JP5295474B2 - Niobium-based alloy heat-resistant material - Google Patents

Niobium-based alloy heat-resistant material Download PDF

Info

Publication number
JP5295474B2
JP5295474B2 JP2002530827A JP2002530827A JP5295474B2 JP 5295474 B2 JP5295474 B2 JP 5295474B2 JP 2002530827 A JP2002530827 A JP 2002530827A JP 2002530827 A JP2002530827 A JP 2002530827A JP 5295474 B2 JP5295474 B2 JP 5295474B2
Authority
JP
Japan
Prior art keywords
layer
alloy
film
coating
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002530827A
Other languages
Japanese (ja)
Other versions
JPWO2002027067A1 (en
Inventor
敏夫 成田
重成 林
倫久 福本
和志 坂本
昭夫 笠間
良平 田中
Original Assignee
敏夫 成田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敏夫 成田 filed Critical 敏夫 成田
Priority to JP2002530827A priority Critical patent/JP5295474B2/en
Publication of JPWO2002027067A1 publication Critical patent/JPWO2002027067A1/en
Application granted granted Critical
Publication of JP5295474B2 publication Critical patent/JP5295474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

A heat-resistant material for a niobium base alloy which comprises a substrate of a niobium base alloy, a first alloy coating film comprising Re and at least two other metal elements formed on the surface of the substrate and, formed on the surface of the first alloy coating film, a second alloy coating film comprising one element of Al and Si and at least one metal element except these elements. The above combination of coating films exhibits excellement performance in the interception of oxygen and is less susceptible to deterioration owing to diffusion of an element. Suitable compositions of the first alloy coating film and the second alloy coating film are disclosed for each case wherein the second alloy coating film comprises Al or Si, and preferred compositions of alloy coating films for some compositions of the niobium base alloy of the substrate are also disclosed.

Description

本発明は、ガスタービン、ジェットエンジン等に用いられる耐熱部材に係り、とくにニオブ基合金の基材表面に高温酸化を抑制するための皮膜が形成されたニオブ基合金耐熱部材に関する。   The present invention relates to a heat-resistant member used in a gas turbine, a jet engine, and the like, and more particularly to a niobium-based alloy heat-resistant member in which a coating for suppressing high-temperature oxidation is formed on the surface of a niobium-based alloy substrate.

近年、発電用ガスタービンの運転温度の一層の高温化が求められ、従来からタービン部材として多用されているNi基合金よりも、使用温度限界の高い新たな耐熱材料が必要となっている。このような材料の一つとして、ニオブ(Nb)系の耐熱材料、例えば固溶強化型又は析出強化型のNb合金やNb−Al系金属間化合物等(本発明では、これらをニオブ基合金という)が注目されている。   In recent years, there has been a demand for a further increase in the operating temperature of a gas turbine for power generation, and a new heat-resistant material having a higher operating temperature limit is required than Ni-based alloys that have been widely used as turbine members. One of such materials is a niobium (Nb) -based heat-resistant material such as a solid solution strengthened or precipitation strengthened Nb alloy or Nb-Al intermetallic compound (in the present invention, these are called niobium-based alloys). ) Is attracting attention.

これらのニオブ基合金は高温強度に優れるが、いずれも高温域例えば800℃以上の温度域ではきわめて酸化され易く、ガスタービンのような高温の酸化性雰囲気下でそのまま使用することは困難であり、耐酸化を目的とするコーティングについて種々の検討がなされている。   Although these niobium-based alloys are excellent in high-temperature strength, they are all easily oxidized in a high-temperature range, for example, a temperature range of 800 ° C. or higher, and are difficult to use as they are in a high-temperature oxidizing atmosphere such as a gas turbine. Various studies have been made on coatings aimed at oxidation resistance.

従来から、高温酸化性雰囲気下で使用する金属部材の耐熱・耐酸化被覆として、CrやAlの拡散層を形成する方法や、セラミックコーティングする方法が検討されている。とくにNi基合金においては、熱遮蔽コーティング(Thermal Ba-rrier Coating:TBC)と呼ばれる方法が主流になっている。これは基材表面に金属結合層と、その表面にセラミックスの遮熱層を積層してなるもので、金属結合層にはMCrAlY合金(M=Ni,Coなど)が、遮熱層にはZrO2を主成分とするセラミックスが用いられることが多い。 Conventionally, a method of forming a diffusion layer of Cr or Al or a method of ceramic coating has been studied as a heat-resistant / oxidation-resistant coating for a metal member used in a high-temperature oxidizing atmosphere. In particular, in Ni-based alloys, a method called thermal barrier coating (TBC) has become mainstream. This is formed by laminating a metal bond layer on the substrate surface and a ceramic heat shield layer on the surface. The metal bond layer is MCrAlY alloy (M = Ni, Co, etc.), and the heat shield layer is ZrO. Ceramics mainly composed of 2 are often used.

ニオブ基合金の耐酸化被覆としては、Irの表面被覆層、又はIrの表面被覆層とその下側にTa,Re,Wのうちの1種以上を主成分とする拡散防止層とが形成されたNb合金耐熱部材が開示されている(下記特許文献1)。また、基材表面にIrを真空蒸着すると同時にAlイオン照射を行い、I
r−Al合金からなる被覆層を形成する耐酸化被覆層の製造方法が開示されている(下記特許文献2)。
As the oxidation-resistant coating of the niobium-based alloy, an Ir surface coating layer or an Ir surface coating layer and a diffusion prevention layer mainly composed of one or more of Ta, Re, and W are formed below the Ir surface coating layer. An Nb alloy heat-resistant member is disclosed (Patent Document 1 below). In addition, Ir is vacuum-deposited on the surface of the substrate and simultaneously irradiated with Al ions.
A method for producing an oxidation resistant coating layer for forming a coating layer made of an r-Al alloy is disclosed (Patent Document 2 below).

特開平10−140333号公報Japanese Patent Laid-Open No. 10-14333 特開平10−140347号公報Japanese Patent Laid-Open No. 10-140347

一般にセラミックスの皮膜は、それ自体の靭性や基材との密着性が不十分なため、熱応力により亀裂や剥離を生じることが多く、耐久性に問題が残されている。前述のTBCにおいても、酸素の遮断は主に金属結合層において行われている。したがって、耐酸化を目的とする皮膜は、基材との密着性の高い合金皮膜であって、上記の金属結合層と同様な酸素と窒素などの非金属成分の遮断性能を有するものであることが望ましい。   In general, a ceramic film is insufficient in its toughness and adhesiveness to a base material, and thus often cracks or peels off due to thermal stress, leaving a problem in durability. Also in the above-described TBC, oxygen is blocked mainly in the metal bonding layer. Therefore, the coating for the purpose of oxidation resistance is an alloy coating with high adhesion to the substrate, and has the same ability to block non-metallic components such as oxygen and nitrogen as the above-mentioned metal bonding layer. Is desirable.

さらに、本発明の対象であるNb基合金は、Ni基合金よりもかなり高い使用温度、例えば1400℃を越えるような温度での使用を目標とするものである。かかる高温域では、皮膜と基材間の元素の拡散が避けられず、そのため比較的短時間で皮膜が変質して、その本来の機能を失うことが多い。したがって、耐酸化皮膜の耐久性を確保するには、できる限り拡散を抑制するとともに、多少の拡散があっても、皮膜の変質が軽微な被覆構造にする必要がある。   Furthermore, the Nb-based alloy that is the subject of the present invention is intended to be used at a considerably higher operating temperature than that of the Ni-based alloy, for example, exceeding 1400 ° C. In such a high temperature range, the diffusion of elements between the film and the substrate is unavoidable, so the film is often altered in a relatively short time and loses its original function. Therefore, in order to ensure the durability of the oxidation-resistant film, it is necessary to suppress the diffusion as much as possible, and to form a coating structure with a slight alteration of the film even if there is some diffusion.

そこで本発明は、ニオブ基合金の基材表面に、酸素と窒素などの非金属成分の遮断性能に優れ、かつ拡散による変質が起りにくい合金皮膜が形成されたニオブ基合金の耐熱材料を提供することを目的とする。   Accordingly, the present invention provides a heat resistant material for a niobium-based alloy in which an alloy film having excellent barrier properties against non-metallic components such as oxygen and nitrogen and an alloy film that hardly undergoes alteration due to diffusion is formed on the surface of the base material of the niobium-based alloy. For the purpose.

上記目的を達成するための本発明は、
Nbをベースとして少なくともMoとWのうちの1種以上を含有し、かつ必要に応じてCr,Si,Hf,Zr,Cのうちの1種以上を含有するニオブ基合金の基材表面に、一般式Re 1-a-b a b (式中、MはCr,Ni,Alのうちの1種以上の元素、RはNb,Mo,W,Hf,Zr,Cのうちの1種以上の元素で、a,bはそれぞれM,Rの原子比である)で表される組成を有する第一層の合金皮膜が形成され、さらにその表面に一般式Q 1-c Al c (式中、QはCr,Niのうちの1種以上の元素、cはAlの原子比である)で表される組成を有する第二層の合金皮膜が形成されてなり、前記原子比aが0.01以上、前記原子比bが0.01〜0.50、a+bが0.95以下であり、かつ前記原子比cが0.05〜0.95であるニオブ基合金の耐熱材料である。
To achieve the above object, the present invention provides:
A base material surface of a niobium-based alloy containing at least one of Mo and W based on Nb and optionally containing one or more of Cr, Si, Hf, Zr, and C. in the formula Re 1-ab M a R b ( wherein, M represents Cr, Ni, one or more elements of Al, R is Nb, Mo, W, Hf, Zr, of one or more of C An alloy film of a first layer having a composition represented by the following formula: Q 1-c Al c (wherein , a and b are atomic ratios of M and R, respectively) Q is one or more elements of Cr and Ni, c is an atomic ratio of Al), and an alloy film of a second layer having a composition represented by: The atomic ratio b is 0.01 to 0.50, a + b is 0.95 or less, and the atomic ratio c is 0.05 to 0.95. That is a heat-resistant material niobium-based alloys.

また、この耐熱材料においては、前記ニオブ基合金がCrを含有し、前記第一層の合金皮膜中の元素Mが少なくともCrを含み(より好ましくは元素MがCrを主体としてこれに少量のAlとNiのうちの1種以上を含み)、前記第二層の合金皮膜中の元素QがCr又はCrとNiであることが好ましい。
Further, in this heat-resistant material, the niobium-based alloy contains C r, before Symbol include element M is at least Cr alloy film in the first layer (in a small amount mainly more preferably element M Cr It is preferable that the element Q in the alloy film of the second layer is Cr or Cr and Ni.

本発明によりニオブ基合金の基材表面に高温酸化を抑制する効果の大きい被覆が形成されたニオブ基合金耐熱部材を提供することが可能になった。この耐酸化被覆は、第二層皮膜中のAlの酸化により酸化物が再生して、雰囲気中の酸素や窒素等の非金属元素を遮断する作用を維持する自己補修の機能を
有するとともに、第一層皮膜により元素の拡散を抑制するため、1100℃以上の高温域に長時間保持してもほとんど皮膜が変質せず、きわめて耐酸化性・耐久性に優れている。
The present invention makes it possible to provide a niobium-based alloy heat-resistant member in which a coating having a large effect of suppressing high-temperature oxidation is formed on the surface of a niobium-based alloy substrate. This oxidation resistant coating has a self-repairing function that maintains the action of regenerating the oxide by the oxidation of Al in the second layer film and blocking non-metallic elements such as oxygen and nitrogen in the atmosphere. In order to suppress the diffusion of elements by a single layer film, the film hardly changes even when kept in a high temperature range of 1100 ° C. or higher for a long time, and is extremely excellent in oxidation resistance and durability.

本発明の耐熱材料の耐酸化被覆は、第1図に示すように2層の合金皮膜からなる。上側の第二層の合金皮膜3は、その表面が大気中の酸素で酸化されて、緻密な酸化物層が形成されるため、雰囲気中の酸素や窒素等の非金属元素を遮断する機能を有する。同時に、合金皮膜3は自己修復の機能を有している。すなわち、合金皮膜3は酸化物のもとになる金属元素を含有しているため、表面に生成した酸化物層が剥離した場合には、直ちにその金属元素が酸化され、表面に酸化物層が再生されて、雰囲気中の酸素や窒素等を遮断する作用を維持することができる。一方、下側の第一層の合金皮膜2は基材1と第二層の合金皮膜3との間の元素の拡散を防止することを主な目的とする。   The oxidation resistant coating of the heat resistant material of the present invention comprises a two-layer alloy film as shown in FIG. The upper second alloy film 3 is oxidized with oxygen in the atmosphere to form a dense oxide layer, and thus has a function of blocking non-metallic elements such as oxygen and nitrogen in the atmosphere. Have. At the same time, the alloy film 3 has a self-repairing function. That is, since the alloy film 3 contains a metal element that becomes an oxide, when the oxide layer generated on the surface is peeled off, the metal element is immediately oxidized and the oxide layer is formed on the surface. By being regenerated, the action of blocking oxygen, nitrogen, etc. in the atmosphere can be maintained. On the other hand, the lower first layer alloy film 2 is mainly intended to prevent the diffusion of elements between the substrate 1 and the second layer alloy film 3.

本発明において、第二層の合金皮膜3中の酸化物のもとになる金属元素は、Alである。この酸化物のもとになる金属元素がAlである場合(以下「Al合金被覆」という)は、第二層の合金皮膜3の組成は、実質的に一般式Q1-cAlc(ここで、QはNiとCrのうちの1種以上の元素、Alはアルミニウムで、cはAlの原子比である。)で表わされるものであることが好ましい。すでに述べたように、Alは、この耐熱材料が高温の酸化性雰囲気下で酸化された際に、緻密な酸化物層を形成するために必要な元素であり、QはAlとの間に高温で安定な相(合金又は金属間化合物)を形成する元素で、第二層皮膜の耐熱性・耐久性を確保する上で不可欠な元素である。 In the present invention, the metal element which becomes the oxide in the alloy film 3 of the second layer is Al. When the metal element that forms the oxide is Al (hereinafter referred to as “Al alloy coating”) , the composition of the alloy film 3 of the second layer is substantially the general formula Q 1-c Al c (here Q is preferably one or more elements of Ni and Cr, Al is aluminum, and c is an atomic ratio of Al. As already mentioned, Al is an element necessary for forming a dense oxide layer when this heat-resistant material is oxidized in a high-temperature oxidizing atmosphere, and Q is a high temperature between Al and Al. It is an element that forms a stable phase (alloy or intermetallic compound) and is indispensable for ensuring the heat resistance and durability of the second layer film.

また、Al合金被覆での第一層の合金皮膜2の組成は、実質的に一般式Re1-a-bab(ここで、Reはレニウムで、MはCr,NiおよびAlからなる群より選ばれた1種又は2種以上の元素、RはNb,Mo,W,Hf,ZrおよびCからなる群より選ばれた1種又は2種以上の元素で、a,bはそれぞれM,Rの原子比である。)で表わされるものであることが好ましい。 Further, the first layer composition of the alloy coating 2 of an Al alloy coating, substantially formula Re 1-ab M a R b ( where, Re is rhenium, M consists of Cr, Ni and Al group One or more elements selected from R, R is one or more elements selected from the group consisting of Nb, Mo, W, Hf, Zr and C, and a and b are M, R is the atomic ratio of R).

Reは拡散防止の主要な役割をする元素である。元素Mは、主に第一層皮膜と第二層皮膜に含まれ(一部基材中に含まれてもよい)、第一層皮膜と第二層皮膜間(及び第一層皮膜と基材間)の拡散を軽減する上で有効である。また、元素Rは、主に第一層皮膜と基材に含まれ(一部第二層皮膜中に含まれてもよい)、第一層皮膜と基材間(及び第一層皮膜と第二層皮膜間)の拡散を軽減する上で有効である。   Re is an element that plays a major role in preventing diffusion. The element M is mainly contained in the first layer coating and the second layer coating (some may be included in the base material), and between the first layer coating and the second layer coating (and the first layer coating and the base layer). This is effective in reducing the diffusion between materials. The element R is mainly contained in the first layer coating and the base material (some may be included in the second layer coating), and between the first layer coating and the base material (and the first layer coating and the first layer coating). This is effective in reducing the diffusion between the two-layer coatings.

Al合金被覆の場合に、第一層の合金皮膜を3元系以上の組成物で構成する理由は、第二層皮膜中の元素のみならず、基材中の元素も予め第一層皮膜に含ませておき、しかも成分ごとに各相における化学ポテンシャルを等しくしておくことによって、拡散を防止するためである。これにより、耐酸化被覆の分解・変質を抑制することができ、皮膜の耐久性を大幅に向上させることができる。 In the case of Al alloy coating , the reason why the first layer alloy film is composed of a ternary or higher composition is that not only the elements in the second layer film but also the elements in the base material in advance in the first layer film. This is because the chemical potential in each phase is made equal for each component to prevent diffusion. Thereby, decomposition | disassembly and quality change of an oxidation-resistant coating can be suppressed, and durability of a film | membrane can be improved significantly.

また、Al合金被覆における元素MとRは、Reとの間に高温で安定な相を形成する元素が好ましく、かかる元素の添加は第一層皮膜の分解・変質を抑制する上で有効である。例えば、Re−Cr−Ni系のシグマ相や、Re−(Nb,Mo,W)系のシグマ相又はカイ相等の金属間化合物相が好適である。これらの相はそれ自体が高い融点を持つことから、第一層皮膜が分解したり拡散して消失するのを防止することができ、さらに他の元素の拡散係数が小さいことから、拡散防止の機能を発揮する。 Further, the elements M and R in the Al alloy coating are preferably elements that form a stable phase with Re at a high temperature, and the addition of such elements is effective in suppressing the decomposition and alteration of the first layer film. . For example, an intermetallic compound phase such as a Re—Cr—Ni sigma phase, a Re— (Nb, Mo, W) sigma phase, or a chi phase is suitable. Since these phases themselves have a high melting point, the first layer film can be prevented from decomposing or diffusing and disappearing, and since the diffusion coefficient of other elements is small, Demonstrate the function.

なお、第一層及び第二層の合金皮膜は、実質的に上記の組成を有するものであればよく、不可避的不純物元素を含むものであってもよい。
第2図は、本発明の耐熱部材を高温大気に曝露した後の皮膜の変化を示す断面の模式図である。図に見られるように、第二層の合金皮膜3の表面に緻密な酸化物層4aが形成される。この酸化物層4aは、主にAl2 3 らなっており、層厚が小さくても、元素の遮断能は大きい。この状態で継続して使用した時に、第一層皮膜2は、Reを含む高温できわめて安定な相であり、拡散を抑制する効果が大きい。そのため、第二層皮膜3の分解・変質を防止することができ、最表面の酸化物層4aに亀裂・剥離が生じても、第二層皮膜3表面に再び酸化物層が形成されるため、自己修復性を有する。かくして、耐酸化被覆の耐久性が確保される。
In addition, the alloy film of a 1st layer and a 2nd layer should just have said composition, and may contain an unavoidable impurity element.
FIG. 2 is a schematic cross-sectional view showing changes in the coating after the heat-resistant member of the present invention is exposed to high-temperature air. As can be seen in the figure, a dense oxide layer 4a is formed on the surface of the alloy film 3 of the second layer. The oxide layer 4a is mainly and Al 2 O 3 or lines cover, even with a small thickness, blocking the ability of the element is large. When continuously used in this state, the first layer film 2 is a very stable phase at a high temperature containing Re and has a great effect of suppressing diffusion. Therefore, decomposition / degeneration of the second layer coating 3 can be prevented, and even if the outermost oxide layer 4a is cracked or separated, an oxide layer is formed again on the surface of the second layer coating 3. Has self-healing properties. Thus, the durability of the oxidation resistant coating is ensured.

Al合金被覆の場合において、第一層の合金皮膜中の元素Mの原子比aは0.01以上であることが好ましい。これ未満では、第二層皮膜から第一層皮膜への元素Qの拡散が多くなるためである。また、元素Rの原子比bは0.01〜0.50であることが好ましい。bが0.01未満では、基材から第一層皮膜への元素Rの拡散を抑制するという目的が達せられず、bが0.50を越えると、相対的に第一層皮膜中のRe及びMの含有量が少くなって好ましくないためである。   In the case of Al alloy coating, the atomic ratio a of the element M in the alloy film of the first layer is preferably 0.01 or more. If it is less than this, the diffusion of the element Q from the second layer coating to the first layer coating increases. The atomic ratio b of the element R is preferably 0.01 to 0.50. If b is less than 0.01, the purpose of suppressing the diffusion of element R from the base material to the first layer film cannot be achieved. If b exceeds 0.50, the Re This is because the content of M and M is not preferable.

さらに、a+bは0.95以下であることが好ましい。これを越えるとReの量が少な過ぎて、拡散防止機能が不十分となるためである。また、第二層の合金皮膜中の元素Alの原子比cは、0.05〜0.95であることが好ましい。これが0.05未満では、緻密な酸化物皮膜を形成するという機能が不十分となり、これが0.95を越えると、相対的に元素Qの量が少くなって、高温で安定な相を形成することができなくなるためである。   Further, a + b is preferably 0.95 or less. If this value is exceeded, the amount of Re is too small, and the diffusion preventing function becomes insufficient. Further, the atomic ratio c of the element Al in the alloy film of the second layer is preferably 0.05 to 0.95. If this is less than 0.05, the function of forming a dense oxide film becomes insufficient. If this exceeds 0.95, the amount of element Q is relatively small, and a stable phase is formed at high temperatures. It is because it becomes impossible.

本発明者らは、ニオブ基合金の機械的特性について検討し、Nb−Mo又はNb−Wの2元系合金やNb−Mo−Wの3元系合金が高温強度と靭性に優れ、タービン部材として好適なことを知見した。合金元素の含有量の適正範囲は、Moが1〜30at%、Wが1〜15at%である。   The present inventors have studied the mechanical properties of niobium-based alloys, and Nb—Mo or Nb—W binary alloys and Nb—Mo—W ternary alloys are excellent in high-temperature strength and toughness, and are turbine members. As a result, it was found that it is preferable. Appropriate ranges for the alloy element content are 1 to 30 at% for Mo and 1 to 15 at% for W.

本発明者らは、これらの2元系又は3元系合金の耐酸化被覆について種々検討し、基材のニオブ基合金の組成との関連において、Al合金被覆を選択するのが好ましいことを知見した。まず、Al合金被覆においては、第二層皮膜をCr−Al系合金で構成するとともに、基材に少量のCrを添加することにより、きわめて優れた耐酸化性を示すことが見出された。すなわちこの耐熱材料は、基材がNb−(Mo,Wのうちの1種以上)−Cr系合金であり、第一層の合金皮膜がReとCrを含み、第二層の合金皮膜が実質的にCr−Al又はCr−Ni−Al合金からなるものである。より好ましい第一層の合金皮膜は、ReとCrを主体にして、これに少量の(Ni,Al)のうちの1種以上と、(Mo,W,Nb)のうちの1種以上を含むものである。なお基材は、必要に応じてSi,Hf,Zr,Cのうちの1種以上を含有するものであってもよい。 The present inventors have variously studied oxidation coating of these binary or ternary alloy, in the context of the composition of the niobium-based alloy of the base material, that it is preferable to select Al alloy target covered I found out. First, in the Al alloy coating, it has been found that the second layer film is made of a Cr—Al-based alloy and that a very small amount of Cr is added to the base material to exhibit extremely excellent oxidation resistance. That is, in this heat-resistant material, the base material is Nb— (one or more of Mo and W) —Cr alloy, the first layer alloy film contains Re and Cr, and the second layer alloy film is substantially the same. In particular, it is made of a Cr—Al or Cr—Ni—Al alloy. More preferable alloy film of the first layer is mainly composed of Re and Cr, and includes one or more of a small amount of (Ni, Al) and one or more of (Mo, W, Nb). It is a waste. The base material may contain one or more of Si, Hf, Zr, and C as necessary.

上記のAl合金被覆を有する耐熱材料において、第一層皮膜中のReは10〜60at%,Crは10〜60at%であることが好ましい。また第二層皮膜中のAlは15〜75at%であることが好ましい。   In the heat resistant material having the Al alloy coating described above, Re in the first layer film is preferably 10 to 60 at%, and Cr is preferably 10 to 60 at%. Moreover, it is preferable that Al in a 2nd layer membrane | film | coat is 15-75 at%.

本発明において、基材表面に合金皮膜を形成する方法は特に限定を要せず、例えばPVD法、CVD法、溶射法、電解被覆法等のいずれであってもよく、また、これらを組み合わせて用いてもよい。さらに、合金皮膜を構成する成分の一部を熱拡散法により添加してもよい。この場合、深さ方向で成分元素の濃度に勾配が生じることがあるが、本発明においては、合金皮膜にかかる濃度勾配があっても差し支えない。第一層及び第二層の合金皮膜の厚みについても特に限定を要しないが、通常は1〜100μm程度とする。皮膜厚みが過小であれば、耐酸化や拡散防止の機能が不十分になり、膜厚が過大であれば熱応力が大きくなるので、これらを勘案して適正な膜厚を選択すればよい。   In the present invention, the method for forming the alloy film on the surface of the substrate is not particularly limited, and may be any of PVD, CVD, thermal spraying, electrolytic coating, and the like. It may be used. Furthermore, you may add a part of component which comprises an alloy film by a thermal diffusion method. In this case, a gradient may occur in the concentration of the component elements in the depth direction. However, in the present invention, there may be a concentration gradient applied to the alloy film. The thicknesses of the first and second layer alloy films are not particularly limited, but are usually about 1 to 100 μm. If the film thickness is too small, the functions of oxidation resistance and diffusion prevention are insufficient, and if the film thickness is excessive, the thermal stress increases. Therefore, an appropriate film thickness may be selected in consideration of these.

(耐酸化特性の評価)
ニオブ基合金の基材表面に、本発明に基づいて2層の耐酸化皮膜を形成した試験片と、皮膜が1層の比較用試験片について、高温酸化試験を行い耐酸化特性を評価した。
(Evaluation of oxidation resistance)
A high-temperature oxidation test was performed on a test piece in which a two-layered oxidation-resistant film was formed on the surface of a niobium-based alloy base material according to the present invention and a comparative test piece having a single-layered film to evaluate the oxidation-resistant characteristics.

(1)試験片の調製
基材のニオブ基合金として、Nb−5Mo−5W−5Cr(モル%)の合金を用いた。純度99.9〜99.99%のNb,Mo,W,Cr及びSiの粉末あるいは粒状の原料を用い、所定の組成に配合した原料を、Ar雰囲気中でアーク溶解法により溶解してインゴットを作製した。この合金インゴットを1気圧のAr気流中で1700〜1800℃×24時間の均質化熱処理をし、その後30×20×2(厚さ)mmの試験片基材を切り出して、被覆処理に供した。
(1) Preparation of test piece Nb-5Mo-5W-5Cr (mol%) alloy was used as the niobium-based alloy of the base material. Using an Nb, Mo, W, Cr and Si powder or granular raw material with a purity of 99.9 to 99.99%, a raw material blended in a predetermined composition is melted by an arc melting method in an Ar atmosphere to produce an ingot. Produced. This alloy ingot was subjected to a homogenization heat treatment at 1700 to 1800 ° C. for 24 hours in an Ar air flow at 1 atm. Thereafter, a test piece substrate of 30 × 20 × 2 (thickness) mm was cut out and subjected to coating treatment. .

本発明の試験片(2層皮膜)は、まず基材合金の表面に塩化レニウムを含む溶融塩化物浴から、厚さ5μmの金属Reを電析させた。続いてフェロクロム粉末とともにアルミナ坩堝に埋め込み、1×10-3Paの真空中において1300℃で10hr保持することによりCr蒸気の拡散処理を行った。るつぼから取り出した試験片を、引き続いてFe−Al合金粉末とともに再びアルミナ坩堝に埋め込み、1×10-3Paの真空中において1000℃で6hr保持して、Al蒸気の拡散処理を施した。 In the test piece (two-layer coating) of the present invention, metal Re having a thickness of 5 μm was first electrodeposited from a molten chloride bath containing rhenium chloride on the surface of the base alloy. Subsequently, Cr vapor was diffused by being embedded in an alumina crucible together with ferrochrome powder and holding at 1300 ° C. for 10 hours in a vacuum of 1 × 10 −3 Pa. The test piece taken out from the crucible was subsequently embedded again in the alumina crucible together with the Fe—Al alloy powder and held at 1000 ° C. in a vacuum of 1 × 10 −3 Pa for 6 hours to perform Al vapor diffusion treatment.

また、Al合金被覆の比較用試験片(1層皮膜)は、上記と同様の方法で用意した基材合金に対して、金属Reの電析処理は行わずに、Cr蒸気拡散処理、Al蒸気拡散処理を上記と同条件で実施したものを用意した。   In addition, a comparative test piece (single-layer film) coated with an Al alloy was prepared by performing Cr vapor diffusion treatment or Al vapor deposition on a base alloy prepared by the same method as described above, without performing an electrodeposition treatment of metal Re. What carried out the diffusion process on the same conditions as the above was prepared.

以上の工程による被覆処理を行った本発明及び比較用の試験片に、予備処理として、1100℃の静止大気中で9時間加熱する拡散・酸化処理を施した。その結果、本発明の試験片では、図2に示すように、基材1の表面に第一層皮膜2、第二層皮膜3が積層し、最表面に酸化物層(Al,O)4aが形成された耐熱材料が得られた。この試験片の皮膜の各層の厚さや組成を第1表に示す。   As a preliminary treatment, a diffusion / oxidation treatment in which heating was performed in a static atmosphere at 1100 ° C. for 9 hours was performed on the present invention and the test specimen for comparison subjected to the above-described coating treatment. As a result, in the test piece of the present invention, as shown in FIG. 2, the first layer film 2 and the second layer film 3 are laminated on the surface of the substrate 1, and the oxide layer (Al, O) 4a is formed on the outermost surface. A heat-resistant material in which was formed was obtained. Table 1 shows the thickness and composition of each layer of the test piece coating.

Figure 0005295474
Figure 0005295474

第1表の結果から知れるように、基材表面に形成したReの電析層に、Crの蒸気拡散処理によってCrが浸透し、母材からNbが拡散したことによって、Re電析層は主にRe−Cr−Nbの3元系から成る第一層皮膜2に変化した。また、Al蒸気拡散処理によってCr−Alを主成分とする第二層皮膜3が形成され、酸化処理によって酸化物層4aが形成されている。   As can be seen from the results in Table 1, the Re electrodeposited layer is formed mainly by the penetration of Cr into the Re electrodeposited layer formed on the substrate surface by the vapor diffusion treatment of Cr and the diffusion of Nb from the base material. In addition, the first layer film 2 made of a ternary system of Re—Cr—Nb was changed. Further, the second layer film 3 mainly composed of Cr—Al is formed by the Al vapor diffusion treatment, and the oxide layer 4a is formed by the oxidation treatment.

また、予備処理後の比較用試験片では、3図に示すように、表面から順に、厚さ約1.5μmの酸化物層(Al,O)4a、厚さ約2μmの酸化物層(Cr,O)4b、さらに厚さ約8μmの主にCrとNbから成る層の順に積層した皮膜が形成されていた。また、このCr−Nb層は、上側のCr rich な層5bと下側のNb rich な層5aの2層構造になっていた。この試験片における各層の厚さや組成を第2表に示す。   Further, in the comparative test piece after the pretreatment, as shown in FIG. 3, in order from the surface, an oxide layer (Al, O) 4a having a thickness of about 1.5 μm and an oxide layer (Cr having a thickness of about 2 μm) , O) 4b, and a film having a thickness of about 8 μm and a layer composed mainly of Cr and Nb. The Cr—Nb layer has a two-layer structure of an upper Cr rich layer 5b and a lower Nb rich layer 5a. Table 2 shows the thickness and composition of each layer in this test piece.

Figure 0005295474
Figure 0005295474

(2)Al合金被覆された試験片の高温酸化試験結果
上記のように用意されたAl合金被覆の本発明及び比較用の試験片を、1100℃の静止大気中で等温連続加熱する高温酸化試験を行なって、耐酸化特性を比較した。本発明の試験片については、加熱時間を168時間とした。比較用試験片については外観変化が著しいので12時間とした。その結果を第3表と第4表に示す。
(2) High-temperature oxidation test results of test pieces coated with Al alloy High-temperature oxidation test in which the present invention and comparative test pieces prepared as described above are heated isothermally in a static atmosphere at 1100 ° C. The oxidation resistance characteristics were compared. For the test piece of the present invention, the heating time was 168 hours. Since the change in appearance of the test specimen for comparison was remarkable, it was set at 12 hours. The results are shown in Tables 3 and 4 .

Figure 0005295474
Figure 0005295474

Figure 0005295474
Figure 0005295474

本発明の試験片では、高温酸化試験後も被覆構造に大きな変化はなく、図2に示すような状態を維持していた。第3表には、本発明材の、168時間の耐酸化試験前後における酸化物層4aの厚さの変化と、酸化物層4aの下にある第二層皮膜3中のAl濃度の変化を示している。168時間の酸化後も、第二層には14%のAl濃度が維持されており、このことから、第一層には、第二層のAlが内方拡散(基材側への拡散)により失われることを防ぐ、すなわち拡散防止層の作用があることがわかる。 In the test piece of the present invention, there was no significant change in the coating structure even after the high temperature oxidation test, and the state shown in FIG. 2 was maintained. Table 3 shows the change in the thickness of the oxide layer 4a before and after the oxidation resistance test for 168 hours and the change in the Al concentration in the second layer film 3 under the oxide layer 4a. Show. Even after the oxidation for 168 hours, the Al concentration of 14% was maintained in the second layer, and from this, the second layer of Al diffused inward (diffusion to the substrate side) in the first layer. It can be seen that there is an action of a diffusion preventing layer, that is, it is prevented from being lost.

また、酸化物層4aは、X線回折によればαアルミナであった。また、アルミナが基材表面において極端な厚さの変化なしに維持されていることは、第二層のAl濃度がCr−Al合金におけるアルミナ形成能を発現できる濃度以上であることを表わしている。   The oxide layer 4a was α-alumina according to X-ray diffraction. In addition, the fact that the alumina is maintained on the substrate surface without an extreme change in thickness indicates that the Al concentration of the second layer is equal to or higher than the concentration at which the alumina-forming ability in the Cr-Al alloy can be expressed. .

一方、比較用試験片の12時間の高温酸化試験後の皮膜の状態を、模式的に第4図に示す。また、高温酸化試験前後における酸化物層の厚さの変化を第4表に示す。高温酸化試験後には、表面側の酸化物層(Cr,Nb,O)4cと下側の酸化物層(Nb,O)4dの2層になっていたが、酸化物層全体の厚さは170μmに達しており、その大部分(約150μm)はNbとOからなる層4dであって、基材のNb基合金が酸化されたことを示している。 On the other hand, the state of the film after the 12-hour high-temperature oxidation test of the comparative test piece is schematically shown in FIG. Table 4 shows changes in the thickness of the oxide layer before and after the high temperature oxidation test. After the high-temperature oxidation test, the oxide layer (Cr, Nb, O) 4c on the surface side and the oxide layer (Nb, O) 4d on the lower side were two layers. Most of (about 150 μm) is a layer 4d made of Nb and O, indicating that the Nb-based alloy of the base material has been oxidized.

第1図は、本発明の耐熱材料の耐酸化被覆の構造を説明するための模式図であり、第2図は、本発明の耐熱材料を高温大気に曝露した後の皮膜の変化を説明するための断面の模式図である。第3図は、耐酸化特性評価における比較用試験片の高温酸化試験前の皮膜の断面を示す模式図である。第4図は、この比較用試験片の高温酸化試験後の皮膜の断面を示す模式図である。   FIG. 1 is a schematic diagram for explaining the structure of an oxidation-resistant coating of a heat-resistant material of the present invention, and FIG. 2 illustrates a change in a film after the heat-resistant material of the present invention is exposed to high-temperature air. It is a schematic diagram of the cross section for. FIG. 3 is a schematic diagram showing a cross-section of a film before a high-temperature oxidation test of a comparative test piece in the oxidation resistance evaluation. FIG. 4 is a schematic view showing a cross section of the film after the high-temperature oxidation test of this comparative test piece.

Claims (3)

Nbをベースとして少なくともMoとWのうちの1種以上を含有し、かつ必要に応じてCr,Si,Hf,Zr,Cのうちの1種以上を含有するニオブ基合金の基材表面に、一般式Re1-a-bab(式中、MはCr,Ni,Alのうちの1種以上の元素、RはNb,Mo,W,Hf,Zr,Cのうちの1種以上の元素で、a,bはそれぞれM,Rの原子比である)で表される組成を有する第一層の合金皮膜が形成され、さらにその表面に一般式Q1-cAlc(式中、QはCr,Niのうちの1種以上の元素、cはAlの原子比である)で表される組成を有する第二層の合金皮膜が形成されてなり、前記原子比aが0.01以上、前記原子比bが0.01〜0.50、a+bが0.95以下であり、かつ前記原子比cが0.05〜0.95であるニオブ基合金の耐熱材料。 A base material surface of a niobium-based alloy containing at least one of Mo and W based on Nb and optionally containing one or more of Cr, Si, Hf, Zr, and C. in the formula Re 1-ab M a R b ( wherein, M represents Cr, Ni, one or more elements of Al, R is Nb, Mo, W, Hf, Zr, of one or more of C An alloy film of a first layer having a composition represented by the following formula: Q 1-c Al c (wherein, a and b are atomic ratios of M and R, respectively) Q is Cr, 1 or more elements of Ni, c is Ri Na and alloy film of the second layer is formed having a composition represented by the atomic ratio of Al), the atomic ratio a is 0. 01 or more, the atomic ratio b is 0.01 to 0.50, a + b is 0.95 or less, and the atomic ratio c is 0.05 to 0.95. Heat resistant material that niobium-based alloys. 前記ニオブ基合金がCrを含有する合金であり、前記第一層の合金皮膜中の元素Mが少なくともCrを含み、かつ前記第二層の合金皮膜中の元素QがCr又はCrとNiである請求項記載のニオブ基合金の耐熱材料。 The niobium-based alloy is an alloy containing Cr, the element M in the alloy film of the first layer contains at least Cr, and the element Q in the alloy film of the second layer is Cr or Cr and Ni The heat resistant material of the niobium-based alloy according to claim 1 . 前記元素Mが、Crを主体としてこれに少量のAlとNiのうちの1種以上を含むものである請求項記載のニオブ基合金の耐熱材料。 The heat-resistant material for a niobium-based alloy according to claim 2 , wherein the element M is mainly composed of Cr and contains one or more of a small amount of Al and Ni.
JP2002530827A 2000-09-28 2001-09-10 Niobium-based alloy heat-resistant material Expired - Fee Related JP5295474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002530827A JP5295474B2 (en) 2000-09-28 2001-09-10 Niobium-based alloy heat-resistant material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000296521 2000-09-28
JP2000296522 2000-09-28
JP2000296522 2000-09-28
JP2000296521 2000-09-28
PCT/JP2001/007828 WO2002027067A1 (en) 2000-09-28 2001-09-10 Heat-resistant material of niobium base alloy
JP2002530827A JP5295474B2 (en) 2000-09-28 2001-09-10 Niobium-based alloy heat-resistant material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012023563A Division JP2012132099A (en) 2000-09-28 2012-02-07 Niobium-based alloy heat-resistant material

Publications (2)

Publication Number Publication Date
JPWO2002027067A1 JPWO2002027067A1 (en) 2004-02-05
JP5295474B2 true JP5295474B2 (en) 2013-09-18

Family

ID=26600953

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002530827A Expired - Fee Related JP5295474B2 (en) 2000-09-28 2001-09-10 Niobium-based alloy heat-resistant material
JP2012023563A Pending JP2012132099A (en) 2000-09-28 2012-02-07 Niobium-based alloy heat-resistant material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012023563A Pending JP2012132099A (en) 2000-09-28 2012-02-07 Niobium-based alloy heat-resistant material

Country Status (2)

Country Link
JP (2) JP5295474B2 (en)
WO (1) WO2002027067A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753720B2 (en) * 2004-01-15 2011-08-24 株式会社荏原製作所 Alloy film for diffusion barrier, method for producing the same, and high temperature apparatus member
US9267184B2 (en) 2010-02-05 2016-02-23 Ati Properties, Inc. Systems and methods for processing alloy ingots
US8230899B2 (en) 2010-02-05 2012-07-31 Ati Properties, Inc. Systems and methods for forming and processing alloy ingots
US10207312B2 (en) 2010-06-14 2019-02-19 Ati Properties Llc Lubrication processes for enhanced forgeability
US8789254B2 (en) 2011-01-17 2014-07-29 Ati Properties, Inc. Modifying hot workability of metal alloys via surface coating
JP5854497B2 (en) * 2011-07-27 2016-02-09 国立大学法人北海道大学 Nb-Si heat resistant alloy
US9027374B2 (en) 2013-03-15 2015-05-12 Ati Properties, Inc. Methods to improve hot workability of metal alloys
US9539636B2 (en) 2013-03-15 2017-01-10 Ati Properties Llc Articles, systems, and methods for forging alloys
WO2016189612A1 (en) * 2015-05-25 2016-12-01 三菱日立パワーシステムズ株式会社 Niobium silicide-based composite material, high-temperature component using same, and high-temperature heat engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317242A (en) * 1989-04-03 1991-01-25 General Electric Co <Ge> Material system for high-temperature jet engine
JP2001323332A (en) * 2000-03-07 2001-11-22 Ebara Corp Alloy film method for depositing it and high temperature apparatus member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3073180B2 (en) * 1997-08-01 2000-08-07 株式会社日立製作所 Oxidation resistant surface coating on Nb alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317242A (en) * 1989-04-03 1991-01-25 General Electric Co <Ge> Material system for high-temperature jet engine
JP2001323332A (en) * 2000-03-07 2001-11-22 Ebara Corp Alloy film method for depositing it and high temperature apparatus member

Also Published As

Publication number Publication date
JP2012132099A (en) 2012-07-12
JPWO2002027067A1 (en) 2004-02-05
WO2002027067A1 (en) 2002-04-04

Similar Documents

Publication Publication Date Title
JP2012132099A (en) Niobium-based alloy heat-resistant material
JP2991991B2 (en) Thermal spray coating for high temperature environment and method of manufacturing the same
US20050238907A1 (en) Highly oxidation resistant component
WO2009119345A1 (en) Alloy material having high-temperature corrosion resistance, heat-shielding coating material, turbine member, and gas turbine
JP3865705B2 (en) Heat shielding coating material excellent in corrosion resistance and heat resistance, and method for producing the same
KR100611723B1 (en) Heat-resistant material Ti alloy material excellent in resistance to corrosion at high temperature and to oxidation
JP2006257451A (en) Structure of oxidation-resistant coating formed on heat-resistant alloy and coating method
JP2006219740A (en) Niobium-based alloy heat resistant member having excellent oxidation resistance
WO2015166831A1 (en) Heat-resistant metal member, method for producing heat-resistant metal member, alloy coating film, method for producing alloy coating film, rocket engine, artificial satellite and gas turbine for power generation
JP3857689B2 (en) ReCrNi alloy coating for diffusion barrier
JP3857690B2 (en) Re alloy film for diffusion barrier
JP3910588B2 (en) ReCr alloy coating for diffusion barrier
JP2022130467A (en) TiAl ALLOY MATERIAL AND METHOD FOR PRODUCING THE SAME, AND METHOD FOR FORGING TiAl ALLOY MATERIAL
JP4492855B2 (en) Thermal barrier coating member and manufacturing method thereof
JP2008069403A (en) Anti-oxidation coating structure and coating method of heat-resistant alloy
JPH0693412A (en) Heat resistant ti-based alloy
JP2003253423A (en) Heat resistant alloy material with excellent high- temperature corrosion resistance, and its manufacturing method
JP2000511236A (en) Structural component having superalloy substrate and layer structure provided thereon, and method of manufacturing the same
JP2001226761A (en) Oxidation resistant film structure for niobium type heat resistant material and method of its deposition
US6723176B2 (en) Component covered with a layer and method of producing such a layer
JPH09104987A (en) Heat resistant member and is production
JP2004256855A (en) Thermal barrier coating member and method for manufacturing the same
Jung et al. A study of oxidation resistant coating on TiAl alloys by Cr evaporation and pack cementation
WO2014076829A1 (en) Gas turbine member having thermal barrier coating
JP2011080133A (en) Oxide forming type protective coating film for niobium-based material

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20020903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5295474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees