JP2005183945A - Photoelectric converter and its manufacturing method - Google Patents

Photoelectric converter and its manufacturing method Download PDF

Info

Publication number
JP2005183945A
JP2005183945A JP2004340350A JP2004340350A JP2005183945A JP 2005183945 A JP2005183945 A JP 2005183945A JP 2004340350 A JP2004340350 A JP 2004340350A JP 2004340350 A JP2004340350 A JP 2004340350A JP 2005183945 A JP2005183945 A JP 2005183945A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
granular
translucent
cover body
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004340350A
Other languages
Japanese (ja)
Other versions
JP4780951B2 (en
Inventor
Takeshi Kyoda
豪 京田
Hirofumi Senda
浩文 千田
Kenichi Okada
健一 岡田
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004340350A priority Critical patent/JP4780951B2/en
Publication of JP2005183945A publication Critical patent/JP2005183945A/en
Application granted granted Critical
Publication of JP4780951B2 publication Critical patent/JP4780951B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric converter having higher photoelectric conversion characteristics by drawing the light energy incident on a gap between granular photoelectric conversion bodies into the granular photoelectric conversion body adjacent to the gap while maintaining reliability. <P>SOLUTION: In the photoelectric converter, a number of granular photoelectric conversion bodies for performing photoelectric conversion are arranged on one main surface of a substrate 1 as one electrode, an insulator layer 3 is provided at the lower part between a number of the granular photoelectric conversion bodies, and the other electrode 5 and a translucent cover body 7 are formed along the external surface of the granular photoelectric converter bodies and the insulator layer 3 on the upper part of a number of the granular photoelectric converter bodies and the insulator layer 3. Consequently, the photoelectric converter having high reliability and conversion efficiency can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は光電変換装置およびその製造方法に関し、特に、太陽光発電などに使用される粒状結晶半導体を用いた光電変換装置に関する。   The present invention relates to a photoelectric conversion device and a method for manufacturing the same, and more particularly to a photoelectric conversion device using a granular crystal semiconductor used for solar power generation and the like.

従来の粒状結晶半導体を用いた光電変換装置を図6に示す。この光電変換装置は、第1のアルミニウム箔23に開口を形成し、その開口にp型中心核21の上にn型外郭22を持つシリコン球を挿入し、このシリコン球の裏側のn型外郭22を除去し、第1のアルミニウム箔23及びn型外郭22を除去したシリコン球表面に絶縁体層24を形成し、シリコン球の裏側頂上部の絶縁体層を除去した後に、シリコン球と第2のアルミニウム箔26とを接合したものであり、さらに、n型外郭22と第1のアルミニウム箔23との上に球状レンズ27が配設されている。このようにシリコン球のような粒状結晶半導体を用いた場合、粒状結晶半導体間に隙間が生じてしまい、結果として光電変換ロスとなる。そこで、粒状結晶半導体間の隙間に入射した光エネルギーを隙間に隣接する粒状結晶半導体に引き込むために、粒状結晶半導体上に球状レンズ27を形成する光電変換装置が開示されている(例えば、特許文献1を参照)。
米国特許第5419782号明細書
A conventional photoelectric conversion device using a granular crystal semiconductor is shown in FIG. In this photoelectric conversion device, an opening is formed in the first aluminum foil 23, a silicon sphere having an n-type outer shell 22 is inserted on the p-type central core 21, and an n-type outer shell on the back side of the silicon sphere is inserted. 22 is removed, and an insulator layer 24 is formed on the surface of the silicon sphere from which the first aluminum foil 23 and the n-type outer shell 22 have been removed, and after removing the insulator layer on the upper back side of the silicon sphere, Two aluminum foils 26 are joined, and a spherical lens 27 is disposed on the n-type outer shell 22 and the first aluminum foil 23. Thus, when a granular crystal semiconductor such as a silicon sphere is used, a gap is generated between the granular crystal semiconductors, resulting in a photoelectric conversion loss. Thus, a photoelectric conversion device is disclosed in which a spherical lens 27 is formed on the granular crystal semiconductor in order to draw light energy incident on the gap between the granular crystal semiconductors into the granular crystal semiconductor adjacent to the gap (for example, Patent Documents). 1).
US Patent 5419782

しかしながら、図6に示すような光電変換装置においては、第1のアルミニウム箔23に孔を開けてシリコン球を挿入することから、第1のアルミニウム箔23の箔形状を維持するために、シリコン球間の間隔を開けざるを得なく、光電変換装置の面積に対する全シリコン球の投影面積比が75%程度となってしまう。間隔が広くなったことによるシリコン球間の隙間(25%程度)に入射した光エネルギーを隙間に隣接するシリコン球に引き込むために、球状レンズ同士の接触している形状を急激に変化させる必要があった。しかしながら、電極である第1のアルミニウム箔23の形状に沿わず、球状レンズ同士の接触している形状を急激に変化させる形状は、第1のアルミニウム箔23の保護としては信頼性的に不十分であり、場合によっては第1のアルミニウム箔23の表面が腐食して第1のアルミニウム箔23からの光エネルギーの反射を得られなくなって光電変換効率を低下させるという問題があった。   However, in the photoelectric conversion device as shown in FIG. 6, since the silicon sphere is inserted by making a hole in the first aluminum foil 23, the silicon sphere is used to maintain the foil shape of the first aluminum foil 23. Therefore, the projected area ratio of all silicon spheres to the area of the photoelectric conversion device is about 75%. In order to draw the light energy incident on the gap between the silicon spheres (about 25%) due to the wide spacing to the silicon sphere adjacent to the gap, it is necessary to change the shape of contact between the spherical lenses abruptly. there were. However, a shape that does not conform to the shape of the first aluminum foil 23 that is an electrode and that suddenly changes the shape of contact between the spherical lenses is insufficiently reliable as protection for the first aluminum foil 23. In some cases, the surface of the first aluminum foil 23 is corroded, and reflection of light energy from the first aluminum foil 23 cannot be obtained, resulting in a decrease in photoelectric conversion efficiency.

本発明は上記従来技術における問題点に鑑みてなされたものであり、その目的は、信頼性を保ちながら、粒状結晶半導体間の隙間に入射した光エネルギーを隙間に隣接する粒状結晶半導体に引き込むことによって、より光電変換特性が高い光電変換装置を提供することにある。   The present invention has been made in view of the above-mentioned problems in the prior art, and its purpose is to draw light energy incident on the gap between the granular crystal semiconductors into the granular crystal semiconductor adjacent to the gap while maintaining reliability. Therefore, it is providing the photoelectric conversion apparatus with a higher photoelectric conversion characteristic.

上記目的を達成するために、本発明の光電変換装置は、1)一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体間の下部に絶縁体層を設け、前記多数個の粒状光電変換体の上部および前記絶縁体層の上に、これら粒状光電変換体および前記絶縁体層の表面に沿って他方の電極を設け、該他方の電極の上にその表面に沿って透光性カバー体を設けてなることを特徴とする。ここで特に、前記基板上に配設される前記粒状光電変換体の前記基板の面積に対する投影面積比が80%以上であるとよい。   In order to achieve the above object, the photoelectric conversion device of the present invention is provided with 1) a large number of granular photoelectric conversion bodies that perform photoelectric conversion on one main surface of a substrate that serves as one electrode. An insulating layer is provided between the granular photoelectric converters, and above the granular photoelectric converters and on the insulating layer, along the surfaces of the granular photoelectric converters and the insulating layer. The other electrode is provided, and a translucent cover body is provided on the other electrode along the surface thereof. In particular, the projected area ratio of the granular photoelectric conversion body disposed on the substrate to the area of the substrate is preferably 80% or more.

また、2)上記1)において、前記透光性カバー体が樹脂フィルムであることを特徴とする。   2) In the above 1), the translucent cover body is a resin film.

また、3)上記1)または2)において、透光性保護板を前記透光性カバー体の前記粒状光電変換体の頂部に位置する部位に接するように配設したことを特徴とする。   3) In the above 1) or 2), the translucent protective plate is disposed so as to be in contact with a portion of the translucent cover body located at the top of the granular photoelectric conversion body.

また、4)上記3)において、前記透光性カバー体と前記透光性保護板との間に、前記透光性カバー体より屈折率の低い透光性の充填材を充填したことを特徴とする。   4) In the above 3), a translucent filler having a refractive index lower than that of the translucent cover body is filled between the translucent cover body and the translucent protective plate. And

また、5)上記1)において、前記透光性カバー体が熱可塑性材料から成り、前記透光性カバー体上に透光性樹脂フィルム、熱可塑性材料から成る透光性緩衝層および透光性保護板が順次積層されていることを特徴とする。   5) In the above 1), the translucent cover body is made of a thermoplastic material, and the translucent resin film, the translucent buffer layer made of the thermoplastic material and the translucent material are formed on the translucent cover body. The protective plates are sequentially stacked.

また、6)上記5)において、前記透光性樹脂フィルムは、前記透光性カバー体と接する側の面が前記透光性カバー体と同じ熱可塑性材料で被覆されていることを特徴とする。   6) In the above 5), the surface of the translucent resin film in contact with the translucent cover body is covered with the same thermoplastic material as that of the translucent cover body. .

本発明の光電変換装置の製造方法は、7)一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体間の下部に絶縁体層を設け、前記多数個の粒状光電変換体の上部および前記絶縁体層の上に、これら粒状光電変換体および前記絶縁体層の表面に沿って他方の電極を設ける工程と、前記他方の電極の上に透光性の樹脂フィルムを配設し、該樹脂フィルムを軟化点以上の温度で加熱することにより前記他方の電極の表面に沿って変形させる工程と、を含むことを特徴とする。   The manufacturing method of the photoelectric conversion device of the present invention is as follows: 7) A large number of granular photoelectric conversion bodies that perform photoelectric conversion are disposed on one main surface of a substrate that is one electrode, and these multiple granular photoelectric conversions An insulator layer is provided at the lower part between the bodies, and the other electrode is provided on the upper part of the plurality of granular photoelectric converters and on the insulator layer along the surfaces of the granular photoelectric converters and the insulator layer. Disposing a translucent resin film on the other electrode, and deforming the resin film along the surface of the other electrode by heating the resin film at a temperature equal to or higher than a softening point. It is characterized by including.

また、8)一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体間の下部に絶縁体層を設け、前記多数個の粒状光電変換体の上部および前記絶縁体層の上に、これら粒状光電変換体および前記絶縁体層の表面に沿って他方の電極を設ける工程と、前記他方の電極の上にその表面に沿って透光性の樹脂フィルムを設ける工程と、該樹脂フィルムの上に該樹脂フィルムより屈折率の低い透光性の充填材を配し、前記樹脂フィルムの前記粒状光電変換体の頂部に位置する部位に接するように透光性保護板を配設する工程と、を含むことを特徴とする光電変換装置の製造方法としてもよい。   8) A large number of granular photoelectric conversion bodies that perform photoelectric conversion are disposed on one main surface of the substrate that is to be one of the electrodes, and an insulator layer is provided below the multiple granular photoelectric conversion bodies. A step of providing the other electrode along the surfaces of the granular photoelectric converter and the insulator layer on top of the multiple granular photoelectric converters and the insulator layer, and on the other electrode. A step of providing a translucent resin film along the surface thereof, and a translucent filler having a refractive index lower than that of the resin film on the resin film, and the granular photoelectric conversion body of the resin film And a step of disposing a translucent protective plate so as to be in contact with a portion located at the top of the substrate.

上記1)の光電変換装置および7)の製造方法によれば、前記多数個の粒状光電変換体の上部および前記絶縁体層の上に、これら粒状光電変換体および前記絶縁体層の表面に沿って他方の電極を設け、該他方の電極の上にその表面に沿って透光性カバー体を設けてなる。また、一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体間の下部に絶縁体層を設け、前記多数個の粒状光電変換体の上部および前記絶縁体層の上に、これら粒状光電変換体および前記絶縁体層の表面に沿って他方の電極を設ける工程と、前記他方の電極の上に透光性の樹脂フィルムを配設し、該樹脂フィルムを軟化点以上の温度で加熱することにより前記他方の電極の表面に沿って変形させる工程と、を含む。これにより、他方の電極の上に透光性カバー体を比較的均一に覆うことによって、他方の電極の露出を無くし、湿度等の直接的な攻撃を防止することができ、信頼性を保ちながら、粒状光電変換体間の隙間に入射した光エネルギーを隙間に隣接する粒状結晶半導体に効率よく引き込むことができ、これにより光電変換特性が高く信頼性の高い光電変換装置を提供することが可能となる。   According to the photoelectric conversion device of 1) and the manufacturing method of 7), along the surfaces of the granular photoelectric converters and the insulator layer, on the top of the multiple granular photoelectric converters and on the insulator layer. The other electrode is provided, and a translucent cover body is provided on the other electrode along the surface thereof. Also, on one main surface of the substrate to be one of the electrodes, a large number of granular photoelectric conversion bodies that perform photoelectric conversion are disposed, and an insulating layer is provided below these multiple granular photoelectric conversion bodies, A step of providing the other electrode along the surfaces of the granular photoelectric converter and the insulator layer on top of the plurality of granular photoelectric converters and the insulator layer; Disposing a light-sensitive resin film and deforming the resin film along the surface of the other electrode by heating the resin film at a temperature equal to or higher than the softening point. Thus, by covering the translucent cover body on the other electrode relatively uniformly, the other electrode is not exposed, and direct attacks such as humidity can be prevented, while maintaining reliability. The light energy incident on the gap between the granular photoelectric converters can be efficiently drawn into the granular crystal semiconductor adjacent to the gap, thereby providing a photoelectric conversion device with high photoelectric conversion characteristics and high reliability. Become.

また、上記2)の光電変換装置によれば、前記透光性カバー体が樹脂フィルムであるので、上記1)のような優れた光電変換装置の作製を簡便かつ容易に行なうことができる。   Moreover, according to the photoelectric conversion apparatus of said 2), since the said translucent cover body is a resin film, preparation of the outstanding photoelectric conversion apparatus like said 1) can be performed simply and easily.

また、上記3)の光電変換装置および8)の製造方法によれば、前記透光性カバー体の前記粒状光電変換体の頂部に位置する部位に、透光性保護板が接するように配設されている。また、一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体間の下部に絶縁体層を設け、前記多数個の粒状光電変換体の上部および前記絶縁体層の上に、これら粒状光電変換体および前記絶縁体層の表面に沿って他方の電極を設ける工程と、前記他方の電極の上にその表面に沿って透光性の樹脂フィルムを設ける工程と、該樹脂フィルムの上に該樹脂フィルムより屈折率の低い透光性の充填材を配し、前記樹脂フィルムの前記粒状光電変換体の頂部に位置する部位に接するように透光性保護板を配設する工程と、を含む。これにより、単に透光性カバー体上に透光性保護板を設けると、透光性カバー体と透光性保護板との間に空気層が挟まれることによって、入射してきた光エネルギーが透光性保護板全面と空気層との界面で反射されてエネルギーロスが発生するが、透光性保護板の裏面と粒状光電変換体の頂部に位置する透光性カバー体の一部を密着させることによって、光エネルギーの反射する界面を減らし、透光性保護板を設けることによるエネルギーロスを軽減させることが可能となる。   Further, according to the photoelectric conversion device of 3) and the manufacturing method of 8), the translucent protective plate is disposed in contact with the portion of the translucent cover body located at the top of the granular photoelectric conversion body. Has been. Also, on one main surface of the substrate to be one of the electrodes, a large number of granular photoelectric conversion bodies that perform photoelectric conversion are disposed, and an insulating layer is provided below these multiple granular photoelectric conversion bodies, A step of providing the other electrode along the surfaces of the granular photoelectric conversion body and the insulator layer on top of the plurality of granular photoelectric conversion bodies and on the insulator layer; A step of providing a translucent resin film along the surface, and a translucent filler having a lower refractive index than the resin film is disposed on the resin film, and the top of the granular photoelectric conversion body of the resin film And a step of disposing a translucent protective plate so as to be in contact with a portion located at the position. As a result, when a translucent protective plate is simply provided on the translucent cover body, the incident light energy is transmitted by the air layer being sandwiched between the translucent cover body and the translucent protective plate. Energy loss occurs due to reflection at the interface between the entire surface of the light protection plate and the air layer, but the back surface of the light transmission protection plate and a part of the light transmission cover body located at the top of the granular photoelectric conversion body are closely attached. Thus, it is possible to reduce the energy loss due to the provision of the translucent protective plate by reducing the interface where the light energy is reflected.

また、上記4)の光電変換装置によれば、前記透光性カバー体と透光性保護板との間に、前記透光性カバー体より屈折率の低い透光性の充填材が設けられているので、入射してきた光エネルギーが充填材を通って透光性カバー体に入る時に、光エネルギーが粒状光電変換体側に屈折して粒状光電変換体に取り込むことが可能となり、変換効率の優れた光電変換装置を提供できる。   Further, according to the photoelectric conversion device of 4), a translucent filler having a lower refractive index than that of the translucent cover body is provided between the translucent cover body and the translucent protective plate. Therefore, when the incident light energy passes through the filler and enters the translucent cover body, the light energy can be refracted to the granular photoelectric converter side and taken into the granular photoelectric converter, and the conversion efficiency is excellent. A photoelectric conversion device can be provided.

また、上記5),6)の光電変換装置によれば、粒状光電変換体の粒径のばらつきや透光性保護板の微小なうねりを吸収しながら信頼性を保ち、粒状光電変換体間の隙間に入射した光を隙間を介して隣接する粒状光電変換体に引き込むことによって、より光電変換特性が高い光電変換装置を提供することが可能となる。   Moreover, according to the photoelectric conversion device of said 5), 6), reliability is maintained, absorbing the dispersion | variation in the particle size of a granular photoelectric conversion body, and the fine waviness of a translucent protective board, and between granular photoelectric conversion bodies. By drawing the light incident on the gap into the adjacent granular photoelectric converter through the gap, it is possible to provide a photoelectric conversion device with higher photoelectric conversion characteristics.

以下、本発明の実施形態を模式的に示した図面に基づいて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings schematically showing the embodiments.

図1は、本発明の光電変換装置の一実施形態を示す断面図である。図1において、1は基板、2は粒状光電変換体を構成する粒状結晶半導体、3は絶縁物質からなる絶縁体層、4は粒状光電変換体を構成する半導体層、5は透明導電層、6は基板の例えばアルミニウムと粒状結晶半導体のシリコンとの合金層、7は透光性カバー体である。なお、基板1は絶縁体の上にアルミニウムから成る電極層を設けたものとしてもよい。   FIG. 1 is a cross-sectional view showing an embodiment of the photoelectric conversion device of the present invention. In FIG. 1, 1 is a substrate, 2 is a granular crystal semiconductor constituting a granular photoelectric converter, 3 is an insulator layer made of an insulating material, 4 is a semiconductor layer constituting a granular photoelectric converter, 5 is a transparent conductive layer, 6 Is an alloy layer of, for example, aluminum of the substrate and silicon of the granular crystal semiconductor, and 7 is a translucent cover. In addition, the board | substrate 1 is good also as what provided the electrode layer which consists of aluminum on the insulator.

基板1はアルミニウムの融点以上の融点を有する金属、セラミックスであればよく、例えばアルミニウム、アルミニウム合金、鉄、ステンレス、ニッケル合金、アルミナ等が用いられる。基板1の材料がアルミニウム以外の場合、その材料とアルミニウムから成る電極層(不図示)との構成とする。   The substrate 1 may be any metal or ceramic having a melting point equal to or higher than that of aluminum. For example, aluminum, aluminum alloy, iron, stainless steel, nickel alloy, alumina, or the like is used. When the material of the board | substrate 1 is other than aluminum, it is set as the structure of the material and the electrode layer (not shown) which consists of aluminum.

まず、第一導電型の粒状結晶半導体2を基板1上に多数配設する。この粒状結晶半導体2は、Siにp型を呈するためのB、Al、Ga等、またはn型を呈するためのP、As等の元素が微量含まれているものである。粒状結晶半導体2の形状としては多面体状や丸みを帯びた角部を有するもの、曲面を有するもの等であり、その粒径分布としては均一、不均一を問わないが、均一の場合は粒径を揃えるための工程が必要になるため、より安価にするためには不均一の方が有利である。さらに凸曲面を持つことによって入射光の光線角度の依存性も小さくできる。   First, a large number of first-conductivity-type granular crystal semiconductors 2 are arranged on a substrate 1. The granular crystal semiconductor 2 contains a trace amount of elements such as B, Al, Ga or the like for exhibiting p-type in Si, or P or As for exhibiting n-type. The shape of the granular crystal semiconductor 2 may be a polyhedron, a rounded corner, a curved surface, etc., and the particle size distribution may be uniform or non-uniform. Therefore, a non-uniformity is more advantageous in order to reduce the cost. Furthermore, by having a convex curved surface, the dependency of the incident light on the ray angle can be reduced.

粒状結晶半導体2の粒径は、0.2〜0.8mmがよい。なぜなら、0.8mmを超えると切削部も含めた従来の結晶板型の光電変換装置のシリコン使用量と変わらなくなり、粒状結晶半導体を用いるメリットがなくなるからであり、また、0.2mmよりも小さいと基板1へのアッセンブルがしにくくなるという別の問題が発生するからである。したがって、粒状結晶半導体2の粒径は、シリコン使用量との関係から0.2〜0.6mmがより好適である。   The particle size of the granular crystal semiconductor 2 is preferably 0.2 to 0.8 mm. This is because if the thickness exceeds 0.8 mm, the amount of silicon used in the conventional crystal plate type photoelectric conversion device including the cutting portion will not be changed, and the merit of using the granular crystal semiconductor will be lost. This is because another problem that it is difficult to assemble to 1 occurs. Therefore, the particle size of the granular crystal semiconductor 2 is more preferably 0.2 to 0.6 mm in relation to the amount of silicon used.

基板1上に粒状結晶半導体2を多数配設した後、一定の加重をかけて基板1のアルミニウムと粒状結晶半導体2のシリコンとの共晶温度577℃以上に加熱することによって、基板1と粒状結晶半導体2の合金層6を介して基板1と粒状結晶半導体2を接合させる。   After arranging a large number of granular crystal semiconductors 2 on the substrate 1, the substrate 1 and the granular material are heated by heating to a eutectic temperature of 577 ° C. or higher between the aluminum of the substrate 1 and the silicon of the granular crystal semiconductor 2 with a certain weight. The substrate 1 and the granular crystal semiconductor 2 are bonded via the alloy layer 6 of the crystal semiconductor 2.

絶縁体層3は、正極と負極の分離を行うための絶縁材料からなり、例えばSiO、B、Al、CaO、MgO、P、LiO、SnO、ZnO、BaO、TiO等を任意な成分とする主材料の低温焼成用ガラス材料単体、上記材料の1種または複数種から成るフィラーを複合したガラス組成物、或いはシリコーン樹脂等の有機系の絶縁物質などを用いる。 The insulator layer 3 is made of an insulating material for separating the positive electrode and the negative electrode. For example, SiO 2 , B 2 O 3 , Al 2 O 3 , CaO, MgO, P 2 O 5 , Li 2 O, SnO, ZnO , BaO, TiO 2 or the like as a main component, a low-temperature firing glass material alone, a glass composition in which a filler composed of one or more of the above materials is combined, or an organic insulating substance such as a silicone resin Etc. are used.

上記絶縁材料を粒状結晶半導体2の上から塗布して、アルミニウムとシリコンの共晶温度である577℃以下の温度で加熱することによって充填して絶縁体層3とする。加熱温度が577℃を超えると、アルミニウムとシリコンとの合金層15が溶融し始めるために、基板1と粒状結晶半導体2との接合が不安定となり、場合によっては粒状結晶半導体2が基板1から離脱して発電電流を取り出せなくなる。絶縁体層3を形成した後、粒状結晶半導体2の表面を洗浄するために、弗酸を含む洗浄液で洗浄する。   The insulating material is applied on the granular crystal semiconductor 2 and filled by heating at a temperature not higher than 577 ° C., which is the eutectic temperature of aluminum and silicon, to form the insulating layer 3. When the heating temperature exceeds 577 ° C., the alloy layer 15 of aluminum and silicon starts to melt, so that the bonding between the substrate 1 and the granular crystal semiconductor 2 becomes unstable. The power generation current can no longer be taken out. After forming the insulator layer 3, in order to clean the surface of the granular crystal semiconductor 2, it is cleaned with a cleaning liquid containing hydrofluoric acid.

半導体層4は例えばSiから成り、気相成長法等で例えばシラン化合物の気相にn型を呈するためのリン系化合物の気相、またはp型を呈するホウ素系化合物の気相を微量導入して形成する。膜質としては結晶質、非晶質、結晶質と非晶質とが混在する場合のどちらでもよいが、光線透過率を考慮すると結晶質または結晶質と非晶質とが混在するものがよい。粒状結晶半導体2がない部分で入射光の一部が半導体層4を透過し、下部の基板1で反射して粒状結晶半導体2に照射されることで、光電変換装置全体に照射される光エネルギーを効率よく粒状結晶半導体2に照射することが可能となる。   The semiconductor layer 4 is made of, for example, Si, and a small amount of a vapor phase of a phosphorus compound for exhibiting n-type in a gas phase of a silane compound or a gas phase of a boron compound exhibiting p-type is introduced by a vapor phase growth method or the like. Form. The film quality may be either crystalline, amorphous, or a mixture of crystalline and amorphous, but in consideration of light transmittance, a crystalline or a mixture of crystalline and amorphous is preferable. A part of incident light is transmitted through the semiconductor layer 4 in a portion where the granular crystal semiconductor 2 is not present, reflected by the lower substrate 1 and irradiated onto the granular crystal semiconductor 2, thereby irradiating the entire photoelectric conversion device with light energy. Can be efficiently irradiated onto the granular crystal semiconductor 2.

半導体層4中の微量元素の濃度は例えば1×1016〜1021原子/cm台程度である。さらに、半導体層4は粒状結晶半導体2の表面の凸曲面形状に沿って形成することが望ましい。粒状結晶半導体2の凸曲面状の表面に沿って形成することによってpn接合の面積を広く稼ぐことができ、粒状結晶半導体2の内部で生成したキャリアを効率よく収集することが可能となる。なお、その外郭に逆導電型、つまりn型を呈するP、As等、またはp型を呈するB、Al、Ga等の元素が微量含まれている粒状結晶半導体2を用いる場合には、半導体層4はなくてもよく、その上に下記の透明導電層5を形成してもよい。 The concentration of the trace element in the semiconductor layer 4 is, for example, about 1 × 10 16 to 10 21 atoms / cm 3 . Furthermore, it is desirable that the semiconductor layer 4 is formed along the convex curved surface shape of the surface of the granular crystal semiconductor 2. By forming along the convex curved surface of the granular crystal semiconductor 2, the area of the pn junction can be increased widely, and carriers generated inside the granular crystal semiconductor 2 can be efficiently collected. In the case of using a granular crystal semiconductor 2 whose outer shell contains a trace amount of elements such as P, As, etc. exhibiting reverse conductivity, that is, n-type, or B, Al, Ga, etc., exhibiting p-type, the semiconductor layer 4 may be omitted, and the following transparent conductive layer 5 may be formed thereon.

半導体層4上、または粒状結晶半導体2として外郭に逆導電型の元素を微量含んでいる場合には、粒状結晶半導体2上に他方の電極を兼ねる透明導電層5を形成する。透明導電層5は、SnO、In、ITO、ZnO、TiO等から選ばれる1種または複数の酸化物系膜などから成り、スパッタリング法、気相成長法、あるいは塗布焼成法等で形成する。透明導電層5は膜厚を選べば反射防止膜としての効果も期待できる。なお、透明導電層5は透明であることが必要であり、粒状結晶半導体2がない部分で入射光の一部が透明導電層5を透過し、下部の基板1で反射して粒状結晶半導体2に照射されることで、光電変換装置全体に照射される光エネルギーを効率よく粒状結晶半導体2に照射することが可能となる。透明導電層5は半導体層4あるいは粒状結晶半導体2の表面に沿って形成し、粒状結晶半導体2の凸曲面形状に沿って形成することが望ましい。粒状結晶半導体2の凸曲面状の表面に沿って形成するとpn接合の面積を広く稼ぐことができ、粒状結晶半導体2の内部で生成したキャリアを効率よく収集することができる。 When the semiconductor layer 4 or the granular crystal semiconductor 2 contains a small amount of an element of reverse conductivity type on the outer surface, the transparent conductive layer 5 that also serves as the other electrode is formed on the granular crystal semiconductor 2. The transparent conductive layer 5 is made of one or a plurality of oxide films selected from SnO 2 , In 2 O 3 , ITO, ZnO, TiO 2, etc., and includes a sputtering method, a vapor phase growth method, a coating baking method, and the like. Form with. The transparent conductive layer 5 can be expected to have an effect as an antireflection film if the film thickness is selected. The transparent conductive layer 5 needs to be transparent, and a part of incident light is transmitted through the transparent conductive layer 5 in a portion where the granular crystal semiconductor 2 is not present, and is reflected by the lower substrate 1 to be granular crystal semiconductor 2. It is possible to efficiently irradiate the granular crystal semiconductor 2 with the light energy applied to the entire photoelectric conversion device. The transparent conductive layer 5 is preferably formed along the surface of the semiconductor layer 4 or the granular crystal semiconductor 2 and is formed along the convex curved surface shape of the granular crystal semiconductor 2. When formed along the convex curved surface of the granular crystal semiconductor 2, the area of the pn junction can be increased, and carriers generated inside the granular crystal semiconductor 2 can be collected efficiently.

半導体層4あるいは透明導電層5上に保護層(不図示)を形成してもよい。このような保護層としては透明誘電体の特性を持つものがよく、CVD法やPVD法等で例えば酸化珪素、酸化セシウム、酸化アルミニウム、窒化珪素、酸化チタン、SiO−TiO、酸化タンタル、酸化イットリウム等を単一組成または複数組成で単層または組み合わせて半導体層4または透明導電層5上に形成する。保護層は、光の入射面に接しているために、透明性が必要であり、また半導体層4または透明導電層5と外部との間のリークを防止するために、誘電体であることが必要である。なお、保護層の膜厚を最適化すれば反射防止膜としての機能も期待できる。 A protective layer (not shown) may be formed on the semiconductor layer 4 or the transparent conductive layer 5. Such a protective layer preferably has a characteristic of a transparent dielectric, such as silicon oxide, cesium oxide, aluminum oxide, silicon nitride, titanium oxide, SiO 2 —TiO 2 , tantalum oxide, by CVD or PVD. Yttrium oxide or the like is formed on the semiconductor layer 4 or the transparent conductive layer 5 as a single layer or a combination of single or multiple compositions. The protective layer needs to be transparent because it is in contact with the light incident surface, and may be a dielectric material in order to prevent leakage between the semiconductor layer 4 or the transparent conductive layer 5 and the outside. is necessary. In addition, if the thickness of the protective layer is optimized, a function as an antireflection film can be expected.

直列抵抗値を低くするために、半導体層4または透明導電層5の上に上部電極として一定間隔のフィンガー電極部(不図示)およびバスバー電極部(不図示)から成るパターン電極を設けて直接または間接的に半導体層4と接続してもよい。   In order to reduce the series resistance value, a pattern electrode composed of finger electrode portions (not shown) and bus bar electrode portions (not shown) having a constant interval is provided as an upper electrode on the semiconductor layer 4 or the transparent conductive layer 5 directly or You may connect with the semiconductor layer 4 indirectly.

他方の電極を兼ねる透明導電層5上に透光性カバー体7を透明導電層5の形状に沿うように設ける。粒状結晶半導体2間の隙間に入射した光エネルギーを透光性カバー体7で粒状結晶半導体2の方向に屈折させて、隙間に隣接する粒状結晶半導体2に引き込む。また、透明導電層5の形状に沿うように透光性カバー体7を設けているので、透明導電層5の露出を無くし、湿度等の直接的な攻撃を防止する。透光性カバー体7で連続するレンズ形状を形成するには、光電変換装置の面積に対する全粒状結晶半導体2の投影面積比が80%以上が必要である。なぜなら、80%未満では、粒状結晶半導体2間の隙間が広くなることから、透光性カバー体7の基板と反対の面が基板に対して平行な部分が形成されてしまい、粒状結晶半導体2間の隙間に入射した光エネルギーを隙間に隣接する粒状結晶半導体2に引き込むことができなくなり、光電変換特性の向上が小さくなってしまうからである。   A translucent cover body 7 is provided on the transparent conductive layer 5 which also serves as the other electrode so as to follow the shape of the transparent conductive layer 5. The light energy incident on the gap between the granular crystal semiconductors 2 is refracted in the direction of the granular crystal semiconductor 2 by the translucent cover 7 and drawn into the granular crystal semiconductor 2 adjacent to the gap. Moreover, since the translucent cover body 7 is provided along the shape of the transparent conductive layer 5, the transparent conductive layer 5 is not exposed and a direct attack such as humidity is prevented. In order to form a continuous lens shape with the translucent cover body 7, the projected area ratio of the whole granular crystal semiconductor 2 to the area of the photoelectric conversion device needs to be 80% or more. This is because if it is less than 80%, the gap between the granular crystal semiconductors 2 is widened, and therefore, a portion of the translucent cover body 7 opposite to the substrate is formed in parallel with the substrate. This is because the light energy incident on the gap between them cannot be drawn into the granular crystal semiconductor 2 adjacent to the gap, and the improvement in photoelectric conversion characteristics is reduced.

透光性カバー体7の材料としては、光学的に透明であり、透光性カバー体7自体が熱によって軟化する熱可塑性をもって透明導電層5の形状に沿うことができるものであれば良く、樹脂フィルムが好適である。例えばアクリル、ポリエチレン、EVA(エチレンビニルアセテート)、シリコーン系樹脂、その他の透明な熱可塑性樹脂とするその形成方法としては、フィルム状にして透明導電層5上に配置して、上部からドライヤー等で軟化温度上の熱風を吹き付けて透明導電層5の形状に沿うように形成する方法(ここでは熱風法という)、有機溶媒等に溶解させてその溶液を透明導電層5上に塗布した後に乾燥させて透明導電層5の形状に沿うように形成する方法(ここでは塗布法という)、基板1上の粒状結晶半導体2の凹凸形状のネガ形状の型を耐熱材料で形成し、型と透明導電層5間にフィルム状のものを挟んで加熱しながら加圧する方法(ここでは型形成法という)等があるが、より簡便な塗布法、或いは環境的にも問題が少ない熱風法が好ましい。透光性カバー体7の膜厚としては、粒状結晶半導体2の粒径にもよるが、例えば20〜100μm程度であり、20μm未満では薄すぎて効果が得られにくく層としても形成し辛くなり、100μmを超えると透光性カバー体7がだれて透明導電層5の形状に沿った形状が得られず、また狭い粒状結晶半導体2間の隙間に入りにくくなり効果が得られにくくなる。   As a material of the translucent cover body 7, any material may be used as long as it is optically transparent and the translucent cover body 7 itself can conform to the shape of the transparent conductive layer 5 with thermoplasticity that is softened by heat. Resin films are preferred. For example, acrylic, polyethylene, EVA (ethylene vinyl acetate), silicone resin, and other transparent thermoplastic resins can be formed on the transparent conductive layer 5 in the form of a film, and dried from above with a dryer or the like. A method of spraying hot air on the softening temperature so as to follow the shape of the transparent conductive layer 5 (herein referred to as hot air method), dissolving in an organic solvent or the like, applying the solution onto the transparent conductive layer 5 and then drying. A method of forming the transparent conductive layer 5 so as to conform to the shape of the transparent conductive layer 5 (herein referred to as a coating method), and forming a concave / convex negative mold of the granular crystal semiconductor 2 on the substrate 1 with a heat-resistant material. There is a method in which a film-like material is sandwiched between 5 and pressurizing while heating (herein referred to as a mold forming method). However, there is a simpler coating method or a hot air method with less environmental problems. Masui. Although the film thickness of the translucent cover body 7 depends on the particle diameter of the granular crystal semiconductor 2, it is, for example, about 20 to 100 μm, and if it is less than 20 μm, it is too thin to obtain the effect and it is difficult to form a layer. When the thickness exceeds 100 μm, the translucent cover body 7 falls and the shape along the shape of the transparent conductive layer 5 cannot be obtained, and it becomes difficult to enter the gaps between the narrow granular crystal semiconductors 2, and the effect is difficult to obtain.

このように、本発明の光電変換装置は、多数個の粒状光電変換体の上部および絶縁体層の上に、粒状光電変換体および絶縁体層の外表面に沿って、他方の電極および透光性カバー体を順次形成してなるので、他方の電極の上に透光性カバー体を比較的均一に覆うことによって、信頼性を保ちながら、粒状光電変換体間の隙間に入射した光エネルギーを隙間に隣接する粒状結晶半導体に効率よく引き込むことができ、これにより光電変換特性が高く信頼性の高い光電変換装置を提供することが可能となる。また、この場合、一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体の間の下部に絶縁体層を設け、多数個の粒状光電変換体の上部および絶縁体層の上に、粒状光電変換体および絶縁体層の外形に沿って、他方の電極を形成する工程と、他方の電極の上に透光性の樹脂フィルムを配設し、該樹脂フィルムを軟化点以上の温度で加熱することにより粒状光電変換体の外表面に沿って変形させる工程とを、順次行なうことにより図1に示す光電変換装置を簡便に作製することができる。   As described above, the photoelectric conversion device of the present invention includes the other electrode and the light transmission along the outer surface of the granular photoelectric conversion body and the insulator layer on the upper part and the insulating layer of the large number of granular photoelectric conversion bodies. Since the transparent cover body is sequentially formed, the light energy incident on the gap between the granular photoelectric converters is maintained while maintaining reliability by covering the translucent cover body on the other electrode relatively uniformly. It can be efficiently drawn into the granular crystal semiconductor adjacent to the gap, thereby providing a photoelectric conversion device with high photoelectric conversion characteristics and high reliability. Further, in this case, a large number of granular photoelectric conversion bodies that perform photoelectric conversion are disposed on one main surface of the substrate that is to be one of the electrodes, and an insulator is provided below these multiple granular photoelectric conversion bodies. Forming the other electrode along the outer shape of the granular photoelectric conversion body and the insulating layer on the upper part of the granular photoelectric conversion body and the insulating layer, and on the other electrode The step shown in FIG. 1 is performed by sequentially performing a process of arranging a translucent resin film and deforming the resin film along the outer surface of the granular photoelectric converter by heating at a temperature equal to or higher than the softening point. A conversion device can be easily produced.

また、さらに光電変換装置の信頼性を向上させるために図2または図3の構造とするのがよい。図2は、図1で示した光電変換装置の透光性カバー体7上に透光性保護板8を設けた光電変換装置を示した断面図である。単に透光性カバー体7上に透光性保護板8を設けると、透光性カバー体7と透光性保護板8との間に空気層9が挟まれることによって、入射してきた光エネルギーが透光性保護板8全面と空気層9との界面で反射されてエネルギーロスが発生する。そこで、エネルギーロスを少なくするために、透光性保護板8の裏面と粒状結晶半導体2の頂上部の透光性カバー体7の一部を密着させることによって、光エネルギーの反射する界面を減らし、透光性保護板8を設けることによるエネルギーロスを軽減させることが可能となる。   In order to further improve the reliability of the photoelectric conversion device, the structure shown in FIG. 2 or FIG. 3 is preferable. FIG. 2 is a cross-sectional view showing a photoelectric conversion device in which a translucent protective plate 8 is provided on the translucent cover body 7 of the photoelectric conversion device shown in FIG. When the translucent protective plate 8 is simply provided on the translucent cover body 7, the incident light energy is caused by the air layer 9 being sandwiched between the translucent cover body 7 and the translucent protective plate 8. Is reflected at the interface between the entire surface of the translucent protective plate 8 and the air layer 9, and energy loss occurs. Therefore, in order to reduce energy loss, the back surface of the translucent protective plate 8 and a part of the translucent cover body 7 at the top of the granular crystal semiconductor 2 are brought into close contact with each other, thereby reducing the interface where the light energy is reflected. It becomes possible to reduce energy loss due to the provision of the translucent protective plate 8.

図2に示す光電変換装置の作製方法としては、図1で形成した光電変換装置の透光性カバー体7上に透光性保護板8をのせて、加圧しながら加熱することによって、透光性カバー体7を軟化させて透光性カバー体7の一部を透光性保護板8と密着させる。透光性保護板8としては、光学的に透明で、透光性カバー体7よりも耐熱性があればよく、ガラス或いはポリカボネート、PET(ポリエチレンテレフタレート)等の透明樹脂等がある。このように、図2に示す光電変換装置は、一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体の間の下部に絶縁体層を設け、多数個の粒状光電変換体の上部および絶縁体層の上に、粒状光電変換体および絶縁体層の外表面に沿って他方の電極を形成する工程と、他方の電極の上に透光性の樹脂フィルム、この樹脂フィルムより屈折率の低い透光性の充填材および透光性保護板を順次配設してラミネート加工を施す工程とを、順次行なうことによって簡便に作製することができる。   The photoelectric conversion device shown in FIG. 2 is manufactured by placing a light-transmitting protective plate 8 on the light-transmitting cover body 7 of the photoelectric conversion device formed in FIG. The transparent cover body 7 is softened and a part of the translucent cover body 7 is brought into close contact with the translucent protective plate 8. The translucent protective plate 8 is only required to be optically transparent and more heat resistant than the translucent cover body 7, and includes transparent resins such as glass, polycarbonate, and PET (polyethylene terephthalate). As described above, the photoelectric conversion device shown in FIG. 2 is provided with a large number of granular photoelectric conversion bodies that perform photoelectric conversion on one main surface of a substrate serving as one electrode, and the large number of granular photoelectric conversions. A step of providing an insulator layer at a lower portion between the bodies and forming the other electrode along the outer surface of the granular photoelectric converter and the insulator layer on the upper part of the multiple granular photoelectric converters and the insulator layer And a step of sequentially arranging a translucent resin film on the other electrode, a translucent filler having a refractive index lower than that of the resin film, and a translucent protective plate, and laminating. It can be easily produced by performing.

また、図3は、図1で示した光電変換装置の透光性カバー体7と透光性保護板8との間に光学的に透明な充填材10を設けた様子を示す断面図である。ここで、透光性カバー体7と充填材10との屈折率の大小関係は、充填材10が透光性カバー体7よりも小さいことが望ましい。入射してきた光エネルギーが充填材10を通って透光性カバー体7に入る時に、光エネルギーが粒状結晶半導体2側に屈折して粒状結晶半導体2に取り込むことが可能となる。例えば透光性カバー体7がEVA(n=1.49)の場合は、ポリフッ化ビニリデン(n=1.42)、シリコーン樹脂(n=1.43)等を用いる。その形成方法としては、図1で形成した光電変換装置の透光性カバー体7と透光性保護板8との間に透明充填材10を挟んでラミネーターでラミネートするか、図1の透光性カバー体7の形成前で、光電変換装置の透明導電層5上にフィルム状の透光性カバー体7、フィルム状の透明充填材10及び透光性保護板8を順次重ねてラミネーターでラミネートする。   3 is a cross-sectional view showing a state in which an optically transparent filler 10 is provided between the translucent cover body 7 and the translucent protective plate 8 of the photoelectric conversion device shown in FIG. . Here, it is desirable that the refractive index relationship between the translucent cover body 7 and the filler 10 is smaller than that of the translucent cover body 7. When the incident light energy enters the translucent cover body 7 through the filler 10, the light energy can be refracted toward the granular crystal semiconductor 2 and taken into the granular crystal semiconductor 2. For example, when the translucent cover body 7 is EVA (n = 1.49), polyvinylidene fluoride (n = 1.42), silicone resin (n = 1.43) or the like is used. As the formation method, a transparent filler 10 is sandwiched between the translucent cover body 7 and the translucent protective plate 8 of the photoelectric conversion device formed in FIG. Before forming the transparent cover body 7, the film-like transparent cover body 7, the film-like transparent filler 10 and the transparent protective plate 8 are sequentially stacked on the transparent conductive layer 5 of the photoelectric conversion device and laminated with a laminator. To do.

また、図2において、粒状結晶半導体2の粒径が多少ばらつく場合があり、透光性保護板8の裏面も微小なうねりがあるために、透光性保護板8の裏面と全ての粒状結晶半導体2の頂上部の透光性カバー体7の一部とを密着させることが困難となる場合がある。そこで、図4に示すように、透光性カバー体7と透光性保護板8との間に、透光性緩衝層11と透光性樹脂フィルム12を設ける。   In FIG. 2, the grain size of the granular crystal semiconductor 2 may vary somewhat, and the back surface of the translucent protective plate 8 also has minute undulations. In some cases, it may be difficult to make a part of the translucent cover body 7 at the top of the semiconductor 2 closely contact. Therefore, as shown in FIG. 4, a translucent buffer layer 11 and a translucent resin film 12 are provided between the translucent cover body 7 and the translucent protective plate 8.

透光性緩衝層11は、粒状結晶半導体2の粒径のばらつきと透光性保護板8の裏面の微小なうねりを吸収する役目を持ち、光学的に透明で、軟化温度が透光性カバー体7と同等か、より低い材料であれば良く、例えばアクリル、ポリエチレン、EVA(エチレンビニルアセテート)、シリコーン系樹脂、その他の透明な熱可塑性樹脂から成る。   The translucent buffer layer 11 has a function of absorbing the variation in the grain size of the granular crystal semiconductor 2 and the minute undulations on the back surface of the translucent protective plate 8, is optically transparent, and has a softening temperature. Any material may be used as long as it is equal to or lower than that of the body 7, and is made of, for example, acrylic, polyethylene, EVA (ethylene vinyl acetate), silicone resin, or other transparent thermoplastic resin.

また、透光性樹脂フィルム12は、モジュール形成時に軟化した透光性緩衝層11が流れて空気層9が透光性緩衝層11の材料で埋まらないように空気層9を維持する役目を持ち、光学的に透明で、軟化温度が透光性カバー体7および透光性緩衝層11より高い材料であれば良く、例えばPET(ポリエチレンテレフタレート)やフッ素系樹脂等から成る。   The translucent resin film 12 has a role of maintaining the air layer 9 so that the light-transmitting buffer layer 11 softened at the time of module formation flows and the air layer 9 is not filled with the material of the light-transmitting buffer layer 11. Any material that is optically transparent and has a softening temperature higher than that of the light-transmitting cover body 7 and the light-transmitting buffer layer 11 may be used, for example, PET (polyethylene terephthalate) or a fluorine resin.

これらの形成方法としては、図1で形成した光電変換装置の透光性カバー体7上に、透光性樹脂フィルム12、透光性緩衝層11、透光性保護板8を順次載せて、ラミネーターで真空加圧しながら加熱することによって、透光性カバー体7を軟化させてその一部を透光性樹脂フィルム12と密着させ、透光性緩衝層11が軟化して透光性樹脂フィルム12と透光性保護板8との間の高さのばらつきを吸収する。   As these forming methods, a translucent resin film 12, a translucent buffer layer 11, and a translucent protective plate 8 are sequentially placed on the translucent cover body 7 of the photoelectric conversion device formed in FIG. By heating with a laminator while applying vacuum pressure, the translucent cover body 7 is softened and a part thereof is brought into close contact with the translucent resin film 12, and the translucent buffer layer 11 is softened to translucent resin film. Absorbs variations in height between 12 and the translucent protective plate 8.

さらに、図4における粒状結晶半導体2の頂部の透光性カバー体7と透光性樹脂フィルム12との接触をより安定化させるために、図5に示すように、予め透光性樹脂フィルム12の透光性カバー体7と接する側の面に、第2緩衝層13として透光性カバー体7と同じ材料から成るものを設ける。その形成方法としては、図4の説明で示した形成方法において、予め透光性樹脂フィルム12の透光性カバー体7と接する側の面に、第2緩衝層13として透光性カバー体7と同じ材料のものを被覆して形成すればよい。   Furthermore, in order to further stabilize the contact between the translucent cover 7 at the top of the granular crystal semiconductor 2 and the translucent resin film 12 in FIG. 4, as shown in FIG. The second buffer layer 13 made of the same material as the translucent cover body 7 is provided on the surface in contact with the translucent cover body 7. As the formation method, in the formation method shown in the description of FIG. 4, the translucent cover body 7 as the second buffer layer 13 is formed on the surface of the translucent resin film 12 in contact with the translucent cover body 7 in advance. It may be formed by coating the same material.

なお、本発明の光電変換装置の裏面に、図4あるいは図5に示すような充填剤14、耐候性材料15を設けてもよい。充填剤14は熱可塑性樹脂であればよく、例えばアクリル、ポリエチレン、EVA(エチレンビニルアセテート)、シリコーン系樹脂、その他の透明な熱可塑性樹脂から成る。耐候性材料15は耐候性のある材料からなっていれば良く、例えばポリフッ化ビニル(PVF)、エチレン−4フッ化エチレン共重合体(ETFE)、ポリ3フッ化塩化エチレン(PCTFE)等のフッ素樹脂やポリエチレンテレフタレート(PET)等の樹脂、或いはこれらの樹脂を使ってアルミ箔や金属酸化膜を挟んで張り合わせたシート、ガラス、ステンレス等の金属シート等から成る。   In addition, you may provide the filler 14 and the weather resistant material 15 as shown in FIG. 4 or FIG. 5 in the back surface of the photoelectric conversion apparatus of this invention. The filler 14 may be a thermoplastic resin, and is made of, for example, acrylic, polyethylene, EVA (ethylene vinyl acetate), silicone resin, or other transparent thermoplastic resin. The weather-resistant material 15 only needs to be made of a weather-resistant material. For example, fluorine such as polyvinyl fluoride (PVF), ethylene-tetrafluoroethylene copolymer (ETFE), poly-trifluoroethylene chloride (PCTFE), etc. It consists of a resin, a resin such as polyethylene terephthalate (PET), a sheet laminated with an aluminum foil or a metal oxide film using these resins, a metal sheet such as glass or stainless steel, or the like.

次に、本発明の光電変換装置をより具体化した実施例について説明する。   Next, a more specific example of the photoelectric conversion device of the present invention will be described.

以下のようにして作製した試料を用いた。アルミニウム基板上に直径約0.2〜0.6mmのp型シリコン粒子をアルミニウムとシリコンの共晶温度である577℃以上の温度で約10分加熱してシリコン粒子をアルミニウム合金に接合した。その上に絶縁体層3を充填した。その後p型シリコン粒子の上部表面を洗浄し、シリコン粒子2と絶縁体層3の上にn型結晶質シリコンと非晶質シリコンとの混晶の半導体層4を300nmの厚みに形成し、さらに透明導電層5としてITO膜を80nmの厚みに形成した。   A sample prepared as follows was used. The silicon particles were bonded to the aluminum alloy by heating p-type silicon particles having a diameter of about 0.2 to 0.6 mm on an aluminum substrate at a temperature of 577 ° C. or higher, which is the eutectic temperature of aluminum and silicon, for about 10 minutes. An insulator layer 3 was filled thereon. Thereafter, the upper surface of the p-type silicon particles is washed, and a mixed crystal semiconductor layer 4 of n-type crystalline silicon and amorphous silicon is formed on the silicon particles 2 and the insulator layer 3 to a thickness of 300 nm. An ITO film having a thickness of 80 nm was formed as the transparent conductive layer 5.

上記のようにして、シリコン粒子の基板の面積に対する投影面積比を変えて作製した光電変換装置の光電変換効率を測定し初期値とした。その後、120℃のホットプレートにのせ、透明導電層5上に厚み50μmのEVAフィルムをのせて、ドライヤーで200℃の熱風を当てることで、透明導電層5の形状に沿って透明材料層を形成して光電変換効率を測定した。その時の光電変換効率を初期値を1とした場合の変化を表1に示す。

Figure 2005183945
As described above, the photoelectric conversion efficiency of the photoelectric conversion device manufactured by changing the projected area ratio of the silicon particles to the area of the substrate was measured and set as an initial value. Then, place it on a 120 ° C hot plate, place an EVA film with a thickness of 50μm on the transparent conductive layer 5, and apply hot air of 200 ° C with a dryer to form a transparent material layer along the shape of the transparent conductive layer 5 The photoelectric conversion efficiency was measured. Table 1 shows changes when the photoelectric conversion efficiency at that time is an initial value of 1.
Figure 2005183945

比較例1−1,1−2は、光電変換効率の変化がいずれも1.02と小さかった。外観を確認したところ、透明材料層の表面が平面な部分があり、シリコン粒子の基板の面積に対する投影面積比が80%未満と小さいために透明材料層の表面が平面な部分ができたので、シリコン粒間の隙間に入射した光エネルギーがそのまま反射して、光電変換装置外に放出されたことにより効率の寄与が小さかったものと考えられる。   In Comparative Examples 1-1 and 1-2, changes in photoelectric conversion efficiency were both as small as 1.02. When the appearance was confirmed, there was a part where the surface of the transparent material layer was flat, and since the projected area ratio of the silicon particles to the area of the substrate was as small as less than 80%, a part where the surface of the transparent material layer was flat was created. It is considered that the light energy incident on the gaps between the silicon grains is reflected as it is and released outside the photoelectric conversion device, so that the contribution of efficiency is small.

一方、試料1,2,3は光電変換効率の変化が大きかった。外観を確認したところ、比較例1で観察された透明材料層の表面が平面な部分認められず、シリコン粒子間の隙間に入射した光エネルギーが効率よくシリコン粒子に取り込まれたためと考えられる。   On the other hand, Samples 1, 2 and 3 showed large changes in photoelectric conversion efficiency. When the appearance was confirmed, it is considered that the surface of the transparent material layer observed in Comparative Example 1 was not recognized as a flat portion, and the light energy incident on the gap between the silicon particles was efficiently taken into the silicon particles.

また、実施例1と同様にシリコン粒子の基板の面積に対する投影面積比を85%にして(透明材料層無し)形成した光電変換装置の光電変換効率を測定し初期値とした。そして、透明材料層上に透光性保護板として3mm厚のガラス板、或いは0.5mm厚のPETシートをのせて光電変換効率を測定した(比較例2,3)。次に、透明材料層上に、上記の透光性保護板をのせて加圧しながら120℃まで加熱して透光性保護板の裏面とシリコン粒子の頂上部の透明材料の一部を密着させて試料を作製し、光電変換効率を測定した(例4,5)。以上のようにして、測定した光電変換効率を初期値を1とした場合の変化を表2に示す。

Figure 2005183945
Similarly to Example 1, the photoelectric conversion efficiency of a photoelectric conversion device formed with a projected area ratio of silicon particles to the substrate area of 85% (without a transparent material layer) was measured and used as an initial value. Then, a 3 mm thick glass plate or a 0.5 mm thick PET sheet was placed on the transparent material layer as a translucent protective plate, and the photoelectric conversion efficiency was measured (Comparative Examples 2 and 3). Next, the transparent protective layer is placed on the transparent material layer and heated up to 120 ° C. while applying pressure so that the back surface of the transparent protective plate and a part of the transparent material on the top of the silicon particles are in close contact with each other. Samples were prepared and the photoelectric conversion efficiency was measured (Examples 4 and 5). Table 2 shows changes in the photoelectric conversion efficiency measured as described above when the initial value is 1.
Figure 2005183945

比較例2,3では光電変換効率が透光性保護板の反射率に比例して低下した。一方、試料4,5では、光電変換効率の低下率が比較例よりも小さかった。これは、透光性保護板の裏面とシリコン粒子の頂上部の透明材料の一部を密着させたことによって、透光性保護板の裏面の界面での反射が軽減されたためと考えられる。   In Comparative Examples 2 and 3, the photoelectric conversion efficiency decreased in proportion to the reflectance of the translucent protective plate. On the other hand, in Samples 4 and 5, the decrease rate of the photoelectric conversion efficiency was smaller than that of the comparative example. This is presumably because reflection at the interface of the back surface of the translucent protective plate was reduced by bringing the back surface of the translucent protective plate into close contact with a part of the transparent material at the top of the silicon particles.

また、上記のようにシリコン粒子の基板の面積に対する投影面積比を85%にして作製した光電変換装置の光電変換効率を測定し初期値とした。その後、透明導電層上に透明材料として厚み50μmのEVAフィルム、透明充填材として0.4mm厚のポリフッ化ビニリデンシート及び透光性保護板として3mm厚のガラス板、或いは0.5mm厚のPETシートを順次のせてラミネーターでラミネート加工を施して試料を作製し、光電変換効率を測定した(試料6,7)。その時の光電変換効率を初期値を1とした場合の変化を表3に示す。

Figure 2005183945
Further, the photoelectric conversion efficiency of the photoelectric conversion device manufactured with the projected area ratio of silicon particles to the area of the substrate as described above being 85% was measured and set as an initial value. Then, an EVA film with a thickness of 50 μm as a transparent material on the transparent conductive layer, a polyvinylidene fluoride sheet with a thickness of 0.4 mm as a transparent filler, and a glass plate with a thickness of 3 mm as a translucent protective plate or a PET sheet with a thickness of 0.5 mm are sequentially formed. A sample was prepared by laminating with a laminator, and the photoelectric conversion efficiency was measured (samples 6 and 7). Table 3 shows changes when the photoelectric conversion efficiency at that time is an initial value of 1.
Figure 2005183945

試料6,7共に光電変換効率は初期値よりも向上し、透明充填材の屈折率を透明材料の屈折率よりも小さくしたことによって、シリコン粒子間の隙間に入射した光エネルギーがシリコン粒子に取り込まれたためと考えられる。   In both samples 6 and 7, the photoelectric conversion efficiency is improved from the initial value, and the refractive index of the transparent filler is made smaller than the refractive index of the transparent material, so that the light energy incident on the gap between the silicon particles is taken into the silicon particles. This is thought to be due to this.

実施例1のようにして、シリコン粒子の基板の面積に対する投影面積比を85%にして作製した光電変換装置の光電変換効率を測定し初期値とした。その後、EVAのキシレン溶液を光電変換装置の透明導電層5上に塗布し、120℃のホットプレートにのせてキシレンを蒸発させることで、透明導電層5の形状に沿って透光性カバー体7を形成した。   The photoelectric conversion efficiency of a photoelectric conversion device manufactured as in Example 1 with a projected area ratio of silicon particles to the substrate area of 85% was measured and used as an initial value. Thereafter, a xylene solution of EVA is applied onto the transparent conductive layer 5 of the photoelectric conversion device, and is placed on a hot plate at 120 ° C. to evaporate xylene, whereby the translucent cover body 7 is formed along the shape of the transparent conductive layer 5. Formed.

次に、透光性保護板8としての3mm厚のガラス板、透光性緩衝層11としての0.8mm厚のEVA、透光性樹脂フィルム12としての0.5mm厚のPETシート、透光性カバー体7を有する光電変換装置(受光面はガラス板側)、0.4mm厚のEVA、PET/金属酸化膜/PETを貼り合わせて成る耐候性材料15を順次載せて、ラミネーターでラミネート加工を施して試料8とした。   Next, a 3 mm thick glass plate as the translucent protective plate 8, 0.8 mm thick EVA as the translucent buffer layer 11, 0.5 mm thick PET sheet as the translucent resin film 12, translucent cover The photoelectric conversion device having the body 7 (the light receiving surface is the glass plate side), 0.4 mm thick EVA, PET / metal oxide film / weather-resistant material 15 formed by laminating PET, and then laminating with a laminator Sample 8 was designated.

また、試料8と同様にして、透光性緩衝層11と透光性樹脂フィルム12を用いなかった試料を作製し、試料9とした。以上の試料の光電変換効率を測定し、そのときの光電変換効率を初期値の1とした場合の変化を表4に示す。

Figure 2005183945
Further, in the same manner as the sample 8, a sample in which the light-transmitting buffer layer 11 and the light-transmitting resin film 12 were not used was prepared and used as sample 9. Table 4 shows the change when the photoelectric conversion efficiency of the above sample was measured and the photoelectric conversion efficiency at that time was set to 1 as the initial value.
Figure 2005183945

試料9では、光電変換効率の変化率が0.94となり、外観を確認したところ、透光性保護板8の裏面と粒状結晶半導体2の頂部の透光性カバー体7が接触していないシリコン粒子(粒状結晶半導体2)が一部あり、透光性カバー体7が接触していない個所で光のロスが発生したものと考えられる。   In Sample 9, the rate of change in photoelectric conversion efficiency was 0.94, and the appearance was confirmed. As a result, the back surface of the translucent protective plate 8 and the translucent cover body 7 on the top of the granular crystal semiconductor 2 were not in contact with silicon particles ( It is considered that a loss of light occurred at a portion where the granular crystal semiconductor 2) was partially present and the translucent cover body 7 was not in contact.

一方、試料8は光電変換効率の変化率は小さかった。外観を確認したところ、試料9で見られた透光性カバー体7が接触していないシリコン粒子が見られず、シリコン粒子全ての頂部の透光性カバー体7が透光性樹脂フィルム12に接触しており、シリコン粒子間の隙間に入射した光が効率よくシリコン粒子に取り込まれたためと考えられる。   On the other hand, Sample 8 had a small rate of change in photoelectric conversion efficiency. When the external appearance was confirmed, the silicon particles that were not in contact with the translucent cover body 7 seen in the sample 9 were not seen, and the translucent cover body 7 at the top of all the silicon particles was formed on the translucent resin film 12. This is considered to be because the light incident on the gap between the silicon particles was efficiently taken into the silicon particles.

実施例1のようにして、シリコン粒子の基板の面積に対する投影面積比を85%にして作製した光電変換装置の光電変換効率を測定し初期値とした。その後、EVAのキシレン溶液を光電変換装置の透明導電層5上に塗布し、120℃のホットプレートにのせてキシレンを蒸発させることで、透明導電層5の形状に沿って透光性カバー体7を形成した。   The photoelectric conversion efficiency of a photoelectric conversion device manufactured as in Example 1 with a projected area ratio of silicon particles to the substrate area of 85% was measured and used as an initial value. Thereafter, a xylene solution of EVA is applied onto the transparent conductive layer 5 of the photoelectric conversion device, and is placed on a hot plate at 120 ° C. to evaporate xylene, whereby the translucent cover body 7 is formed along the shape of the transparent conductive layer 5. Formed.

次に、透光性保護板8としての3mm厚のガラス板、透光性緩衝層11としての0.8mm厚のEVA、透光性樹脂フィルム12としての、透光性カバー体7と接する側の面に第2緩衝層13である30μm厚のEVAが被覆されている0.5mm厚のPETシート、透光性カバー体7を有する光電変換装置(受光面は、ガラス板側)、0.4mm厚のEVA、PET/金属酸化膜/PETを貼り合わせて成る耐候性材料15を順次載せて、ラミネーターでラミネート加工を施して試料10とした。以上の試料の光電変換効率を測定し、そのときの光電変換効率を初期値の1とした場合の変化を表4に示す。   Next, a glass plate having a thickness of 3 mm as the translucent protective plate 8, an EVA having a thickness of 0.8 mm as the translucent buffer layer 11, and a side in contact with the translucent cover body 7 as the translucent resin film 12. 0.5 mm thick PET sheet coated with 30 μm thick EVA as the second buffer layer 13 on the surface, a photoelectric conversion device having a translucent cover 7 (the light receiving surface is on the glass plate side), 0.4 mm thick A weather-resistant material 15 formed by laminating EVA and PET / metal oxide film / PET was sequentially placed and laminated with a laminator to obtain sample 10. Table 4 shows the changes when the photoelectric conversion efficiency of the above samples was measured and the photoelectric conversion efficiency at that time was set to an initial value of 1.

試料10は、試料8よりもさらに光電変換効率の変化率が小さかった。外観を確認したところ、試料8では透光性カバー体7と透光性樹脂フィルム12との接触面の面積にばらつきが生じていた。一方、試料10では、透光性カバー体7と透光性樹脂フィルム12との接触面の面積が比較的安定しており、シリコン粒子間の隙間に入射した光がより効率よくシリコン粒子に取り込まれたためと考えられる。   Sample 10 had a smaller rate of change in photoelectric conversion efficiency than sample 8. When the appearance was confirmed, sample 8 had variations in the area of the contact surface between translucent cover 7 and translucent resin film 12. On the other hand, in the sample 10, the area of the contact surface between the translucent cover 7 and the translucent resin film 12 is relatively stable, and light incident on the gap between the silicon particles is more efficiently taken into the silicon particles. This is thought to be due to this.

以上のことから、本発明の光電変換装置によれば、信頼性を維持する構造で変換効率を向上させることが可能となり、より高性能の光電変換装置を作製できることが確認できた。   From the above, according to the photoelectric conversion device of the present invention, it was possible to improve the conversion efficiency with a structure that maintains reliability, and it was confirmed that a higher-performance photoelectric conversion device can be manufactured.

本発明の光電変換装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the photoelectric conversion apparatus of this invention. 従来の光電変換装置を示す断面図である。It is sectional drawing which shows the conventional photoelectric conversion apparatus.

符号の説明Explanation of symbols

1・・・基板
2・・・第一導電型の粒状結晶半導体
3・・・絶縁体層
4・・・逆導電型の半導体層
5・・・透明導電層
6・・・基板のアルミニウムと粒状結晶半導体のシリコンとの合金層
7・・・透光性カバー体
8・・・透光性保護板
9・・・空気層
10・・・透明充填材
11・・・透光性緩衝層
12・・・透光性樹脂フィルム
13・・・第2緩衝層
14・・・充填剤
15・・・耐候性材料
21・・・中心が第一導電型の粒状結晶半導体
22・・・粒状結晶半導体の逆導電型の外郭
23・・・第1のアルミニウム箔
24・・・絶縁体層
25・・・金属接合部
26・・・第2のアルミニウム箔
27・・・球状レンズ
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... First conductive type granular crystal semiconductor 3 ... Insulator layer 4 ... Reverse conductive type semiconductor layer 5 ... Transparent conductive layer 6 ... Aluminum and granular of substrate Alloy layer 7 of silicon of crystalline semiconductor ... Light transmissive cover body 8 Light transmissive protective plate 9 Air layer
10 ... Transparent filler
11 ... Translucent buffer layer
12 ... Translucent resin film
13 ... Second buffer layer
14 ... Filler
15 ・ ・ ・ Weatherproof material
21 ・ ・ ・ Granular crystal semiconductor with the first conductivity type at the center
22 ... Reverse-conducting outer shape of granular crystal semiconductor
23 ... 1st aluminum foil
24 ・ ・ ・ Insulator layer
25 ・ ・ ・ Metal joint
26 ... Second aluminum foil
27 ... Spherical lens

Claims (8)

一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体間の下部に絶縁体層を設け、前記多数個の粒状光電変換体の上部および前記絶縁体層の上に、これら粒状光電変換体および前記絶縁体層の表面に沿って他方の電極を設け、該他方の電極の上にその表面に沿って透光性カバー体を設けてなることを特徴とする光電変換装置。 A large number of granular photoelectric conversion bodies that perform photoelectric conversion are disposed on one main surface of a substrate that serves as one electrode, and an insulating layer is provided below the multiple granular photoelectric conversion bodies. On the top of each granular photoelectric converter and on the insulator layer, the other electrode is provided along the surfaces of the granular photoelectric converter and the insulator layer, and on the other electrode along the surface thereof. A photoelectric conversion device comprising a light-transmitting cover body. 前記透光性カバー体が樹脂フィルムであることを特徴とする請求項1に記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the translucent cover body is a resin film. 透光性保護板を前記透光性カバー体の前記粒状光電変換体の頂部に位置する部位に接するように配設したことを特徴とする請求項1または2に記載の光電変換装置。 3. The photoelectric conversion device according to claim 1, wherein the translucent protective plate is disposed so as to be in contact with a portion of the translucent cover body located at a top portion of the granular photoelectric conversion body. 前記透光性カバー体と前記透光性保護板との間に、前記透光性カバー体より屈折率の低い透光性の充填材を充填したことを特徴とする請求項3に記載の光電変換装置。 4. The photoelectric device according to claim 3, wherein a translucent filler having a lower refractive index than that of the translucent cover body is filled between the translucent cover body and the translucent protective plate. Conversion device. 前記透光性カバー体が熱可塑性材料から成り、前記透光性カバー体上に透光性樹脂フィルム、熱可塑性材料から成る透光性緩衝層および透光性保護板が順次積層されていることを特徴とする請求項1に記載の光電変換装置。 The translucent cover body is made of a thermoplastic material, and a translucent resin film, a translucent buffer layer made of a thermoplastic material, and a translucent protective plate are sequentially laminated on the translucent cover body. The photoelectric conversion device according to claim 1. 前記透光性樹脂フィルムは、前記透光性カバー体と接する側の面が前記透光性カバー体と同じ熱可塑性材料で被覆されていることを特徴とする請求項5に記載の光電変換装置。 6. The photoelectric conversion device according to claim 5, wherein the translucent resin film has a surface on the side in contact with the translucent cover body covered with the same thermoplastic material as the translucent cover body. . 一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体間の下部に絶縁体層を設け、前記多数個の粒状光電変換体の上部および前記絶縁体層の上に、これら粒状光電変換体および前記絶縁体層の表面に沿って他方の電極を設ける工程と、前記他方の電極の上に透光性の樹脂フィルムを配設し、該樹脂フィルムを軟化点以上の温度で加熱することにより前記他方の電極の表面に沿って変形させる工程と、を含むことを特徴とする光電変換装置の製造方法。 A large number of granular photoelectric conversion bodies that perform photoelectric conversion are disposed on one main surface of a substrate that serves as one electrode, and an insulating layer is provided below the multiple granular photoelectric conversion bodies. A step of providing the other electrode along the surface of the granular photoelectric conversion body and the insulator layer on the upper part of the granular photoelectric conversion body and the insulator layer, and translucency on the other electrode And a step of deforming the resin film along the surface of the other electrode by heating the resin film at a temperature not lower than the softening point. 一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体間の下部に絶縁体層を設け、前記多数個の粒状光電変換体の上部および前記絶縁体層の上に、これら粒状光電変換体および前記絶縁体層の表面に沿って他方の電極を設ける工程と、前記他方の電極の上にその表面に沿って透光性の樹脂フィルムを設ける工程と、該樹脂フィルムの上に該樹脂フィルムより屈折率の低い透光性の充填材を配し、前記樹脂フィルムの前記粒状光電変換体の頂部に位置する部位に接するように透光性保護板を配設する工程と、を含むことを特徴とする光電変換装置の製造方法。 A large number of granular photoelectric conversion bodies that perform photoelectric conversion are disposed on one main surface of a substrate that serves as one electrode, and an insulating layer is provided below the multiple granular photoelectric conversion bodies. A step of providing the other electrode along the surfaces of the granular photoelectric conversion body and the insulator layer on the upper part of the granular photoelectric conversion body and on the insulator layer; A step of providing a translucent resin film along with a translucent filler having a refractive index lower than that of the resin film on the resin film, and the top of the granular photoelectric conversion body of the resin film. And a step of disposing a translucent protective plate so as to be in contact with the portion to be performed.
JP2004340350A 2003-11-27 2004-11-25 Photoelectric conversion device Expired - Fee Related JP4780951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340350A JP4780951B2 (en) 2003-11-27 2004-11-25 Photoelectric conversion device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003398179 2003-11-27
JP2003398179 2003-11-27
JP2004340350A JP4780951B2 (en) 2003-11-27 2004-11-25 Photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2005183945A true JP2005183945A (en) 2005-07-07
JP4780951B2 JP4780951B2 (en) 2011-09-28

Family

ID=34797324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340350A Expired - Fee Related JP4780951B2 (en) 2003-11-27 2004-11-25 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP4780951B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250850A (en) * 2006-03-16 2007-09-27 Kyocera Corp Photoelectric conversion device
JP2008160059A (en) * 2006-11-27 2008-07-10 Kyocera Corp Photoelectric conversion device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266032A (en) * 1998-03-18 1999-09-28 Hitachi Ltd Condenser, heat collector, photo-detector having diffracting surface and photo-electric converter of artificial beams
JPH11317534A (en) * 1998-04-30 1999-11-16 Konica Corp Solar cell and manufacture thereof
JP2002299656A (en) * 2001-03-29 2002-10-11 Kyocera Corp Photoelectric transducing apparatus
JP2003101046A (en) * 2001-09-26 2003-04-04 Kyocera Corp Photoelectric transducer
JP2003317970A (en) * 2002-04-25 2003-11-07 Dainippon Printing Co Ltd Spherical organic el device
WO2003094248A1 (en) * 2002-05-02 2003-11-13 Josuke Nakata Light-receiving panel or light-emitting panel, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266032A (en) * 1998-03-18 1999-09-28 Hitachi Ltd Condenser, heat collector, photo-detector having diffracting surface and photo-electric converter of artificial beams
JPH11317534A (en) * 1998-04-30 1999-11-16 Konica Corp Solar cell and manufacture thereof
JP2002299656A (en) * 2001-03-29 2002-10-11 Kyocera Corp Photoelectric transducing apparatus
JP2003101046A (en) * 2001-09-26 2003-04-04 Kyocera Corp Photoelectric transducer
JP2003317970A (en) * 2002-04-25 2003-11-07 Dainippon Printing Co Ltd Spherical organic el device
WO2003094248A1 (en) * 2002-05-02 2003-11-13 Josuke Nakata Light-receiving panel or light-emitting panel, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250850A (en) * 2006-03-16 2007-09-27 Kyocera Corp Photoelectric conversion device
JP2008160059A (en) * 2006-11-27 2008-07-10 Kyocera Corp Photoelectric conversion device

Also Published As

Publication number Publication date
JP4780951B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
EP1968121B1 (en) Method for manufacturing single crystal silicon solar cell and single crystal silicon solar cell
CN101490852B (en) Hermetically sealed nonplanar solar cells
US20090293934A1 (en) Photoelectric Conversion Device
JPH0685299A (en) Solar cell module
JP2008091531A (en) Solar battery module
TW201126730A (en) Solar cell and method for manufacturing the same
TW200415798A (en) Solar cell and solar cell module using the same
WO2017217219A1 (en) Solar cell and production method therefor, and solar cell module
WO2011065571A1 (en) Photoelectric conversion module, method for manufacturing same, and power generation device
JP2000141531A (en) Solar battery cover film and its manufacture, and solar battery module using the cover film
JP5968244B2 (en) Photoelectric conversion module and manufacturing method thereof
JP4780951B2 (en) Photoelectric conversion device
WO2014050193A1 (en) Photoelectric conversion module
JP4969337B2 (en) Photoelectric conversion device
TW201031001A (en) Thin film type solar cell and method for manufacturing the same
JP2008277423A (en) Photoelectric conversion device
JP2001313401A (en) Photoelectric conversion device
JP2009094501A (en) Photoelectric conversion device
JP2008060207A (en) Photoelectric converter
JP2002016272A (en) Photoelectric conversion device
JP2007134440A (en) Photoelectric conversion device
JP2009224757A (en) Photoelectric conversion device
KR100972115B1 (en) Flexible thin film type solar cell and method for manufacturing the same
JP2004047615A (en) Photoelectric converter
JP2002076395A (en) Photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees