JP3708909B2 - Method for producing a high-temperature oxidation-resistant heat-resistant alloy member formed by depositing a rhenium-containing alloy film - Google Patents

Method for producing a high-temperature oxidation-resistant heat-resistant alloy member formed by depositing a rhenium-containing alloy film Download PDF

Info

Publication number
JP3708909B2
JP3708909B2 JP2002191164A JP2002191164A JP3708909B2 JP 3708909 B2 JP3708909 B2 JP 3708909B2 JP 2002191164 A JP2002191164 A JP 2002191164A JP 2002191164 A JP2002191164 A JP 2002191164A JP 3708909 B2 JP3708909 B2 JP 3708909B2
Authority
JP
Japan
Prior art keywords
atomic percent
aluminum
chromium
atomic
rhenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002191164A
Other languages
Japanese (ja)
Other versions
JP2004035911A (en
Inventor
敏夫 成田
道明 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002191164A priority Critical patent/JP3708909B2/en
Publication of JP2004035911A publication Critical patent/JP2004035911A/en
Application granted granted Critical
Publication of JP3708909B2 publication Critical patent/JP3708909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ジェットエンジン、ガスタービン、宇宙往還機、化学プラント、産業用燃焼炉、等の高温腐食環境で使用される耐高温酸化性耐熱合金部材の製造方法、特に、アルミニウム溶融塩浴から電気めっきにより得られる皮膜を被着してなる耐高温酸化性耐熱合金部材の製造方法に関する。
【0002】
【従来の技術】
耐熱合金材料は、通常、保護的アルミナスケールを表面に形成して、高温の腐食環境から保護されている。この保護的アルミナスケールを形成・維持するためには、通常、15原子%以上のアルミニウムが含有されていることが必要であると言われている。
【0003】
しかしながら、耐熱合金材料に多量のAlを添加することは、合金材料の機械的特性と加工性を低下させるため、得策ではない。現在の合金材料の製造技術では、保護的アルミナスケールを形成するのに必要な15原子%以上のアルミニウムを含有させることは難しい。
【0004】
従って、高温・腐食環境で使用される耐熱合金材料には、耐酸化性を付与するためにアルミナイジング処理、溶射、電子ビーム蒸着法、化学蒸着法、溶融塩めっき法、等により高アルミニウムを含有する皮膜が施されている。
通常、耐高温酸化性皮膜は、アルミニウム拡散処理とMCrAlY合金皮膜を溶射、電子ビーム蒸着、スパッタリング、等の方法で形成する方法が使われるのが一般的である。
【0005】
前記のガスタービン、ジェットエンジン、燃焼炉、等ではエネルギー効率の改善のため、燃焼ガス温度はますます高温化する傾向にある。従って、高温での使用中に、皮膜は耐熱合金基材との反応拡散と酸化消耗のため、その組成と構造が変化して保護的機能を喪失することが問題となっている。
従って、従来技術の延長や改良ではない、新規な概念に基づく耐高温酸化性皮膜を被着した耐熱合金部材の開発が求められている。
【0006】
本発明者は、永年に亘って、耐高温酸化性に優れた皮膜の開発を進めている。
その過程で、レニウム・クロム・ニッケル系のσ相は低い拡散係数を有することを発見し、日本金属学会北海道支部大会講演概要第20ページ講演番号A23「Re-Cr-Ni系の相互拡散」(2001年7月、室蘭市)および日本金属学会春期大会講演概要第183ページ講演番号110「高融点金属系(Re-Cr-Ni系)の相互拡散」(2002年3月、東京都)で発表している。
【0007】
前記レニウム・クロム・ニッケル系のσ相は2300℃を越える高融点を有し、かつ、低い拡散係数を有することから、耐高温腐食性に優れた皮膜の構成層、例えば、拡散障壁層として優れた特性を有していることを見いだし、本発明者らは、レニウム合金を主体とする皮膜を基材側に、アルミニウムを含む合金相を外層とする複層皮膜を被着してなる耐酸化性金属部材に関する発明を特許出願した(特願2001−63686号、特開2001−323332号公報)。
前記、特願2001−63686号明細書に記載の皮膜は、拡散障壁を目的としたレニウム基合金層とアルミニウムの貯留を目的としたニッケル基合金層の複層構造を有し、これら各層は連続層であることが望ましい。しかし、その複層構造の皮膜の製造方法については、未だ完成されていない。
【0008】
レニウム又はレニウム合金、及びそれらの皮膜を形成してなる金属部材の製造法については、多くのプロセスが提案されている。例えば、特開平9−143667号公報には、マンドレル基体の表面にレニウム又はレニウム合金の皮膜を低圧真空プラズマ溶射法で形成した後、マンドレル基体を除去してなることを特徴とする製造方法が開示されている。この方法では、最大60重量%のモリブデン又は最大60重量%のタングステンを含むレニウム合金が製造できる。学術雑誌(S.A.Kuzbetsov et al.,Refractory Metals in Molten Salts,1998,
Kluwer Academic Publishers,printed in Netherlands,pp.219)に、溶融塩からレニウム金属を電気メッキする方法が開示され、純レニウム金属皮膜の形成が行われている。
【0009】
前記の特開平9−143667号公報や学術雑誌に記載のレニウム又はレニウム合金はいずれも優れた耐熱性を有することが期待される材料である。しかし、高温における耐酸化性は著しく劣るため、高真空雰囲気での使用に限定され、本発明で目的とする高温腐食環境では使用することはできない。
さらに、レニウムを含む合金の皮膜を、電気メッキにより製造する方法が開発されている。特開昭54−93453号公報には、水溶液からの電気めっきによる、35〜85重量%レニウムを含むニッケル合金皮膜の形成が開示されている。特開平9−302496号公報には、水溶液からの電気めっきによる、モリブデンを主体とし、ニッケル、クロム、レニウムを含む合金皮膜の形成方法が開示されている。
【0010】
学術雑誌(福島ら、金属表面技術、35巻、p.247、(1984))及び金属表面技術、36巻、p.18、(1985))に、水溶液からの電気メッキによる、レニウム−ニッケル合金メッキの形成方法が報告されている。
前記の水溶液から電析したレニウム含有合金は、半導体電極表面のパッシベーション皮膜として、又は、塩水噴霧雰囲気での耐食性向上を目的に開発されたものであり、アルミニウムを含有していないことから、保護的アルミナスケールを形成することはできない。
【0011】
アルミニウムは非水溶媒浴又は溶融塩浴から電気分解によって析出することが可能であり、さらに、クロム等を含有するアルミニウム合金の電気めっきも可能である。例えば、特開平7−157891号公報に、塩化アルミニウムを添加した非水溶媒液から、アルミニウム合金めっきによる皮膜の形成方法が開示されている。特開昭47−42536号公報には、クロムを1.0〜27.0重量%含むアルミニウム合金めっきが開示されている。
【0012】
本発明者らは、特願2000−1703号において、NaCl−KCl−AlCl溶融塩からのAl−Cr−X(第3元素)合金めっき皮膜の形成方法について開示した。このめっき皮膜では、第3元素Xとして、0.01〜50Ti、0.01〜15Mo、0.01〜15Ta、0.01〜15W、0.01〜15Zr、0.01〜5Y、0.01〜5Ceを用いている。しかし、めっき皮膜には、ReとNiは含まれていない。
【0013】
前記の特開平7−157891号公報と特開昭47−42536号公報に記載されている皮膜は塩化物を含む水溶液による腐食から基材を保護するために被着したものであり、本発明で目的とする耐高温酸化性皮膜としての機能を有しない。
【0014】
【発明が解決しようとする課題】
これらの従来技術では、アルミニウム溶融塩メッキによる、レニウム−クロム−アルミニウム、レニウム−クロム−ニッケル−アルミニウム、ニッケル−アルミニウム−クロム−活性金属、ニッケル−アルミニウム−クロム−レニウム−活性金属を主体とする皮膜の製造方法は未だ報告されていない。
本発明は、このような問題を解決するためになされたものであり、耐熱性と耐高温酸化性を兼ね備えた皮膜の製造方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記課題を解決するために、本発明は、アルミニウム溶融塩浴から、電気めっきにより、レニウム含有合金皮膜を耐熱合金基材側に被着し、アルミニウム含有合金皮膜を表面側に被着してなる皮膜を形成し、続いて、この皮膜を被着した耐熱合金部材を高温で熱処理してなる複層構造の皮膜を被着した耐高温酸化性耐熱合金部材の製造方法を提供する。
【0016】
すなわち、本発明は、耐熱合金基体表面に、レニウムを0.01〜5.0重量%、クロムを0.01〜5.0重量%含むアルミニウム溶融塩メッキ浴を用いて、15.1〜60.0原子%のレニウム、20.0〜60.0原子%のクロム、残部アルミニウムを含む合金を電気めっきし、
続いて、ニッケルを0.01〜5.0重量%、クロムを0.01〜5.0重量%、活性金属を0.001〜1.0重量%含むアルミニウム溶融塩メッキ浴を用いて、
