JP2005188505A - Gas turbine part with protective film, and method of forming protective film on super alloy metal substrate - Google Patents

Gas turbine part with protective film, and method of forming protective film on super alloy metal substrate Download PDF

Info

Publication number
JP2005188505A
JP2005188505A JP2004311987A JP2004311987A JP2005188505A JP 2005188505 A JP2005188505 A JP 2005188505A JP 2004311987 A JP2004311987 A JP 2004311987A JP 2004311987 A JP2004311987 A JP 2004311987A JP 2005188505 A JP2005188505 A JP 2005188505A
Authority
JP
Japan
Prior art keywords
lower layer
bonding
aluminum
layer
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004311987A
Other languages
Japanese (ja)
Other versions
JP4392323B2 (en
Inventor
Bertrand Saint-Ramond
ベルトラン・サン−ラモン
Manuel Silva
マニユエル・シルバ
John Nicholls
ジヨン・ニコルズ
Maxime Carlin
マクシム・カルラン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA Moteurs SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA Moteurs SA filed Critical SNECMA Moteurs SA
Publication of JP2005188505A publication Critical patent/JP2005188505A/en
Application granted granted Critical
Publication of JP4392323B2 publication Critical patent/JP4392323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/121Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/14Noble metals, i.e. Ag, Au, platinum group metals
    • F05D2300/143Platinum group metals, i.e. Os, Ir, Pt, Ru, Rh, Pd
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/173Aluminium alloys, e.g. AlCuMgPb
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent

Abstract

<P>PROBLEM TO BE SOLVED: To provide parts of a gas turbine provided with a protective film, and to provide a method of forming the protective film on a super alloy metal substrate. <P>SOLUTION: A part of a gas turbine comprises the super alloy metal substrate, a bonding lower layer formed on the substrate and comprising an intermetallic compound of aluminum, nickel and platinum, and a ceramic outer layer fixed to an aluminum layer formed on the bonding lower layer. The bonding lower layer essentially contains a Ni-Pt-Al three-component system structured of an aluminum enriched α-NiPt type structure, especially a Ni-Pt-Al three-component system having a composition Ni<SB>z</SB>Pt<SB>y</SB>Al<SB>x</SB>(z, y and x respectively satisfies expressions 0.05 ≤ z ≤ 0.40, 0.30 ≤ y ≤ 0.60 and 0.15 ≤ x ≤ 0.40). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超合金金属基板上に保護被膜を作製することに関する。   The present invention relates to producing a protective coating on a superalloy metal substrate.

本発明の適用分野では、高温で機械的強度を保持することができる部品、特にターボジェット機のタービン翼などのガスタービン部品を作っている。   In the field of application of the present invention, parts that can maintain mechanical strength at high temperatures, especially gas turbine parts such as turbine blades of turbojet aircraft, are made.

性能、特に効率を高めるために、ガスタービンをできるだけ高い温度で作動させることが望ましい。熱い部分の部品を作製するために、超合金を使用するのは一般的な慣例である。これらの合金は、通常、主成分としてニッケルを、そしてクロム、コバルト、アルミニウム、モリブデン、チタン、タンタル、および多くの他の元素から選択される追加元素を含んでいる。   In order to increase performance, particularly efficiency, it is desirable to operate the gas turbine at the highest possible temperature. It is common practice to use superalloys to make hot part components. These alloys typically contain nickel as a major component and additional elements selected from chromium, cobalt, aluminum, molybdenum, titanium, tantalum, and many other elements.

運転温度の上昇は、そのような部品の金属基板に、熱障壁を形成する保護被膜を備えることによって可能になる。   The operating temperature can be increased by providing a protective coating on the metal substrate of such a component that forms a thermal barrier.

セラミック外層、および金属の接合下層、特にアルミニウムと白金などの少なくとも1つの他の金属を含む接合下層を含む保護被膜を作製することが知られている。   It is known to produce a protective coating comprising a ceramic outer layer and a metal underlayer, in particular a bond underlayer comprising at least one other metal such as aluminum and platinum.

超合金金属基板とセラミック外層の間に挿入された接合下層は以下の機能を果たす、すなわち、
・アルミナ膜をその表面に形成し、且つ存続できるようにし、それにより、セラミック外層との接合を高める;
・外側のセラミック層をなんとか通過する周囲の媒体中の酸素による酸化による腐食から基板を保護する;および、
・何もしなければ、アルミナ膜を汚染しその結果接合下層と外側のセラミック層との界面に影響を与え、そのためその付着に影響を及ぼす金属基板のある種の元素に対して拡散障壁を構成する。
The junction underlayer inserted between the superalloy metal substrate and the ceramic outer layer performs the following functions:
Forming an alumina film on the surface and allowing it to survive, thereby increasing the bond with the ceramic outer layer;
Protecting the substrate from corrosion due to oxidation by oxygen in the surrounding medium that somehow passes through the outer ceramic layer; and
If nothing is done, it will contaminate the alumina film and consequently affect the interface between the bonding lower layer and the outer ceramic layer, and thus constitute a diffusion barrier for certain elements of the metal substrate that affect its adhesion .

接合下層にイットリウム、セリウム、ハフニウム、またはランタニドなどの反応性元素を含むことにより、その拡散障壁機能が補強され、アルミナの「接着性」膜の持続性が高くなる。   The inclusion of reactive elements such as yttrium, cerium, hafnium, or lanthanide in the junction underlayer reinforces its diffusion barrier function and increases the durability of the “adhesive” film of alumina.

MCrAlY型(MはFe、Ni、Coなどの金属である)の接合下層を、基板との反応を誘発することなく、プラズマ放射などの方法によって形成することはよく知られており、接合下層の基板への付着は機械的なものである。例えば、米国特許第4,055,704号および第5,824,423号を参照できる。それにもかかわらず、熱的に安定な下層を得るためには、下層を比較的厚くする必要がある。一般的には、少なくとも厚さは50マイクロメータ(μm)〜100μmの範囲にあり、そのような厚さは重量の点から不利である。   It is well known that an MCrAlY type (M is a metal such as Fe, Ni, Co) is formed by a method such as plasma radiation without inducing a reaction with the substrate. Adhesion to the substrate is mechanical. See, for example, U.S. Pat. Nos. 4,055,704 and 5,824,423. Nevertheless, in order to obtain a thermally stable lower layer, the lower layer needs to be relatively thick. Generally, at least the thickness is in the range of 50 micrometers (μm) to 100 μm, and such thickness is disadvantageous in terms of weight.

他の知られている方法は、熱安定性のために厚さをより薄くできる金属間化合物から接合下層を作製することにある。アルミニウムと白金を含む金属間化合物は良い特性を有するのが分かった。   Another known method consists in making the junction underlayer from an intermetallic compound that can be made thinner for thermal stability. Intermetallic compounds containing aluminum and platinum have been found to have good properties.

したがって、米国特許第5,716,720号および第5,856,027号が記述している方法は、ニッケルを基にした超合金で出来ている基板に白金層を電気めっきし、続いて1000℃を超える温度でアルミニウム蒸着を行うことにある。基板から生じるニッケルは接合下層に拡散する。物理的蒸着法(PVD)によって得られる、例えば、イットリア安定化ジルコニアのセラミック外層を形成する前に、接合下層の表面に熱処理によってアルミナ膜が形成される。反応性元素は、アルミニウム蒸着段階の間に、接合下層に導入される可能性がある。基板周辺の拡散層の上にあるその外側部分では、接合下層が18〜28重量%のアルミニウム、50〜60重量%のニッケル、および8〜35重量%の白金を含む中間相を示し、ニッケル−アルミニウム二相図(β−NiAl)のβ−型固溶体相に対応している。   Thus, the methods described in US Pat. Nos. 5,716,720 and 5,856,027 have electroplated a platinum layer on a substrate made of a nickel-based superalloy, followed by 1000 The purpose is to perform aluminum deposition at a temperature exceeding ℃. Nickel generated from the substrate diffuses into the bonding lower layer. Before forming the ceramic outer layer of yttria-stabilized zirconia obtained by physical vapor deposition (PVD), for example, an alumina film is formed on the surface of the bonding lower layer by heat treatment. Reactive elements can be introduced into the junction underlayer during the aluminum deposition stage. In its outer part above the diffusion layer around the substrate, the bonding underlayer shows an intermediate phase comprising 18-28 wt.% Aluminum, 50-60 wt.% Nickel, and 8-35 wt. This corresponds to the β-type solid solution phase of the aluminum two-phase diagram (β-NiAl).

米国特許第5,238,752号が記述している別の方法は、超合金基板に、金属間化合物、特にアルミニウムと白金の化合物で作製した接合下層を形成することにある。その接合下層は、985℃を超える温度で、25μmを超える厚さにパックセメンテーションによって作製される。例えば、イットリア安定化ジルコニアのセラミック外層を物理蒸着法によって形成する前に、接合下層の表面の酸化によってアルミナ膜を形成する。   Another method described in US Pat. No. 5,238,752 is to form a bonding underlayer made of an intermetallic compound, particularly a compound of aluminum and platinum, on a superalloy substrate. The junction underlayer is made by pack cementation at a temperature above 985 ° C. to a thickness above 25 μm. For example, before forming the ceramic outer layer of yttria-stabilized zirconia by physical vapor deposition, an alumina film is formed by oxidation of the surface of the bonding lower layer.

ヨーロッパ特許出願EP0,985,744号は、ニッケルを基にした超合金基板に、電気めっき、または化学蒸着によって白金層を形成すること、および気体ハロゲン化物で作製され、白金層中に拡散するアルミニウム層を堆積させることを含むさらに別の方法を記述している。硫黄は、それぞれの堆積の後に、結果として生じる接合下層の表面に発生するアルミナ膜の付着にとって有害である硫黄を除去するように、表面の錆落としと共に、1050℃を超える温度での熱処理によって除去される。   European patent application EP 0,985,744 describes the formation of a platinum layer by electroplating or chemical vapor deposition on a nickel-based superalloy substrate and aluminum diffused into the platinum layer made of gaseous halide. Yet another method is described that includes depositing a layer. Sulfur is removed after each deposition by heat treatment at temperatures above 1050 ° C. along with surface rust removal so as to remove sulfur that is detrimental to the adhesion of the resulting alumina film to the surface of the resulting bonded underlayer. Is done.

米国特許出願第2002/0037220号は、接合下層がアルミニウムと白金族からの金属との複数の個々の層を交互に物理蒸着することによって、および形成されるそれら層の金属間の発熱反応によって形成される方法を開示している。物理蒸着法を使用することによって、基板の温度は比較的低く、基板の元素が、その温度から形成される堆積物の中に拡散しがちな温度より十分低い値に留まる。   US Patent Application No. 2002/0037220 is formed by alternately physical depositing a plurality of individual layers of aluminum and metals from the platinum group and by an exothermic reaction between the metals of the layers formed. Disclosed method. By using physical vapor deposition, the temperature of the substrate is relatively low, and the elements of the substrate remain at a value well below the temperature at which the element tends to diffuse into the deposit formed from that temperature.

本発明の目的は、基板とセラミック外層の間に、安定で、しかもそのセラミック層の層状剥離に対して長期にわたる抵抗を示すけれど、厚さが薄く、したがって、重量が軽い接合下層を有する保護被膜を備えた超合金金属基板を含むガスタービン部品を提供することである。   It is an object of the present invention to provide a protective coating between a substrate and a ceramic outer layer that has a bonding underlayer that is stable and exhibits a long-term resistance to delamination of the ceramic layer but is thin and thus light in weight A gas turbine component comprising a superalloy metal substrate comprising:

この目的は、超合金金属基板、その基板上に形成され、アルミニウム、ニッケルおよび白金を含む金属間化合物を含む接合下層、およびその接合下層上に形成されたアルミナ膜に固定されたセラミック外被を含み、その接合下層が、本発明に従って、アルミニウム濃縮α−NiPt型構造により構成されているNi−Pt−Al三成分系を本質的に含んだガスタービン部品によって達成される。   The object is to provide a superalloy metal substrate, a bonding lower layer formed on the substrate and containing an intermetallic compound including aluminum, nickel and platinum, and a ceramic outer shell fixed to an alumina film formed on the bonding lower layer. And the bonding underlayer is achieved in accordance with the present invention by a gas turbine component that essentially comprises a Ni-Pt-Al ternary system comprised of an aluminum enriched α-NiPt type structure.

本発明の特徴は、少なくとも大部分の接合下層がニッケル(Ni)と白金(Pt)二相図のα形の固溶体相によって構成され、アルミニウム(Al)をも組み込んでいることにある。   A feature of the present invention is that at least most of the bonding lower layer is constituted by an α-type solid solution phase of nickel (Ni) and platinum (Pt) two-phase diagrams, and also incorporates aluminum (Al).

それは、たとえ薄くても、その熱防護材の特性、特に堅牢性に影響を与えることなしに、接合下層を作製することができるような相の安定性が高いためである。その熱防護材は、繰り返された熱サイクルの後にさえ、層状剥離に対する抵抗が増すことを示している。   This is because even if it is thin, the phase stability is high so that the bonding lower layer can be produced without affecting the properties of the thermal protection material, particularly the robustness. The thermal protection material shows increased resistance to delamination even after repeated thermal cycles.

さらに、基板がニッケルを基にした超合金で作製されている場合、基板から接合層へのニッケルの拡散が長期にわたると、接合層の組成を変化させる可能性があるけれど、その構造を変える可能性はない。したがって、α−NiPt金属間化合物の安定性を変える可能性はなく、その結果、初期ニッケル含有量がそのα−NiPt領域の最小値に近ければ近いほど、このことはより著しい。   In addition, if the substrate is made of a nickel-based superalloy, the diffusion of nickel from the substrate to the bonding layer can change the composition of the bonding layer, although it may change the composition of the bonding layer, over time. There is no sex. Therefore, there is no possibility of changing the stability of the α-NiPt intermetallic compound, so that the closer the initial nickel content is to the minimum value of the α-NiPt region, the more significant this is.

Alが濃縮されているα−型NiPt固容体相はそれそのものが知られており、特にJanice L.Kannらによる「Phase stability in (Ni,Pt)Al alloys」という名称の、Scripta Metallurgica et Materiala,Vol.31,No.11,pp.1461−1464,1994に発表された論文に記述されたように、その結晶構造により特徴づけることができる。 The α-type NiPt solid phase enriched with Al is known per se, and in particular, Janice L. et al. Scripta Metallurgica et Materiala, Vol., Entitled “Phase stability in (Ni, Pt) 3 Allloys” by Kann et al. 31, no. 11, pp. It can be characterized by its crystal structure as described in a paper published in 1461-1464, 1994.

そのような相の参考文を、B.Gleesonらによる「Effects on platinum on the interdiffusion and oxidation behavior of Ni−Al−based alloys」という名称の、the Proceedings of the 6th International Symposium on High Temperature Corrosion and Protection of Materials, Materials Science Forum,Vols.461−464,pp.213−222,2004に発表された論文に見つけることもできる。   Reference text for such phases is given in B. Entitled "Effects on platinum on the interdiffusion and oxidation behavior of Ni-Al-based alloys" by Gleeson et al., The Proceedings of the 6th International Symposium on High Temperature Corrosion and Protection of Materials, Materials Science Forum, Vols. 461-464, pp. It can also be found in a paper published in 213-222, 2004.

好都合なことに、Ni−Pt−Al三成分系は、NiPtAlの組成を有しており、その中で、、およびは、0.05≦z≦0.40、0.30≦y≦0.60、および0.15≦x≦0.40ほどである。 Conveniently, the Ni—Pt—Al ternary system has a composition of Ni z Pt y Al x , where z , y , and x are 0.05 ≦ z ≦ 0.40. 0.30 ≦ y ≦ 0.60 and 0.15 ≦ x ≦ 0.40.

接合下層は、Al、Ni、およびPt以外に、1つ以上の追加金属、特に安定性に寄与するクロムとコバルトから選択される少なくとも1つの金属、および/またはパラジウム、ルテニウム、およびレニウムから選択される少なくとも1つの貴金属を含むことができる。   In addition to Al, Ni, and Pt, the junction underlayer is selected from one or more additional metals, particularly at least one metal selected from chromium and cobalt that contributes to stability, and / or palladium, ruthenium, and rhenium. At least one noble metal.

接合下層は、イットリウム、ジルコニウム、ハフニウム、およびランタニドによって構成される群から選択される少なくとも1つの反応性元素を含むこともできる。   The junction underlayer can also include at least one reactive element selected from the group consisting of yttrium, zirconium, hafnium, and lanthanides.

いかなる場合でも、接合下層の大部分がNi−Pt−Al三成分系によって形成されたままであり、その三成分系が下層の組成物の少なくとも75%(原子割合)を示すのが好ましい。   In any case, it is preferred that the majority of the junction underlayer remain formed by the Ni—Pt—Al ternary system, which exhibits at least 75% (atomic percentage) of the underlying composition.

接合下層の厚さは2μm〜120μmの範囲にあるのが都合がよく、40μm未満であるのが好ましい。α−NiPt相の存在によって与えられ、それによって接合下層の製作費用および質量を制限する安定性のために、40μm未満という薄い厚さを選択することが可能である。   The thickness of the bonding lower layer is conveniently in the range of 2 μm to 120 μm, preferably less than 40 μm. A thickness of less than 40 μm can be selected for stability given by the presence of the α-NiPt phase, thereby limiting the fabrication cost and mass of the junction underlayer.

本発明の別の目的は、安定しており、質量を少なくできる接合下層により、超合金金属基板上に熱障壁を構成する熱防護被膜を形成する方法を提供することである。   Another object of the present invention is to provide a method for forming a thermal protection coating on a superalloy metal substrate with a bonded underlayer that is stable and can reduce mass.

この目的は基板上に接合下層を形成することを含む方法によって達成され、前記下層はアルミニウム、ニッケルおよび白金の金属間化合物を含んでおり、その接合下層にあるアルミナ膜に固定しているセラミック外層を形成している。その方法では、本発明に従って、アルミニウム濃縮α−NiPt型構造によって構成されているNi−Pt−Al三成分系を本質的に含む接合下層が形成される。   This object is achieved by a method comprising forming a bonding underlayer on a substrate, wherein the lower layer contains an intermetallic compound of aluminum, nickel and platinum, and is fixed to an alumina film in the bonding lower layer. Is forming. In that method, according to the present invention, a junction underlayer is formed that essentially comprises a Ni—Pt—Al ternary system constituted by an aluminum enriched α-NiPt type structure.

その方法の一実施形態においては、接合下層は、下層に望まれている組成に対応する組成の被膜を基板上に形成することによって作製される。その場合、オーバーレイ式、すなわち、基板由来の元素の被膜への拡散を実質的または有意に含まない被膜形成法が使用される。   In one embodiment of the method, the junction underlayer is made by forming a coating on the substrate with a composition corresponding to the composition desired for the underlayer. In that case, an overlay method is used, that is, a film-forming method that does not substantially or significantly contain diffusion of elements from the substrate into the film.

適当な方法の中では、物理蒸着法、陰極スパッタリングまたはプラズマ放射による堆積、および電着を挙げることができる。   Among suitable methods, mention may be made of physical vapor deposition, deposition by cathodic sputtering or plasma radiation, and electrodeposition.

したがって、白金、ニッケル、およびアルミニウムそれぞれの少なくとも複数の個々の層を物理蒸着することによって、およびその堆積した層を互いに反応させることによって、接合下層を形成することができる。   Accordingly, a bonding underlayer can be formed by physical vapor deposition of at least a plurality of individual layers of platinum, nickel, and aluminum, and by reacting the deposited layers with each other.

また、予め合金化された形態で接合下層の複数の成分を含む少なくともいくつかの層を堆積させることも可能である。例えば、NiPtまたはPtAlなどの予め合金化された層をAlまたはNiの層と交互に堆積させることが可能である。   It is also possible to deposit at least some layers comprising a plurality of components of the bonding underlayer in a pre-alloyed form. For example, prealloyed layers such as NiPt or PtAl can be alternately deposited with layers of Al or Ni.

接合下層に望まれる組成物に対応する組成物を有する供給源から物理蒸着法によって、例えば、予め合金化された粉の混合物からのプラズマ放射によって接合下層を形成するのを思い描くことも可能である。   It is also possible to envisage forming the bonding underlayer by physical vapor deposition from a source having a composition corresponding to the composition desired for the bonding underlayer, for example by plasma radiation from a mixture of prealloyed powders. .

本発明の別の実施形態では、接合下層はニッケルを基にした超合金基板上に、少なくとも複数の白金およびアルミニウム交互の個々の層を物理蒸着することによって、適度な温度、すなわち、900℃未満、一般的には約700℃の温度で、堆積したそれらの層からの金属を発熱反応させることによって、および基板からのニッケルを接合下層に拡散させるために熱処理することによって形成される。その熱処理を、セラミック外層を形成するのとは別に行うことができる。または、熱処理が比較的高い温度で行われるとき、その熱処理がセラミック外層を形成するという結果であり得る。もしその下層が比較的薄い、すなわち、10μm以下ならば、900℃以上の温度での熱処理がニッケルの基板から接合下層全体への拡散を引き起こすに充分であるということ、その結果、もし厚さがより厚ければ、おそらくより高い温度が必要になるということが、本出願人によって見出された。そのような拡散が形成されているα−NiPt型の安定相をもたらすということも分かった。   In another embodiment of the invention, the bonding underlayer is at a moderate temperature, i.e. less than 900 ° C., by physical vapor depositing at least a plurality of alternating individual layers of platinum and aluminum on a nickel-based superalloy substrate. Formed by exothermic reaction of the metal from those deposited layers, generally at a temperature of about 700 ° C., and by heat treatment to diffuse the nickel from the substrate into the bonding underlayer. The heat treatment can be performed separately from forming the ceramic outer layer. Alternatively, it may be the result that when the heat treatment is performed at a relatively high temperature, the heat treatment forms a ceramic outer layer. If the lower layer is relatively thin, i.e. less than 10 μm, then a heat treatment at a temperature of 900 ° C. or higher is sufficient to cause diffusion of nickel from the substrate to the entire bonded lower layer, so that the thickness is It has been found by the applicant that a thicker will probably require a higher temperature. It has also been found that such diffusion results in an α-NiPt type stable phase.

図面の簡単な説明
本発明は、限定されない表示により与えられる以下記述を読むことにより、より良く理解されるだろう。
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be better understood by reading the following description given by way of non-limiting representation.

添付図面を参照する。その中で、
図1は保護被膜を備えた超合金金属基板の非常に概略的な断面図である。
Reference is made to the accompanying drawings. inside that,
FIG. 1 is a very schematic cross-sectional view of a superalloy metal substrate with a protective coating.

図2はアルミニウム濃縮α−NiPt固溶体相の単位格子特性の図である。   FIG. 2 is a diagram of unit cell characteristics of the aluminum-enriched α-NiPt solid solution phase.

図3は本発明の方法の一実施形態を示す略図である。   FIG. 3 is a schematic diagram illustrating one embodiment of the method of the present invention.

図4〜6は、図3の方法における第一段階の実施例を示す略図である。   4-6 are schematic diagrams illustrating an example of the first stage in the method of FIG.

図7は本発明の方法の他の実施形態を示す略図である。   FIG. 7 is a schematic diagram illustrating another embodiment of the method of the present invention.

図8は、走査型電子顕微鏡で撮影し、本発明の一実施形態に従って超合金金属基板上に作製した保護被膜の断面図を示す写真である。   FIG. 8 is a photograph showing a cross-sectional view of a protective coating taken on a superalloy metal substrate in accordance with one embodiment of the present invention, taken with a scanning electron microscope.

図9は本発明の被膜で作製した部品、および従来技術に従って作製した部品について行った試験結果を示す図表である。   FIG. 9 is a chart showing the results of tests conducted on parts made with the coating of the present invention and parts made according to the prior art.

図10および11は、適度な熱処理の前後に、走査型電子顕微鏡で撮影し、本発明の他の実施形態を用いて作製した保護被膜の断面を示す写真である。   10 and 11 are photographs showing a cross-section of a protective coating taken using a scanning electron microscope before and after moderate heat treatment and produced using another embodiment of the present invention.

以下の説明は、超合金金属部品に、一般的には、ターボジェット機のタービン翼などのガスタービン部品に保護被膜を作製することに関する。   The following description relates to producing protective coatings on superalloy metal parts, and generally on gas turbine parts such as turbojet turbine blades.

その保護被膜は、図1で非常に概略的に示した型のものである。超合金で作製した金属基板10の上に、主にアルミニウム、ニッケル、および白金で構成された金属間化合物で作製した接合下層12と、その接合下層の表面に生じさせたアルミナ膜14に固定されたセラミック外層16を含む被膜が形成される。   The protective coating is of the type shown very schematically in FIG. On a metal substrate 10 made of a superalloy, it is fixed to a bonding lower layer 12 made of an intermetallic compound mainly composed of aluminum, nickel, and platinum, and an alumina film 14 formed on the surface of the bonding lower layer. A coating including the outer ceramic layer 16 is formed.

本発明によると、接合下層を形成する金属間化合物の大部分がα−NiPt型の相によって構成されるアルミニウムが濃縮されたNi−Pt−Al三成分系を含む。そのような相は図2に示されているように、その格子構造によって定義することができる。この構造はL1型の面心正方晶系である。NiおよびAlの原子は(001)面の頂点および中心に配置され、それに対してPtの原子は(100)および(010)面の中心に位置する。1つの単位格子の場合、寸法、および(図2)は、0.37nm≦a=b≦0.40nm、および0.35nm≦c≦0.36nmほどである。、およびが、0.05≦z≦0.40、0.30≦y≦0.60、および0.15≦x≦0.40ほどであるNiPtAl三成分系を選択するのが好ましい。 According to the present invention, most of the intermetallic compounds forming the bonding lower layer include a Ni-Pt-Al ternary system enriched with aluminum composed of α-NiPt type phases. Such a phase can be defined by its lattice structure, as shown in FIG. This structure is an L1 o type face-centered tetragonal system. Ni and Al atoms are located at the apex and center of the (001) plane, while Pt atoms are located at the centers of the (100) and (010) planes. For one unit cell, dimensions a 1 , b 2, and c (FIG. 2) are about 0.37 nm ≦ a = b ≦ 0.40 nm and 0.35 nm ≦ c ≦ 0.36 nm. z, y, and x is, Ni z Pt y Al x ternary is 0.05 ≦ z ≦ 0.40,0.30 ≦ y ≦ 0.60, and more 0.15 ≦ x ≦ 0.40 Is preferably selected.

B.Gleesonらによる上記の論文によって確認されているように、そのα−NiPt相を含む領域はβ−NiAl相を含む領域とは完全に別である。   B. As confirmed by the above article by Gleeson et al., The region containing the α-NiPt phase is completely separate from the region containing the β-NiAl phase.

接合下層の組成物に、Ni、Al、およびPt以外の元素、特に、保護被膜の強度に有害であるかもしれない基板のある種の元素に対する拡散障壁機能を補強するのに役立ち、アルミナ膜の持続性を高めるイットリウム、ジルコニウム、ハフニウム、およびランタニドから選択される反応性元素を加えることができる。また、有益な効果を有する他の金属を、例えば、被膜の熱安定性を向上させるパラジウム、ルテニウム、またはレニウム、あるいはコバルトおよび/またはクロムでさえ加えることも可能である。   The bonding underlayer composition helps to reinforce the diffusion barrier function for elements other than Ni, Al, and Pt, especially certain elements of the substrate that may be detrimental to the strength of the protective coating. Reactive elements selected from yttrium, zirconium, hafnium, and lanthanides that enhance persistence can be added. It is also possible to add other metals having a beneficial effect, for example palladium, ruthenium or rhenium, or even cobalt and / or chromium, which improve the thermal stability of the coating.

アルミナ膜14は拡散障壁のアルミニウムの酸化によって生成する。それは酸化による腐食に対する保護機能を提供する。それは、また、その「接着」性によってセラミック外層16を付着させる。   The alumina film 14 is formed by oxidation of aluminum as a diffusion barrier. It provides a protective function against corrosion due to oxidation. It also attaches the ceramic outer layer 16 due to its “adhesion” properties.

セラミック外被16は本質的に断熱機能を与える。その被膜は、ジルコニア、酸化イットリウム、またはイットリア安定化ジルコニアなどの耐火性酸化物で作製されている。その被膜は、物理蒸着法によって、例えば、当分野ではよく知られているように、電子ビーム蒸着によって、またはプラズマ利用蒸着によって形成できる。   The ceramic jacket 16 essentially provides a thermal insulation function. The coating is made of a refractory oxide such as zirconia, yttrium oxide, or yttria stabilized zirconia. The coating can be formed by physical vapor deposition, for example, by electron beam vapor deposition, or by plasma based vapor deposition, as is well known in the art.

接合下層の組成は以下の通りであってもよい(原子のパーセントで)、すなわち、
・75%〜100%の範囲の上記で定義されたNi−Pt−AI三成分系、
・0%〜10%の範囲のコバルトおよび/またはクロム、
・0%〜5%の範囲のY、Zr、Hf、およびランタニドから選択される反応性元素(複数可)、および、
・0%〜10%の範囲のPd、Ru、およびRhから選択される貴金属である。
The composition of the junction underlayer may be as follows (in percent of atoms):
Ni-Pt-AI ternary system as defined above in the range of 75% to 100%,
Cobalt and / or chromium in the range of 0% to 10%,
The reactive element (s) selected from Y, Zr, Hf and lanthanides in the range of 0% to 5%, and
A noble metal selected from Pd, Ru, and Rh in the range of 0-10%.

接合下層の厚さが2μm〜120μmの範囲にあるのが好ましい。α−NiPt相によって与えられる高度な熱安定性のために、この厚さが40μm未満、または20μm未満でさえ好都合である可能性がある。   The thickness of the bonding lower layer is preferably in the range of 2 μm to 120 μm. Due to the high thermal stability afforded by the α-NiPt phase, it may be advantageous for this thickness to be less than 40 μm, or even less than 20 μm.

第1の実施形態
第1の実施形態(図3)では、接合下層は、接合下層に望ましい組成を有する被膜を作製することによって、基板由来の元素の実質的または有意な拡散を引き起こさないで、すなわち、オーバーレイ式の方法(段階20)を実施することによって形成される。
First Embodiment In the first embodiment (FIG. 3), the junction underlayer does not cause substantial or significant diffusion of elements from the substrate by creating a film having a desired composition in the junction underlayer, That is, it is formed by performing an overlay type method (step 20).

その後、(段階22)、外層が、接合下層に、その表面に生じるアルミナ膜の成長と共に形成される。この目的のために、電子ビーム(EB−PVD)の下で物理蒸着法を使用することが可能である。接合下層を担持する金属基板は、セラミック源、例えば、イットリア安定化ジルコニアターゲットの上の密閉箱中に入れる。堆積は、アルゴンと酸素の混合物を含む減圧雰囲気の下でセラミック源に面している電子銃を励振することによって行われる。その方法は当分野ではよく知られている。   Thereafter (step 22), the outer layer is formed in the bonding lower layer with the growth of the alumina film formed on the surface thereof. For this purpose, it is possible to use physical vapor deposition under an electron beam (EB-PVD). The metal substrate carrying the bonding underlayer is placed in a sealed box over a ceramic source, eg, a yttria stabilized zirconia target. Deposition is performed by exciting an electron gun facing the ceramic source under a reduced pressure atmosphere containing a mixture of argon and oxygen. The method is well known in the art.

段階20を、いくつかの方法で、特にアークの下で、プラズマからの支援の有無にかかわらず、陰極スパッタリング、電子ビームPVD、または蒸着などの物理蒸着法を実施することによって行うことができる。   Stage 20 can be performed in several ways, particularly under an arc, with or without assistance from the plasma, by performing physical vapor deposition methods such as cathode sputtering, electron beam PVD, or vapor deposition.

第1の改変実施形態(図4)では、段階20は、白金(段階201)、アルミニウム(段階202)、白金(段階203)、およびニッケル(段階204)の一連の各単層堆積のM回繰り返し、次いで白金単層の最後の堆積(段階205)を含んでいる。次に、セラミック外層を形成する前に、単層の金属間に反応を起こすことによって金属間化合物を形成するように、適度の熱処理(段階206)を行うことができる。熱処理は900℃より低い温度で、例えば、約700℃で行われる。したがって、基板から金属間化合物の隣接部分への元素の拡散が促進されることはない。熱処理は、例えば、0.5時間(h)〜3時間の範囲にある持続時間にわたり、真空または不活性の雰囲気で行われる。   In the first modified embodiment (FIG. 4), stage 20 consists of M times for each series of single layer depositions of platinum (stage 201), aluminum (stage 202), platinum (stage 203), and nickel (stage 204). Repeat and then include the final deposition of the platinum monolayer (step 205). Next, before forming the ceramic outer layer, a moderate heat treatment (step 206) can be performed to form an intermetallic compound by causing a reaction between the single layer metals. The heat treatment is performed at a temperature lower than 900 ° C., for example, about 700 ° C. Therefore, the diffusion of elements from the substrate to the adjacent portion of the intermetallic compound is not promoted. The heat treatment is performed, for example, in a vacuum or inert atmosphere for a duration in the range of 0.5 hours (h) to 3 hours.

適度の熱処理は任意であるということ、およびセラミック外層を作っている間に起こる温度上昇の影響の下で金属間化合物も形成される可能性があるということも認めなくてはならない。   It should also be appreciated that moderate heat treatment is optional and that intermetallic compounds may also form under the influence of temperature increases that occur during the creation of the ceramic outer layer.

単層を堆積させるという手順において、金属間化合物の白金の拡散を妨害するかもしれないアルミニウムおよびニッケル間のどんな反応も避けるために、白金の2つの単層間にアルミニウムの単層を置くのが好ましいということも認めなくてはならない。第1の単層は、白金は基板にあまり拡散しそうにないので、本質的には白金によって構成される層である。最後の単層も、白金は接合下層作製の終わりに、空気中または酸素分圧中であまり酸化しそうにないので、白金層であることが好ましい。   In the procedure of depositing a monolayer, it is preferable to place a monolayer of aluminum between two monolayers of platinum to avoid any reaction between aluminum and nickel that may interfere with the diffusion of the intermetallic platinum. I have to admit that. The first monolayer is essentially a layer composed of platinum because platinum is unlikely to diffuse much into the substrate. The last monolayer is also preferably a platinum layer since platinum is less likely to oxidize in air or oxygen partial pressure at the end of fabrication of the bonding underlayer.

単層は、少なくともアルミニウムの場合、2000ナノメートル(nm)未満、好ましくはわずか1500nmに過ぎない個々の厚さを有するように作製される。層の厚さを、このしきい値より十分低く、例えば、わずか200nmに過ぎないように選択してよい。熱処理の後に、均質である構造、すなわち、接合下層が重ね合わせた層から形成されているというどんな痕跡も残さない構造を得ることが望ましい場合、そのような比較的薄い厚さが選択される。   The monolayer is made to have an individual thickness of less than 2000 nanometers (nm), preferably only 1500 nm, at least for aluminum. The layer thickness may be chosen to be well below this threshold, for example only 200 nm. If it is desired to obtain a structure that is homogeneous after heat treatment, i.e. that does not leave any trace that the bonding underlayer is formed from superposed layers, such a relatively thin thickness is selected.

連続の数Mは、接合下層にとって望ましい単層の厚さおよび総厚さの関数として決定される。前記総厚さの値によっては、単層の数は、数個から数十、または数百にもわたる範囲で変化する可能性がある。   The number of consecutive M is determined as a function of the desired monolayer thickness and total thickness for the junction underlayer. Depending on the value of the total thickness, the number of single layers may vary in the range from several to tens or hundreds.

堆積される単層が異なった厚さである可能性があることは認められるべきである。   It should be appreciated that the deposited monolayer may be of different thickness.

すべての場合において、各金属について層の総厚さ間の比は、接合下層を形成する金属間化合物にとって望ましい組成の関数である。   In all cases, the ratio between the total layer thicknesses for each metal is a function of the desired composition for the intermetallic compound that forms the bonded underlayer.

第2の改変実施形態(図5)では、段階20は、図4の方法におけるような任意の適度な熱処理(段階206)の前の、二成分系の一連の単層堆積、例えば、NiPt(段階210)、およびアルミニウム(段階211)のN回繰返しを含んでいる。もちろん、改変実施形態では、PtAl二成分系およびニッケルNiの堆積を交互にすることは可能である。NiPt二成分系の組成、単層の厚さ、およびその数は、接合下層にとって望ましい組成および厚さの関数として選択される。   In a second modified embodiment (FIG. 5), step 20 comprises a binary series of single layer depositions, such as NiPt (), prior to any moderate heat treatment (step 206) as in the method of FIG. Stage 210), and N iterations of aluminum (stage 211). Of course, in a modified embodiment, it is possible to alternate the deposition of the PtAl binary system and nickel Ni. The composition of the NiPt binary system, the monolayer thickness, and the number thereof are selected as a function of the desired composition and thickness for the junction underlayer.

第3の改変実施形態(図6)では、段階20は、任意の適度の熱処理(段階206)の前に、Ni−Pt−Al三成分系の連続的に堆積するP層(段階215)を含んでいる。   In a third modified embodiment (FIG. 6), stage 20 includes a Ni-Pt-Al ternary P layer (stage 215) prior to any modest heat treatment (stage 206). Contains.

各層には、接合下層にとって望ましい組成に対応する組成が与えられる。   Each layer is given a composition that corresponds to the desired composition for the bonded underlayer.

上記のように図4〜6の方法では、特にPVD方法を使用するとき、ニッケル、白金、またはアルミニウムで作製されているか、またはそれら材料の2つの合金で作製されているか、または3つ全ての金属の合金でつくられており、それらの金属は、例えば、粉末の形で存在している供給源またはターゲットを使用する。また、追加金属または他の元素が接合下層に組み込まれる予定のときは、それらを追加の供給源またはターゲットによって、別個の単層に堆積されるように供給することができる。あるいは、それらを、ニッケルおよび/または白金および/またはアルミニウムの供給源またはターゲットの一つ以上の望ましい比率で、前もって合金化することも可能である。   As described above, in the method of FIGS. 4-6, especially when using the PVD method, it is made of nickel, platinum, or aluminum, or made of two alloys of those materials, or all three. Made of metal alloys, these metals use sources or targets that exist, for example, in powder form. Also, when additional metals or other elements are to be incorporated into the junction underlayer, they can be supplied by additional sources or targets to be deposited in a separate monolayer. Alternatively, they can be prealloyed at one or more desired ratios of nickel and / or platinum and / or aluminum sources or targets.

さらに別の改変実施形態では、接合下層を、基板との顕著な相互作用なしに、電着によって形成することが可能である。それは、異なる金属の連続した層を堆積させることによって、またはこれらの金属の共堆積によって続けることが可能である。   In yet another modified embodiment, the bonding underlayer can be formed by electrodeposition without significant interaction with the substrate. It can be continued by depositing successive layers of different metals or by co-deposition of these metals.

第2の実施形態
第2の実施形態(図7)では、金属基板がニッケルを基にした超合金で作製されているために、接合下層は、方法の第1の部分では、本質的にアルミニウムと白金を含む金属間化合物を形成することによって、方法のその後の部分では、セラミック外層の形成の前または形成中に温度を上げることにより基板からのニッケルを拡散させることによって作製される。
Second Embodiment In the second embodiment (FIG. 7), because the metal substrate is made of a nickel-based superalloy, the junction underlayer is essentially aluminum in the first part of the method. In the subsequent part of the method, by forming an intermetallic compound comprising platinum and platinum, the nickel from the substrate is diffused by increasing the temperature before or during the formation of the ceramic outer layer.

方法の第1の部分は、物理蒸着法を使用して、白金(段階30)およびアルミニウム(段階32)の単層の堆積を交互にすることによって、およびそれによって形成された層間に発熱反応を起こさせることによって行うことができる。この終わりまで、上記の米国特許出願第2002/0037220号に記述されている方法を使用することができる。   The first part of the method uses physical vapor deposition to alter the exothermic reaction between alternating layers of platinum (stage 30) and aluminum (stage 32) and between the layers formed thereby. Can be done by waking up. To this end, the method described in the above-mentioned US patent application 2002/0037220 can be used.

既に示した理由で、基板に堆積される予定の第1の単層および堆積される予定の最後の単層(段階34)は白金層であることが好ましい。   For reasons already indicated, the first monolayer to be deposited on the substrate and the last monolayer to be deposited (stage 34) are preferably platinum layers.

適度の熱処理段階36は、形成された単層の白金とアルミニウム間の発熱反応により金属間化合物を形成するように行われる。その熱処理は、900℃より低い温度、例えば、約700℃で行われる。したがって、金属基板からの元素の金属間化合物の隣接部分への拡散が促進されることはない。その熱処理は、非酸化雰囲気の下で、例えば、0.5時間〜3時間の範囲にある持続時間、例えば、約2時間にわたり、真空下または不活性雰囲気の下で行われる。熱処理の間、どの層中のアルミニウムでも、隣接している白金層の中に拡散する。アルミナの薄膜は、酸化媒体へのその後の露出の間に、このようにして得られるところの接合下層の表面に生じる。   A moderate heat treatment step 36 is performed to form an intermetallic compound by an exothermic reaction between the formed single layer platinum and aluminum. The heat treatment is performed at a temperature lower than 900 ° C., for example, about 700 ° C. Therefore, the diffusion of the element from the metal substrate to the adjacent portion of the intermetallic compound is not promoted. The heat treatment is performed under a non-oxidizing atmosphere, for example, under a vacuum or inert atmosphere for a duration ranging from 0.5 hours to 3 hours, for example, about 2 hours. During heat treatment, aluminum in any layer diffuses into the adjacent platinum layer. A thin film of alumina forms on the surface of the bonding underlayer thus obtained during subsequent exposure to the oxidizing medium.

単層は、少なくともアルミニウムの場合は2000nm未満、好ましくはわずか1500nmに過ぎない個々の厚さを有するように作製される。この厚さが、このしきい値より十分低い、例えば、わずか200nmにしか過ぎないように選択することが可能である。   The monolayer is made to have an individual thickness of at least less than 2000 nm, preferably only 1500 nm, at least for aluminum. It is possible to choose this thickness to be well below this threshold, for example only 200 nm.

層の厚さおよび数は、接合下層で望ましいAl/Pt比に対応するAl/Pt比を得るように、および、そのために望ましい厚さを得るように選択される。   The thickness and number of layers are selected to obtain an Al / Pt ratio corresponding to the desired Al / Pt ratio in the junction underlayer and to obtain the desired thickness therefor.

白金およびアルミニウムの単層を、陰極スパッタリングにより、電子ビーム物理蒸着法により、またはプラズマの有無にかかわらず、アークの下での蒸着により堆積させることができる。その方法により、堆積する金属の量を、したがって単層の厚さを全く正確に調節することが可能である。そのような方法はそれ自体でよく知られており、白金とアルミニウムで作製した供給源またはターゲットを使用する。   Single layers of platinum and aluminum can be deposited by cathodic sputtering, by electron beam physical vapor deposition, or by vapor deposition under an arc with or without plasma. The method makes it possible to adjust the amount of deposited metal and thus the thickness of the monolayer quite precisely. Such methods are well known per se and use sources or targets made of platinum and aluminum.

少なくとも1つの追加金属および/または少なくとも1つの反応性元素を、1つ以上の追加供給源またはターゲットを使用することによって、または白金およびアルミニウムの供給源またはターゲット中にそれらの材料を組み込むことによって、接合下層内に堆積させることができる。   By using at least one additional metal and / or at least one reactive element by using one or more additional sources or targets, or by incorporating those materials into platinum and aluminum sources or targets, It can be deposited in the junction underlayer.

その後、セラミック外層を作製する(段階37)が、基板の温度を、その金属基板に含まれているニッケルを接合下層内に拡散させるのに十分高い値まで上げた後である。この温度は、接合下層の厚さを増すために、ますます高くなるように選択されるはずである。その温度は、厚さが2μm〜10μmの範囲にあるように900℃以上に等しいことが好ましく、厚みを増すには1000℃を超えてもよい。   Thereafter, the ceramic outer layer is fabricated (step 37) after raising the temperature of the substrate to a value high enough to diffuse the nickel contained in the metal substrate into the bonding underlayer. This temperature should be chosen to be higher and higher to increase the thickness of the junction underlayer. The temperature is preferably equal to or greater than 900 ° C. so that the thickness is in the range of 2 μm to 10 μm, and may exceed 1000 ° C. to increase the thickness.

コバルトおよびクロムなどの基板からの他の金属も拡散しそうである。それにもかかわらず、接合下層は、保護被膜の強度に、特に接合下層の表面にあるアルミナ膜の持続性に有害な影響を有することもあり得るタングステン、モリブデン、タンタルなど、基板に含まれている可能性のある元素に対して、その拡散障壁機能を維持する。   Other metals from the substrate such as cobalt and chromium are likely to diffuse. Nevertheless, the junction underlayer is contained in the substrate, such as tungsten, molybdenum, tantalum, etc., which can have a detrimental effect on the strength of the protective coating, especially the sustainability of the alumina film on the surface of the junction underlayer. Maintains its diffusion barrier function against potential elements.

本申請者は、接合下層に拡散するニッケルが白金と共同して、α−NiPt型の安定相を形成することを示すことができた。   The present applicant was able to show that nickel diffusing into the bonding lower layer forms an α-NiPt type stable phase in cooperation with platinum.

改変実施形態では、基板からのニッケルを接合下層に拡散させようとして、セラミック外層を形成する前に、少なくとも900℃の温度での熱処理を別に行うことができる。   In a modified embodiment, a heat treatment at a temperature of at least 900 ° C. can be performed prior to forming the ceramic outer layer in an attempt to diffuse nickel from the substrate into the bonding lower layer.

ニッケルを基にした単結晶超合金製で、以下の組成(重量パーセント)、すなわち、6.5%のCo、7.5%のCr、5.3%のAl、1.2%のTi、8%のTa、2%のMo、5.5%のW、残りがNiを有する金属部品を使用した。   Made of nickel-based single crystal superalloy with the following composition (weight percent): 6.5% Co, 7.5% Cr, 5.3% Al, 1.2% Ti, A metal part with 8% Ta, 2% Mo, 5.5% W and the balance Ni was used.

上記の第2の実施形態(図7)を応用して、陰極スパッタリングを使用し物理蒸着法によって白金とアルミニウムの層を交互に部品に取り付けた。それぞれ30nmの厚さを有する84の白金単層を、それぞれ66nmの厚さを有する83のアルミニウム単層と交互に堆積させた。   Applying the second embodiment (FIG. 7), platinum and aluminum layers were alternately attached to the parts by cathode vapor deposition and physical vapor deposition. 84 platinum monolayers, each having a thickness of 30 nm, were alternately deposited with 83 aluminum monolayers, each having a thickness of 66 nm.

その単層間に発熱反応を引き起こすために、温度を2時間の間700℃まで上げて、PtAl型の白金とアルミニウムの金属間化合物を7.5μmの厚さを有する層に形成させた。 In order to cause an exothermic reaction between the single layers, the temperature was raised to 700 ° C. for 2 hours to form a PtAl 2 type platinum-aluminum intermetallic compound in a layer having a thickness of 7.5 μm.

その後、酸化イットリウムYにより安定化したジルコニアZrOのセラミック外層(8重量%を表す)を堆積させた。堆積は、上記のように、電子ビーム物理蒸着法によって行われた。基板の温度を約1000℃まで上げ、持続時間を、約125μmに等しい厚さを有するイットリア安定化ジルコニアの外層が形成されるように選択した。 A zirconia ZrO 2 ceramic outer layer (representing 8 wt%) stabilized with yttrium oxide Y 2 O 3 was then deposited. Deposition was performed by electron beam physical vapor deposition as described above. The temperature of the substrate was raised to about 1000 ° C. and the duration was selected so that an outer layer of yttria stabilized zirconia having a thickness equal to about 125 μm was formed.

手順は実施例1におけるものと同じであったが、白金とアルミニウムの単層の数を、それらの間の発熱反応後に、約2.5μmに等しい厚さを有する層のPtAl型金属間化合物が得られるように制限した。 The procedure was the same as in Example 1, but the number of platinum and aluminum monolayers was changed to PtAl 2 type intermetallic compound in a layer having a thickness equal to about 2.5 μm after an exothermic reaction between them. It was restricted to obtain.

図8の顕微写真がその得られた結果を示す。   The micrograph of FIG. 8 shows the results obtained.

(比較用)
実施例1および2の基板と同じ組成を有する基板に、接合下層を、従来技術で知られている方法で、Ni−Al二相図の白金が濃縮されたβ−型相に対応する接合下層を得るように、白金層の電着によって、およびアルミニウム蒸着によって形成した。接合下層の厚さは60μmであった。その後、セラミック外層を、実施例1に記述されているように形成した。
(For comparison)
The bonding lower layer corresponding to the β-type phase enriched with platinum in the Ni—Al two-phase diagram by a method known in the prior art on a substrate having the same composition as the substrates of Examples 1 and 2. Was formed by electrodeposition of a platinum layer and by aluminum deposition. The thickness of the bonding lower layer was 60 μm. A ceramic outer layer was then formed as described in Example 1.

酸化媒体(空気)中の熱サイクルに耐える能力の試験を、それぞれ実施例1、2、および3で得られた部品A、B、およびCについて行った。各サイクルでは、1100℃まで急速に温度を上げて、そこに1時間維持し、その後、気温に戻して、そこに15分維持した。   The ability to withstand thermal cycling in the oxidizing medium (air) was tested on parts A, B, and C obtained in Examples 1, 2, and 3, respectively. In each cycle, the temperature was rapidly raised to 1100 ° C. and maintained there for 1 hour, then returned to ambient temperature and maintained there for 15 minutes.

図9に示すように、部品Bは十分に624サイクルに耐えた。それは、現在使用されている接合下層の厚さ(最も一般的には60μm)と比較して、非常に薄い(2.5μm)接合下層であることを考慮すると、非常に注目すべき結果である。部品AおよびCは、十分に1086サイクルまで耐えた。   As shown in FIG. 9, the component B sufficiently endured 624 cycles. It is a very noteworthy result considering that it is a very thin (2.5 μm) junction underlayer compared to the currently used junction underlayer thickness (most commonly 60 μm). . Parts A and C fully survived 1086 cycles.

薄い接合下層を使用することが可能になると、製作時間の短縮、材料費(たとえ白金含有量が比較的高いとしても)の節減、および重量の減少をもたらし、その全てが重要な利点となる。   The ability to use a thin bonded underlayer results in reduced fabrication time, reduced material costs (even if the platinum content is relatively high), and reduced weight, all of which are important advantages.

実施例1に明示されている単結晶超合金金属部品に、Pt、Al、Pt、Niの配列を繰り返すことによる層を、最後のPt層と共に取り付けた(図4に示すような前記第1の実施形態の改変形態)。陰極スパッタリングによる物理蒸着法を使用した。それぞれ181nmの厚さを有する13層のPt単層を堆積させ、それぞれ約268nmの厚さを有するNiの6個別層を堆積させ、およびそれぞれ約171nmの厚さを有するAlの6個別層を堆積させた。   The single crystal superalloy metal part specified in Example 1 was attached with a layer by repeating the arrangement of Pt, Al, Pt, Ni together with the last Pt layer (the first as shown in FIG. 4). Modified embodiment of the embodiment). A physical vapor deposition method by cathode sputtering was used. Deposit 13 individual Pt monolayers each having a thickness of 181 nm, 6 individual layers of Ni each having a thickness of about 268 nm, and 6 individual layers of Al each having a thickness of about 171 nm I let you.

単結晶超合金の基板から移動させることなく単層間の反応を引き起こすために、真空下に約700℃の温度で適度な熱処理を行った。そうして、7.1μmにほぼ等しい厚さを有する金属間化合物でできている被膜を得た。その被膜の原子パーセンテージでの組成は、45%のPt、28%のAl、および27%のNiであった。その被膜をX線回折によって検査し、その結果、アルミニウム濃縮α−NiPt相の結晶構造特性の存在を示した。   In order to cause a reaction between the single layers without moving from the substrate of the single crystal superalloy, an appropriate heat treatment was performed at a temperature of about 700 ° C. under vacuum. Thus, a coating made of an intermetallic compound having a thickness approximately equal to 7.1 μm was obtained. The composition in atomic percentage of the coating was 45% Pt, 28% Al, and 27% Ni. The coating was examined by X-ray diffraction and as a result showed the presence of the crystal structure characteristics of the aluminum enriched α-NiPt phase.

図10および11は、それぞれ、適度な熱処理の前後の、被膜を断面で示す。   10 and 11 each show the coating in cross-section before and after moderate heat treatment.

保護被膜を備えた超合金金属基板の非常に概略的な断面図である。FIG. 3 is a very schematic cross-sectional view of a superalloy metal substrate with a protective coating. アルミニウム濃縮α−NiPt固溶体相の単位格子特性の図である。It is a figure of the unit cell characteristic of aluminum concentration alpha-NiPt solid solution phase. 本発明の方法の一実施形態を示す略図である。1 is a schematic diagram illustrating one embodiment of the method of the present invention. 図3の方法における第一段階の実施例を示す略図である。Fig. 4 is a schematic diagram showing an example of the first stage in the method of Fig. 3; 図3の方法における第一段階の実施例を示す略図である。Fig. 4 is a schematic diagram showing an example of the first stage in the method of Fig. 3; 図3の方法における第一段階の実施例を示す略図である。Fig. 4 is a schematic diagram showing an example of the first stage in the method of Fig. 3; 本発明の方法の他の実施形態を示す略図である。2 is a schematic diagram illustrating another embodiment of the method of the present invention. 走査型電子顕微鏡で撮影し、本発明の一実施形態に従って超合金金属基板上に作製した保護被膜の断面図を示す写真である。It is a photograph which shows the cross-sectional view of the protective film which image | photographed with the scanning electron microscope and produced on the superalloy metal substrate according to one Embodiment of this invention. 本発明の被膜で作製した部品、および従来技術に従って作製した部品について行った試験結果を示す図表である。It is a table | surface which shows the result of the test done about the components produced with the film of this invention, and the components produced according to the prior art. 適度な熱処理の前後に、走査型電子顕微鏡で撮影し、本発明の他の実施形態を用いて作製した保護被膜の断面を示す写真である。It is a photograph which shows the cross section of the protective film which image | photographed with the scanning electron microscope before and after moderate heat processing, and produced using other embodiment of this invention. 適度な熱処理の前後に、走査型電子顕微鏡で撮影し、本発明の他の実施形態を用いて作製した保護被膜の断面を示す写真である。It is a photograph which shows the cross section of the protective film which image | photographed with the scanning electron microscope before and after moderate heat processing, and produced using other embodiment of this invention.

符号の説明Explanation of symbols

10 金属基板
12 接合下層
14 アルミナ膜
16 セラミック外層
10 Metal substrate 12 Bonding lower layer 14 Alumina film 16 Ceramic outer layer

Claims (19)

接合下層が本質的にはアルミニウム濃縮α−NiPt型構造によって構成されるNi−Pt−Al三成分系を含むことを特徴とする、超合金金属基板と、その基板上に形成され、アルミニウム、ニッケル、および白金を含む金属間化合物を含む接合下層と、その接合下層上に形成されたアルミナ膜上に固定されたセラミック外被とを含む、ガスタービン部品。   A superalloy metal substrate characterized by comprising a Ni-Pt-Al ternary system essentially composed of an aluminum-enriched α-NiPt type structure, and an aluminum, nickel layer formed on the substrate. And a joining lower layer containing an intermetallic compound containing platinum, and a ceramic outer shell fixed on an alumina film formed on the joining lower layer. 前記Ni−Pt−Al三成分系は、、およびが、0.05≦z≦0.40、0.30≦y≦0.60、および0.15≦x≦0.40となるような組成物NiPtAlを有することを特徴とする請求項1に記載のガスタービン部品。 In the Ni—Pt—Al ternary system, z , y , and x are 0.05 ≦ z ≦ 0.40, 0.30 ≦ y ≦ 0.60, and 0.15 ≦ x ≦ 0.40. The gas turbine component according to claim 1, comprising the composition Ni z Pt y Al x . 前記接合下層が、さらに、アルミニウム、ニッケル、および白金以外の少なくとも1つの追加の金属を含むことを特徴とする請求項1または請求項2に記載のガスタービン部品。   The gas turbine component according to claim 1, wherein the bonding lower layer further includes at least one additional metal other than aluminum, nickel, and platinum. 前記接合下層が、さらに、コバルトおよびクロムから選択される少なくとも1つの金属を含むことを特徴とする請求項3に記載のガスタービン部品。   The gas turbine component according to claim 3, wherein the bonding lower layer further includes at least one metal selected from cobalt and chromium. 前記接合下層が、パラジウム、ルテニウム、およびレニウムから選択される金属を含むことを特徴とする請求項3または請求項4に記載のガスタービン部品。   The gas turbine component according to claim 3, wherein the bonding lower layer includes a metal selected from palladium, ruthenium, and rhenium. 前記接合下層が、さらに、イットリウム、ジルコニウム、ハフニウム、およびランタニドよって構成される群から選択される少なくとも1つの反応性元素を含むことを特徴とする請求項1から5のいずれか一項に記載のガスタービン部品。   The said joining lower layer further contains at least 1 reactive element selected from the group comprised by a yttrium, a zirconium, hafnium, and a lanthanide, The Claim 1 characterized by the above-mentioned. Gas turbine parts. 前記接合下層の厚さが2μm〜120μmの範囲にあることを特徴とする請求項1から6のいずれか一項に記載のガスタービン部品。   7. The gas turbine component according to claim 1, wherein a thickness of the bonding lower layer is in a range of 2 μm to 120 μm. 前記接合下層の厚さが40μm未満であることを特徴とする請求項7に記載のガスタービン部品。   The gas turbine component according to claim 7, wherein a thickness of the bonding lower layer is less than 40 μm. 前記接合下層の厚さが20μm未満であることを特徴とする請求項7に記載のガスタービン部品。   The gas turbine component according to claim 7, wherein a thickness of the bonding lower layer is less than 20 μm. アルミニウム濃縮α−NiPt構造によって構成されるNi−Pt−Al三成分系を本質的に含む接合下層が形成されることを特徴とする、アルミニウム、ニッケル、および白金の金属間化合物を含む該接合下層を基板上に形成し、該接合下層上にあるアルミナ膜に固定されているセラミック外層を形成することを含む、熱防護被膜を超合金金属基板上に形成する方法。   A junction underlayer comprising an intermetallic compound of aluminum, nickel, and platinum, characterized in that a junction underlayer essentially comprising a Ni-Pt-Al ternary system composed of an aluminum-enriched α-NiPt structure is formed Forming a thermal protective coating on the superalloy metal substrate, comprising forming a ceramic outer layer secured to an alumina film overlying the bonding layer. 前記接合下層を、前記下層にとって望ましい組成に対応する組成の被膜を基板上に形成することによって作製することを特徴とする請求項10に記載の方法。   The method according to claim 10, wherein the bonding lower layer is formed by forming a film having a composition corresponding to a desired composition for the lower layer on the substrate. 前記接合下層を、物理蒸着法により被膜を形成することによって作製することを特徴とする請求項11に記載の方法。   The method according to claim 11, wherein the bonding lower layer is formed by forming a film by physical vapor deposition. 前記接合下層を、それぞれ白金、ニッケル、およびアルミニウムの少なくとも複数の単層の物理蒸着によって、およびその蒸着層の金属を互いに反応させることによって形成することを特徴とする請求項12に記載の方法。   13. The method of claim 12, wherein the bonding underlayer is formed by physical vapor deposition of at least a plurality of single layers of platinum, nickel, and aluminum, respectively, and by reacting the metals of the vapor deposition layer with each other. 前記接合下層を各層を堆積させることによって形成し、該各層の少なくとも一部は、複数の下層成分を予め合金化された形態で含むことを特徴とする請求項12に記載の方法。   The method of claim 12, wherein the bonding lower layer is formed by depositing each layer, and at least a portion of each layer includes a plurality of lower layer components in a pre-alloyed form. 前記接合下層を、前記下層にとって望ましい組成に対応する予め合金化された組成物を堆積させることによって形成することを特徴とする請求項12に記載の方法。   The method of claim 12, wherein the bonding underlayer is formed by depositing a pre-alloyed composition corresponding to a desired composition for the underlayer. 前記接合下層を、電着により被膜を形成することによって作製することを特徴とする請求項11に記載の方法。   The method according to claim 11, wherein the bonding lower layer is formed by forming a film by electrodeposition. ニッケルに基づく超合金基板上に、少なくとも複数の白金およびアルミニウムの交互単層を物理蒸着し、その堆積層の金属間の発熱反応を起こし、およびニッケルを基板から前記接合下層に拡散させるために、900℃以上の温度で熱処理することによって、前記接合下層を形成することを特徴とする請求項10に記載の方法。   To physically vapor-deposit at least a plurality of alternating monolayers of platinum and aluminum on a nickel-based superalloy substrate, to cause an exothermic reaction between the deposited layer metals, and to diffuse nickel from the substrate to the bonding underlayer, The method according to claim 10, wherein the bonding lower layer is formed by heat treatment at a temperature of 900 ° C. or more. 前記セラミック外層を形成しながら、900℃以上の温度で前記熱処理を行うことを特徴とする請求項16に記載の方法。   The method according to claim 16, wherein the heat treatment is performed at a temperature of 900 ° C. or more while forming the ceramic outer layer. 前記セラミック外層を形成する前に、900℃以上の温度で前記熱処理を行うことを特徴とする請求項16に記載の方法。   The method according to claim 16, wherein the heat treatment is performed at a temperature of 900 ° C. or more before forming the ceramic outer layer.
JP2004311987A 2003-10-28 2004-10-27 Gas turbine component with protective coating and method for producing protective coating on superalloy metal substrate Active JP4392323B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0312619A FR2861423B1 (en) 2003-10-28 2003-10-28 GAS TURBINE PIECE HAVING A PROTECTIVE COATING AND METHOD OF MAKING A COATING COATING ON A SUPERALLIATION METALLIC SUBSTRATE

Publications (2)

Publication Number Publication Date
JP2005188505A true JP2005188505A (en) 2005-07-14
JP4392323B2 JP4392323B2 (en) 2009-12-24

Family

ID=34400864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311987A Active JP4392323B2 (en) 2003-10-28 2004-10-27 Gas turbine component with protective coating and method for producing protective coating on superalloy metal substrate

Country Status (6)

Country Link
US (2) US7311981B2 (en)
EP (1) EP1528118A3 (en)
JP (1) JP4392323B2 (en)
FR (1) FR2861423B1 (en)
RU (1) RU2355891C2 (en)
UA (1) UA82188C2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138293A (en) * 2005-11-14 2007-06-07 Sulzer Metco Coatings Bv Method for coating of base body and also workpiece
WO2011115259A1 (en) * 2010-03-19 2011-09-22 Jx日鉱日石金属株式会社 NICKEL ALLOY SPUTTERING TARGET, THIN Ni ALLOY FILM, AND NICKEL SILICIDE FILM
JP2013139565A (en) * 2012-01-05 2013-07-18 General Electric Co <Ge> Radiation mitigated articles and methods of making the same
JP2013531735A (en) * 2010-06-18 2013-08-08 スネクマ Method of aluminizing a surface by progressive deposition of platinum and nickel layers
JP2016179925A (en) * 2015-03-24 2016-10-13 旭硝子株式会社 Platinum structure for glass production, glass producing device and glass production method
JP2019536905A (en) * 2016-10-27 2019-12-19 サフラン Component including nickel-based single crystal superalloy substrate and method for producing the same

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861423B1 (en) * 2003-10-28 2008-05-30 Snecma Moteurs GAS TURBINE PIECE HAVING A PROTECTIVE COATING AND METHOD OF MAKING A COATING COATING ON A SUPERALLIATION METALLIC SUBSTRATE
US8048789B2 (en) * 2005-04-26 2011-11-01 Northwestern University Mesoscale pyramids, arrays and methods of preparation
SG127768A1 (en) * 2005-05-27 2006-12-29 Turbine Overhaul Services Priv Thermal barrier coating
GB0605070D0 (en) 2006-03-14 2006-04-26 Rolls Royce Plc An aerofoil
US7527877B2 (en) * 2006-10-27 2009-05-05 General Electric Company Platinum group bond coat modified for diffusion control
US20090032958A1 (en) * 2007-08-03 2009-02-05 Micron Technology, Inc. Intermetallic conductors
US8323409B2 (en) * 2008-05-08 2012-12-04 United Technologies Corporation Systems and methods for forming components with thermal barrier coatings
US20100243464A1 (en) * 2009-03-26 2010-09-30 Honeywell International Inc. Methods of forming coatings on substrates
US8632890B2 (en) * 2009-12-21 2014-01-21 General Electric Company Nickel aluminide coating systems and coated articles
WO2011084573A1 (en) * 2009-12-21 2011-07-14 General Electric Company Methods of forming nickel aluminide coatings
US20110151140A1 (en) * 2009-12-21 2011-06-23 Brian Thomas Hazel Methods Of Forming Nickel Aluminde Coatings
US9429029B2 (en) * 2010-09-30 2016-08-30 Pratt & Whitney Canada Corp. Gas turbine blade and method of protecting same
US9587645B2 (en) 2010-09-30 2017-03-07 Pratt & Whitney Canada Corp. Airfoil blade
US8871297B2 (en) 2010-09-30 2014-10-28 Barry Barnett Method of applying a nanocrystalline coating to a gas turbine engine component
CN102994954A (en) * 2011-09-09 2013-03-27 鸿富锦精密工业(深圳)有限公司 Plated film member and preparation method
US9427835B2 (en) 2012-02-29 2016-08-30 Pratt & Whitney Canada Corp. Nano-metal coated vane component for gas turbine engines and method of manufacturing same
FR2988736B1 (en) * 2012-04-02 2014-03-07 Onera (Off Nat Aerospatiale) PROCESS FOR OBTAINING A NICKEL ALUMINUM COATING ON A METALLIC SUBSTRATE, AND PART HAVING SUCH A COATING
US10364483B1 (en) 2013-03-01 2019-07-30 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration High hardness, high elasticity intermetallic compounds for mechanical components
US20150000405A1 (en) * 2013-06-27 2015-01-01 Honeywell International Inc. Non-destructive evaluation methods for determining a thickness of a coating layer on a turbine engine component
US9657387B1 (en) * 2016-04-28 2017-05-23 General Electric Company Methods of forming a multilayer thermal barrier coating system
EP3867420A1 (en) 2018-10-17 2021-08-25 Oerlikon Surface Solutions AG, Pfäffikon Pvd barrier coating for superalloy substrates
FR3101642B1 (en) * 2019-10-03 2021-12-17 Safran Ceram Sealing of a turbine
RU206355U1 (en) * 2021-06-26 2021-09-07 Антон Владимирович Новиков DG-90 turbine blade
RU206356U1 (en) * 2021-06-26 2021-09-07 Антон Владимирович Новиков TURBINE BLADE FOR GAS TURBINE ENGINES AND POWER PLANTS

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238752A (en) * 1990-05-07 1993-08-24 General Electric Company Thermal barrier coating system with intermetallic overlay bond coat
US5716720A (en) * 1995-03-21 1998-02-10 Howmet Corporation Thermal barrier coating system with intermediate phase bondcoat
US6066405A (en) * 1995-12-22 2000-05-23 General Electric Company Nickel-base superalloy having an optimized platinum-aluminide coating
US6344282B1 (en) * 1998-12-30 2002-02-05 General Electric Company Graded reactive element containing aluminide coatings for improved high temperature performance and method for producing
UA56228C2 (en) * 1999-11-01 2003-05-15 Міжнародний Центр Електронно-Променевих Технологій Інституту Електрозварювання Ім. Е.О.Патона Нану Composite ingot for producing by evaporating a functionally gradient cover with outer ceramic layer on metal lining (versions)
US6482469B1 (en) * 2000-04-11 2002-11-19 General Electric Company Method of forming an improved aluminide bond coat for a thermal barrier coating system
US6395406B1 (en) * 2000-04-24 2002-05-28 General Electric Company Methods for preparing and applying coatings on metal-based substrates, and related compositions and articles
US6589668B1 (en) * 2000-06-21 2003-07-08 Howmet Research Corporation Graded platinum diffusion aluminide coating
FR2814473B1 (en) * 2000-09-25 2003-06-27 Snecma Moteurs PROCESS FOR MAKING A PROTECTIVE COATING FORMING THERMAL BARRIER WITH BONDING UNDERLAYER ON A SUBSTRATE IN SUPERALLY AND PART OBTAINED
US6863738B2 (en) * 2001-01-29 2005-03-08 General Electric Company Method for removing oxides and coatings from a substrate
US6682827B2 (en) * 2001-12-20 2004-01-27 General Electric Company Nickel aluminide coating and coating systems formed therewith
US7273662B2 (en) * 2003-05-16 2007-09-25 Iowa State University Research Foundation, Inc. High-temperature coatings with Pt metal modified γ-Ni+γ′-Ni3Al alloy compositions
FR2861423B1 (en) 2003-10-28 2008-05-30 Snecma Moteurs GAS TURBINE PIECE HAVING A PROTECTIVE COATING AND METHOD OF MAKING A COATING COATING ON A SUPERALLIATION METALLIC SUBSTRATE

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138293A (en) * 2005-11-14 2007-06-07 Sulzer Metco Coatings Bv Method for coating of base body and also workpiece
JP2014122430A (en) * 2005-11-14 2014-07-03 Sulzer Metco Ag Method of coating substrate and processed product
WO2011115259A1 (en) * 2010-03-19 2011-09-22 Jx日鉱日石金属株式会社 NICKEL ALLOY SPUTTERING TARGET, THIN Ni ALLOY FILM, AND NICKEL SILICIDE FILM
JP2013531735A (en) * 2010-06-18 2013-08-08 スネクマ Method of aluminizing a surface by progressive deposition of platinum and nickel layers
US10183311B2 (en) 2010-06-18 2019-01-22 Safran Aircraft Engines Method for aluminizing a surface by means of the advance deposition of a platinum and nickel layer
JP2013139565A (en) * 2012-01-05 2013-07-18 General Electric Co <Ge> Radiation mitigated articles and methods of making the same
JP2016179925A (en) * 2015-03-24 2016-10-13 旭硝子株式会社 Platinum structure for glass production, glass producing device and glass production method
JP2019536905A (en) * 2016-10-27 2019-12-19 サフラン Component including nickel-based single crystal superalloy substrate and method for producing the same
JP7057778B2 (en) 2016-10-27 2022-04-20 サフラン Parts containing nickel-based single crystal superalloy substrate and its manufacturing method

Also Published As

Publication number Publication date
RU2004132522A (en) 2006-04-10
EP1528118A3 (en) 2006-06-07
JP4392323B2 (en) 2009-12-24
RU2355891C2 (en) 2009-05-20
FR2861423A1 (en) 2005-04-29
US20050132717A1 (en) 2005-06-23
US7569251B2 (en) 2009-08-04
US20090087572A1 (en) 2009-04-02
US7311981B2 (en) 2007-12-25
FR2861423B1 (en) 2008-05-30
UA82188C2 (en) 2008-03-25
EP1528118A2 (en) 2005-05-04

Similar Documents

Publication Publication Date Title
JP4392323B2 (en) Gas turbine component with protective coating and method for producing protective coating on superalloy metal substrate
JP4971567B2 (en) Method for making a protective coating for forming a thermal barrier having a bonding underlayer on a superalloy substrate, and components obtained by the method
JP4684298B2 (en) Method of manufacturing high temperature resistant coating containing γ-Ni + γ&#39;-Ni3Al alloy composition modified with platinum metal and reactive element
JP5166797B2 (en) Diffusion controlled modified platinum group bond coat
US5624721A (en) Method of producing a superalloy article
JP3862774B2 (en) Method of coating thermal insulation coating on superalloy article and thermal insulation coating
US5238752A (en) Thermal barrier coating system with intermetallic overlay bond coat
JP4855610B2 (en) Oxidation resistant coating, related articles and methods
JP5645093B2 (en) Ni-base superalloy member provided with heat-resistant bond coat layer
JP2008144275A (en) Coating system containing rhodium aluminide-based layers
JP3708909B2 (en) Method for producing a high-temperature oxidation-resistant heat-resistant alloy member formed by depositing a rhenium-containing alloy film
JP3857690B2 (en) Re alloy film for diffusion barrier
JP5295474B2 (en) Niobium-based alloy heat-resistant material
US6863925B1 (en) Method for vapor phase aluminiding including a modifying element
JP3910588B2 (en) ReCr alloy coating for diffusion barrier
RU2165478C2 (en) Part made from superalloy with system of protective coating
WO2013061945A1 (en) Heat-resistant alloy member and method for producing same
JP4492855B2 (en) Thermal barrier coating member and manufacturing method thereof
JP2012527538A5 (en)
JPH05320863A (en) Alloy member resistant against heat and corrosion and its production
JP2004250788A (en) Film depositing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071226

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4392323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250