造となっていることから、クラッド層12からのZn拡散抑制効果に加えて、注入されたホールキャリアに対し、サイリスタ的な電流ブロッキング効果も発生する。しかしながら、前記実施の形態1でも述べたように、注入されたホールキャリアの大部分は、バンドギャップの不連続性がない領域、すなわち回折格子層8が形成されていないクラッド層領域を主に流れることから、従来構造と比べてしきい値電流密度が著しく増大することはない。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
例えば、回折格子層8の膜厚や変調ドーピング形態の膜厚比およびその周期数は、前記実施の形態に限定されるものではない。
本発明は、光通信データリンク用の光源として用いられる分布帰型半導体レーザ素子に適用して有用なものである。
本発明の一実施の形態である分布帰還型半導体レーザ素子の製造方法を示す半導体基板の軸方向断面図である。 本発明の一実施の形態である分布帰還型半導体レーザ素子の製造方法を示す半導体基板の軸方向断面図である。 本発明の一実施の形態である分布帰還型半導体レーザ素子の製造方法を示す半導体基板の軸方向断面図である。 本発明の一実施の形態である分布帰還型半導体レーザ素子の製造方法を示す半導体基板の斜視図である。 本発明の一実施の形態である分布帰還型半導体レーザ素子の製造方法を示す半導体基板の斜視図である。 本発明の一実施の形態である分布帰還型半導体レーザ素子における回折格子構造領域のバンドギャップ構造を示す模式図であり、(a)は回折格子層が形成された領域のバンド模式図、(b)は、回折格子層が形成されていない領域のバンド模式図である。 本発明の他の実施の形態である分布帰還型半導体レーザ素子における回折格子層のドーピング形態を示す断面図である。 本発明のさらに他の実施の形態である分布帰還型半導体レーザ素子における回折格子層のドーピング形態を示す断面図である。
符号の説明
1 半導体基板
2 バッファ層
3 クラッド層
4 光ガイド層
5 活性層
6 光ガイド層
7 スペーサ層
8 回折格子層
8n n導電型層
8p p導電型層
8u アンドープ層
9 キャップ層
10 回折格子構造
11 多層基板
12 クラッド層
13 ヘテロ障壁低減層
14 コンタクト層
15 リッジ状光導波路構造
16 p側電極
17 n側電極
18 誘電帯多層反射膜

Claims (5)

  1. 半導体基板上に少なくともn導電型のクラッド層と、活性層と、p導電型のクラッド層とを有し、前記p導電型のクラッド層中に回折格子構造が形成された半導体レーザ素子であって、
    前記回折格子構造の少なくとも一部の領域の導電型は、前記p導電型のクラッド層の導電型と異なることを特徴とする半導体レーザ素子。
  2. 前記回折格子構造は、ドナー不純物が一様にドーピングされたn導電型であることを特徴とする請求項1記載の半導体レーザ素子。
  3. 前記回折格子構造は、ドナー不純物がドーピングされたn導電型領域と不純物がドーピングされていないアンドープ領域からなる変調ドーピング構造となっていることを特徴とする請求項1記載の半導体レーザ素子。
  4. 前記回折格子構造は、ドナー不純物がドーピングされたn導電型領域とアクセプタ不純物がドーピングされたp導電型領域からなる変調ドーピング構造となっていることを特徴とする請求項1記載の半導体レーザ素子。
  5. 送受信電気光学系部品から構成された光モジュールに搭載されていることを特徴とする請求項1〜4のいずれか一項に記載の半導体レーザ素子。
JP2003427800A 2003-12-24 2003-12-24 半導体レーザ素子 Pending JP2005191093A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427800A JP2005191093A (ja) 2003-12-24 2003-12-24 半導体レーザ素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427800A JP2005191093A (ja) 2003-12-24 2003-12-24 半導体レーザ素子

Publications (1)

Publication Number Publication Date
JP2005191093A true JP2005191093A (ja) 2005-07-14

Family

ID=34786974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427800A Pending JP2005191093A (ja) 2003-12-24 2003-12-24 半導体レーザ素子

Country Status (1)

Country Link
JP (1) JP2005191093A (ja)

Similar Documents

Publication Publication Date Title
US4937835A (en) Semiconductor laser device and a method of producing same
US20040131097A1 (en) Optoelectronic and electronic devices based on quantum dots having proximity-placed acceptor impurities, and methods therefor
US10033154B2 (en) Semiconductor optical element, semiconductor laser element, and method for manufacturing semiconductor optical element and semiconductor laser element, and method for manufacturing semiconductor laser module and semiconductor element
US4928285A (en) Impurity-doped semiconductor laser device for single wavelength oscillation
US7830938B2 (en) Laser diode
US20080037607A1 (en) Semiconductor laser diode with a ridge structure buried by a current blocking layer made of un-doped semiconductor grown at a low temperature and a method for producing the same
US5153890A (en) Semiconductor device comprising a layered structure grown on a structured substrate
JPH07107949B2 (ja) フエイズドアレイ半導体レ−ザ−
US8437375B2 (en) Semiconductor laser element
CN110098562B (zh) 一种高速掩埋dfb半导体激光器及其制备方法
US20170271848A1 (en) Method for manufacturing semiconductor device and semiconductor device
JP3204474B2 (ja) 利得結合分布帰還型半導体レーザとその作製方法
JP2867819B2 (ja) 多重量子井戸型半導体レーザ
JP2006253212A (ja) 半導体レーザ
CN111129945B (zh) 整片制作省隔离器边发射激光器芯片的方法
US5309465A (en) Ridge waveguide semiconductor laser with thin active region
JP4599700B2 (ja) 分布帰還型半導体レーザ
JPS61168981A (ja) 半導体レ−ザ装置
US20040013146A1 (en) Laser diode with a low absorption diode junction
KR20060038057A (ko) 반도체 레이저 소자 및 그 제조 방법
JPH08236857A (ja) 長波長半導体レーザおよびその製造方法
US7042921B2 (en) Complex coupled single mode laser with dual active region
JPH10256647A (ja) 半導体レーザ素子およびその製造方法
JP2005191093A (ja) 半導体レーザ素子
JP3801410B2 (ja) 半導体レーザ素子及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20070704

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106