25.0〜75.0原子%のニッケル、5.0〜30.0原子%のクロム、0.01〜1.0原子%の活性金属、残部アルミニウムを含む合金を電気めっきし、
この複層皮膜を被着してなる基材を高温で熱処理して、40.0〜70.0原子%のレニウム、25.0〜55.0原子%のクロム、0.1〜30.0原子%のニッケル、5原子%以下のアルミニウムを含む合金相が連続層を形成してなる内層と、
29.0〜75.0原子%のニッケル、5.0〜25.0原子%のクロム、15.0〜60.0原子%のアルミニウム、1.0原子%以下の活性金属、5原子%以下のレニウムを含む合金相が連続層を形成してなる外層の複層構造を有する皮膜を形成することを特徴とする耐高温酸化性耐熱合金部材の製造方法である。
【0017】
また、本発明は、耐熱合金基体表面に、レニウムを0.01〜5.0重量%、クロムを0.01〜5.0重量%含むアルミニウム溶融塩メッキ浴を用いて、0.1〜30.0原子%のレニウム、20.0〜60.0原子%のクロム、残部アルミニウムを含む合金を電気めっきし、
続いて、ニッケルを0.01〜5.0重量%、クロムを0.01〜5.0重量%、活性金属を0.001〜1.0重量%含むアルミニウム溶融塩メッキ浴を用いて、
25.0〜75.0原子%のニッケル、5.0〜30.0原子%のクロム、0.01〜1.0原子%の活性金属、残部アルミニウムを含む合金を電気めっきし、
この複層皮膜を被着してなる基材を高温で熱処理して、0.1〜30.0原子%のレニウム、60.1〜99.0原子%のクロム、0.1〜30.0原子%のニッケル、5原子%以下のアルミニウムを含む合金相が連続層を形成してなる内層と、
29.0〜75.0原子%のニッケル、5.0〜25.0原子%のクロム、15.0〜60.0原子%のアルミニウム、1原子%以下の活性金属、5原子%以下のレニウムを含む合金相が連続層を形成してなる外層の複層構造を有する皮膜を形成することを特徴とする耐高温酸化性耐熱合金部材の製造方法である。
【0018】
また、本発明は、前記活性金属が、イットリウム、セリウム、ランタン、ジルコニウムからなる群から選ばれた少なくとも1種であることを特徴とする上記の耐高温酸化性耐熱合金部材の製造方法である。
【0019】
すなわち、本発明は、熱処理を真空、不活性ガス,窒素ガス、又は大気中で、600〜1300℃の温度範囲で行うことを特徴とする上記の耐高温酸化性耐熱合金部材の製造方法である。
【0020】
前記複層構造の皮膜は内層(拡散障壁層)と外層(アルミニウム貯留層)から構成され、拡散障壁層は耐熱合金基材とアルミニウム貯留層の間に連続層として存在し、耐熱合金基材とアルミニウム貯留層との相互拡散を抑制することを特徴とするものである。
前記アルミニウム貯留層は拡散障壁層よりも酸化雰囲気側に位置し、保護的アルミナを形成・維持、再生するための充分な量のアルミニウムを含んでいることが必須である。
【0021】
内層(拡散障壁層)は、40.0〜70.0原子%のレニウム、25.0〜55.0原子%のクロム、0.1〜30.0原子%のニッケル、5.0原子%以下のアルミニウムを含むσ(シグマ)相(Ni−Re−Cr系)の範囲又は0.1〜30.0原子%のレニウム、60.1〜99.0原子%のクロム、0.1〜30.0原子%のニッケル、5.0原子%以下のアルミニウムを含むα(アルファ)相(Ni−Re−Cr系)の範囲にあることが肝要であり、1000℃以上の温度域で優れた耐高温腐食性を発揮する。
【0022】
外層(アルミニウム貯留層)は、29.0〜75.0原子%のニッケル、5.0〜25.0原子%のクロム、15.0〜60.0原子%のアルミニウム、1.0原子%以下の活性金属、5.0原子%以下のレニウムを含むNi−Al−Cr系のNiAl相、β(ベータ)−NiAl相、及びγ’(ガンマプライム)−NiAl相の組成範囲にあり、保護的アルミナスケールを形成・維持、再生するためは、アルミニウム濃度は15原子%以上が必要である。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
本発明のアルミニウム溶融塩浴の電気めっき法では、予め、板、管、線、ボルト、ナット、その他適宜の形状に形成した耐熱合金部材を陰極として電気めっきすることによって、目的形状の皮膜を有する耐高温酸化性耐熱合金部材を製造することができる。
【0024】
耐熱合金部材は特に限定されず、従来から知られているNi基、Co基、Fe基、Nb基、Ir基、Re基等の超合金、耐熱チタン合金やTiAl金属間化合物などの耐熱性Ti合金等を対象とすることができる。
【0025】
本発明で使用する電解浴は、通常の溶融塩によるアルミニウム溶融塩浴である。アルミニウム溶融塩浴は、塩化アルミニウムを主体とし、塩化ナトリウム、塩化カリウム、塩化リチウムの少なくとも1種を含む共融点近傍の組成を有する融解塩である。
例えば、塩化アルミニウムを50〜65mo1%、塩化ナトリウムを10〜30mol%、塩化カリウムを5〜25mol%含む融解塩を使用する。
融解塩中で、陽極にAlを使用し、耐熱合金基材を陰極として通電することによりアルミニウムを耐熱合金基材に電気めっきする。前記溶融塩浴におけるアルミニウムの電気めっきは、150℃〜200℃の範囲で可能である。
【0026】
前記アルミニウム溶融塩へのレニウムの供給は、レニウム微粉末又はレニウム塩化物として添加されるか、又は、レニウム補助電極を用いてレニウムをイオン化せしめて、浴中にレニウムイオンを存在せしめる。
【0027】
前記レニウム微粉末のサイズは30μm〜0.1μmが好ましいが、取り扱いの容易さから、5μm〜1μmサイズの微粒子がより望ましい。
【0028】
前記アルミニウム溶融塩へのクロムの供給は、クロム微粉末又はクロム塩化物として添加されるか、又は、クロム補助電極を用いてクロムをイオン化せしめて、浴中にクロムイオンを存在せしめる。
【0029】
前記クロム微粉末のサイズは30μm〜0.1μmが好ましいが、取り扱いの容易さから、5μm〜0.5μmサイズの微粒子がより望ましい。
【0030】
前記アルミニウム溶融塩への活性金属の供給は、活性金属又はその合金の微粉末、又は活性金属の塩化物として添加される。 活性金属は、イットリウム、セリウム、ランタン、ジルコニウムからなる群から選ばれた少なくとも1種である。イツトリウム、セリウム、ランタン、ジルコニウム等の金属は 活性金属と総称し、この活性金属を微量添加するとAlスケ−ルの密着性が改善され、加熱冷却時に発生する熱応力や外力によるスケ−ルの破壊に対して強い抵抗力を発揮する。1.0原子%以下が適正な濃度である。この効果を発揮させるには少なくとも0.01原子%は必要である。1.0原子%より多すぎると活性金属を含む化合物が形成してスケ−ルの剥離を助長し、耐酸化性に悪影響を与える。
【0031】
前記活性金属又はその合金の微粉末のサイズは5μm〜0.05μmが好ましいが、取り扱いの容易さから、2μm〜0.01μmサイズの微粒子がより望ましい。
【0032】
前記皮膜を電気めっきにより形成するためには、電流密度と電極電位及びその他のめっき条件の影響を受けるが、浴中の各元素の濃度管理もまた重要である。溶融塩浴中のレニウム濃度が0.01重量%未満であると、めっき皮膜中にレニウムは殆ど含まれず、5重量%を超えるとでは皮膜中のレニウム濃度は60原子%を超える。
【0033】
溶融塩浴中のクロム濃度が0.01重量%未満では、めっき皮膜中のクロム濃度が20原子%以下となり、5重量%以上では、皮膜中のクロム濃度は60原子%以上になる。
【0034】
前記アルミニウム溶融塩浴からの電気めっきでは、溶融塩中に存在する各種金属とその濃度、電析電位、電流密度を制御することによって、レニウムの他に、クロム、ニッケル、活性金属、を単独又は複合して含むアルミニウム合金をめっきすることができる。なお、本発明の効果はめっき皮膜の厚さに特に規制されることはない。
【0035】
前記の複層皮膜を被着した耐熱合金基材を真空、不活性ガス、窒素ガス、大気中で、600〜1300℃の温度範囲、0.1〜100時間、の加熱処理を施すことによって、目的の元素と組成を有する皮膜を被着した耐高温酸化性耐熱合金部材を提供することができる。
【0036】
加熱温度が低すぎると、目的の皮膜構造を形成するのに長時間を要する。また、加熱温度が高すぎると、内層と外層の反応が進行して、複層構造が破壊される。望ましいのは1000〜1200℃の温度範囲である。なお、時間は、加熱温度にも依存するが、0.1〜100時間であればよく、望ましくは1〜20時間である。
【0037】
複層構造の内層に存在するアルミニウムは高温の加熱によって除去される。5原子%Al以下の濃度で、レニウム・クロム・ニッケル・アルミニウムを主体とする合金層となるが1原子%以下であることが望ましい。
【0038】
前記、高温における加熱時に、皮膜の内層には耐熱合金基材に含まれているタングステン、モリブデン、コバルト、チタン、タンタル、ニオブ、などの元素が拡散侵入して、含有される場合がある。これらの元素のうちタングステン、モリブデン、コバルトは好ましい元素である。
【0039】
以下に内層及び外層のめっき皮膜の形成方法を説明する。
耐熱ガラス製電解槽(内容積1l(リットル))1と電解槽2(内容積1l(リットル))を用意し、それぞれの電解槽に収容された下記の組成の電解浴中に、純度99.9%アルミニウム板からなる陽極と、被めっき材である陰極として、Ni基超合金CMSX−4(12.6:Al,9.3:Co,7.6:Cr,2.2:Ta,2.O:W,1.3:Ti,1.O:Re,0.4:Mo,各原子%)の試験片(直径10mm×厚さ1mm)を対向させて配置した。
電解浴組成;AlCl:63mol%、NaCl:20mol%、KCl:17mol%。
【0040】
前記溶融塩の電位の基準として、純アルミニウム線(径:2mm)を陰極と陽極の中間に配置した。なお、被めっき材は、脱脂・洗浄、乾燥して使用した。
【0041】
内層のめっき皮膜の形成方法
電解槽2内の電解浴中に、0.1〜5重量%のReCl、0.1〜5重量%のCrClを添加した。
【0042】
前記電解槽2を用いて、電解浴を0.3m/秒の攪拌速度で攪拌しながら、電解浴温度160℃で、種々の電解電位でメッキを行った。
【0043】
前記電解槽2内で、被めっき材の表面にレニウム・クロム・アルミニウム合金を50μmの厚さにメッキした。電位の制御には市販のポテンショスタッ卜を用いた。電解槽2で得られた電析物の組成を、下記表1、表2にまとめた。
【0044】
【表1】

Figure 0003708909
【0045】
【表2】
Figure 0003708909
【0046】
上記表1と表2に示すように、塩化物濃度と電解電位を変化させることにより、種々の組成のレニウム・クロム・アルミニウム合金をめっきさせることができる。
【0047】
外層のめっき皮膜の形成方法
前記電解槽1内の電解浴中に、0.1〜5重量%のNiCl、0.1〜5重量%のCrCl、0.01〜0.l重量%のYClを添加した。前記電解槽1を用いて、電解浴を0.3m/秒の攪拌速度で攪拌しながら、電解浴温度160℃で、種々の電解電位でメッキを行った。
【0048】
前記電解槽1内で、被めっき材の表面にニッケル・クロム・イットリウム・アルミニウム合金を50μmの厚さに電析した。電位の制御には市販のポテンシヨスタットを用いた。電解槽1で得られた電析物の組成を、下記表3、表4、表5にまとめた。
【0049】
【表3】
Figure 0003708909
【0050】
【表4】
Figure 0003708909
【0051】
【表5】
Figure 0003708909
【0052】
上記表3、表4、表5に示すように、塩化物濃度と電解電位を変化させることにより、種々の組成のニッケル・クロム・イットリウム・アルミニウム合金をめっきさせることができる。
【0053】
【実施例】
以下に、本発明の方法について実施例に基づいて、より具体的に説明する。
実施例1
上記の電解槽2と電解槽1を用意した。先ず、電解槽2内で、ニッケル基超合金CMSX−4の表面にレニウム・クロム・アルミニウム合金を10μmの厚さにめっきし、続いて、このCMSX−4を電解槽1内に移動して、ニッケル・クロム・活性金属・アルミニウム合金を50μmの厚さにめっきした。前記めっきの条件は、電解槽2の電位は−0.05Vであり、電解層1の電位は−010Vである。
【0054】
前記電気めっきを施した金属部材を膜厚方向に垂直に切断し、その断面を鏡面研磨した後、皮膜の厚さ方向に測定した各元素の濃度を表6に示す。
【0055】
【表6】
Figure 0003708909
【0056】
前記表6に示した結果から、レニウム・クロム・アルミニウム合金の皮膜が基材側に内層として、外層にはニッケル・クロム・イットリウム・アルミニウム合金の皮膜が溶融塩側に形成していることが分かる。
【0057】
作製した外層・内層の複層構造を有する皮膜を被着した金属部材を1100℃、アルゴン雰囲気で5時間、又は100時間加熱した。
【0058】
1100℃で、5時間加熱処理した皮膜を施した基材を切断し、断面を鏡面研磨した後、組織を観察し、EPMA装置を用いて各元素の濃度を測定した。各元素の濃度を表7に示す。
【0059】
【表7】
Figure 0003708909
【0060】
前記表7に示した結果から、1100℃で5時間、加熱処理することによって、内層に含まれるアルミニウムは基材側に拡散し、基材側からニッケルとクロムが内層側に拡散している。
【0061】
1100℃で、100時間加熱処理した皮膜を施した基材を切断し、断面を鏡面研磨した後、組織を観察し、EPMA装置を用いて各元素の濃度を測定した。各元素の濃度を表8に示す。
【0062】
【表8】
Figure 0003708909
【0063】
前記表8に示すように、1100℃で100時間、加熱処理すると、内層のアルミニウムの大部分は基材側に拡散する。一方、基材側からはタングステン、クロム、コバルトが内層に移行している。前記表7で観察されたニッケルは、その濃度が減少する傾向にある。コバルトの一部は外層にも達している。
【0064】
前記表7と表8に示した結果から、1100℃で加熱処理すると、内層にはレニウム、クロム、タングステン、コバルトの各原子が濃縮することが分かる。一方、アルミニウムは内層から排斥され、基材に含まれているタンタル、チタン、ニッケルは内層に侵入することができないことが分かる
【0065】
1100℃で5時間、加熱処理したCMSX−4の酸化量を測定した。酸化量の測定は、大気中、1100℃で10時間と100時間保持し、前後の重量変化から酸化増量を求めた。なお、比較例として、無処理のCMSX−4、ハステロイ−X合金についても同様の酸化量を求めた。その結果を表9に示す。
【0066】
【表9】
Figure 0003708909
【0067】
前記表9から、無処理のCMSX−4はアルミニウムを約12原子%含んでいることから初期酸化量は比較的低い。しかし、長時間では、スケールの剥離による質量減少が観察される。ハステロイ−Xは大きな酸化量とスケール剥離を生じている。
【0068】
1100℃で100時間酸化した試料の断面について測定した各元素の濃度をまとめて表10に示す。
【0069】
【表10】
Figure 0003708909
【0070】
前記表10に示した内層と外層の各元素の濃度は、表8に示した結果と比較すると、ほとんど変化が見られない。すなわち、アルゴン雰囲気と大気中ではアルミナ皮膜の厚さにわずかな違いがみられたものの、皮膜の構造と組成には変化が見られない。
【0071】
特に、特記すべき事項して、外層のアルミニウムは比較的高い値に維持されている。これは、内層にはアルミニウムがほとんど含まれていないことに起因している。
【0072】
以上の結果から、本発明の方法で製造した皮膜を施してなるニッケル基超合金のNi−Cr−Re系のσ(シグマ)相は優れた拡散障壁として作用していることが確認された。
【0073】
従って、前記表10に示した内層と外層の各元素の濃度は、表8に示した結果と比較すると、小さな変化が見られる程度である。すなわち、アルゴン雰囲気と大気中では、アルミナ皮膜の厚さにわずかな違いがみられたものの、皮膜の内部構造と組成の変化は無視できる程度である
【0074】
実施例2
上記の電解槽2と電解槽1を用意した。先ず、電解槽2内で、ニッケル基超合金CMSX−4の表面にレニウム・クロム・アルミニウム合金を10μmの厚さにめっきし、続いて、このCMSX−4を電解槽1内に移動して、ニッケル・クロム・活性金属・アルミニウム合金を50μmの厚さにめっきした。前記めっきの条件は、電解槽2の電位は表1の−0.05Vであり、電解層1の電位は表3の−0.05Vである。
【0075】
前記電気めっきを施した金属部材を膜厚方向に垂直に切断し、その断面を鏡面研磨した後、皮膜の厚さ方向に測定した各元素の濃度を表11に示す。
【0076】
【表11】
Figure 0003708909
【0077】
前記表11に示した結果から、レニウム・クロム・アルミニウム合金の皮膜が基材側に内層として、外層にはニッケル・クロム・イットリウム・アルミニウム合金の皮膜が溶融塩側に形成していることが分かる。
【0078】
作製した外層・内層の複層構造を有する皮膜を被着した金属部材を1000℃、アルゴン雰囲気で5時間、又は100時間加熱した。
【0079】
1000℃で、5時間加熱処理した皮膜を施した基材を切断し、断面を鏡面研磨した後、組織を観察し、EPMA装置を用いて各元素の濃度を測定した。各元素の濃度を表12に示す。
【0080】
【表12】
Figure 0003708909
【0081】
前記表12に示した結果から、1000℃で5時間、加熱処理することによって、ニッケルが基材側と外層側から内層へ移行し、外層のアルミニウムの一部は内層へ移行している。
【0082】
1000℃で、100時間加熱処理した皮膜を施した基材を切断し、断面を鏡面研磨した後、組織を観察し、EPMA装置を用いて各元素の濃度を測定した。各元素の濃度を表13に示す。
【0083】
【表13】
Figure 0003708909
【0084】
前記表13に示すように、1000℃で100時間、加熱処理すると、基材側から内層にタングステン、コバルトが移行し、逆に、内層のアルミニウムとニッケルの濃度は減少する。
【0085】
1000℃で5時間、加熱処理したCMSX−4の酸化量を測定した。酸化量の測定は、大気中、1000℃で10時間と100時間保持し、前後の重量変化から酸化増量を求めた。なお、比較例として、無処理のCMSX−4、ハステロイ−X合金についても同様の酸化量を求めた。その結果を表14に示す。
【0086】
【表14】
Figure 0003708909
【0087】
前記表14から、皮膜を被着したCMSX−4の酸化量は非常に小さく、酸化時間による増加も少ない。無処理のCMSX−4はアルミニウムを約12原子%含んでいることから初期酸化量は比較的低い。しかし、長時間では、スケールの剥離による質量減少が観察される。ハステロイ−Xは大きな酸化量とスケール剥離を生じている。
【0088】
1000℃で100時間酸化した試料の断面について測定した各元素の濃度をまとめて表15に示す。
【0089】
【表15】
Figure 0003708909
【0090】
前記表15に示した内層と外層の各元素の濃度は、表8に示した結果と比較すると、ほとんど変化が見られない。すなわち、アルゴン雰囲気と大気中ではアルミナ皮膜の厚さにわずかな違いがみられたものの、皮膜の構造と組成には変化が見られない。
【0091】
特に、特記すべき事項して、外層のアルミニウムは比較的高い値に維持されている。これは、内層にはアルミニウムがほとんど含まれていないことに起因している。
【0092】
以上の結果から、本発明の方法で製造した皮膜を施してなるニッケル基超合金のNi−Cr−Re系のα(アルファ)相は優れた拡散障壁として作用していることが確認された。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high temperature oxidation resistant heat resistant alloy member used in a high temperature corrosive environment such as a jet engine, gas turbine, spacecraft, chemical plant, industrial combustion furnace, etc. The present invention relates to a method for producing a high-temperature oxidation-resistant heat-resistant alloy member formed by depositing a film obtained by plating.
[0002]
[Prior art]
Refractory alloy materials are typically protected from high temperature corrosive environments by forming a protective alumina scale on the surface. In order to form and maintain this protective alumina scale, it is usually said that 15 atomic% or more of aluminum is required to be contained.
[0003]
However, adding a large amount of Al to the heat-resistant alloy material is not a good idea because it reduces the mechanical properties and workability of the alloy material. With current alloy material manufacturing technology, it is difficult to contain the 15 atomic percent or more aluminum necessary to form a protective alumina scale.
[0004]
Therefore, heat-resistant alloy materials used in high-temperature and corrosive environments contain high aluminum by aluminizing treatment, thermal spraying, electron beam vapor deposition, chemical vapor deposition, molten salt plating, etc. to give oxidation resistance A coating is applied.
In general, the high temperature oxidation resistant film is generally formed by an aluminum diffusion treatment and an MCrAlY alloy film formed by thermal spraying, electron beam evaporation, sputtering, or the like.
[0005]
In the gas turbine, the jet engine, the combustion furnace, etc., the combustion gas temperature tends to increase more and more in order to improve the energy efficiency. Therefore, during use at a high temperature, the coating has a problem that the protective function is lost due to a change in composition and structure due to reaction diffusion and oxidation consumption with the heat-resistant alloy substrate.
Accordingly, there is a demand for the development of a heat-resistant alloy member coated with a high-temperature oxidation-resistant film based on a novel concept that is not an extension or improvement of the prior art.
[0006]
The present inventor has been developing a film excellent in high-temperature oxidation resistance for many years.
In the process, we discovered that rhenium-chromium-nickel sigma phase has a low diffusion coefficient, and presented a presentation number A23 "Re-Cr-Ni interdiffusion" on page 20 of the Japan Metallurgical Society Hokkaido Chapter Conference. Presented at July 2001, Muroran City) and the Japan Institute of Metals Spring Meeting Lecture No. 110, Lecture No. 110 “Interdiffusion of Refractory Metals (Re-Cr-Ni)” (March 2002, Tokyo) are doing.
[0007]
The rhenium-chromium-nickel-based σ phase has a high melting point exceeding 2300 ° C. and a low diffusion coefficient, so that it is excellent as a constituent layer of a film excellent in high-temperature corrosion resistance, for example, a diffusion barrier layer. The present inventors have found that the present invention has an oxidation resistance formed by depositing a multi-layer coating having an alloy phase containing aluminum as an outer layer on the substrate side with a coating mainly composed of a rhenium alloy. Have filed a patent application for an invention related to a conductive metal member (Japanese Patent Application No. 2001-63686, Japanese Patent Application Laid-Open No. 2001-323332).
The coating described in Japanese Patent Application No. 2001-63686 has a multilayer structure of a rhenium-based alloy layer for the purpose of diffusion barrier and a nickel-based alloy layer for the purpose of storing aluminum, and these layers are continuous. A layer is desirable. However, the method for producing the multi-layered film has not yet been completed.
[0008]
Many processes are proposed about the manufacturing method of the metal member formed by forming rhenium or a rhenium alloy and those membrane | film | coats. For example, Japanese Patent Laid-Open No. 9-143667 discloses a manufacturing method characterized by forming a rhenium or rhenium alloy film on the surface of a mandrel substrate by low-pressure vacuum plasma spraying and then removing the mandrel substrate. Has been. In this way, rhenium alloys containing up to 60% by weight molybdenum or up to 60% by weight tungsten can be produced. Academic journals (SAKuzbetsov et al., Refractory Metals in Molten Salts, 1998,
Kluwer Academic Publishers, printed in Netherlands, pp. 219) discloses a method of electroplating rhenium metal from a molten salt to form a pure rhenium metal film.
[0009]
The rhenium or rhenium alloy described in JP-A-9-143667 and academic journals are all materials expected to have excellent heat resistance. However, since the oxidation resistance at high temperature is remarkably inferior, it is limited to use in a high vacuum atmosphere, and cannot be used in the high temperature corrosive environment intended by the present invention.
Furthermore, a method for producing an alloy film containing rhenium by electroplating has been developed. Japanese Patent Application Laid-Open No. 54-93453 discloses the formation of a nickel alloy film containing 35 to 85% by weight rhenium by electroplating from an aqueous solution. Japanese Patent Application Laid-Open No. 9-30296 discloses a method for forming an alloy film mainly composed of molybdenum and containing nickel, chromium and rhenium by electroplating from an aqueous solution.
[0010]
Academic journals (Fukushima et al., Metal Surface Technology, Volume 35, p. 247, (1984)) and Metal Surface Technology, Volume 36, p. 18, (1985)) reports a method of forming rhenium-nickel alloy plating by electroplating from an aqueous solution.
The rhenium-containing alloy electrodeposited from the above aqueous solution was developed for the purpose of improving the corrosion resistance in a salt spray atmosphere as a passivation film on the surface of a semiconductor electrode, and since it does not contain aluminum, it is protective. Alumina scale cannot be formed.
[0011]
Aluminum can be deposited by electrolysis from a non-aqueous solvent bath or a molten salt bath, and an aluminum alloy containing chromium or the like can also be electroplated. For example, Japanese Patent Laid-Open No. 7-157891 discloses a method for forming a film by plating an aluminum alloy from a non-aqueous solvent solution to which aluminum chloride is added. Japanese Laid-Open Patent Publication No. 47-42536 discloses an aluminum alloy plating containing 1.0 to 27.0% by weight of chromium.
[0012]
In the Japanese Patent Application No. 2000-1703, the present inventors have prepared NaCl-KCl-AlCl. 3 A method for forming an Al—Cr—X (third element) alloy plating film from a molten salt has been disclosed. In this plating film, as the third element X, 0.01-50Ti, 0.01-15Mo, 0.01-15Ta, 0.01-15W, 0.01-15Zr, 0.01-5Y, 0.01 ~ 5Ce is used. However, the plating film does not contain Re and Ni.
[0013]
The coatings described in JP-A-7-157891 and JP-A-47-42536 are deposited to protect the substrate from corrosion by an aqueous solution containing chloride. Does not function as the desired high-temperature oxidation resistant film.
[0014]
[Problems to be solved by the invention]
In these prior arts, a film mainly composed of rhenium-chromium-aluminum, rhenium-chromium-nickel-aluminum, nickel-aluminum-chromium-active metal, nickel-aluminum-chromium-rhenium-active metal by aluminum molten salt plating. No manufacturing method has been reported yet.
The present invention has been made to solve such a problem, and an object of the present invention is to provide a method for producing a film having both heat resistance and high temperature oxidation resistance.
[0015]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is obtained by depositing a rhenium-containing alloy film on the heat-resistant alloy substrate side by electroplating from an aluminum molten salt bath and depositing the aluminum-containing alloy film on the surface side. Provided is a method for producing a high temperature oxidation resistant heat resistant alloy member having a multilayer structure formed by forming a film and subsequently heat-treating the heat resistant alloy member to which the film is applied at a high temperature.
[0016]
That is, the present invention uses an aluminum molten salt plating bath containing 0.01 to 5.0% by weight of rhenium and 0.01 to 5.0% by weight of chromium on the surface of a heat-resistant alloy substrate. Electroplating an alloy containing 0.0 atomic% rhenium, 20.0 to 60.0 atomic% chromium and the balance aluminum;
Subsequently, using an aluminum molten salt plating bath containing 0.01 to 5.0% by weight of nickel, 0.01 to 5.0% by weight of chromium, and 0.001 to 1.0% by weight of active metal,
Electroplating an alloy containing 25.0-75.0 atomic percent nickel, 5.0-30.0 atomic percent chromium, 0.01-1.0 atomic percent active metal, balance aluminum,
The base material formed by applying this multilayer coating is heat-treated at a high temperature to obtain 40.0-70.0 atomic% rhenium, 25.0-55.0 atomic% chromium, 0.1-30.0. An inner layer in which an alloy phase containing atomic percent nickel, 5 atomic percent or less of aluminum forms a continuous layer;
29.0-75.0 atomic percent nickel, 5.0-25.0 atomic percent chromium, 15.0-60.0 atomic percent aluminum, 1.0 atomic percent or less active metal, 5 atomic percent or less A method for producing a high-temperature oxidation-resistant heat-resistant alloy member, wherein a film having a multilayer structure of an outer layer is formed by forming an alloy phase containing rhenium in a continuous layer.
[0017]
In addition, the present invention uses an aluminum molten salt plating bath containing 0.01 to 5.0% by weight of rhenium and 0.01 to 5.0% by weight of chromium on the surface of a heat-resistant alloy substrate. Electroplating an alloy containing 0.0 atomic% rhenium, 20.0 to 60.0 atomic% chromium and the balance aluminum;
Subsequently, using an aluminum molten salt plating bath containing 0.01 to 5.0% by weight of nickel, 0.01 to 5.0% by weight of chromium, and 0.001 to 1.0% by weight of active metal,
Electroplating an alloy containing 25.0-75.0 atomic percent nickel, 5.0-30.0 atomic percent chromium, 0.01-1.0 atomic percent active metal, balance aluminum,
The substrate formed by applying this multilayer coating is heat-treated at a high temperature to obtain 0.1 to 30.0 atomic% rhenium, 60.1 to 99.0 atomic% chromium, 0.1 to 30.0. An inner layer in which an alloy phase containing atomic percent nickel, 5 atomic percent or less of aluminum forms a continuous layer;
29.0-75.0 atomic% nickel, 5.0-25.0 atomic% chromium, 15.0-60.0 atomic% aluminum, 1 atomic% or less active metal, 5 atomic% or less rhenium A high-temperature oxidation-resistant heat-resistant alloy member manufacturing method is characterized in that a film having a multilayer structure of an outer layer formed by an alloy phase containing a continuous layer is formed.
[0018]
Further, the present invention is the above-described method for producing a high temperature oxidation resistant heat resistant alloy member, wherein the active metal is at least one selected from the group consisting of yttrium, cerium, lanthanum, and zirconium.
[0019]
That is, this invention is a manufacturing method of said high temperature oxidation-resistant heat-resistant alloy member characterized by performing heat processing in the temperature range of 600-1300 degreeC in a vacuum, inert gas, nitrogen gas, or air | atmosphere. .
[0020]
The multi-layered film is composed of an inner layer (diffusion barrier layer) and an outer layer (aluminum reservoir layer), and the diffusion barrier layer exists as a continuous layer between the heat resistant alloy substrate and the aluminum reservoir layer, It is characterized by suppressing interdiffusion with the aluminum reservoir.
It is essential that the aluminum reservoir layer is located closer to the oxidizing atmosphere than the diffusion barrier layer and contains a sufficient amount of aluminum to form, maintain and regenerate protective alumina.
[0021]
The inner layer (diffusion barrier layer) is 40.0-70.0 atomic% rhenium, 25.0-55.0 atomic% chromium, 0.1-30.0 atomic% nickel, 5.0 atomic% or less Of sigma (sigma) phase (Ni-Re-Cr system) containing aluminum of 0.1 to 30.0 atomic% rhenium, 60.1 to 99.0 atomic% of chromium, 0.1 to 30. It is important to be in the range of α (alpha) phase (Ni-Re-Cr system) containing 0 atomic% nickel and 5.0 atomic% or less aluminum, and excellent high temperature resistance in a temperature range of 1000 ° C. or higher. Demonstrate corrosiveness.
[0022]
Outer layer (aluminum reservoir) is 29.0-75.0 atomic% nickel, 5.0-25.0 atomic% chromium, 15.0-60.0 atomic% aluminum, 1.0 atomic% or less Active metal, Ni-Al-Cr based Ni containing 5.0 atomic% or less rhenium 2 Al 3 , Β (beta) -NiAl phase, and γ ′ (gamma prime) -Ni 3 In order to form, maintain, and regenerate a protective alumina scale within the Al phase composition range, the aluminum concentration needs to be 15 atomic% or more.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
In the electroplating method of the aluminum molten salt bath of the present invention, a plate, a tube, a wire, a bolt, a nut, or other suitable heat-resistant alloy member formed in an appropriate shape is electroplated as a cathode to have a film of a desired shape. A high temperature oxidation resistant heat resistant alloy member can be produced.
[0024]
The heat-resistant alloy member is not particularly limited, and conventionally known superalloys such as Ni-base, Co-base, Fe-base, Nb-base, Ir-base and Re-base, heat-resistant titanium alloys such as heat-resistant titanium alloys and TiAl intermetallic compounds. Alloys and the like can be targeted.
[0025]
The electrolytic bath used in the present invention is an aluminum molten salt bath with a normal molten salt. The aluminum molten salt bath is a molten salt mainly composed of aluminum chloride and having a composition near the eutectic point containing at least one of sodium chloride, potassium chloride, and lithium chloride.
For example, a molten salt containing 50 to 65 mol 1% aluminum chloride, 10 to 30 mol% sodium chloride, and 5 to 25 mol% potassium chloride is used.
In molten salt, aluminum is electroplated onto the heat-resistant alloy substrate by using Al as the anode and energizing with the heat-resistant alloy substrate as the cathode. Electroplating of aluminum in the molten salt bath is possible in the range of 150 ° C to 200 ° C.
[0026]
The supply of rhenium to the aluminum molten salt is added as rhenium fine powder or rhenium chloride, or rhenium is ionized using a rhenium auxiliary electrode to cause rhenium ions to be present in the bath.
[0027]
The size of the rhenium fine powder is preferably 30 μm to 0.1 μm, but fine particles having a size of 5 μm to 1 μm are more preferable because of easy handling.
[0028]
The supply of chromium to the aluminum molten salt is added as chromium fine powder or chromium chloride, or chromium is ionized using a chromium auxiliary electrode to cause chromium ions to be present in the bath.
[0029]
The size of the chromium fine powder is preferably 30 μm to 0.1 μm, but fine particles having a size of 5 μm to 0.5 μm are more preferable because of easy handling.
[0030]
The supply of the active metal to the aluminum molten salt is added as a fine powder of the active metal or an alloy thereof, or a chloride of the active metal. The active metal is at least one selected from the group consisting of yttrium, cerium, lanthanum, and zirconium. Metals such as yttrium, cerium, lanthanum, and zirconium are collectively referred to as active metals. 2 O 3 The adhesion of the scale is improved, and it shows a strong resistance to the destruction of the scale due to thermal stress and external force generated during heating and cooling. 1.0 atomic% or less is an appropriate concentration. In order to exert this effect, at least 0.01 atomic% is necessary. When the amount is more than 1.0 atomic%, a compound containing an active metal is formed to promote the peeling of the scale and adversely affect the oxidation resistance.
[0031]
The size of the fine powder of the active metal or an alloy thereof is preferably 5 μm to 0.05 μm, but fine particles having a size of 2 μm to 0.01 μm are more desirable for ease of handling.
[0032]
In order to form the film by electroplating, although it is affected by the current density, electrode potential, and other plating conditions, the concentration control of each element in the bath is also important. If the rhenium concentration in the molten salt bath is less than 0.01% by weight, the plating film contains almost no rhenium, and if it exceeds 5% by weight, the rhenium concentration in the film exceeds 60 atomic%.
[0033]
When the chromium concentration in the molten salt bath is less than 0.01% by weight, the chromium concentration in the plating film is 20 atomic% or less, and when it is 5% by weight or more, the chromium concentration in the film is 60 atomic% or more.
[0034]
In the electroplating from the aluminum molten salt bath, various metals present in the molten salt and their concentrations, electrodeposition potential, and current density are controlled, and in addition to rhenium, chromium, nickel, and active metal are used alone or A composite aluminum alloy can be plated. The effect of the present invention is not particularly limited by the thickness of the plating film.
[0035]
By subjecting the heat-resistant alloy substrate coated with the multilayer film to a heat treatment in a temperature range of 600 to 1300 ° C. for 0.1 to 100 hours in a vacuum, inert gas, nitrogen gas, and air, It is possible to provide a high-temperature oxidation-resistant heat-resistant alloy member coated with a film having a target element and composition.
[0036]
If the heating temperature is too low, it takes a long time to form the desired film structure. Moreover, when heating temperature is too high, reaction of an inner layer and an outer layer will advance, and a multilayer structure will be destroyed. Desirable is a temperature range of 1000 to 1200 ° C. Although the time depends on the heating temperature, it may be 0.1 to 100 hours, preferably 1 to 20 hours.
[0037]
Aluminum present in the inner layer of the multilayer structure is removed by high-temperature heating. The alloy layer is mainly composed of rhenium, chromium, nickel and aluminum at a concentration of 5 atomic% Al or less, but is preferably 1 atomic% or less.
[0038]
When heating at a high temperature, elements such as tungsten, molybdenum, cobalt, titanium, tantalum, and niobium contained in the heat-resistant alloy base material may be diffused and contained in the inner layer of the coating. Of these elements, tungsten, molybdenum, and cobalt are preferable elements.
[0039]
Below, the formation method of the plating film of an inner layer and an outer layer is demonstrated.
A heat-resistant glass electrolytic cell (internal volume 1 l (liter)) 1 and an electrolytic cell 2 (internal volume 1 l (liter)) are prepared, and purity 99. Ni-based superalloy CMSX-4 (12.6: Al, 9.3: Co, 7.6: Cr, 2.2: Ta, 2.O: W, 1.3: Ti as an anode made of 9% aluminum plate and a cathode to be plated. , 1.O: Re, 0.4: Mo, each atomic%) test pieces (diameter 10 mm × thickness 1 mm) were placed facing each other.
Electrolytic bath composition; AlCl 3 : 63 mol%, NaCl: 20 mol%, KCl: 17 mol%.
[0040]
As a reference for the potential of the molten salt, a pure aluminum wire (diameter: 2 mm) was disposed between the cathode and the anode. The material to be plated was used after degreasing, washing and drying.
[0041]
Inner layer plating film formation method
In the electrolytic bath in the electrolytic cell 2, 0.1 to 5% by weight of ReCl 4 0.1-5 wt% CrCl 3 Was added.
[0042]
Using the electrolytic bath 2, plating was performed at various electrolytic potentials at an electrolytic bath temperature of 160 ° C. while stirring the electrolytic bath at a stirring speed of 0.3 m / sec.
[0043]
In the electrolytic cell 2, rhenium / chromium / aluminum alloy was plated to a thickness of 50 μm on the surface of the material to be plated. A commercially available potentiostat was used to control the potential. The compositions of the electrodeposits obtained in the electrolytic cell 2 are summarized in Tables 1 and 2 below.
[0044]
[Table 1]
Figure 0003708909
[0045]
[Table 2]
Figure 0003708909
[0046]
As shown in Tables 1 and 2, rhenium-chromium-aluminum alloys having various compositions can be plated by changing the chloride concentration and the electrolytic potential.
[0047]
Method for forming outer layer plating film
In the electrolytic bath in the electrolytic cell 1, 0.1 to 5% by weight of NiCl 2 0.1-5 wt% CrCl 3 0.01-0. 1 wt% YCl 3 Was added. Using the electrolytic bath 1, plating was performed at various electrolytic potentials at an electrolytic bath temperature of 160 ° C. while stirring the electrolytic bath at a stirring speed of 0.3 m / sec.
[0048]
In the electrolytic cell 1, a nickel / chromium / yttrium / aluminum alloy was electrodeposited on the surface of the material to be plated to a thickness of 50 μm. A commercially available potentiostat was used to control the potential. The compositions of the electrodeposits obtained in the electrolytic cell 1 are summarized in Table 3, Table 4, and Table 5 below.
[0049]
[Table 3]
Figure 0003708909
[0050]
[Table 4]
Figure 0003708909
[0051]
[Table 5]
Figure 0003708909
[0052]
As shown in Table 3, Table 4, and Table 5, nickel, chromium, yttrium, and aluminum alloys having various compositions can be plated by changing the chloride concentration and the electrolytic potential.
[0053]
【Example】
Hereinafter, the method of the present invention will be described more specifically based on examples.
Example 1
The electrolytic cell 2 and the electrolytic cell 1 were prepared. First, in the electrolytic cell 2, the surface of the nickel base superalloy CMSX-4 is plated with a rhenium-chromium-aluminum alloy to a thickness of 10 μm, and then this CMSX-4 is moved into the electrolytic cell 1, Nickel, chromium, active metal, and aluminum alloy were plated to a thickness of 50 μm. The plating conditions are as follows: the electrolytic cell 2 has a potential of −0.05V, and the electrolytic layer 1 has a potential of −010V.
[0054]
Table 6 shows the concentration of each element measured in the thickness direction of the film after the electroplated metal member was cut perpendicular to the film thickness direction and the cross section was mirror-polished.
[0055]
[Table 6]
Figure 0003708909
[0056]
From the results shown in Table 6, it can be seen that the rhenium / chromium / aluminum alloy film is formed as an inner layer on the substrate side, and the outer layer is formed with a nickel / chromium / yttrium / aluminum alloy film on the molten salt side. .
[0057]
The metal member coated with the produced outer layer / inner layer multilayer coating was heated at 1100 ° C. in an argon atmosphere for 5 hours or 100 hours.
[0058]
After cutting the substrate that had been heat-treated at 1100 ° C. for 5 hours and mirror-polishing the cross section, the structure was observed, and the concentration of each element was measured using an EPMA apparatus. Table 7 shows the concentration of each element.
[0059]
[Table 7]
Figure 0003708909
[0060]
From the results shown in Table 7, by heat treatment at 1100 ° C. for 5 hours, aluminum contained in the inner layer diffused to the base material side, and nickel and chromium diffused from the base material side to the inner layer side.
[0061]
The substrate coated with the film heated at 1100 ° C. for 100 hours was cut and the cross section was mirror polished, the structure was observed, and the concentration of each element was measured using an EPMA apparatus. Table 8 shows the concentration of each element.
[0062]
[Table 8]
Figure 0003708909
[0063]
As shown in Table 8 above, when heat treatment is performed at 1100 ° C. for 100 hours, most of the aluminum in the inner layer diffuses to the substrate side. On the other hand, tungsten, chromium, and cobalt are transferred to the inner layer from the base material side. The nickel observed in Table 7 tends to decrease in concentration. Some of the cobalt also reaches the outer layer.
[0064]
From the results shown in Tables 7 and 8, it can be seen that heat treatment at 1100 ° C. concentrates rhenium, chromium, tungsten, and cobalt atoms in the inner layer. On the other hand, aluminum is eliminated from the inner layer, and it can be seen that tantalum, titanium and nickel contained in the base material cannot penetrate into the inner layer.
[0065]
The amount of oxidation of CMSX-4 heat-treated at 1100 ° C. for 5 hours was measured. The amount of oxidation was measured at 1100 ° C. for 10 hours and 100 hours in the atmosphere, and the amount of increase in oxidation was determined from the weight change before and after. As a comparative example, similar oxidation amounts were determined for untreated CMSX-4 and Hastelloy-X alloys. The results are shown in Table 9.
[0066]
[Table 9]
Figure 0003708909
[0067]
From Table 9, untreated CMSX-4 contains about 12 atomic% of aluminum, so that the initial oxidation amount is relatively low. However, a decrease in mass due to scale peeling is observed over a long period of time. Hastelloy-X produces large amounts of oxidation and scale peeling.
[0068]
Table 10 summarizes the concentration of each element measured on the cross section of the sample oxidized at 1100 ° C. for 100 hours.
[0069]
[Table 10]
Figure 0003708909
[0070]
The concentration of each element in the inner layer and the outer layer shown in Table 10 hardly changes when compared with the results shown in Table 8. That is, although there was a slight difference in the thickness of the alumina film between the argon atmosphere and the atmosphere, no change was observed in the structure and composition of the film.
[0071]
In particular, it should be noted that the outer layer aluminum is maintained at a relatively high value. This is because the inner layer contains almost no aluminum.
[0072]
From the above results, it was confirmed that the Ni-Cr-Re-based σ (sigma) phase of the nickel-base superalloy formed with the coating produced by the method of the present invention acts as an excellent diffusion barrier.
[0073]
Therefore, the concentration of each element in the inner layer and the outer layer shown in Table 10 is such that a small change is observed as compared with the result shown in Table 8. In other words, although there was a slight difference in the thickness of the alumina film between the argon atmosphere and the atmosphere, changes in the internal structure and composition of the film are negligible.
[0074]
Example 2
The electrolytic cell 2 and the electrolytic cell 1 were prepared. First, in the electrolytic cell 2, the surface of the nickel base superalloy CMSX-4 is plated with a rhenium-chromium-aluminum alloy to a thickness of 10 μm, and then this CMSX-4 is moved into the electrolytic cell 1, Nickel, chromium, active metal, and aluminum alloy were plated to a thickness of 50 μm. As for the plating conditions, the electric potential of the electrolytic cell 2 is -0.05 V in Table 1, and the electric potential of the electrolytic layer 1 is -0.05 V in Table 3.
[0075]
Table 11 shows the concentration of each element measured in the film thickness direction after the electroplated metal member was cut perpendicular to the film thickness direction and the cross section was mirror-polished.
[0076]
[Table 11]
Figure 0003708909
[0077]
From the results shown in Table 11, it can be seen that the rhenium / chromium / aluminum alloy film is formed as an inner layer on the substrate side and the outer layer is formed with a nickel / chromium / yttrium / aluminum alloy film on the molten salt side. .
[0078]
The metal member coated with the produced outer layer / inner layer multilayer film was heated at 1000 ° C. in an argon atmosphere for 5 hours or 100 hours.
[0079]
After cutting the base material coated with the film heat-treated at 1000 ° C. for 5 hours, the cross section was mirror-polished, the structure was observed, and the concentration of each element was measured using an EPMA apparatus. Table 12 shows the concentration of each element.
[0080]
[Table 12]
Figure 0003708909
[0081]
From the results shown in Table 12, nickel was transferred from the base material side and the outer layer side to the inner layer by heat treatment at 1000 ° C. for 5 hours, and part of the aluminum in the outer layer was transferred to the inner layer.
[0082]
After the base material coated with the film heated at 1000 ° C. for 100 hours was cut and the cross section was mirror-polished, the structure was observed and the concentration of each element was measured using an EPMA apparatus. Table 13 shows the concentration of each element.
[0083]
[Table 13]
Figure 0003708909
[0084]
As shown in Table 13, when heat treatment is performed at 1000 ° C. for 100 hours, tungsten and cobalt migrate from the base material side to the inner layer, and conversely, the concentrations of aluminum and nickel in the inner layer decrease.
[0085]
The amount of oxidation of CMSX-4 heat-treated at 1000 ° C. for 5 hours was measured. The measurement of the amount of oxidation was carried out at 1000 ° C. for 10 hours and 100 hours in the atmosphere, and the amount of oxidation increase was determined from the weight change before and after. As a comparative example, similar oxidation amounts were determined for untreated CMSX-4 and Hastelloy-X alloys. The results are shown in Table 14.
[0086]
[Table 14]
Figure 0003708909
[0087]
From Table 14, the amount of oxidation of CMSX-4 coated with the film is very small, and the increase due to the oxidation time is small. Since the untreated CMSX-4 contains about 12 atomic% of aluminum, the initial oxidation amount is relatively low. However, a decrease in mass due to scale peeling is observed over a long period of time. Hastelloy-X produces large amounts of oxidation and scale peeling.
[0088]
Table 15 summarizes the concentration of each element measured on the cross section of the sample oxidized at 1000 ° C. for 100 hours.
[0089]
[Table 15]
Figure 0003708909
[0090]
The concentration of each element in the inner layer and the outer layer shown in Table 15 hardly changes when compared with the results shown in Table 8. That is, although there was a slight difference in the thickness of the alumina film between the argon atmosphere and the atmosphere, no change was observed in the structure and composition of the film.
[0091]
In particular, it should be noted that the outer layer aluminum is maintained at a relatively high value. This is because the inner layer contains almost no aluminum.
[0092]
From the above results, it was confirmed that the Ni-Cr-Re-based α (alpha) phase of the nickel-base superalloy with the coating produced by the method of the present invention acts as an excellent diffusion barrier.

Claims (4)

耐熱合金基体表面に、レニウムを0.01〜5.0重量%、クロムを0.01〜5.0重量%含むアルミニウム溶融塩メッキ浴を用いて、15.1〜60.0原子%のレニウム、20.0〜60.0原子%のクロム、残部アルミニウムを含む合金を電気めっきし、
続いて、ニッケルを0.01〜5.0重量%、クロムを0.01〜5.0重量%、活性金属を0.001〜1.0重量%含むアルミニウム溶融塩メッキ浴を用いて、
25.0〜75.0原子%のニッケル、5.0〜30.0原子%のクロム、0.01〜1.0原子%の活性金属、残部アルミニウムを含む合金を電気めっきし、
この複層皮膜を被着してなる基材を高温で熱処理して、40.0〜70.0原子%のレニウム、25.0〜55.0原子%のクロム、0.1〜30.0原子%のニッケル、5原子%以下のアルミニウムを含む合金のシグマ相が連続層を形成してなる内層と、
29.0〜75.0原子%のニッケル、5.0〜25.0原子%のクロム、15.0〜60.0原子%のアルミニウム、1.0原子%以下の活性金属、5原子%以下のレニウムを含む合金相が連続層を形成してなる外層の複層構造を有する皮膜を形成することを特徴とする耐高温酸化性耐熱合金部材の製造方法。
Using an aluminum molten salt plating bath containing 0.01 to 5.0 wt% rhenium and 0.01 to 5.0 wt% chromium on the surface of the heat-resistant alloy substrate, 15.1 to 60.0 atomic% rhenium is used. Electroplating an alloy containing 20.0-60.0 atomic percent chromium and the balance aluminum;
Subsequently, using an aluminum molten salt plating bath containing 0.01 to 5.0% by weight of nickel, 0.01 to 5.0% by weight of chromium, and 0.001 to 1.0% by weight of active metal,
Electroplating an alloy containing 25.0-75.0 atomic percent nickel, 5.0-30.0 atomic percent chromium, 0.01-1.0 atomic percent active metal, balance aluminum,
The base material formed by applying this multilayer coating is heat-treated at a high temperature to obtain 40.0-70.0 atomic% rhenium, 25.0-55.0 atomic% chromium, 0.1-30.0. An inner layer in which a sigma phase of an alloy containing atomic% nickel, 5 atomic% or less aluminum forms a continuous layer;
29.0-75.0 atomic percent nickel, 5.0-25.0 atomic percent chromium, 15.0-60.0 atomic percent aluminum, 1.0 atomic percent or less active metal, 5 atomic percent or less A method for producing a high-temperature oxidation-resistant heat-resistant alloy member, wherein a film having a multilayer structure of an outer layer formed by forming a continuous layer of an alloy phase containing rhenium is formed.
耐熱合金基体表面に、レニウムを0.01〜5.0重量%、クロムを0.01〜5.0重量%含むアルミニウム溶融塩メッキ浴を用いて、
0.1〜30.0原子%のレニウム、20.0〜60.0原子%のクロム、残部アルミニウムを含む合金を電気めっきし、
続いて、ニッケルを0.01〜5.0重量%、クロムを0.01〜5.0重量%、活性金属を0.001〜1.0重量%含むアルミニウム溶融塩メッキ浴を用いて、
25.0〜75.0原子%のニッケル、5.0〜30.0原子%のクロム、0.01〜1.0原子%の活性金属、残部アルミニウムを含む合金を電気めっきし、
この複層皮膜を被着してなる基材を高温で熱処理して、0.1〜30.0原子%のレニウム、60.1〜99.0原子%のクロム、0.1〜30.0原子%のニッケル、5原子%以下のアルミニウムを含む合金のアルファ相が連続層を形成してなる内層と、
29.0〜75.0原子%のニッケル、5.0〜25.0原子%のクロム、15.0〜60.0原子%のアルミニウム、1原子%以下の活性金属、5原子%以下のレニウムを含む合金相が連続層を形成してなる外層の複層構造を有する皮膜を形成することを特徴とする耐高温酸化性耐熱合金部材の製造方法。
Using an aluminum molten salt plating bath containing 0.01 to 5.0% by weight of rhenium and 0.01 to 5.0% by weight of chromium on the surface of the heat-resistant alloy substrate,
Electroplating an alloy containing 0.1 to 30.0 atomic percent rhenium, 20.0 to 60.0 atomic percent chromium, the balance aluminum,
Subsequently, using an aluminum molten salt plating bath containing 0.01 to 5.0% by weight of nickel, 0.01 to 5.0% by weight of chromium, and 0.001 to 1.0% by weight of active metal,
Electroplating an alloy containing 25.0-75.0 atomic percent nickel, 5.0-30.0 atomic percent chromium, 0.01-1.0 atomic percent active metal, balance aluminum,
The substrate formed by applying this multilayer coating is heat-treated at a high temperature to obtain 0.1 to 30.0 atomic% rhenium, 60.1 to 99.0 atomic% chromium, 0.1 to 30.0. An inner layer in which an alpha phase of an alloy containing atomic percent nickel, 5 atomic percent or less aluminum forms a continuous layer;
29.0-75.0 atomic percent nickel, 5.0-25.0 atomic percent chromium, 15.0-60.0 atomic percent aluminum, 1 atomic percent or less active metal, 5 atomic percent or less rhenium A method for producing a high-temperature oxidation-resistant heat-resistant alloy member, comprising forming a film having an outer multilayered structure in which an alloy phase containing a continuous layer forms a continuous layer.
前記活性金属が、イットリウム、セリウム、ランタン、ジルコニウムからなる群から選ばれた少なくとも1種であることを特徴とする請求項1又は2に記載の耐高温酸化性耐熱合金部材の製造方法。The method for producing a high temperature oxidation resistant heat resistant alloy member according to claim 1 or 2, wherein the active metal is at least one selected from the group consisting of yttrium, cerium, lanthanum, and zirconium. 熱処理を真空、不活性ガス,窒素ガス、又は大気中で、600〜1300℃の温度範囲で行うことを特徴とする請求項1ないし3のいずれかに記載の耐高温酸化性耐熱合金部材の製造方法。The high-temperature oxidation-resistant heat-resistant alloy member according to any one of claims 1 to 3, wherein the heat treatment is performed in a temperature range of 600 to 1300 ° C in vacuum, inert gas, nitrogen gas, or air. Method.
JP2002191164A 2002-06-28 2002-06-28 Method for producing a high-temperature oxidation-resistant heat-resistant alloy member formed by depositing a rhenium-containing alloy film Expired - Fee Related JP3708909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191164A JP3708909B2 (en) 2002-06-28 2002-06-28 Method for producing a high-temperature oxidation-resistant heat-resistant alloy member formed by depositing a rhenium-containing alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191164A JP3708909B2 (en) 2002-06-28 2002-06-28 Method for producing a high-temperature oxidation-resistant heat-resistant alloy member formed by depositing a rhenium-containing alloy film

Publications (2)

Publication Number Publication Date
JP2004035911A JP2004035911A (en) 2004-02-05
JP3708909B2 true JP3708909B2 (en) 2005-10-19

Family

ID=31700864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191164A Expired - Fee Related JP3708909B2 (en) 2002-06-28 2002-06-28 Method for producing a high-temperature oxidation-resistant heat-resistant alloy member formed by depositing a rhenium-containing alloy film

Country Status (1)

Country Link
JP (1) JP3708909B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059971A1 (en) 2006-11-16 2008-05-22 National University Corporation Hokkaido University Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film
WO2008078667A1 (en) * 2006-12-22 2008-07-03 Toshio Narita Alloy coating film, method for production of alloy coating film, and heat-resistant metal member

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60231084D1 (en) * 2002-12-06 2009-03-19 Alstom Technology Ltd Method for the selective deposition of an MCrAlY coating
JP2008195990A (en) * 2007-02-09 2008-08-28 Dipsol Chem Co Ltd Electric aluminum plating bath and plating method using the same
JP5080097B2 (en) * 2007-02-09 2012-11-21 ディップソール株式会社 Molten salt electroplating bath and plating method using the same
US8778164B2 (en) 2010-12-16 2014-07-15 Honeywell International Inc. Methods for producing a high temperature oxidation resistant coating on superalloy substrates and the coated superalloy substrates thereby produced
JP5212533B2 (en) * 2011-11-15 2013-06-19 新日鐵住金株式会社 Seamless austenitic heat-resistant alloy tube
US9771661B2 (en) 2012-02-06 2017-09-26 Honeywell International Inc. Methods for producing a high temperature oxidation resistant MCrAlX coating on superalloy substrates
JP5857794B2 (en) * 2012-02-27 2016-02-10 株式会社Ihi Metal material with diffusion layer and method for producing the same
US20160024637A1 (en) 2013-03-07 2016-01-28 Hitachi, Ltd. Method for Forming Aluminide Coating Film on Base Material
US10087540B2 (en) 2015-02-17 2018-10-02 Honeywell International Inc. Surface modifiers for ionic liquid aluminum electroplating solutions, processes for electroplating aluminum therefrom, and methods for producing an aluminum coating using the same
WO2017011761A1 (en) * 2015-07-16 2017-01-19 Battelle Energy Alliance, Llc Methods and systems for aluminum electroplating
WO2022208861A1 (en) * 2021-04-02 2022-10-06 株式会社ディ・ビー・シー・システム研究所 Heat-resistant alloy member and production method therefor, and high temperature device and production method therefor
US11746434B2 (en) 2021-07-21 2023-09-05 Battelle Energy Alliance, Llc Methods of forming a metal coated article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059971A1 (en) 2006-11-16 2008-05-22 National University Corporation Hokkaido University Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film
WO2008078667A1 (en) * 2006-12-22 2008-07-03 Toshio Narita Alloy coating film, method for production of alloy coating film, and heat-resistant metal member
JP2008156697A (en) * 2006-12-22 2008-07-10 Toshio Narita Alloy film, method for manufacturing alloy film, and heat resistant metallic member
US8173269B2 (en) 2006-12-22 2012-05-08 Dbc System Co., Ltd. Alloy coating film, method for production of alloy coating film, and heat-resistant metal member

Also Published As

Publication number Publication date
JP2004035911A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US3961098A (en) Coated article and method and material of coating
KR890001033B1 (en) Improved coating compositions and its improved method for the protection of superalloys at elevated temperatures
JP3708909B2 (en) Method for producing a high-temperature oxidation-resistant heat-resistant alloy member formed by depositing a rhenium-containing alloy film
RU2355891C2 (en) Gas turbine part equipped with protective coating, and method of applying protective coating to metal base made from superalloy
JP3996978B2 (en) Platinum aluminized single crystal superalloy
US20060046091A1 (en) Chromium and active elements modified platinum aluminide coatings
WO2006028482A1 (en) Platinum aluminide coating and method thereof
JPS63190158A (en) Method for forming aluminite coating
JPH09296702A (en) Heat insulating coated product and coating method
JPH10176283A (en) Manufacture of protective coating having high effect against corrosion of super alloy metal at high temperature, protective coating obtained by the same method and parts protected by the same coating
JP2003253472A (en) Ni-ALLOY HEAT-RESISTANT MATERIAL WITH EXCELLENT HIGH- TEMPERATURE OXIDATION RESISTANCE
US20060141283A1 (en) Low cost inovative diffused MCrAIY coatings
US3957454A (en) Coated article
US7138189B2 (en) Heat-resistant Ti alloy material excellent in resistance to corrosion at high temperature and to oxidation
US9267198B2 (en) Forming reactive element modified aluminide coatings with low reactive element content using vapor phase techniques
JP3765292B2 (en) Method for producing high temperature oxidation resistant heat resistant alloy member
Allahyarzadeh et al. Electrodeposition on superalloy substrates: a review
US3953193A (en) Coating powder mixture
EP1123987A1 (en) Repairable diffusion aluminide coatings
US20160168661A1 (en) Thermal barrier-coated ni alloy component and manufacturing method thereof
JP3857690B2 (en) Re alloy film for diffusion barrier
JP3910588B2 (en) ReCr alloy coating for diffusion barrier
JP3857689B2 (en) ReCrNi alloy coating for diffusion barrier
JP3360058B2 (en) Heat-resistant metal member having a coating excellent in high-temperature oxidation resistance and method for producing the same
JP2003253423A (en) Heat resistant alloy material with excellent high- temperature corrosion resistance, and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees