JPH11266032A - Condenser, heat collector, photo-detector having diffracting surface and photo-electric converter of artificial beams - Google Patents

Condenser, heat collector, photo-detector having diffracting surface and photo-electric converter of artificial beams

Info

Publication number
JPH11266032A
JPH11266032A JP10068392A JP6839298A JPH11266032A JP H11266032 A JPH11266032 A JP H11266032A JP 10068392 A JP10068392 A JP 10068392A JP 6839298 A JP6839298 A JP 6839298A JP H11266032 A JPH11266032 A JP H11266032A
Authority
JP
Japan
Prior art keywords
light
medium
light receiving
diffraction
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10068392A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Uematsu
強志 上松
Yoshinori Miyamura
芳徳 宮村
Mitsunori Ketsusako
光紀 蕨迫
Yoshiaki Yazawa
義昭 矢澤
Shinichi Muramatsu
信一 村松
Ken Tsutsui
謙 筒井
Hiroyuki Otsuka
寛之 大塚
Jiyunko Minemura
純子 峯邑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10068392A priority Critical patent/JPH11266032A/en
Publication of JPH11266032A publication Critical patent/JPH11266032A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To make feasible of simplifying the macroscopic structure of a condenser, by a method wherein the refractive index of a medium of a heat collector having a part thereof in contact with the medium is specified to exceed that of the outer part of photodetecting surface. SOLUTION: A cylindrical heat collector fitted to a photodetector of a condenser heats the water running in the cylinder by the energy of the condensed beams. Since a heat collector is used for the photodetectors 6, in order to prevent the heat from being externally radiated, a cover glass 11 and an adiabatic layer 10 using an air layer are provided on the surface while another insulating layer 23 made of urethane are provided on the backside. A diffracting surface 7 is formed by bonding a sheet in the structure holding an aluminum reflecting member between plastic made surface and backside protective material onto the backside of a plastic medium 5. In such a constitution, the condenser having multiple juxtaposed photodetectors in a simple structure can form a heat collecting module in high heat collecting efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回折面を持つ集光
装置、集熱装置、光検出器及び人工光の光電変繁装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light collecting device having a diffraction surface, a heat collecting device, a photodetector, and a device for photoelectrically converting artificial light.

【0002】[0002]

【従来の技術】受光面と、正反射面及びこの受光面と正
反射面とで囲まれた空間内に少なくともその一部が位置
するように設置された受光装置と、前記空間を充填して
いる媒体を有する集光装置の構造としては、例えば、
「ニューファミリー オブ 2−Dノンイメージング コ
ンセントレーターズ ザ コンパウンド トゥリアンギュ
ラー コンセントレーター( New family 2-D nonimagin
g concentrators the compound triangular concentrat
or)」、アプライドオプティックス(APPLIED OPTIC
S)、Vol.24、No.22(1985)、3872
〜3876頁に開示されている。このような従来構造で
は、図23(a)に示すように、入射光1が集光装置の
受光面4に入射し、入射光2に垂直な正反射面32で反
射すると、媒体5の屈折率に拘わらず反射光3は入射光
2と同じ光路を逆向きに通って受光面4から外部へ出て
しまう。
2. Description of the Related Art A light-receiving surface, a light-reflecting device installed so that at least a part thereof is located in a space surrounded by a regular reflection surface and the light-receiving surface and the regular reflection surface, and the space is filled. Examples of the structure of the light collecting device having a medium include:
"New Family 2-D nonimagin Concentrators The Compound Triangular Concentrator (New family 2-D nonimagin
g concentrators the compound triangular concentrat
or) ", APPLIED OPTIC
S), Vol. 24, No. 22 (1985), 3872
383876. In such a conventional structure, as shown in FIG. 23A, when the incident light 1 enters the light receiving surface 4 of the light condensing device and is reflected by the regular reflection surface 32 perpendicular to the incident light 2, the medium 5 is refracted. Regardless of the ratio, the reflected light 3 passes through the same optical path as the incident light 2 in the opposite direction and exits from the light receiving surface 4 to the outside.

【0003】これをさけるために、例えば、図23
(b)に示すように正反射面32を受光面4に対して傾
けて、集光装置に入射した光2が正反射面32で反射さ
れ、再び受光面4に入射する時の入射角33を大きくす
る。このような構造では、媒体5の屈折率を受光面4の
外部の屈折率より大きくすることにより、受光面で全反
射させることができる。このように傾斜面での正反射及
び受光面での全反射を利用して入射光を集光装置の内部
に閉じ込めて最終的に受光装置6に入射させることがで
きる。しかし、図23(c)のように、入射光1の入射
角度によっては反射光の受光面4への入射角33を十分
に大きくすることができずに集光装置外部に光が逃げて
しまう。
In order to avoid this, for example, FIG.
As shown in (b), the specular reflection surface 32 is inclined with respect to the light receiving surface 4, and the light 2 incident on the light collector is reflected by the specular reflection surface 32 and is again incident on the light receiving surface 4 at an incident angle 33. To increase. In such a structure, by making the refractive index of the medium 5 larger than the refractive index outside the light receiving surface 4, total reflection can be performed on the light receiving surface. As described above, the incident light can be confined inside the light condensing device using the regular reflection on the inclined surface and the total reflection on the light receiving surface, and can be finally incident on the light receiving device 6. However, as shown in FIG. 23C, the incident angle 33 of the reflected light on the light receiving surface 4 cannot be made sufficiently large depending on the incident angle of the incident light 1, and the light escapes outside the light collecting device. .

【0004】[0004]

【発明が解決しようとする課題】前記従来技術では、正
反射面を用いているため、受光装置の受光面の面積に対
する集光装置の入射面の面積の比、すなわち、集光倍率
を大きくした場合に光利用効率を高めることが困難であ
る。
In the above prior art, since the regular reflection surface is used, the ratio of the area of the light receiving surface of the light receiving device to the area of the incident surface of the light collecting device, that is, the light collecting magnification is increased. In such cases, it is difficult to increase the light use efficiency.

【0005】本発明の目的は、集光装置の巨視的な構造
を簡便化することが可能な技術を提供することにある。
An object of the present invention is to provide a technique capable of simplifying a macroscopic structure of a light collecting device.

【0006】本発明の他の目的は、集光装置の光利用効
率を高く保ったまま集光倍率を高めることが可能な技術
を提供することにある。
Another object of the present invention is to provide a technique capable of increasing the light collection magnification while keeping the light use efficiency of the light collection device high.

【0007】本発明の前記ならびにその他の目的及び新
規な特徴は、本明細書の記述及び添付図面によって明ら
かになるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0008】[0008]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を簡単に説明すれば、以
下のとおりである。
The outline of a typical invention among the inventions disclosed in the present application will be briefly described as follows.

【0009】(1)受光面と、回折面と、この受光面と
回折面とで挟まれた空間を充填する媒体と、少なくとも
その表面の一部が前記媒体に接する受光装置を有し、前
記媒体の屈折率が前記受光面の外部の屈折率より大きい
集光装置である。
(1) A light-receiving surface, a diffraction surface, a medium filling a space between the light-receiving surface and the diffraction surface, and a light-receiving device in which at least a part of the surface is in contact with the medium. A light collecting device in which the refractive index of the medium is larger than the refractive index outside the light receiving surface.

【0010】(2)受光面と、回折面と、この受光面と
回折面とで挟まれた空間を充填する媒体と、少なくとも
その表面の一部が前記媒体に接する集熱装置であって、
前記媒体の屈折率が前記受光面の外部の屈折率より大き
いものである。
(2) A heat collecting device wherein a light receiving surface, a diffractive surface, a medium filling a space between the light receiving surface and the diffractive surface, and at least a part of the surface contacting the medium,
The refractive index of the medium is larger than the refractive index outside the light receiving surface.

【0011】(3)受光面と、回折面と、この受光面と
回折面とで挟まれた空間を充填する媒体と、少なくとも
その表面の一部が前記媒体に接する光検出器(光センサ
ー)であって、前記媒体の屈折率が前記受光面の外部の
屈折率より大きいものである。
(3) A light receiving surface, a diffractive surface, a medium filling a space between the light receiving surface and the diffractive surface, and a photodetector (optical sensor) in which at least a part of the surface is in contact with the medium. Wherein the refractive index of the medium is larger than the refractive index outside the light receiving surface.

【0012】(4)受光面と、回折面と、この受光面と
回折面とで挟まれた空間を充填する媒体と、少なくとも
その表面の一部が前記媒体に接する人工光の光電変繁装
置であって、前記媒体の屈折率が前記受光面の外部の屈
折率より大きいものである。
(4) A light-receiving surface, a diffraction surface, a medium filling a space between the light-receiving surface and the diffraction surface, and a device for photoelectrically converting artificial light at least a part of which is in contact with the medium. Wherein the refractive index of the medium is larger than the refractive index outside the light receiving surface.

【0013】(5)前記回折面が反射回折面である。(5) The diffraction surface is a reflection diffraction surface.

【0014】(6)前記反射回折面がブレーズド回折面
である。
(6) The reflection diffraction surface is a blazed diffraction surface.

【0015】(7)前記ブレーズド回折面が非対称なブ
レーズ角を持つ。
(7) The blazed diffraction surface has an asymmetric blaze angle.

【0016】(8)前記ブレーズド回折面が回折面の左
右に対称に配置された構造である。
(8) The blazed diffraction surface is arranged symmetrically on the left and right sides of the diffraction surface.

【0017】(9)前記集光装置、集熱装置、光検出
器、人工光の光変換装置のうちいずかの複数個をモジュ
ール化したものである。
(9) A plurality of any one of the light collecting device, the heat collecting device, the light detector, and the light converting device for artificial light is modularized.

【0018】(10)前記(9)において、前記媒体
は、前記集光装置、集熱装置、光検出器、人工光の光変
換装置のうちいずかの複数個の装置間で連続している。
(10) In the above (9), the medium is continuously connected between any one of the plurality of light collecting devices, heat collecting devices, photodetectors, and artificial light light converting devices. I have.

【0019】前記手段によれば、前記従来技術の構造に
おいて、正反射面の代わりに回折面を用いて前記集光倍
率を高めることができる。
According to the means, in the structure of the prior art, the light-collecting magnification can be increased by using a diffraction surface instead of a regular reflection surface.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態(実施
例)を図面を参照して詳細に説明する。
Embodiments of the present invention (embodiments) will be described below in detail with reference to the drawings.

【0021】本発明の実施の形態は、受光面と、回折面
と、この受光面と回折面とで挟まれた空間を充填する媒
体と、少なくともその表面の一部が前記媒体に接する受
光装置、集熱装置、光検出器、人工光の光電変換装置の
うちいずれかであって、前記媒体の屈折率を前記受光面
の外部の屈折率より大きくしたものである。
According to an embodiment of the present invention, a light receiving surface, a diffraction surface, a medium filling a space between the light receiving surface and the diffraction surface, and a light receiving device in which at least a part of the surface is in contact with the medium , A heat collecting device, a photodetector, or a photoelectric conversion device for artificial light, wherein the refractive index of the medium is larger than the refractive index outside the light receiving surface.

【0022】前記人工光の光電変換装置は、ランプ、レ
ーザー、発光ダイオード、高温に熱された物体からの熱
線などの人工光を入射光として用い、これを受光して電
力に変換する光電変換装置である。
The artificial light photoelectric conversion device uses artificial light such as a lamp, a laser, a light emitting diode, or a heat ray from an object heated to a high temperature as incident light, receives the light, and converts it into electric power. It is.

【0023】図1は本発明の実施形態の集光装置の概略
構成を示す断面図である。
FIG. 1 is a sectional view showing a schematic configuration of a light collecting device according to an embodiment of the present invention.

【0024】本実施形態の集光装置は、図1(a)に示
す断面を持つ構造のように、回折面7を用いた集光装置
においては、回折面に入射した光2は面の正反射方向
(0次光方向)のみに反射するのではなく、回折面7の
微視的構造と入射光1の波長に応じてその1次、−1
次、2次、−2次等の方向に反射する。よって、回折面
7に垂直に入射する場合でも、反射光3は全てが入射光
2と同じ光路を通るのではなく回折面7の0次、1次、
−1次、2次、−2次等のそれぞれの方向に分かれて反
射される。よって、適切な回折面7を設計することによ
り反射光3が受光面4で内側に全反射し集光装置内に効
率よく取り込むことができる。
In the light-collecting device of this embodiment, as in the structure having a cross section shown in FIG. 1A, in the light-collecting device using the diffraction surface 7, the light 2 incident on the diffraction surface has a positive surface. Rather than reflecting only in the reflection direction (0th-order light direction), the first-order, -1 according to the microscopic structure of the diffraction surface 7 and the wavelength of the incident light 1
Next, the light is reflected in the directions of secondary, secondary, etc. Therefore, even when the light is incident perpendicularly to the diffraction surface 7, the reflected light 3 does not all pass through the same optical path as the incident light 2, but the 0th order, 1st order,
The light is divided and reflected in respective directions such as -1st order, 2nd order, and -2nd order. Therefore, by designing an appropriate diffractive surface 7, the reflected light 3 is totally reflected inward on the light receiving surface 4 and can be efficiently taken into the light collecting device.

【0025】同様に、図1(b)に示すように、受光面
4に斜めに光1が入射する場合も、反射光3が受光面4
で全反射するように設計することができる。また、図1
(c)のように、全反射した光がすぐに受光装置6に入
射しなくても、再び受光面4で内側に全反射し集光装置
内に光を閉じ込めることができる。
Similarly, as shown in FIG. 1B, when the light 1 is obliquely incident on the light receiving surface 4, the reflected light 3 is also reflected by the light receiving surface 4.
Can be designed to be totally reflected. FIG.
As shown in (c), even if the totally reflected light does not immediately enter the light receiving device 6, the light can be totally reflected again on the light receiving surface 4 and confined in the light collecting device.

【0026】前記説明では、入射光2が回折した場合の
それぞれの次数の光のエネルギー分布について言及しな
かったが、微視的に見た回折面表面の形状が図2(b)
に示すような場合は、巨視的に見た回折面7に対する正
反射方向に近い方向を持つ次数の光の成分が大きくな
る。よって、受光面4と回折面7を平行に配した場合は
正反射方向に反射される光成分が大きく、これを防ぐた
めには、例えば、微視的な回折面表面形状の断面形状が
図2(c)に示す対称な形状や図2(d)に示す非対称
な形状の三角波状になったブレーズド回折面が有効であ
る。
In the above description, the energy distribution of the light of each order when the incident light 2 is diffracted is not mentioned, but the shape of the surface of the diffraction surface viewed microscopically is shown in FIG.
In the case shown in (1), the component of the light of the order having a direction close to the specular reflection direction with respect to the diffraction surface 7 macroscopically becomes large. Therefore, when the light receiving surface 4 and the diffraction surface 7 are arranged in parallel, a large light component is reflected in the specular reflection direction. A blazed diffraction surface having a symmetrical shape shown in FIG. 2C or an asymmetrical shape shown in FIG.

【0027】当然ながら、これらの回折面7は巨視的に
は平面や曲面形状であり、取り扱う光の波長の長さ程度
の微視的な範囲で、繰り返しピッチ9を持つ周期的な三
角形状の格子溝を持つ。また、回折効率を高く保つため
にはせいぜい10次以下の回折光を用いる必要がある。
よって、回折面の繰り返しピッチ9は媒体中の光の波長
の10倍程度以下である必要がある。また、望ましくは
3次以下の回折光を用いる必要がある。
Naturally, these diffractive surfaces 7 are macroscopically flat or curved, and have a periodic triangular shape having a repetitive pitch 9 within a microscopic range of about the wavelength of the light to be handled. Has lattice grooves. Further, in order to keep the diffraction efficiency high, it is necessary to use diffracted light of order 10 or less at most.
Therefore, the repetition pitch 9 of the diffraction surface needs to be about 10 times or less the wavelength of light in the medium. Further, it is desirable to use the third or lower order diffracted light.

【0028】集光装置の構成としては、図3(a)に示
すように、直方体断面を持つ平板状の受光装置6が受光
面4と回折面7の間に設置され、回折面7と受光面4で
囲まれた空間は媒体5で満たされた構造や、図3(b)
に示すように、円状断面を持つ円筒状や球状の受光装置
6が受光面4と回折面7の間に設置された構造などがあ
る。
As shown in FIG. 3 (a), a light receiving device 6 having a rectangular parallelepiped cross section is provided between the light receiving surface 4 and the diffraction surface 7 as shown in FIG. The space surrounded by the surface 4 is the structure filled with the medium 5 and FIG.
As shown in FIG. 1, there is a structure in which a cylindrical or spherical light receiving device 6 having a circular cross section is installed between the light receiving surface 4 and the diffraction surface 7.

【0029】また、前記受光装置6が集熱装置である場
合は、図4(a)、(b)に示すように、集光表面にカ
バー11を設置し、このカバー11と受光面4の間に空
気などの断熱層10を挿入することにより、集熱効率を
高めることができる。さらに、回折面7の外側に断熱性
を備えた支持体12を設けることにより断熱性及び強度
を向上させることができる。
When the light receiving device 6 is a heat collecting device, a cover 11 is provided on the light condensing surface as shown in FIGS. The heat collection efficiency can be increased by inserting the heat insulating layer 10 such as air between them. Further, by providing the support 12 having heat insulating property outside the diffraction surface 7, heat insulating property and strength can be improved.

【0030】図5(a)は反射曲面13をもつ例を示
す。この場合は、直方体断面を持つ受光装置6は、受光
面と平行に受光面側に設置されている。回折面7で反射
された光は、直接または反射曲面13に反射されて受光
装置6に入射する。このような形状では、反射曲面13
は正反射面でよいが、回折面であれば更に有効に集光す
ることができる。また、図5(b)に示すように、回折
面7を受光面4に対して斜めに設置することにより集光
効率を高めることができる。
FIG. 5A shows an example having a reflection curved surface 13. In this case, the light receiving device 6 having a rectangular parallelepiped cross section is installed on the light receiving surface side in parallel with the light receiving surface. The light reflected by the diffraction surface 7 enters the light receiving device 6 directly or by being reflected by the reflection curved surface 13. In such a shape, the reflection curved surface 13
May be a regular reflection surface, but if it is a diffraction surface, the light can be collected more effectively. In addition, as shown in FIG. 5B, the light-collecting efficiency can be increased by arranging the diffraction surface 7 at an angle to the light-receiving surface 4.

【0031】図6(a)は平坦な受光面4の下方に斜面
状の回折面7を配し、その回折面の格子溝の方向14を
傾斜方向と直角な方向に形成した構造を示す。この構造
では回折面7の表面8が微視的に図6(c)に示すよう
な断面を持つ。図6(b)には平坦な回折面7の上方に
斜面状の受光面4を配した構造を示す。このように2次
元的な構造の集光装置で高い集光効率を得ることができ
る。また、図7(a)、(b)に示すように、斜面に沿
った方向に回折溝を形成することにより、受光面4と斜
面7により構成されるプリズム構造による集光効果と、
回折による集光効果を合わせ持つ構造にすることができ
る。この構造では回折面7の表面8が微視的に図7
(c)に示すような断面を持つ。図6、図7に示すこれ
らの構造においては受光装置6の形状として板状のもの
を示したが、図8に示すような円筒状やさらには球、直
方体などの形状でもよい。また、これらの表面に凹凸な
どの2次的な構造があってもかまわないことはいうまで
もない。
FIG. 6A shows a structure in which an inclined diffraction surface 7 is arranged below the flat light receiving surface 4, and the direction 14 of the grating grooves of the diffraction surface is formed in a direction perpendicular to the inclination direction. In this structure, the surface 8 of the diffraction surface 7 has a microscopic cross section as shown in FIG. FIG. 6B shows a structure in which an inclined light receiving surface 4 is arranged above a flat diffraction surface 7. Thus, a high light-collecting efficiency can be obtained with a light-collecting device having a two-dimensional structure. Further, as shown in FIGS. 7A and 7B, by forming a diffraction groove in a direction along the slope, the light collecting effect by the prism structure constituted by the light receiving surface 4 and the slope 7 is obtained.
A structure having a light collecting effect by diffraction can be obtained. In this structure, the surface 8 of the diffraction surface 7 is microscopically shown in FIG.
It has a cross section as shown in FIG. In these structures shown in FIGS. 6 and 7, the light receiving device 6 has a plate shape, but may have a cylindrical shape as shown in FIG. 8, or a sphere, a rectangular parallelepiped, or the like. Needless to say, these surfaces may have a secondary structure such as unevenness.

【0032】回折面の微視的な構造を図9に示す。この
図9の構造のように、左右対称な構成になっている場合
は、中心から右側15に入射した光は右側の受光装置6
に、中心から左側16に入射した光は左側の受光装置6
に入射することにより集光効率を高めることができる。
このためには、回折面表面8の微視的な形状を図9のよ
うに個々の非対称な三角形状を左右で対称に配置した形
状とすることが望ましい。また、図10に示すような構
造においても、回折面表面8の微視的な形状を装置の中
央から右側と左側で変えて構成することが望ましい。ま
た、図11(a)に示すように、回折溝が斜面に沿った
方向に形成されている場合は、図11(b)(図11
(a)のA−A’断面形状)に示すように、装置中央の
左右で回折溝の微視的な断面形状を変えて回折光をより
有効に受光装置6に導くブレーズ角とすることが望まし
い。
FIG. 9 shows a microscopic structure of the diffraction surface. In the case of a symmetrical configuration as in the structure of FIG. 9, the light incident on the right side 15 from the center is
And the light incident on the left side 16 from the center is the light receiving device 6 on the left side.
The light collection efficiency can be increased by entering the light.
For this purpose, it is desirable that the microscopic shape of the diffraction surface 8 be a shape in which individual asymmetric triangular shapes are symmetrically arranged on the left and right as shown in FIG. Also in the structure as shown in FIG. 10, it is desirable to change the microscopic shape of the diffraction surface 8 from the center to the right and left sides of the device. In addition, as shown in FIG. 11A, when the diffraction groove is formed in a direction along the slope, FIG.
As shown in (A) AA ′ cross-sectional shape), the blaze angle at which the diffracted light is guided to the light receiving device 6 more effectively by changing the microscopic cross-sectional shape of the diffraction groove on the left and right of the center of the device. desirable.

【0033】図12に回折面7が波状をした構造を示
す。この場合は回折面7の斜面に沿った方向に回折溝1
4がある構造が望ましい。また、受光装置6は図12
(a)のように回折面7の波形状に沿った方向に設置さ
れていても、図12(b)に示すように、直角な方向に
設置されていてもよい。また、これらの間の方向に設置
されていてもよい。図13(a)、(b)に受光面4の
断面が曲線状になっている構造を示す。このように、集
光装置の受光面4は必ずしも平面である必要はない。ま
た、回折面7が図13(c)、(d)のような断面形状
を持っていてもよい。これらの構造を紙面前後方向に伸
ばした2次元構造や、回転軸30の回りに回転した構造
を持つ集光装置も考えられる。これらにおいては、回折
溝の方向14は回折面7の断面に沿った方向や円周方向
に沿った方向などが考えられる。
FIG. 12 shows a structure in which the diffraction surface 7 has a wavy shape. In this case, the diffraction grooves 1 extend in the direction along the slope of the diffraction surface 7.
4 is desirable. Also, the light receiving device 6 is shown in FIG.
It may be installed in a direction along the wave shape of the diffraction surface 7 as in (a), or may be installed in a direction perpendicular to the direction as shown in FIG. Further, it may be installed in a direction between them. FIGS. 13A and 13B show a structure in which the cross section of the light receiving surface 4 is curved. As described above, the light receiving surface 4 of the light collector does not necessarily have to be flat. Further, the diffraction surface 7 may have a cross-sectional shape as shown in FIGS. A two-dimensional structure obtained by extending these structures in the front-rear direction of the drawing, or a light condensing device having a structure rotated around the rotation axis 30 is also conceivable. In these, the direction 14 of the diffraction groove may be a direction along the cross section of the diffraction surface 7 or a direction along the circumferential direction.

【0034】図14(a)、(b)は、回折面を上から
眺めた場合に、回折溝が2次元的に配置されている例を
示す。このように配置することにより受光装置6の側面
のみでなく、その回りから受光装置に向かって光を集め
ることができるため集光倍率を高めることができる。ま
た、図15に示すように、複数の集光装置をモジュール
化することにより、大面積の集光モジュールを形成する
ことができる。また、図16に示すように、異なる方向
に伸びる回折溝14を組み合わせた2次元回折格子を用
いることにより受光装置6の回りに入射した光を2次元
的に有効に集めることができる。
FIGS. 14A and 14B show examples in which diffraction grooves are two-dimensionally arranged when the diffraction surface is viewed from above. By arranging in this manner, light can be collected not only from the side surface of the light receiving device 6 but also from the periphery thereof toward the light receiving device 6, so that the light collection magnification can be increased. Further, as shown in FIG. 15, a large-area light-collecting module can be formed by modularizing a plurality of light-collecting devices. In addition, as shown in FIG. 16, by using a two-dimensional diffraction grating in which diffraction grooves 14 extending in different directions are combined, light incident around the light receiving device 6 can be effectively collected two-dimensionally.

【0035】図17は回折面の断面構造を示す。最も単
純には、図17(a)に示すように、媒体5の回折面側
に所望の微視的な凹凸を持ち、この表面に金属などから
なる反射材料層17を持つ構造がある。また、図17
(b)のように反射材料層17の裏面に裏面保護層18
を持つ構造や、図17(c)のように、反射材料層17
と媒体5の回折面側の間に所望の中間層19を設けた構
造がある。この中間層19は、反射材料層17を媒体5
に接着させるための接着剤や、反射材料層17の保護
材、さらに、反射材料層17の反射率を高めるために所
望の屈折率を持った中間層であってもよい。図17
(d)は媒体5の裏面が微視的に平坦で中間層19も媒
体5側で平坦である場合を示す。また、図17(e)に
は中間層19と媒体5の間に接着層20を持つ構造を示
す。さらに、これらの構造に各層を接着するための接着
材の層や保護材の層などが適時追加された構造において
も前記と同様の集光効果が得られることはいうまでもな
い。
FIG. 17 shows a sectional structure of the diffraction surface. In the simplest case, as shown in FIG. 17A, there is a structure having a desired microscopic unevenness on the diffraction surface side of the medium 5 and a reflective material layer 17 made of metal or the like on this surface. FIG.
As shown in (b), the back surface protective layer 18 is formed on the back surface of the reflective material layer 17.
Or a reflective material layer 17 as shown in FIG.
There is a structure in which a desired intermediate layer 19 is provided between the medium 5 and the diffraction surface side. This intermediate layer 19 is formed by applying the reflective material layer 17 to the medium 5.
May be used as an adhesive for adhering to the reflective material layer 17, a protective material for the reflective material layer 17, and an intermediate layer having a desired refractive index for increasing the reflectance of the reflective material layer 17. FIG.
(D) shows a case where the back surface of the medium 5 is microscopically flat and the intermediate layer 19 is flat on the medium 5 side. FIG. 17E shows a structure having an adhesive layer 20 between the intermediate layer 19 and the medium 5. Furthermore, it goes without saying that the same light-collecting effect as described above can be obtained even in a structure in which an adhesive layer for bonding each layer to the structure or a protective material layer is appropriately added.

【0036】図3(a)に示した構造においては、受光
装置6が集光装置内に設置されているため実際に作製す
る場合に受光装置16を集光装置内に設置するための手
順が複雑になることが考えられる。これは、例えば、図
18(a)に示すように、受光装置が集光装置表面に設
置された構造を用いることにより回避することができ
る。この場合は、受光装置6の表面に光を導くための第
2の正反射鏡35が必要である。また、受光装置が設置
されていない端面には第1の正反射面を置くことが望ま
しい。また、これらの正反射面のかわりに回折面を用い
ることにより受光装置に入射する光の入射角度を揃える
ことができるため、受光装置での光の補足率が更に上昇
する。
In the structure shown in FIG. 3A, since the light receiving device 6 is installed in the light collecting device, the procedure for installing the light receiving device 16 in the light collecting device when actually manufacturing the light receiving device 6 is described. It can be complicated. This can be avoided, for example, by using a structure in which the light receiving device is installed on the surface of the light collecting device as shown in FIG. In this case, a second regular reflection mirror 35 for guiding light to the surface of the light receiving device 6 is required. In addition, it is desirable to place a first specular reflection surface on the end surface where the light receiving device is not installed. Further, by using a diffractive surface instead of the regular reflection surface, the incident angles of the light incident on the light receiving device can be made uniform, so that the light capturing rate of the light receiving device further increases.

【0037】これまでに説明したような集光装置に入射
する光の波長が、単一または狭い範囲にある、例えば、
レーザー光線や発光ダイオードからの光などの場合は、
本発明の回折面を用いた集光装置で集められた光は平行
光線に近くなる。そこで、図19(a)、(b)に示す
ように、集光装置の端面に出射面37を設けて、ここか
ら出射した光36をレンズで集光したり、出射面の形状
をレンズ状にして集光することにより更に集光倍率を高
めることができる。
The wavelength of light incident on the light condensing device as described above may be single or narrow, for example,
In the case of laser light or light from a light emitting diode,
The light collected by the light collecting device using the diffractive surface of the present invention is close to a parallel light beam. Therefore, as shown in FIGS. 19A and 19B, an exit surface 37 is provided on the end face of the light condensing device, and the light 36 emitted from the end surface is condensed by a lens, or the shape of the exit surface is changed to a lens shape. By condensing the light, the light condensing magnification can be further increased.

【0038】(実施例1)図20は本発明の実施例1の
集光装置及び集光モジュールの概略構成を示す図であ
る。本実施例1の集光装置は、図20に示すように、太
陽光を円筒状の受光装置に集めてこの中を流れる水を加
熱することを目的として設計した。
Embodiment 1 FIG. 20 is a view showing a schematic configuration of a light collecting device and a light collecting module according to a first embodiment of the present invention. As shown in FIG. 20, the light collecting device of the first embodiment is designed to collect sunlight in a cylindrical light receiving device and heat water flowing through the device.

【0039】まず、集光装置としては図20(a)に示
す構造を用いた。受光装置6には円筒状の集熱装置を用
い、集光した光のエネルギーで円筒内部に流れる水を加
熱した。
First, the structure shown in FIG. 20A was used as the light collecting device. As the light receiving device 6, a cylindrical heat collecting device was used, and water flowing inside the cylinder was heated by the energy of the collected light.

【0040】このように受光装置6として集熱装置を用
いたので、加熱した熱が外部に逃げるのを防止するため
に、表面にカバーガラス11、空気層を用いた断熱層1
0を設け、裏面には発泡ウレタンからなる断熱層23を
設けた。回折面7は図17(d)に示すようなアルミの
反射材17をプラスチックからなる表面保護材19及び
裏面保護材18ではさんだ構造のシートを媒体5の裏面
に接着することにより形成した。媒体5には熱伝導率が
小さいプラスチックを用いた。
As described above, since the heat collecting device is used as the light receiving device 6, in order to prevent the heated heat from escaping to the outside, the cover glass 11 on the surface and the heat insulating layer 1 using the air layer are used.
0, and a heat insulating layer 23 made of urethane foam was provided on the back surface. The diffractive surface 7 is formed by bonding a sheet having a structure in which an aluminum reflector 17 as shown in FIG. As the medium 5, a plastic having a low thermal conductivity was used.

【0041】プラスチックの屈折率は約1.5であるの
で、入射光が回折面で反射して再び受光面に入射すると
きの入射角がarcsin(1/1.5)=41.8度以
下になる必要がある。このためには回折面のブレーズ角
をこれ以上にすることが望ましいため、本実施例1では
ブレーズ角を45度とした。
Since the refractive index of the plastic is about 1.5, the incident angle when the incident light is reflected on the diffraction surface and reenters the light receiving surface is arcsin (1 / 1.5) = 41.8 degrees or less. Need to be For this purpose, it is desirable that the blaze angle of the diffractive surface is larger than this. Therefore, in the first embodiment, the blaze angle is set to 45 degrees.

【0042】太陽光線は波長が約300nmの紫外光か
ら数μmの遠赤外光まで幅広い波長を持つ。この光を回
折によって有効に集光するためには、回折角を大きくす
ることが困難な短波長光について十分な回折角がとれる
ように設計する必要がある。媒体5の屈折率は約1.5
であるので、媒体内の光の波長は空気中の波長の1.5
分の1になる。
Sunlight has a wide wavelength range from ultraviolet light having a wavelength of about 300 nm to far infrared light having a wavelength of several μm. In order to effectively condense this light by diffraction, it is necessary to design such that a sufficient diffraction angle can be obtained for short wavelength light for which it is difficult to increase the diffraction angle. The refractive index of the medium 5 is about 1.5
Therefore, the wavelength of light in the medium is 1.5 times the wavelength in air.
It's a fraction.

【0043】太陽光線の最短波長は約400nmである
ので、最短波長に関しては2次回折光を用いることと
し、回折面7の微視的な凹凸の繰り返しピッチをプラス
チック中の波長400nm/1.5の2倍の533nmと
した。
Since the shortest wavelength of the sunlight is about 400 nm, the second-order diffracted light is used for the shortest wavelength, and the repetition pitch of the microscopic unevenness on the diffraction surface 7 is set to the wavelength of 400 nm / 1.5 in plastic. It was 533 nm, which is twice as large.

【0044】このような受光装置が複数個連なった集光
装置の周囲にアルミ製のフレーム21を形成し、更に裏
面にプラスチック製の支持体12を配した。この構造に
より、従来のような段差の大きい斜面を用いた集光装置
に比べて構造が簡便で集光効率の高い集光モジュールを
形成することができた。
An aluminum frame 21 was formed around a light-collecting device in which a plurality of such light receiving devices were connected, and a plastic support 12 was disposed on the back surface. With this structure, a light-collecting module having a simple structure and high light-collecting efficiency can be formed as compared with a conventional light-collecting device using a slope having a large step.

【0045】(実施例2)図21は本発明の実施例2の
集光装置及び集光モジュールの概略構成を示す図であ
る。本実施例2の集光装置は、人工光である波長106
4nmのレーザー光を板状の光電変換作用を有する受光
装置6に集めて、電力を取り出すことを目的として設計
した。
(Embodiment 2) FIG. 21 is a view showing a schematic configuration of a light collecting device and a light collecting module according to Embodiment 2 of the present invention. The condensing device according to the second embodiment has a wavelength of 106
The laser light of 4 nm was collected in a light receiving device 6 having a plate-like photoelectric conversion function, and designed to extract electric power.

【0046】まず、集光装置としては、図21(a)に
示す構造を用いた。受光装置6には板状の半導体を用い
た光電変換装置を用い、集光した光のエネルギーを電力
に変換し、受光装置6に連続した部分31に設けられた
電極から電力を外部に取り出した。媒体5にはガラスを
用いた。媒体5の屈折率は約1.5であるので、回折面
7の微視的な凹凸の繰り返しピッチをガラス中の入射光
の波長1064nm/1.5=709nmとした。
First, the structure shown in FIG. 21A was used as the light collecting device. A photoelectric conversion device using a plate-shaped semiconductor was used as the light receiving device 6, the energy of the collected light was converted into electric power, and the electric power was extracted to the outside from the electrode provided in the portion 31 continuous with the light receiving device 6. . Glass was used for the medium 5. Since the refractive index of the medium 5 is about 1.5, the repetition pitch of the microscopic unevenness on the diffraction surface 7 was set to the wavelength of incident light in the glass of 1064 nm / 1.5 = 709 nm.

【0047】このような受光装置6を図21(b)のよ
うに複数個連続して配置し、周囲にアルミ製のフレーム
21を形成し、更に表面カバーガラス22を置いた。受
光装置6で発生した電力は、回折面外部に位置する受光
装置6に連続した部分31上に設けられた第1の電極2
4と第2の電極25を通して第1の配線26と第2の配
線27から取り出せる構造とした。さらに、裏面にはプ
ラスチックからなる裏面保護を兼ねた支持体12及び電
極部の保護材28を設けた。
A plurality of such light receiving devices 6 were arranged continuously as shown in FIG. 21B, an aluminum frame 21 was formed around the light receiving device 6, and a front cover glass 22 was further placed. The power generated by the light receiving device 6 is applied to the first electrode 2 provided on the portion 31 that is located outside the diffraction surface and is continuous with the light receiving device 6.
4 and the second wiring 25, the structure can be taken out from the first wiring 26 and the second wiring 27. Further, on the back surface, a support 12 made of plastic and also protecting the back surface and a protective material 28 for the electrode portion were provided.

【0048】この構造により、巨視的な構造がシンプル
でかつ集光効率の高い集光モジュールを形成することが
できた。光電変換装置としては半導体装置を用いたもの
や光化学反応を用いたものなどがあるが、本発明の効果
は光電変換装置の種類によらないことはいうまでもな
い。
With this structure, a light-collecting module having a simple macroscopic structure and high light-collecting efficiency could be formed. Examples of the photoelectric conversion device include a device using a semiconductor device and a device using a photochemical reaction, but it goes without saying that the effect of the present invention does not depend on the type of the photoelectric conversion device.

【0049】(実施例3)図22は本発明の実施例3の
集光装置及び集光モジュールの概略構成を示す図であ
る。本実施例3の集光装置は、波長900〜1000n
mの光を発生する発光ダイオードからの光を板状の光電
変換作用を有する受光装置6に集めて、電気信号を取り
出すことを目的として設計した。
(Embodiment 3) FIG. 22 is a view showing a schematic configuration of a light collecting device and a light collecting module according to Embodiment 3 of the present invention. The light collecting device of the third embodiment has a wavelength of 900 to 1000 n.
The light from the light emitting diode which generates m light is collected by the light receiving device 6 having a plate-like photoelectric conversion function and designed to extract an electric signal.

【0050】この実施例3の受光装置(光検出器:光セ
ンサー)6しては、Si、GaAs、GaAsP、G
e、InGaAsなどの半導体を用いたフォトダイオー
ド、ピンポトダイオード、アバランシェホトダイオー
ド、ホトトランジスタなどやCdS、PbS、PbSe
などを用いた光導電素子がある。
As the light receiving device (photodetector: photosensor) 6 of the third embodiment, Si, GaAs, GaAsP, G
e, a photodiode using a semiconductor such as InGaAs, a pin photodiode, an avalanche photodiode, a phototransistor, or CdS, PbS, PbSe.
There is a photoconductive element using such a method.

【0051】まず、集光装置としては図22(a)に示
す構造を用いた。受光装置6には板状の半導体を用いた
光電変換装置を用い、集光した光を電気信号に変換し、
受光装置6の裏面に設けられた電極から電気信号を外部
に取り出した。媒体5にはガラスを用いた。媒体5の屈
折率は約1.5である。3次回折光までを用いることと
し、回折面7の微視的な凹凸の繰り返しピッチをガラス
中の入射光の短い波長900nm/1.5×3=1800
nmとした。
First, the structure shown in FIG. 22A was used as the light collecting device. A photoelectric conversion device using a plate-shaped semiconductor is used as the light receiving device 6, and the collected light is converted into an electric signal.
An electric signal was taken out from an electrode provided on the back surface of the light receiving device 6. Glass was used for the medium 5. The refractive index of the medium 5 is about 1.5. Up to the third-order diffracted light is used, and the repetition pitch of the microscopic unevenness on the diffractive surface 7 is set to a short wavelength 900 nm / 1.5 × 3 = 1800 of incident light in glass.
nm.

【0052】このような受光装置6を図22(b)のよ
うに複数個連続して配置し、周囲にアルミ製のフレーム
21を形成した。受光装置6で発生した電気信号は、受
光装置裏面に設けられた第1の電極24と第2の電極2
5を通して第1の配線26と第2の配線27から取り出
せる構造とした。また、裏面にはプラスチックからなる
保護材28を設けた。このモジュールにおいては、両面
反射板を用いて第1の反射面34と第2の反射面35を
1つの反射板で形成した。
A plurality of such light receiving devices 6 were arranged continuously as shown in FIG. 22B, and an aluminum frame 21 was formed around the light receiving devices. The electric signal generated by the light receiving device 6 is divided into a first electrode 24 and a second electrode 2 provided on the back surface of the light receiving device.
5, the structure can be taken out from the first wiring 26 and the second wiring 27. Further, a protective material 28 made of plastic was provided on the back surface. In this module, the first reflection surface 34 and the second reflection surface 35 were formed by one reflection plate using a double-sided reflection plate.

【0053】この構造により、巨視的な構造がシンプル
でかつ集光効率の高い集光モジュールを形成することが
できた。光電変換装置としては半導体装置を用いたもの
や光化学反応を用いたものなどがあるが、本発明の効果
は光電変換装置の種類によらないことは云うまでもな
い。
With this structure, a light-collecting module having a simple macroscopic structure and high light-collecting efficiency could be formed. Examples of the photoelectric conversion device include a device using a semiconductor device and a device using a photochemical reaction. However, it goes without saying that the effect of the present invention does not depend on the type of the photoelectric conversion device.

【0054】これまでに説明した回折面表面の微視的な
構造は、図示した形状と完全に一致する必要はなく、回
折に影響を与えない程度の凹凸を持っていたりしてもよ
い。また、実際にこれらの面を作製する場合には工作精
度の制限により形状が崩れることがあるが、これらの崩
れが光の回折を妨げない程度であれば、本発明の効果が
得られることは云うまでもない。また、これらの回折面
は、例えば、型押し法でレプリカを作製することにより
簡便に作成することができる。
The microscopic structure of the diffractive surface described so far does not need to completely match the illustrated shape, and may have irregularities that do not affect the diffraction. In addition, when actually manufacturing these surfaces, the shape may be deformed due to the limitation of the working accuracy, but if the collapse does not hinder the diffraction of light, the effect of the present invention is not obtained. Needless to say. Further, these diffraction surfaces can be easily formed by, for example, forming replicas by an embossing method.

【0055】以上、本発明を実施形態(実施例)に基づ
き具体的に説明したが、本発明は前記実施形態(実施
例)に限定されるものではなく、その要旨を逸脱しない
範囲において種々変更し得ることはいうまでもない。
As described above, the present invention has been specifically described based on the embodiments (examples). However, the present invention is not limited to the above-described embodiments (examples), and various modifications may be made without departing from the scope of the invention. It goes without saying that it can be done.

【0056】[0056]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果は以下のとおりである。
The effects obtained by typical ones of the inventions disclosed in the present application are as follows.

【0057】(1)巨視的な構造を簡便化することがで
きる。
(1) The macroscopic structure can be simplified.

【0058】(2)光利用効率を高く保ったまま集光倍
率を高めることができる。
(2) The light collection magnification can be increased while keeping the light use efficiency high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の集光装置の概略構成を示す
図である。
FIG. 1 is a diagram illustrating a schematic configuration of a light collecting device according to an embodiment of the present invention.

【図2】本実施形態の集光装置の微視的に見た回折面表
面の形状を示す図である。
FIG. 2 is a diagram illustrating a shape of a surface of a diffraction surface of the light condensing device of the present embodiment viewed microscopically.

【図3】本発明の別の実施形態の集光装置の概略構成を
示す図である。
FIG. 3 is a diagram illustrating a schematic configuration of a light-collecting device according to another embodiment of the present invention.

【図4】本発明の実施形態の集熱装置の概略構成を示す
図である。
FIG. 4 is a diagram showing a schematic configuration of a heat collecting apparatus according to an embodiment of the present invention.

【図5】本発明の別の実施形態の集光装置の概略構成を
示す図である。
FIG. 5 is a diagram showing a schematic configuration of a light-collecting device according to another embodiment of the present invention.

【図6】本発明の別の実施形態の集光装置の概略構成を
示す図である。
FIG. 6 is a diagram illustrating a schematic configuration of a light-collecting device according to another embodiment of the present invention.

【図7】本発明の別の実施形態の集光装置の概略構成を
示す図である。
FIG. 7 is a diagram illustrating a schematic configuration of a light-collecting device according to another embodiment of the present invention.

【図8】本発明の別の実施形態の集光装置の概略構成を
示す図である。
FIG. 8 is a diagram illustrating a schematic configuration of a light collecting device according to another embodiment of the present invention.

【図9】本発明の別の実施形態の集光装置の概略構成を
示す図である。
FIG. 9 is a diagram illustrating a schematic configuration of a light-collecting device according to another embodiment of the present invention.

【図10】本発明の別の実施形態の集光装置の概略構成
を示す図である。
FIG. 10 is a diagram showing a schematic configuration of a light-collecting device according to another embodiment of the present invention.

【図11】本発明の別の実施形態の集光装置の概略構成
を示す図である。
FIG. 11 is a diagram illustrating a schematic configuration of a light-collecting device according to another embodiment of the present invention.

【図12】本発明の別の実施形態の集光装置の概略構成
を示す図である。
FIG. 12 is a diagram illustrating a schematic configuration of a light-collecting device according to another embodiment of the present invention.

【図13】本発明の別の実施形態の集光装置の概略構成
を示す図である。
FIG. 13 is a diagram illustrating a schematic configuration of a light-collecting device according to another embodiment of the present invention.

【図14】本発明の実施形態の集光装置の回折面を上か
ら眺めた場合の概略構成を示す図である。
FIG. 14 is a diagram illustrating a schematic configuration when the diffraction surface of the light collecting device according to the embodiment of the present invention is viewed from above.

【図15】本発明の実施形態の集光モジュールの回折面
を上から眺めた場合の概略構成を示す図である。
FIG. 15 is a diagram showing a schematic configuration when the diffraction surface of the light-collecting module according to the embodiment of the present invention is viewed from above.

【図16】本発明の別の実施形態の集光装置の回折面を
上から眺めた場合の概略構成を示す図である。
FIG. 16 is a diagram showing a schematic configuration when a diffraction surface of a light collecting apparatus according to another embodiment of the present invention is viewed from above.

【図17】本発明の実施形態の集光装置の回折面の断面
構造を示す図である。
FIG. 17 is a diagram illustrating a cross-sectional structure of a diffraction surface of the light-collecting device according to the embodiment of the present invention.

【図18】本発明の別の実施形態の集光装置の回折面の
断面構造を示す図である。
FIG. 18 is a diagram illustrating a cross-sectional structure of a diffraction surface of a light-collecting device according to another embodiment of the present invention.

【図19】本発明の別の実施形態の集光装置の回折面の
断面構造を示す図である。
FIG. 19 is a diagram illustrating a cross-sectional structure of a diffraction surface of a light-collecting device according to another embodiment of the present invention.

【図20】本発明の実施例1の集熱装置及び集光モジュ
ールの概略構成を示す図である。
FIG. 20 is a diagram illustrating a schematic configuration of a heat collecting apparatus and a light collecting module according to the first embodiment of the present invention.

【図21】本発明の実施例2の光検出器及び集光モジュ
ールの概略構成を示す図である。
FIG. 21 is a diagram illustrating a schematic configuration of a photodetector and a light collecting module according to a second embodiment of the present invention.

【図22】本発明の実施例3の人工光による光電変換装
置及び集光モジュールの概略構成を示す図である。
FIG. 22 is a diagram illustrating a schematic configuration of a photoelectric conversion device using artificial light and a light collecting module according to a third embodiment of the present invention.

【図23】従来の集光装置の概略構成を示す図である。FIG. 23 is a diagram showing a schematic configuration of a conventional light collecting device.

【符号の説明】[Explanation of symbols]

1…入射光、2…集光装置に入射した光、3…反射光、
4…受光面、5…媒体、6…受光装置、7…回折面、8
…微視的に見た回折面表面、9…回折溝ピッチ、10…
断熱層、11…カバー、12…支持体、13…反射曲
面、14…回折溝方向、15…右側、16…左側、17
…反射材料層、18…裏面保護層、19…表面層、20
…接着層、21…フレーム、22…カバーガラス、23
…断熱板、24…第1の電極、25…第2の電極、26
…第1の配線、27…第2の配線、28…保護材、29
…回転方向、30…回転軸、31…回折面外部に位置す
る受光装置に連続した部分、32…正反射面、33…入
射角、34…第1の反射面、35…第2の反射面、36
…出射面から外へ出た光、37…出射面。
1: incident light, 2: light incident on the light condensing device, 3: reflected light,
4 light receiving surface, 5 medium, 6 light receiving device, 7 diffraction surface, 8
... Diffraction surface surface viewed microscopically, 9 ... Ditch groove pitch, 10 ...
Heat insulating layer, 11: cover, 12: support, 13: reflection curved surface, 14: diffraction groove direction, 15: right side, 16: left side, 17
... reflective material layer, 18 ... backside protective layer, 19 ... surface layer, 20
... adhesive layer, 21 ... frame, 22 ... cover glass, 23
... heat insulating plate, 24 ... first electrode, 25 ... second electrode, 26
... first wiring, 27 ... second wiring, 28 ... protective material, 29
... Rotation direction, 30 ... Rotation axis, 31 ... Continuous part of light receiving device located outside diffraction surface, 32 ... Specular reflection surface, 33 ... Incident angle, 34 ... First reflection surface, 35 ... Second reflection surface , 36
.. Light exiting from the exit surface, 37 ... exit surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢澤 義昭 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 村松 信一 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 筒井 謙 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 大塚 寛之 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 峯邑 純子 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshiaki Yazawa 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. Inside the Central Research Laboratory of the Works (72) Inventor Ken Tsutsui 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory of Hitachi, Ltd. (72) Inventor Junko Minemura 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 受光面と、回折面と、この受光面と回折
面とで挟まれた空間を充填する媒体と、少なくともその
表面の一部が前記媒体に接する受光装置を有し、前記媒
体の屈折率が前記受光面の外部の屈折率より大きいこと
を特徴とする集光装置。
1. A medium, comprising: a light receiving surface; a diffraction surface; a medium filling a space between the light receiving surface and the diffraction surface; and a light receiving device having at least a part of the surface in contact with the medium. Wherein the refractive index is larger than the refractive index outside the light receiving surface.
【請求項2】 受光面と、回折面と、この受光面と回折
面とで挟まれた空間を充填する媒体と、少なくともその
表面の一部が前記媒体に接する集熱装置であって、前記
媒体の屈折率が前記受光面の外部の屈折率より大きいこ
とを特徴とする集熱装置。
2. A heat collecting device, wherein a light receiving surface, a diffractive surface, a medium filling a space sandwiched between the light receiving surface and the diffractive surface, and at least a part of the surface contacting the medium, A heat collector, wherein a refractive index of a medium is larger than a refractive index outside the light receiving surface.
【請求項3】 受光面と、回折面と、この受光面と回折
面とで挟まれた空間を充填する媒体と、少なくともその
表面の一部が前記媒体に接する光検出器であって、前記
媒体の屈折率が前記受光面の外部の屈折率より大きいこ
とを特徴とする光検出器。
3. A light-receiving surface, a diffraction surface, a medium filling a space interposed between the light-receiving surface and the diffraction surface, and a photodetector at least a part of which is in contact with the medium, A photodetector, wherein a refractive index of a medium is larger than a refractive index outside the light receiving surface.
【請求項4】 受光面と、回折面と、この受光面と回折
面とで挟まれた空間を充填する媒体と、少なくともその
表面の一部が前記媒体に接する人工光の光電変換装置で
あって、前記媒体の屈折率が前記受光面の外部の屈折率
より大きいことを特徴とする人工光の光電変換装置。
4. A photoelectric conversion device for artificial light, wherein a light-receiving surface, a diffraction surface, a medium filling a space between the light-receiving surface and the diffraction surface, and at least a part of the surface is in contact with the medium. An artificial light photoelectric conversion device, wherein a refractive index of the medium is larger than a refractive index outside the light receiving surface.
JP10068392A 1998-03-18 1998-03-18 Condenser, heat collector, photo-detector having diffracting surface and photo-electric converter of artificial beams Pending JPH11266032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10068392A JPH11266032A (en) 1998-03-18 1998-03-18 Condenser, heat collector, photo-detector having diffracting surface and photo-electric converter of artificial beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10068392A JPH11266032A (en) 1998-03-18 1998-03-18 Condenser, heat collector, photo-detector having diffracting surface and photo-electric converter of artificial beams

Publications (1)

Publication Number Publication Date
JPH11266032A true JPH11266032A (en) 1999-09-28

Family

ID=13372402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10068392A Pending JPH11266032A (en) 1998-03-18 1998-03-18 Condenser, heat collector, photo-detector having diffracting surface and photo-electric converter of artificial beams

Country Status (1)

Country Link
JP (1) JPH11266032A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189487A (en) * 2000-01-05 2001-07-10 Hitachi Maxell Ltd Condenser, and condensation-type solar battery module
JP2005183945A (en) * 2003-11-27 2005-07-07 Kyocera Corp Photoelectric converter and its manufacturing method
WO2011158548A1 (en) * 2010-06-17 2011-12-22 シャープ株式会社 Solar cell module, and solar energy generator device comprising the solar cell module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189487A (en) * 2000-01-05 2001-07-10 Hitachi Maxell Ltd Condenser, and condensation-type solar battery module
JP4505914B2 (en) * 2000-01-05 2010-07-21 パナソニック電工株式会社 Concentrator and concentrating solar cell module
JP2005183945A (en) * 2003-11-27 2005-07-07 Kyocera Corp Photoelectric converter and its manufacturing method
WO2011158548A1 (en) * 2010-06-17 2011-12-22 シャープ株式会社 Solar cell module, and solar energy generator device comprising the solar cell module

Similar Documents

Publication Publication Date Title
KR101487896B1 (en) Light-guide solar panel and method of fabrication thereof
US20070227581A1 (en) Concentrator solar cell module
US20080048102A1 (en) Optically enhanced multi-spectral detector structure
US20100078062A1 (en) Method and system for light collection and light energy converting apparatus
EP2418694B1 (en) Solar energy harvesting system using luminescent solar concentrator with distributed outcoupling structures and microoptical elements
JP5825582B2 (en) Light-emitting solar condensing system
CN105723523B (en) Photovoltaic device used as photovoltaic solar sensor
EP2418693B1 (en) Luminescent solar concentrator with distributed outcoupling structures and microoptical elements
JP2013537004A (en) Multi-band concentrator / energy conversion module
JP3048553B2 (en) Concentrating photovoltaic power generation device with diffraction surface and concentrating photovoltaic power generation module
US20140130855A1 (en) Dispersive optical systems and methods and related electricity generation systems and methods
KR101499973B1 (en) Apparatus for solar power generation and device for concentrating light
JP2007073774A (en) Solar battery
JPH11266032A (en) Condenser, heat collector, photo-detector having diffracting surface and photo-electric converter of artificial beams
JP2012099681A (en) Light condensing structure and photovoltaics generator
JPH1127968A (en) Power generation system
WO2012026572A1 (en) Light-condensing device, light power generation device, and photothermal conversion device
CN114400265B (en) Photoelectric conversion device for solar photovoltaic power generation
KR101480565B1 (en) Apparatus for solar power generation
US7206142B1 (en) Refractive spectrum splitting concentrator system
WO2006039156A2 (en) Method and apparatus for illuminating a solar cell with indirect sunrays
EP0784870B1 (en) Photovoltaic cell system and an optical structure therefor
KR200182377Y1 (en) Solar concentrator
JP2011059323A (en) Condensing module and condensing unit using the same
KR101526583B1 (en) Apparatus for solar power generation