WO2012026572A1 - Light-condensing device, light power generation device, and photothermal conversion device - Google Patents

Light-condensing device, light power generation device, and photothermal conversion device Download PDF

Info

Publication number
WO2012026572A1
WO2012026572A1 PCT/JP2011/069268 JP2011069268W WO2012026572A1 WO 2012026572 A1 WO2012026572 A1 WO 2012026572A1 JP 2011069268 W JP2011069268 W JP 2011069268W WO 2012026572 A1 WO2012026572 A1 WO 2012026572A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
condensing
incident
optical element
end surface
Prior art date
Application number
PCT/JP2011/069268
Other languages
French (fr)
Japanese (ja)
Inventor
達雄 丹羽
和歌奈 内田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2012530731A priority Critical patent/JPWO2012026572A1/en
Publication of WO2012026572A1 publication Critical patent/WO2012026572A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a condensing device that condenses light incident on an incident surface in the direction of the end surface, and a photovoltaic device and a photothermal conversion device using the same.
  • Solar cells that convert light energy into electrical energy are composed of materials such as silicon-based, compound-based, organic-based, and dye-sensitized systems in terms of photoelectric conversion material classification.
  • a typical solar battery cell has a power conversion efficiency of about 10 to 20%.
  • the radiation spectrum range of sunlight is divided into a plurality of wavelength bands, and a plurality of semiconductor layers with band gaps optimal for photoelectric conversion of light in each wavelength band are stacked, so that the conversion efficiency to power is 40.
  • a multi-junction solar cell increased to about% has been developed.
  • the high-efficiency solar cells as described above are extremely expensive and difficult to use except for special applications such as aerospace.
  • a concentrating solar cell module has been devised that condenses and enters sunlight into a small cell to reduce costs and to perform solar power generation with high efficiency.
  • a lens condensing type that condenses sunlight with a Fresnel lens or a reflecting mirror and directly enters the solar cell (see Patent Document 1 and Patent Document 2), on a fluorescent plate in which fluorescent particles are dispersed Fluorescent plate condensing type (refer to Patent Document 3), in which sunlight is incident and the fluorescence generated in the plate is led out and collected to the side of the plate, sunlight is applied to the plate between which the hologram film and solar cells are sandwiched
  • Patent Document 4 A spectral condensing type that guides light diffracted by a hologram film to a solar battery cell has been proposed.
  • the conventional lens condensing type condensing device a relatively large lens (or reflecting mirror) and a solar battery cell corresponding to each lens (or each reflecting mirror) are provided.
  • the apparatus is increased in size according to the focal length of each reflector.
  • the dimension (thickness) of the module in the optical axis direction can be reduced, but there is room for improvement in terms of wavelength dependency and conversion efficiency. is there.
  • the condensing device includes a condensing lens, an incident surface on which light collected by the condensing lens is incident, a back surface facing the incident surface, and the incident surface and the back surface.
  • a condensing optical element having a first end surface that intersects the optical axis of the condensing lens and a second end surface that opposes the first end surface between the incident surface and the back surface, and is formed of a transparent medium; Is provided.
  • the first end surface reflects light incident from the incident surface into the condensing optical element, and the incident surface and the back surface totally reflect light reflected by the first end surface, and light reflected by the first end surface;
  • the light totally reflected by the incident surface and the light totally reflected by the back surface are incident on the second end surface.
  • the minimum incident angle of the light ray included in the light incident on the first end surface from the incident surface into the condensing optical element is
  • the inclination angle of the first end surface with respect to the incident surface may be set so as to be equal to or greater than the total reflection critical angle at the first end surface.
  • the numerical aperture of the condenser lens may be set so that the angle is equal to or greater than the total reflection critical angle at the first end face.
  • the refractive index of the condensing optical element may be set so that the minimum incident angle is equal to or greater than the total reflection critical angle at the first end face.
  • the condensing lens and the condensing optical element are incident on the inside of the condensing optical element from the incident surface.
  • the light incident on the one end face may be disposed so as to focus on the first end face.
  • the condensing optical element is in contact with the incident surface and the back surface and between the first end surface and the second end surface.
  • the first side surface and the second side surface are opposite to each other, and the first side surface and the second side surface totally reflect the light reflected by the first end surface, the incident surface, and the back surface, and are reflected by the first end surface.
  • the light, the light totally reflected by the incident surface, the light totally reflected by the back surface, the light totally reflected by the first side surface, and the light totally reflected by the second side surface may be incident on the second end surface.
  • the plurality of condensing lenses, each of which is a condensing lens are arranged, and the condensing optical element is It may have a plurality of first end surfaces which are first end surfaces and may be formed integrally.
  • the condensing optical element is a plurality of elements each of which is a first end face.
  • the plurality of condensing lenses are arranged in a matrix composed of a plurality of rows and a plurality of columns, and condensing optics.
  • the element has a plurality of first end surfaces, a first side surface, and a plurality of second side surfaces corresponding to the condensing lenses in a plurality of rows among the plurality of condensing lenses, and corresponds to the plurality of rows. May be integrally molded.
  • the light reflected by each of the plurality of first end faces is blocked by the other first end face among the plurality of first end faces. It may be inclined with respect to the extending direction of each row.
  • the distance between the first end surface and the second end surface is greater than the distance between the incident surface and the back surface. It may be large enough.
  • the light incident on the incident surface may be obtained by the sunlight collecting the sunlight by the condensing lens. good.
  • a photovoltaic device includes the condensing device according to any one of the first to thirteenth aspects, and a photoelectric conversion element that photoelectrically converts light incident on the second end face.
  • a photothermal conversion device includes the condensing device according to any one of the first to thirteenth aspects and a photothermal conversion element that photothermally converts light incident on the second end face.
  • light energy such as sunlight can be used efficiently.
  • FIG. 1 The perspective view of the external appearance of the photovoltaic device PVS including the condensing device in the embodiment of the present invention is illustrated in FIG. 1, and a conceptual diagram for explaining the principle of the concentrating device 1 included in the photovoltaic device PVS is shown. This is illustrated in 2.
  • a coordinate system composed of an x-axis, a y-axis and a z-axis orthogonal to each other is defined, and this is shown in FIG.
  • the z-axis is an axis extending in the thickness direction of the light collecting device 1 in the photovoltaic device PVS
  • the x-axis is an axis extending in the direction in which light is collected and led out by the light collecting device 1
  • the y-axis is these two axes. Is an axis extending in a direction perpendicular to the axis.
  • the orientation shown in FIG. 2 is sometimes referred to as up, down, left, and right. Not limited to.
  • the photovoltaic device PVS includes a condensing device 1 that condenses incident light, a photoelectric conversion element 5 that photoelectrically converts the light that is collected by the condensing device 1 and guided to the end and incident on the end. It is comprised including.
  • the condensing device 1 is formed by a condensing lens 10 that condenses light incident from above, for example, sunlight, and a transparent medium, and is condensed by the condensing lens 10 and enters the inside of the transparent medium.
  • a condensing optical element 20 that guides incident light.
  • the condensing lens 10 and the condensing optical element 20 are each manufactured using, for example, an inorganic material such as optical glass or a resin material such as PMMA.
  • a plurality of condenser lenses 10 ij (10 11 , 10 12 ,... 10 m1 , 10 m2 ,... 10 mn ) are arranged in a plurality of rows ⁇ a plurality of columns (m rows) in the x-axis direction and the y-axis direction.
  • Xn columns, m and n are natural numbers) are arranged in a matrix and a lens array is formed.
  • the plurality of rows from the first row to the m-th row are arranged in the y-axis direction, and the extending direction of each row of the plurality of rows from the first row to the m-th row is the x-axis direction.
  • the plurality of columns from the first column to the n-th column are arranged in the x-axis direction, and the extending direction of each column of the plurality of columns from the first column to the n-th column is the y-axis direction.
  • a plurality of condensing lenses 10 are integrally formed in a matrix composed of a plurality of rows and a plurality of columns, or individually formed condensing lenses 10 are arranged and fixed in a matrix on a frame or the like. Consists of.
  • the condensing optical element 20 has a condensing reflection surface that reflects incident light that is collected by the condensing lens 10 and is incident on the condensing optical element 20 due to reflection on the condensing reflection surface. It is configured to be guided in the x-axis direction.
  • FIG. 1 shows a condensing optical system having a plurality of (m rows ⁇ n columns) condensing reflection surfaces corresponding to each incident light collected and incident by a plurality of condensing lenses 10 ij and formed in an integral plate shape.
  • An example of the element 20 is shown.
  • the photoelectric conversion element 5 various known elements can be used. For example, various types of solar cells composed of the above-described materials such as silicon, compound, organic, and dye sensitization are used. Can be configured.
  • FIG. 2 is a schematic diagram for explaining the basic configuration of the condensing device 1.
  • Light collected by the condensing lens 10 ij and incident on the condensing optical element 20 is reflected in the condensing optical element 20. It is the figure which drawn a mode that it propagates.
  • the basic configuration of the light collecting device 1 refers to the configuration of each of a plurality of structural units included in the light collecting device 1.
  • the structural unit of the condensing device 1 includes a condensing lens 10 ij and a condensing reflection surface 23 described later.
  • the condensing optical element 20 includes an upper surface (incident surface) 21 that transmits incident light that is collected by the condensing lens 10 ij (for example, the condensing lens 10 11 ), and An optical axis of incident light that extends between the lower surface (back surface) 22 facing the upper surface and extending substantially in parallel and the upper surface 21 and the lower surface 22 and extending in the vertical direction (z-axis direction, thickness direction of the condensing optical element 20). It has a condensing reflection surface (end surface) 23 that intersects with LA, and an exit surface (end surface) 26 that faces the condensing reflection surface 23.
  • the light collected by the condensing lens 10 ij and incident on the inside of the condensing optical element 20 from the upper surface 21 and reflected by the condensing reflection surface 23 is totally reflected by the upper surface 21 and the lower surface 22 to be in the x-axis direction ( 2 (a) and FIG. 2 (b) to the right) and derived from the exit surface 26. That is, light that propagates inside the condensing optical element 20 and enters the upper surface 21 or the lower surface 22 that is an interface with air from the inside of the condensing optical element 20 is a transparent medium that forms the condensing optical element 20. The light is totally reflected by the difference in refractive index with the air outside the condensing optical element 20.
  • FIG. 4 is an enlarged view showing the propagation of light in the vicinity of the condensing reflection surface 23 in FIG. 4A is a view of the vicinity of the condensing reflection surface 23 as viewed in the y-axis direction
  • FIG. 4B is a view of the vicinity of the condensing reflection surface 23 as viewed obliquely from below.
  • the condensing optical element 20 is in contact with the upper surface 21 and the lower surface 22 and connects between the condensing reflection surface 23 and the exit surface 26 and extends substantially parallel to each other. It has a side surface 24 and a side surface 25, and is formed in a square shape in the yz section.
  • the present embodiment will be described using an example in which the condensing reflection surface 23 is a plane.
  • the light collected by the condenser lens 10 ij and incident on the inside of the condenser optical element 20 from the upper surface 21 and reflected by the condenser reflection surface 23 is reflected by the condenser lens 10.
  • the light propagating through the condensing optical element 20 is totally reflected on the upper surface 21, the lower surface 22, the side surface 24, and the side surface 25, guided in the x-axis direction, and derived from the output surface 26.
  • the condensing optical element 20 is configured to be led out to the emission surface 26. Therefore, the confinement efficiency of the light incident on the inside of the condensing optical element 20 is high, and the condensed light can be led out to the emission surface 26 with high efficiency.
  • the condensing optical element 20 is configured such that incident light that is condensed by the condensing lens 10 ij and incident from the upper surface 21 is also totally reflected by the condensing reflection surface 23.
  • the condenser lens 10 ij passing through the center of the converging lens 10 ij Incident angle (hereinafter referred to as “optical axis incident angle”) ⁇ LA of light incident on the condensing and reflecting surface 23 along the optical axis LA and a position away from the optical axis LA (outer peripheral portion of the condensing lens 10)
  • the incident angles ⁇ LA ⁇ ⁇ NA of the light rays that pass through the condensing / reflecting surface 23 are different from each other as shown in FIG.
  • the maximum angle ⁇ NA with respect to the optical axis LA of the light incident on the condensing reflection surface 23 is not zero.
  • the light is reflected by the converging / reflecting surface 23 toward the end in the traveling direction (the direction away from the condensing / reflecting surface 23), that is, toward the paper surface in FIG. 2 (b).
  • the minimum incident angle ⁇ min of the light beam that is collected and incident on the condensing reflection surface 23 is set to be equal to or greater than the total reflection critical angle of the condensing reflection surface 23.
  • FIG. 2 (b) are mutually parallel to the upper surface 21 and lower surface 22, since the optical axis LA is perpendicular to the top surface 21, the optical axis incident angle theta LA is equal to the inclination angle theta 23.
  • the inclination angle theta 23 of refractive index N and condensing and reflecting surface 23 of the converging optical element 20 may be a predetermined value.
  • the numerical aperture NA of the condenser lens 10 ij or the focal length f of the condenser lens 10 is set so that the minimum incident angle ⁇ min is equal to or greater than the total reflection critical angle of the condenser reflecting surface 23.
  • the numerical aperture NA of the condenser lens 10 ij and the inclination angle ⁇ 23 of the condenser reflecting surface 23 may be set to predetermined values.
  • the refractive index N of the condensing optical element 20 is set so that the minimum incident angle ⁇ min is equal to or greater than the total reflection critical angle of the condensing reflection surface 23.
  • the refractive index N of the condensing optical element 20 can be set by selecting the material of the condensing optical element 20, the additive to be doped, or the like.
  • the inclination angle ⁇ 23 of the condensing reflection surface 23, the numerical aperture NA of the condensing lens 10 ij , and / or the refractive index N of the condensing optical element 20 are determined by the condensing reflection surface 23, the upper surface 21, the lower surface 22, and It is set so that the condition of total reflection is satisfied at all the interfaces of the side surfaces 24 and 25.
  • the incident light that has been collected by the condenser lens 10 ij and entered from the upper surface 21 of the condenser optical element 20 enters the condenser optical element 20 and then enters the condenser optical element 20.
  • the interfaces the condensing reflection surface 23, the upper surface 21, the lower surface 22, and the side surfaces 24 and 25
  • the wavelength dependency of the light incident on the condensing optical element 20 is low and the confinement efficiency is high. In this way, the condensed light can be guided to the emission surface 26 with high efficiency.
  • the condensing lens 10 and the condensing optical element 20 are incident on the condensing optical element 20 after being condensed by the condensing lens 10ij.
  • the light is configured so as to be focused on the surface of the light collecting / reflecting surface 23.
  • the refractive index of the substance varies depending on the wavelength ⁇ of the transmitted light. Therefore, when the wavelength ⁇ of the light to be collected has a change width, the focal position of the light on the short wavelength side is generally different from the focal position of the light on the long wavelength side. Therefore, the focal position has a change width corresponding to the width of the wavelength band.
  • the beam spot diameter is set to be minimum.
  • the projection area of the condensing reflection surface 23 can be minimized, and therefore the thickness of the condensing optical element 20 can be minimized.
  • the focal position of incident light can be set on the condensing reflection surface 23. Slight defocusing may be performed according to the power density of incident light at the focal position.
  • the light condensed and incident on the condensing / reflecting surface 23 in this way and totally reflected by the condensing / reflecting surface is totally reflected on each of the upper surface 21, the lower surface 22, the side surface 24, and the side surface 25, thereby collecting optical elements.
  • 20 propagates in the x-axis direction and is derived from the exit surface 26.
  • the emission surface 26 is formed along the yz plane.
  • the end face (outgoing face 26) is polished and AR coated. Therefore, light that has propagated through the condensing optical element 20 and entered the exit surface 26 exits without being reflected by the exit surface 26 and enters the photoelectric conversion element 5.
  • the basic configuration (configuration of each structural unit) of the light collecting apparatus 1 has been described above.
  • the configuration of the condensing / reflecting surface 23 that reflects the light incident on the condensing / reflecting surface 23 by total reflection using the refractive index difference has been described.
  • the condensing / reflecting surface 23 may be configured by a mirror on which a metal such as Au, Ag, or Al is deposited, and the mirror may reflect the light incident on the condensing / reflecting surface 23.
  • the reflection loss in the light converging reflection surface 23 is generated, it is possible to reduce the optical axis incident angle theta LA (small inclination angle theta 23 of condensing and reflecting surface 23).
  • the optical axis incident angle ⁇ LA (the inclination angle ⁇ 23 of the condensing reflection surface 23 ) can be set to 45 degrees.
  • a smaller inclination angle theta 23 of condensing and reflecting surface 23, the light reflected by the condensing and reflecting surface 23, top surface 21, bottom surface 22, the minimum incident angle to the side surfaces 24 and the side surface 25 increases. Since the minimum incident angle of the light reflected by the condensing reflection surface 23 to the upper surface 21, the lower surface 22, the side surface 24, and the side surface 25 can be reduced to the critical angle of total reflection, the short focal point having a larger numerical aperture.
  • the condensing lens 10 ij can be used.
  • the condensing reflection surface 23 is a flat surface is illustrated, but the condensing reflection surface 23 may be a convex surface or a concave surface having a predetermined shape.
  • the light collected by the condenser lens 10 may be sunlight. As shown in FIG. 2 (b), it is more preferable that sunlight is incident on the condenser lens 10ij in parallel with the optical axis LA. Therefore, it is preferable that the condensing device 1 automatically tracks the sun.
  • the condensing device 1 may be configured such that at least light in a specific wavelength range in the sunlight spectrum is condensed. The wavelength range can be determined according to the spectral sensitivity characteristics of the photoelectric conversion element 5.
  • the condensing device 1 can be configured such that light in a wavelength range in which the conversion efficiency of the photoelectric conversion element 5 is not substantially zero is collected.
  • the specific wavelength range of the light condensed by the condensing lens 10 in the condensing device 1 may be, for example, 350 to 1800 nm, or may be 350 to 1100 nm as described in the present embodiment. There may be.
  • a multi-junction photoelectric conversion element is used as the photoelectric conversion element 5 that photoelectrically converts the collected light. Can be applied.
  • a photoelectric conversion element of crystalline silicon is applied as the photoelectric conversion element 5 that photoelectrically converts the collected light. can do.
  • FIG. 5A is a side view of the condensing optical element 20
  • FIG. 5B is a plan view of the condensing optical element 20
  • FIG. 6 is a perspective view of one element unit 200 included in the condensing optical element 20 as viewed obliquely from above. 5 and 6, the condensing reflection surface 23 when the condensing optical element 20 is viewed from above is indicated by a solid line.
  • the condensing device 1 is configured to include a plurality of condensing lenses 10 ij and a plurality of condensing reflection surfaces 23 of m rows ⁇ n columns.
  • the condensing device 1 is configured by providing m rows ⁇ n columns of structural units having the basic configuration described with reference to FIGS. 5 and 6, one row ⁇ n columns in the condensing optical element 20 is defined as one element unit 200 (201, 202, 203...), And m (m rows) are connected and integrated.
  • the condensing optical element 20 is formed.
  • FIGS. 5A and 5B are a side view and a plan view of the condensing optical element 20 integrally formed as described above, and FIG. 6 shows one element unit including n condensing reflection surfaces 23. It is the perspective view which looked at 200 from diagonally upward.
  • each element unit 200 ten condensing / reflecting surfaces 23 are formed at predetermined intervals along the x-axis. These condensing reflection surfaces 23 are arranged so that the light reflected by each condensing reflection surface does not strike other condensing reflection surfaces, that is, the light reflected by each condensing reflection surface is reflected by the other condensing reflection surfaces.
  • the condensing / reflecting surface 23 and the side surfaces 24 and 25 are formed so as to be slightly inclined from the x-axis (in FIG. 5B, inclined by several degrees) so as not to be blocked. Of the side surfaces 24 and 25, one side surface (the side surface 25 in FIGS. 5 and 6) is formed by one continuous plane, and the other side surface (the side surface 24 in FIGS. 5 and 6) is the condensing reflection surface 23. It is formed in a staircase shape with a gap in between.
  • the element unit 200 (see FIG. 5B) is formed by bundling and removing the side surfaces 24 and 25 that are in contact with each other to share the side surfaces, thereby integrating the 10 unit light collecting elements integrally.
  • the element unit 200 includes n light collecting / reflecting surfaces 23, n side surfaces 24 corresponding to the n light collecting / reflecting surfaces 23, and side surfaces 25 corresponding to the n light collecting / reflecting surfaces 23 in common. It has an upper surface 21, a lower surface 22, and an exit surface 26.
  • the condensing optical element 20 is formed by arranging 10 element units 200 in parallel (10 rows) in an integrated plate shape, and each element unit 200 is a component unit (1 row ⁇ 1). This corresponds to a functional element in which 100 unit condensing elements corresponding to one column) are integrated together.
  • the light that is condensed and incident on the condensing / reflecting surface 23 and totally reflected by each condensing / reflecting surface is the upper surface 21, the lower surface 22, the side surface in each element unit 200 (201, 202, 203... 209, 210).
  • one row of light (10 light fluxes reflected by the 10 condensing reflection surfaces 23) is collected for each element unit 200.
  • the light condensed by each element unit 200 is gathered at the junction with the adjacent element unit and is led out from the common emission surface 26.
  • Light derived from the exit surface 26 enters the photoelectric conversion element 5 and is photoelectrically converted.
  • each condenser lens 10 ij and 10 ⁇ 10 mm, convergent light converged by the lens array condensing lens 10 ij is formed in the size of the aligned and 100 ⁇ 100 mm in 10 rows ⁇ 10 columns
  • the light condensing magnification is 100 times.
  • one condensing optical element having one lens array including condensing lenses 10 of m rows ⁇ n columns and a condensing reflection surface 23 corresponding thereto. It is possible to provide a light collecting device having a very simple and thin configuration of 20 with almost no loss and high light collecting efficiency.
  • the condensing device In the conventional light collecting device, there is a problem that the light collecting device becomes complicated because a large number of solar cells are dispersedly arranged at the focal position of a lens or the like, but in the light collecting device 1 in the present embodiment, z Since the photoelectric conversion elements 5 are integrally disposed along the emission surface 26 having a short length in the axial direction (thickness direction of the condensing optical element 20), the condensing device is not complicated.
  • the lens array of the condensing optical element 20 and the condensing lens 10 can be configured by, for example, hot press molding using a low melting point glass or injection molding of a resin such as PMMA. Can be produced.
  • the focused light of 1 row ⁇ 10 columns is collected by one element unit 200, and the focused light of 10 rows ⁇ 10 columns is collected using 10 element units integrated.
  • the configuration of the element unit 200 and the integrated form of a plurality of element units are arbitrary.
  • an exit surface 26 may be provided for each of one or a plurality of element units, and light emitted from each exit surface may be incident on the photoelectric conversion element 5.
  • the element unit may be formed in a star shape according to the arrangement of the condenser lenses.
  • the side surface 24 may be formed as a single plane and the side surface 25 may be formed in a step shape.
  • a plurality of condensing reflection surfaces 23 may be formed side by side at predetermined intervals on an axis inclined by several degrees with respect to the x axis, and the side surfaces 24 and 25 may be formed along the x axis.
  • the light condensed by the condensing lens 10 ij and incident on the condensing optical element 20 from the upper surface 21 is totally reflected at all interfaces of the condensing reflection surface 23, the upper surface 21, the lower surface 22, the side surface 24, and the side surface 25. If the inclination angle theta 23 of condensing and reflecting surface 23 varies according to the numerical aperture NA of the condensing lens 10 ij. If you set the refractive index N of the converging optical element 20, the tilt angle theta 23 of condensing and reflecting surface 23 is generally varied in accordance with the focal length f of the condenser lens 10 ij.
  • the maximum allowable angle of the optical axis LA is larger when the condensing reflection surface 23 is larger, that is, when the inclination angle ⁇ 23 of the condensing reflection surface 23 is smaller. This is preferable because the width is increased.
  • the angular width of the optical axis LA is the maximum allowable angular width ⁇ ⁇ max . That is, the shorter the focal length f of the condenser lens 10, the larger the maximum allowable angular width ⁇ ⁇ max, which is preferable.
  • the focal length f of the condensing lens 10 is 20 mm and the inclination angle ⁇ 23 of the condensing reflection surface 23 is 52 degrees.
  • a ray-trace simulation was performed on the condensing device 1.
  • 9 is a ray tracing simulation data at the posture position when the light collecting device 1 is seen from the y-axis direction (side)
  • FIG. 10 is a ray tracing simulation data at the posture position when the light collecting device 1 is seen obliquely from above.
  • Reference numeral 11 denotes simulation data of ray tracing at a posture position when the condensing optical element 20 is viewed from the z-axis direction (above).
  • the light rays collected and incident on the plurality of condensing reflection surfaces 23 included in each of the plurality of element units 200 (201, 202, 203... 209, 210)
  • the light density increases as it is totally reflected by the upper surface 21, the lower surface 22, the side surface 24, and the side surface 25 and guided in the x-axis direction and reaches the base end side (exit surface 26 side) of the plurality of element units 200.
  • the number of light rays is small at a position away from the emission surface 26 in the x-axis direction, and the number of light rays is large near the emission surface 26.
  • FIG. 9 the number of light rays is small at a position away from the emission surface 26 in the x-axis direction, and the number of light rays is large near the emission surface 26.
  • the light beam that appears to be emitted (leaked) from the condensing optical element 20 is not leaked to the outside, but rather the light from the outside is condensed and reflected by the condensing lens 10. It is a light beam indicating that the light is condensed and incident on the light source 23. According to FIG. 11, the light beam reflected inside the condensing optical element 20 by the condensing reflection surface 23 hardly leaks from the condensing optical element 20 and is led out from the emission surface 26. Understood.
  • FIG. 12 shows the light beam emitted from the exit surface relative to the position of the condensing optical element 20 in the y-axis direction, where the horizontal axis represents the position of the condensing optical element 20 in the y-axis direction and the vertical axis represents the number of light beams emitted from the exit surface 26.
  • the fact that the light distribution of the light emitted from the emission surface 26 is uniform means that the distribution of the number of rays of the emitted light is uniform within the surface of the emission surface 26.
  • the intensity distribution of the emitted light at is uniform.
  • the angle width of the optical axis LA is ⁇ 0.5 degrees, that is, when light arrives at the condenser lens 10 ij with a uniform incident angle distribution having a width of 0.5 degrees around the optical axis LA
  • the total amount of light emitted from the emission surface 26 is 99.5 with respect to the total light amount 100 of sunlight when entering the optical optical element 20, and the light collection efficiency is 99.5%. From this simulation result, it was confirmed that according to the condensing device 1, sunlight can be condensed with extremely high condensing efficiency.
  • FIG. 13A is a conceptual diagram of a configuration example for taking out the light collected at the end of the condensing optical element 20 as it is from the emission surface 26 and using it as light.
  • the light emitted from the emission surface 26 of the condensing optical element 20 is condensed through a cylindrical lens 91, a condensing rod 92, and the like, and the condensed light is brought to a desired position by an optical fiber 93.
  • the structure which guides light is illustrated.
  • FIG. 13B is a conceptual diagram of one configuration example for using the light collected at the end of the condensing optical element 20 by converting it into electric energy or heat energy.
  • FIG. 13B shows a configuration example in which the photoelectric conversion element 5 is coupled to the emission surface 26 of the condensing optical element 20 and the energy of the collected light is extracted as electric energy through photoelectric conversion by the photoelectric conversion element 5. Show. In this way, a photovoltaic device including the condensing device 1 and the photoelectric conversion element 5 is obtained. Instead of the photoelectric conversion element 5, a condensing device 1 and the photothermal conversion element are included by coupling a photothermal conversion element that extracts the energy of the collected light as heat energy to the emission surface 26 of the condensing optical element 20. A photothermal conversion device is obtained. It is preferable to use a heat pipe with a light absorber or the like as a light-to-heat conversion element that converts the collected light into heat energy.
  • FIG. 13C is a conceptual diagram of one configuration example for using the light collected at the end of the condensing optical element 20 by converting it into electric energy or heat energy.
  • a mirror 94 is disposed on the exit surface 26 obtained by cutting the end of the condensing optical element 20 obliquely with respect to the upper surface 21 and the lower surface 22 (or a reflective film on the exit surface 26).
  • the light condensed on the end of the condensing optical element 20 is collected on the photoelectric conversion element 5 provided on the upper surface 21 side (or lower surface 22 side) of the condensing optical element 20. Light up.
  • the condensing optical element 20 is a thin sheet form
  • the photoelectric conversion element 5 which occupies a predetermined area can be attached stably.
  • a photovoltaic device including the condensing device 1 and the photoelectric conversion element 5 is obtained.
  • a photothermal conversion device including the light collecting device 1 and the photothermal conversion element is obtained.
  • FIG. 13D is a conceptual diagram of one configuration example for converting the energy of the light collected at the end of the condensing optical element 20 into electric energy or heat energy.
  • a dichroic mirror 95 is disposed on the exit surface 26 obtained by cutting the end of the condensing optical element 20 obliquely with respect to the upper surface 21 and the lower surface 22 (or the wavelength on the exit surface 26).
  • It is a figure which shows an example of the structure obtained by forming a reflective film with selectivity.
  • a photoelectric conversion element provided on the upper surface 21 side (or lower surface 22 side) of the condensing optical element 20 by dividing the light collected at the end of the condensing optical element 20.
  • the light is condensed on 5a and the photoelectric conversion element 5b provided on the side of the condensing optical element 20, respectively.
  • a highly efficient photoelectric conversion element can be used as the photoelectric conversion elements 5a and 5b according to each wavelength band of the divided light, the light collecting device 1 and the photoelectric conversion elements 5a and 5b are used. And a photovoltaic device with high conversion efficiency at a relatively low cost.
  • One of the divided light (for example, light in the infrared region) is incident on a heat pipe with a light absorber and the thermal energy obtained by photothermal conversion is used, and the other of the divided light (for example, visible region)
  • the other of the divided light for example, visible region
  • a configuration in which light in the ultraviolet region) is incident on the photoelectric conversion element 5 and electric energy obtained by photoelectric conversion is used is also an example of a preferable configuration.
  • FIG. 13E shows that the light collected at the end of the condensing optical element 20 is further thinned in the thickness direction of the condensing optical element 20 (in the optical axis direction of the condensing lens 10 ij ).
  • the condensing optical element 20 is formed in a parabolic shape in which the thickness of the condensing optical element 20 gradually decreases toward the exit surface 26 in the vicinity of the exit surface 26.
  • the light traveling in the x-axis direction inside the condensing optical element 20 is totally reflected by the upper surface 21 or the lower surface 22, and is in the thickness direction of the condensing optical element 20 (the optical axis direction of the condensing lens 10ij ). It is narrowed and condensed. Accordingly, for example, when the collected light is used as it is, it can be configured without using a cylindrical lens or the like, and when the collected light is incident on the photoelectric conversion element 5 or the heat pipe, it is simple. With the configuration, the power density of incident light can be increased.
  • the condensing device 1 As described above, in the condensing device 1, incident light that is condensed by the condensing lens 10 and enters the condensing optical element 20 from the upper surface 21 of the condensing optical element 20 is collected. After entering the inside 20, the light is totally reflected by all the interfaces (the condensing reflection surface 23, the upper surface 21, the lower surface 22, and the side surfaces 24 and 25) except the exit surface 26, and exits from the exit surface 26. Therefore, according to the condensing apparatus 1 demonstrated above, the new condensing apparatus which can use optical energy, such as sunlight efficiently, can be provided with a comparatively thin and simple structure.
  • the photovoltaic device PVS and the photothermal conversion device including such a condensing device 1 have a small thickness in the optical axis direction, are small and lightweight, and are suitable as a new photovoltaic power generation device or a solar heat collecting device. Can be applied.

Abstract

A light-condensing device comprises: a light-condensing lens; and a light-condensing optical element having an incident surface through which light condensed by the light-condensing lens enters, a back surface which is opposed to the incident surface, a first end surface which intersects the light axis of the light-condensing lens between the incident surface and the back surface, and a second end surface which faces the first end surface between the incident surface and the back surface, wherein the light-condensing optical element is composed of a transparent medium. The first end surface reflects light that enters the inside of the light-condensing optical element through the incident surface, the incident surface and the back surface totally reflect light that is reflected by the first end surface, and light that is reflected by the first end surface, light that is totally reflected by the incident surface and light that is totally reflected by the back surface enter the second end surface.

Description

集光装置、光発電装置及び光熱変換装置Condensing device, photovoltaic power generation device, and photothermal conversion device
 本発明は、入射面に入射する光を端面の方向に集光する集光装置、並びにこれを用いた光発電装置及び光熱変換装置に関する。 The present invention relates to a condensing device that condenses light incident on an incident surface in the direction of the end surface, and a photovoltaic device and a photothermal conversion device using the same.
 光エネルギーを電気エネルギーに変換する太陽電池セルは、光電変換する材料分類上、シリコン系、化合物系、有機系、色素増感系などの材料により構成される。一般的な太陽電池のセルは、電力への変換効率が概ね10~20%程度である。これに対し、太陽光の放射スペクトル範囲を複数の波長帯域に分割し、各波長帯域の光を光電変換するのに最適なバンドギャップの半導体層を複数積層して、電力への変換効率を40%程度まで高めた多接合型の太陽電池セルが開発されている。 Solar cells that convert light energy into electrical energy are composed of materials such as silicon-based, compound-based, organic-based, and dye-sensitized systems in terms of photoelectric conversion material classification. A typical solar battery cell has a power conversion efficiency of about 10 to 20%. In contrast, the radiation spectrum range of sunlight is divided into a plurality of wavelength bands, and a plurality of semiconductor layers with band gaps optimal for photoelectric conversion of light in each wavelength band are stacked, so that the conversion efficiency to power is 40. A multi-junction solar cell increased to about% has been developed.
 しかし、上記のような高効率の太陽電池セルは極めて高価であり、航空宇宙などの特殊な用途以外では使用することが困難である。そこで、小型のセルに太陽光を集光して入射させることでコストを低減し、高効率で太陽光発電を行う集光型の太陽電池モジュールが考案されている。集光形式として、太陽光をフレネルレンズまたは反射鏡により集光して太陽電池セルに直接入射させるレンズ集光型(特許文献1及び特許文献2を参照)、蛍光粒子が分散された蛍光プレートに太陽光を入射させ、プレート内で発生した蛍光をプレート側方に導出して集光する蛍光プレート集光型(特許文献3を参照)、ホログラムフィルム及び太陽電池セルが挟み込まれたプレートに太陽光を入射させ、ホログラムフィルムにより回折した光を太陽電池セルに導く分光集光型(特許文献4を参照)などが提案されている。 However, the high-efficiency solar cells as described above are extremely expensive and difficult to use except for special applications such as aerospace. In view of this, a concentrating solar cell module has been devised that condenses and enters sunlight into a small cell to reduce costs and to perform solar power generation with high efficiency. As a condensing form, a lens condensing type that condenses sunlight with a Fresnel lens or a reflecting mirror and directly enters the solar cell (see Patent Document 1 and Patent Document 2), on a fluorescent plate in which fluorescent particles are dispersed Fluorescent plate condensing type (refer to Patent Document 3), in which sunlight is incident and the fluorescence generated in the plate is led out and collected to the side of the plate, sunlight is applied to the plate between which the hologram film and solar cells are sandwiched A spectral condensing type (see Patent Document 4) that guides light diffracted by a hologram film to a solar battery cell has been proposed.
日本国特表2005-142373号公報Japanese National Table 2005-142373 日本国特開2005-217224号公報Japanese Unexamined Patent Publication No. 2005-217224 米国特許出願公開第2006/0107993号明細書US Patent Application Publication No. 2006/0107993 米国特許第6274860号明細書US Pat. No. 6,274,860
 しかしながら、従来のレンズ集光型の集光装置では、比較的大型のレンズ(または反射鏡)と各レンズ(または各反射鏡)に対応した太陽電池セルが設けられているため、各レンズ(または各反射鏡)の焦点距離に応じて装置が大型化する。蛍光プレート集光型の集光装置や分光集光型の集光装置においては、モジュールの光軸方向寸法(厚さ)を薄くできるが、波長依存性や変換効率の面で改善すべき余地がある。 However, in the conventional lens condensing type condensing device, a relatively large lens (or reflecting mirror) and a solar battery cell corresponding to each lens (or each reflecting mirror) are provided. The apparatus is increased in size according to the focal length of each reflector. In the fluorescent plate condensing type concentrating device and the spectroscopic concentrating type condensing device, the dimension (thickness) of the module in the optical axis direction can be reduced, but there is room for improvement in terms of wavelength dependency and conversion efficiency. is there.
 本発明の第1の態様によると、集光装置は、集光レンズと、集光レンズにより集光された光が入射する入射面と、入射面に対向する裏面と、入射面と裏面との間で集光レンズの光軸と交差する第1端面と、入射面と裏面との間で第1端面に対向する第2端面とを有し、透明な媒質により形成される集光光学素子とを備える。第1端面は、入射面から集光光学素子の内部へ入射した光を反射し、入射面及び裏面は、第1端面により反射された光を全反射し、第1端面により反射された光、入射面により全反射された光及び裏面により全反射された光は、第2端面に入射する。
 本発明の第2の態様によると、第1の態様の集光装置において、入射面から集光光学素子の内部へ入射して第1端面に入射する光に含まれる光線の最小入射角が、第1端面における全反射臨界角以上となるように、第1端面の入射面に対する傾斜角が設定されても良い。
 本発明の第3の態様によると、第1または第2の態様の集光装置において、入射面から集光光学素子の内部へ入射して第1端面に入射する光に含まれる光線の最小入射角が、第1端面における全反射臨界角以上となるように、集光レンズの開口数が設定されても良い。
 本発明の第4の態様によると、第1~第3のいずれかの態様の集光装置において、入射面から集光光学素子の内部へ入射して第1端面に入射する光に含まれる光線の最小入射角が、第1端面における全反射臨界角以上となるように、集光光学素子の屈折率が設定されるても良い。
 本発明の第5の態様によると、第1~第4のいずれかの態様の集光装置において、集光レンズ及び集光光学素子は、入射面から集光光学素子の内部へ入射して第1端面に入射する光がほぼ第1端面に焦点を結ぶように配設されても良い。
 本発明の第6の態様によると、第1~第5のいずれかの態様の集光装置において、集光光学素子は、入射面と裏面とに接するとともに第1端面と第2端面との間で相互に対向する第1側面及び第2側面を有し、第1側面及び第2側面は、第1端面、入射面及び裏面により反射された光を全反射し、第1端面により反射された光、入射面により全反射された光、裏面により全反射された光、第1側面により全反射された光及び第2側面により全反射された光は、第2端面に入射しても良い。
 本発明の第7の態様によると、第1~第6のいずれかの態様の集光装置において、各々が集光レンズである複数の集光レンズが並べられ、集光光学素子は、各々が第1端面である複数の第1端面を有して一体に形成されても良い。
 本発明の第8の態様によると、第6の態様の集光装置において、各々が集光レンズである複数の集光レンズが並べられ、集光光学素子は、各々が第1端面である複数の第1端面と、複数の第1端面に共通して対応する第1側面と、各々が第2側面である複数の第2側面とを有して一体に形成されても良い。
 本発明の第9の態様によると、第7または第8の態様の集光装置において、複数の集光レンズが、複数行と複数列とから構成されるマトリクス状に配設され、集光光学素子は、複数の集光レンズのうち、複数行の各行の集光レンズに対応して複数の第1端面、第1側面、及び複数の第2側面とを有して、複数行に対応して一体成型されても良い。
 本発明の第10の態様によると、第9の態様の集光装置において、複数の第1端面の各々により反射された光は、複数の第1端面のうちの他の第1端面により遮られないように、各行の延伸方向に対して傾斜していても良い。
 本発明の第11の態様によると、第1~第10のいずれかの態様の集光装置において、第1端面と第2端面と間の距離が、入射面と裏面との間の距離よりも充分に大きくても良い。
 本発明の第12の態様によると、第1~第11のいずれかの態様の集光装置において、入射面に入射する光は、集光レンズが太陽光を集光することにより得られても良い。
 本発明の第13の態様によると、第1~第12のいずれかの態様の集光装置において、入射面と裏面とは互いにほぼ平行であっても良い。
 本発明の第14の態様によると、光発電装置は、第1~第13のいずれかの態様の集光装置と、第2端面に入射した光を光電変換する光電変換素子とを備える。
 本発明の第15の態様によると、光熱変換装置は、第1~第13のいずれかの態様の集光装置と、第2端面に入射した光を光熱変換する光熱変換素子とを備える。
According to the first aspect of the present invention, the condensing device includes a condensing lens, an incident surface on which light collected by the condensing lens is incident, a back surface facing the incident surface, and the incident surface and the back surface. A condensing optical element having a first end surface that intersects the optical axis of the condensing lens and a second end surface that opposes the first end surface between the incident surface and the back surface, and is formed of a transparent medium; Is provided. The first end surface reflects light incident from the incident surface into the condensing optical element, and the incident surface and the back surface totally reflect light reflected by the first end surface, and light reflected by the first end surface; The light totally reflected by the incident surface and the light totally reflected by the back surface are incident on the second end surface.
According to the second aspect of the present invention, in the light condensing device according to the first aspect, the minimum incident angle of the light ray included in the light incident on the first end surface from the incident surface into the condensing optical element is The inclination angle of the first end surface with respect to the incident surface may be set so as to be equal to or greater than the total reflection critical angle at the first end surface.
According to the third aspect of the present invention, in the light condensing device according to the first or second aspect, the minimum incidence of the light beam included in the light incident on the first end surface from the incident surface into the condensing optical element. The numerical aperture of the condenser lens may be set so that the angle is equal to or greater than the total reflection critical angle at the first end face.
According to the fourth aspect of the present invention, in the light condensing device according to any one of the first to third aspects, the light beam included in the light incident on the first end surface after entering the condensing optical element from the incident surface. The refractive index of the condensing optical element may be set so that the minimum incident angle is equal to or greater than the total reflection critical angle at the first end face.
According to the fifth aspect of the present invention, in the condensing device according to any one of the first to fourth aspects, the condensing lens and the condensing optical element are incident on the inside of the condensing optical element from the incident surface. The light incident on the one end face may be disposed so as to focus on the first end face.
According to the sixth aspect of the present invention, in the condensing device according to any one of the first to fifth aspects, the condensing optical element is in contact with the incident surface and the back surface and between the first end surface and the second end surface. The first side surface and the second side surface are opposite to each other, and the first side surface and the second side surface totally reflect the light reflected by the first end surface, the incident surface, and the back surface, and are reflected by the first end surface. The light, the light totally reflected by the incident surface, the light totally reflected by the back surface, the light totally reflected by the first side surface, and the light totally reflected by the second side surface may be incident on the second end surface.
According to the seventh aspect of the present invention, in the condensing device according to any one of the first to sixth aspects, the plurality of condensing lenses, each of which is a condensing lens, are arranged, and the condensing optical element is It may have a plurality of first end surfaces which are first end surfaces and may be formed integrally.
According to the eighth aspect of the present invention, in the light condensing device according to the sixth aspect, a plurality of condensing lenses, each of which is a condensing lens, are arranged, and the condensing optical element is a plurality of elements each of which is a first end face. The first end face, the first side face corresponding to the plurality of first end faces in common, and the plurality of second side faces, each of which is a second side face, may be integrally formed.
According to the ninth aspect of the present invention, in the light condensing device of the seventh or eighth aspect, the plurality of condensing lenses are arranged in a matrix composed of a plurality of rows and a plurality of columns, and condensing optics. The element has a plurality of first end surfaces, a first side surface, and a plurality of second side surfaces corresponding to the condensing lenses in a plurality of rows among the plurality of condensing lenses, and corresponds to the plurality of rows. May be integrally molded.
According to the tenth aspect of the present invention, in the light collecting device according to the ninth aspect, the light reflected by each of the plurality of first end faces is blocked by the other first end face among the plurality of first end faces. It may be inclined with respect to the extending direction of each row.
According to the eleventh aspect of the present invention, in the light collecting device according to any one of the first to tenth aspects, the distance between the first end surface and the second end surface is greater than the distance between the incident surface and the back surface. It may be large enough.
According to the twelfth aspect of the present invention, in the condensing device according to any one of the first to eleventh aspects, the light incident on the incident surface may be obtained by the sunlight collecting the sunlight by the condensing lens. good.
According to the thirteenth aspect of the present invention, in the light collecting device according to any one of the first to twelfth aspects, the incident surface and the back surface may be substantially parallel to each other.
According to a fourteenth aspect of the present invention, a photovoltaic device includes the condensing device according to any one of the first to thirteenth aspects, and a photoelectric conversion element that photoelectrically converts light incident on the second end face.
According to a fifteenth aspect of the present invention, a photothermal conversion device includes the condensing device according to any one of the first to thirteenth aspects and a photothermal conversion element that photothermally converts light incident on the second end face.
 本発明の集光装置、光発電装置及び光熱変換装置によれば、太陽光等の光エネルギーを効率的に利用可能になる。 According to the light collecting device, photovoltaic device and photothermal conversion device of the present invention, light energy such as sunlight can be used efficiently.
光発電装置の外観斜視図である。It is an external appearance perspective view of a photovoltaic device. 集光装置の原理を説明するための概念図である。It is a conceptual diagram for demonstrating the principle of a condensing device. 集光レンズにより集光光学素子に集光入射した光の伝播状態を、光線追跡のシミュレーションにより示す図である。It is a figure which shows the propagation state of the light condensed and incident on the condensing optical element with the condensing lens by the simulation of ray tracing. 集光反射面の近傍部分における光の伝播を拡大して示す図である。It is a figure which expands and shows the propagation of the light in the vicinity part of a condensing reflective surface. 集光光学素子の平面図及び側面図である。It is the top view and side view of a condensing optical element. 集光光学素子の1つの素子ユニットを斜め上方から見た斜視図である。It is the perspective view which looked at one element unit of a condensing optical element from diagonally upward. PMMAにおける波長と屈折率との関係を示す表である。It is a table | surface which shows the relationship between the wavelength and refractive index in PMMA. 太陽光の放射スペクトル分布を表すグラフである。It is a graph showing the radiation spectrum distribution of sunlight. 集光装置を側方から見た姿勢位置における光線追跡のシミュレーションを示す図である。It is a figure which shows the simulation of ray tracing in the attitude | position position which looked at the condensing device from the side. 集光装置を斜め上方から見た姿勢位置における光線追跡のシミュレーションを示す図である。It is a figure which shows the simulation of ray tracing in the attitude | position position which looked at the condensing device from diagonally upward. 集光光学素子を上方から見た姿勢位置における光線追跡のシミュレーションを示す図である。It is a figure which shows the simulation of the ray tracing in the attitude | position position which looked at the condensing optical element from the top. 集光光学素子のy軸方向の位置に対する出射面から出射する光線の本数をプロットしたグラフである。It is the graph which plotted the number of the light rays radiate | emitted from the output surface with respect to the position of the y-axis direction of a condensing optical element. 集光光学素子からの光エネルギーの取り出し手法を例示する概念図である。It is a conceptual diagram which illustrates the extraction method of the light energy from a condensing optical element.
 以下、本発明の実施の形態について図面を参照しながら説明する。本発明の実施の形態における集光装置を含む光発電装置PVSの外観の斜視図を図1に例示し、光発電装置PVSに含まれる集光装置1の原理を説明するための概念図を図2に例示する。説明を明瞭化するため、相互に直行するx軸、y軸、z軸から成る座標系を規定し、これを図1中に示す。z軸は光発電装置PVSにおける集光装置1の厚さ方向に延びる軸、x軸は集光装置1により集光されて導出される光の導出方向に延びる軸、y軸はこれらの2軸と直交する方向に延びる軸である。説明の便宜上から、図2に示す姿勢をもって上下左右ということがあるが、光発電装置PVSの配設姿勢は光の入射方位に応じて任意であり、位置や姿勢は図2に規定されるものに限られない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The perspective view of the external appearance of the photovoltaic device PVS including the condensing device in the embodiment of the present invention is illustrated in FIG. 1, and a conceptual diagram for explaining the principle of the concentrating device 1 included in the photovoltaic device PVS is shown. This is illustrated in 2. In order to clarify the explanation, a coordinate system composed of an x-axis, a y-axis and a z-axis orthogonal to each other is defined, and this is shown in FIG. The z-axis is an axis extending in the thickness direction of the light collecting device 1 in the photovoltaic device PVS, the x-axis is an axis extending in the direction in which light is collected and led out by the light collecting device 1, and the y-axis is these two axes. Is an axis extending in a direction perpendicular to the axis. For convenience of explanation, the orientation shown in FIG. 2 is sometimes referred to as up, down, left, and right. Not limited to.
(光発電装置の概要)
 光発電装置PVSの全体構成の概要について説明する。光発電装置PVSは、入射する光を集光する集光装置1と、集光装置1により集光されて端部に導かれてその端部に入射した光を光電変換する光電変換素子5とを含んで構成される。集光装置1は、上方から入射する光、例えば太陽光を集光する集光レンズ10と、透明な媒質により形成され、集光レンズ10により集光されてその透明な媒質の内部へ入射する入射光を導く集光光学素子20とを含んで構成される。集光レンズ10及び集光光学素子20は、各々、例えば光学ガラス等の無機材料やPMMA等の樹脂材料を用いて作製される。
(Outline of photovoltaic power generation equipment)
An overview of the overall configuration of the photovoltaic power generator PVS will be described. The photovoltaic device PVS includes a condensing device 1 that condenses incident light, a photoelectric conversion element 5 that photoelectrically converts the light that is collected by the condensing device 1 and guided to the end and incident on the end. It is comprised including. The condensing device 1 is formed by a condensing lens 10 that condenses light incident from above, for example, sunlight, and a transparent medium, and is condensed by the condensing lens 10 and enters the inside of the transparent medium. And a condensing optical element 20 that guides incident light. The condensing lens 10 and the condensing optical element 20 are each manufactured using, for example, an inorganic material such as optical glass or a resin material such as PMMA.
 図1に示す構成形態は、複数の集光レンズ10ij(1011,1012,…10m1,10m2,…10mn)をx軸方向及びy軸方向に複数行×複数列(m行×n列、m及びnは自然数)並べてマトリクス状に配設し、レンズアレイを形成した構成を示す。第1行から第m行までの複数行はy軸方向に並び、第1行から第m行までの複数行の各行の延伸方向はx軸方向である。第1列から第n列までの複数列はx軸方向に並び、第1列から第n列までの複数列の各列の延伸方向はy軸方向である。レンズアレイは複数の集光レンズ10を複数行と複数列とから構成されるマトリクス状に一体成型され、あるいは個々に形成した集光レンズ10を枠体等にマトリクス状に配置して固定することにより構成される。 In the configuration shown in FIG. 1, a plurality of condenser lenses 10 ij (10 11 , 10 12 ,... 10 m1 , 10 m2 ,... 10 mn ) are arranged in a plurality of rows × a plurality of columns (m rows) in the x-axis direction and the y-axis direction. Xn columns, m and n are natural numbers) are arranged in a matrix and a lens array is formed. The plurality of rows from the first row to the m-th row are arranged in the y-axis direction, and the extending direction of each row of the plurality of rows from the first row to the m-th row is the x-axis direction. The plurality of columns from the first column to the n-th column are arranged in the x-axis direction, and the extending direction of each column of the plurality of columns from the first column to the n-th column is the y-axis direction. In the lens array, a plurality of condensing lenses 10 are integrally formed in a matrix composed of a plurality of rows and a plurality of columns, or individually formed condensing lenses 10 are arranged and fixed in a matrix on a frame or the like. Consists of.
 集光光学素子20は、集光レンズ10により集光されて入射する入射光を反射する集光反射面を有し、集光反射面での反射により、集光光学素子20に入射した光がx軸方向に導かれるように構成される。図1は、複数の集光レンズ10ijにより集光入射する各入射光に対応する複数(m行×n列)の集光反射面を有して一体のプレート状に形成された集光光学素子20の例を示す。光電変換素子5は、公知の種々の素子を用いることができ、例えば、前述したシリコン系、化合物系、有機系、色素増感系などの材料により構成される種々の形態の太陽電池セルを用いて構成することができる。 The condensing optical element 20 has a condensing reflection surface that reflects incident light that is collected by the condensing lens 10 and is incident on the condensing optical element 20 due to reflection on the condensing reflection surface. It is configured to be guided in the x-axis direction. FIG. 1 shows a condensing optical system having a plurality of (m rows × n columns) condensing reflection surfaces corresponding to each incident light collected and incident by a plurality of condensing lenses 10 ij and formed in an integral plate shape. An example of the element 20 is shown. As the photoelectric conversion element 5, various known elements can be used. For example, various types of solar cells composed of the above-described materials such as silicon, compound, organic, and dye sensitization are used. Can be configured.
(集光装置の基本構成)
 図2は、集光装置1の基本構成を説明するための模式図であり、集光レンズ10ijにより集光されて集光光学素子20の内部へ入射した光が、集光光学素子20内を伝播する様子を模式的に描いた図である。集光装置1の基本構成とは、集光装置1に含まれる複数の構成単位の各々の構成のことをいう。集光装置1の構成単位は、集光レンズ10ijと後述する集光反射面23とを含む。
(Basic configuration of the light collecting device)
FIG. 2 is a schematic diagram for explaining the basic configuration of the condensing device 1. Light collected by the condensing lens 10 ij and incident on the condensing optical element 20 is reflected in the condensing optical element 20. It is the figure which drawn a mode that it propagates. The basic configuration of the light collecting device 1 refers to the configuration of each of a plurality of structural units included in the light collecting device 1. The structural unit of the condensing device 1 includes a condensing lens 10 ij and a condensing reflection surface 23 described later.
 図2(a)に示すように、集光光学素子20は、集光レンズ10ij(例えば集光レンズ1011)により集光されて入射する入射光を透過する上面(入射面)21と、上面に対向してほぼ平行に延びる下面(裏面)22と、上面21と下面22との間を繋ぎ上下方向(z軸方向、集光光学素子20の厚さ方向)に延びる入射光の光軸LAと交差する集光反射面(端面)23と、集光反射面23に対向する出射面(端面)26とを有する。集光レンズ10ijにより集光されて上面21から集光光学素子20の内部へ入射して集光反射面23により反射された光が、上面21及び下面22により全反射されてx軸方向(図2(a)及び図2(b)における右方)に導かれ、出射面26から導出される。すなわち、集光光学素子20の内部を伝播し、集光光学素子20の内部から空気との界面である上面21または下面22に入射する光が、集光光学素子20を形成する透明な媒質と集光光学素子20の外部の空気との屈折率差により全反射されるようになっている。 As shown in FIG. 2A, the condensing optical element 20 includes an upper surface (incident surface) 21 that transmits incident light that is collected by the condensing lens 10 ij (for example, the condensing lens 10 11 ), and An optical axis of incident light that extends between the lower surface (back surface) 22 facing the upper surface and extending substantially in parallel and the upper surface 21 and the lower surface 22 and extending in the vertical direction (z-axis direction, thickness direction of the condensing optical element 20). It has a condensing reflection surface (end surface) 23 that intersects with LA, and an exit surface (end surface) 26 that faces the condensing reflection surface 23. The light collected by the condensing lens 10 ij and incident on the inside of the condensing optical element 20 from the upper surface 21 and reflected by the condensing reflection surface 23 is totally reflected by the upper surface 21 and the lower surface 22 to be in the x-axis direction ( 2 (a) and FIG. 2 (b) to the right) and derived from the exit surface 26. That is, light that propagates inside the condensing optical element 20 and enters the upper surface 21 or the lower surface 22 that is an interface with air from the inside of the condensing optical element 20 is a transparent medium that forms the condensing optical element 20. The light is totally reflected by the difference in refractive index with the air outside the condensing optical element 20.
 図3及び図4は、集光レンズ10ijにより集光されて集光光学素子20の内部へ入射した光が集光光学素子20の内部をどのように伝播するかを、光線追跡(Ray-trace)のシミュレーションにより示す図である。図4は図3における集光反射面23の近傍部分における光の伝播を拡大して示す図である。図4(a)は集光反射面23の近傍をy軸方向に見た図であり、図4(b)は集光反射面23の近傍を斜め下方から見た図である。 3 and 4 show how the light collected by the condenser lens 10 ij and incident on the inside of the condensing optical element 20 propagates inside the condensing optical element 20. It is a figure shown by simulation of trace). FIG. 4 is an enlarged view showing the propagation of light in the vicinity of the condensing reflection surface 23 in FIG. 4A is a view of the vicinity of the condensing reflection surface 23 as viewed in the y-axis direction, and FIG. 4B is a view of the vicinity of the condensing reflection surface 23 as viewed obliquely from below.
 図4(b)に示すように、集光光学素子20は、上面21と下面22とに接するとともに集光反射面23と出射面26との間を繋ぎ、相互に対向してほぼ平行に延びる側面24及び側面25を有しており、y-z断面においては方形に形成される。集光反射面23を平面とした例を用いて本実施の形態を説明する。 As shown in FIG. 4B, the condensing optical element 20 is in contact with the upper surface 21 and the lower surface 22 and connects between the condensing reflection surface 23 and the exit surface 26 and extends substantially parallel to each other. It has a side surface 24 and a side surface 25, and is formed in a square shape in the yz section. The present embodiment will be described using an example in which the condensing reflection surface 23 is a plane.
 図3及び図4に示すように、集光レンズ10ijにより集光されて上面21から集光光学素子20の内部へ入射し、集光反射面23により反射された光は、集光レンズ10ijの形状に応じて円錐状または角錐状に拡がって集光光学素子20内を伝播する。集光光学素子20の内部を伝播する光が、上面21、下面22、側面24、および側面25において全反射されてx軸方向に導かれ、出射面26から導出される。 As shown in FIGS. 3 and 4, the light collected by the condenser lens 10 ij and incident on the inside of the condenser optical element 20 from the upper surface 21 and reflected by the condenser reflection surface 23 is reflected by the condenser lens 10. The light spreads in the condensing optical element 20 in a conical shape or a pyramid shape according to the shape of ij . The light propagating through the condensing optical element 20 is totally reflected on the upper surface 21, the lower surface 22, the side surface 24, and the side surface 25, guided in the x-axis direction, and derived from the output surface 26.
 集光レンズ10ijにより集光されて上面21から入射し、集光反射面23により反射された光が、集光光学素子20の上面21,下面22、ならびに側面24及び25で全反射されて出射面26に導出されるように集光光学素子20が構成されている。そのため、集光光学素子20の内部へ入射した光の閉じ込め効率が高く、集光した光を高効率で出射面26に導出することができる。 Light collected by the condenser lens 10 ij and incident from the upper surface 21 and reflected by the condensing reflection surface 23 is totally reflected by the upper surface 21, the lower surface 22, and the side surfaces 24 and 25 of the condensing optical element 20. The condensing optical element 20 is configured to be led out to the emission surface 26. Therefore, the confinement efficiency of the light incident on the inside of the condensing optical element 20 is high, and the condensed light can be led out to the emission surface 26 with high efficiency.
 加えて、集光光学素子20は、集光レンズ10ijにより集光されて上面21から入射する入射光が集光反射面23においても全反射されるように構成される。集光レンズ10ijにより集光されて上面21から集光光学素子20の内部へ入射し、集光反射面23に入射する入射光に関して、集光レンズ10ijの中心を通る集光レンズ10ijの光軸LAに沿って集光反射面23に入射する光線の入射角(以下、「光軸入射角」という)θLAと、光軸LAから離れた位置(集光レンズ10の外周部)を通って集光反射面23に入射する光線の入射角θLA±θNAとが、図2(b)に示すように相異なった角度になる。なぜならば、集光反射面23に入射する光線の、光軸LAに対する最大角θNAが0ではないからである。図2(b)から明らかなように、集光反射面23により反射される光の進行方向(集光反射面23から離れる方向)において最も端の方、すなわち図2(b)において紙面に向かって最も右側の、レンズ外周部を通って集光反射面23に入射する光線の入射角が最小入射角θmin(=θLA-θNA)となる。 In addition, the condensing optical element 20 is configured such that incident light that is condensed by the condensing lens 10 ij and incident from the upper surface 21 is also totally reflected by the condensing reflection surface 23. Is condensed by the condenser lens 10 ij incident from the top surface 21 to the inside of the condensing optical element 20, with respect to the incident light incident on the condensing and reflecting surface 23, the condenser lens 10 ij passing through the center of the converging lens 10 ij Incident angle (hereinafter referred to as “optical axis incident angle”) θ LA of light incident on the condensing and reflecting surface 23 along the optical axis LA and a position away from the optical axis LA (outer peripheral portion of the condensing lens 10) The incident angles θ LA ± θ NA of the light rays that pass through the condensing / reflecting surface 23 are different from each other as shown in FIG. This is because the maximum angle θ NA with respect to the optical axis LA of the light incident on the condensing reflection surface 23 is not zero. As is clear from FIG. 2 (b), the light is reflected by the converging / reflecting surface 23 toward the end in the traveling direction (the direction away from the condensing / reflecting surface 23), that is, toward the paper surface in FIG. 2 (b). Then, the incident angle of the light beam that enters the condensing / reflecting surface 23 through the outer periphery of the rightmost lens is the minimum incident angle θ min (= θ LA −θ NA ).
 集光光学素子20では、集光反射面23に集光入射する光線の最小入射角θminが、集光反射面23の全反射臨界角以上となるように設定される。具体的には、集光光学素子20の屈折率N及び集光レンズ10の開口数NA(NA=NsinθNA)を所定値とした場合、上記最小入射角θminが集光反射面23の全反射臨界角以上になるように、集光反射面23の上面21(下面22)に対する傾斜角θ23を設定することができる。図2(b)に示す例においては、上面21と下面22とは互いに平行であり、光軸LAは上面21に垂直であるため、光軸入射角θLAは傾斜角θ23に等しい。 In the condensing optical element 20, the minimum incident angle θ min of the light beam that is collected and incident on the condensing reflection surface 23 is set to be equal to or greater than the total reflection critical angle of the condensing reflection surface 23. Specifically, when the refractive index N of the condensing optical element 20 and the numerical aperture NA (NA = Nsinθ NA ) of the condensing lens 10 are set to predetermined values, the minimum incident angle θ min is the entire condensing reflection surface 23. so that the above reflection critical angle, it is possible to set the inclination angle theta 23 relative to the upper surface 21 of the condensing and reflecting surface 23 (lower surface 22). In the example shown in FIG. 2 (b), are mutually parallel to the upper surface 21 and lower surface 22, since the optical axis LA is perpendicular to the top surface 21, the optical axis incident angle theta LA is equal to the inclination angle theta 23.
 集光光学素子20の屈折率N及び集光反射面23の傾斜角θ23を所定値としてもよい。その場合は、最小入射角θminが集光反射面23の全反射臨界角以上となるように、集光レンズ10ijの開口数NAまたは集光レンズ10の焦点距離fを設定する。集光レンズ10ijの開口数NA及び集光反射面23の傾斜角θ23を所定値としてもよい。その場合は、最小入射角θminが集光反射面23の全反射臨界角以上となるように、集光光学素子20の屈折率Nを設定する。具体的には、集光光学素子20の材質やドープする添加物等を選択することにより、集光光学素子20の屈折率Nを設定することができる。 The inclination angle theta 23 of refractive index N and condensing and reflecting surface 23 of the converging optical element 20 may be a predetermined value. In that case, the numerical aperture NA of the condenser lens 10 ij or the focal length f of the condenser lens 10 is set so that the minimum incident angle θ min is equal to or greater than the total reflection critical angle of the condenser reflecting surface 23. The numerical aperture NA of the condenser lens 10 ij and the inclination angle θ 23 of the condenser reflecting surface 23 may be set to predetermined values. In that case, the refractive index N of the condensing optical element 20 is set so that the minimum incident angle θ min is equal to or greater than the total reflection critical angle of the condensing reflection surface 23. Specifically, the refractive index N of the condensing optical element 20 can be set by selecting the material of the condensing optical element 20, the additive to be doped, or the like.
 集光反射面23で全反射した光全体を下面22(及び上面21)に入射させる場合、集光反射面23に最小入射角で入射し反射された光線は下面22(及び上面21)に最大入射角で入射し、集光反射面23に最大入射角で入射し反射された光線は下面22(及び上面21)に最小入射角で入射する。従って、集光反射面23の傾斜角θ23、集光レンズ10ijの開口数NA、及び/または集光光学素子20の屈折率Nが、集光反射面23、上面21、下面22、ならびに側面24及び25の全ての界面において全反射の条件が満たされるように設定される。 When the entire light totally reflected by the condensing / reflecting surface 23 is incident on the lower surface 22 (and the upper surface 21), the light ray incident on the condensing / reflecting surface 23 at the minimum incident angle and reflected is maximum on the lower surface 22 (and the upper surface 21). A light beam incident at an incident angle and incident on the condensing reflection surface 23 at a maximum incident angle and reflected is incident on the lower surface 22 (and the upper surface 21) at a minimum incident angle. Accordingly, the inclination angle θ 23 of the condensing reflection surface 23, the numerical aperture NA of the condensing lens 10 ij , and / or the refractive index N of the condensing optical element 20 are determined by the condensing reflection surface 23, the upper surface 21, the lower surface 22, and It is set so that the condition of total reflection is satisfied at all the interfaces of the side surfaces 24 and 25.
 このような構成によれば、集光レンズ10ijにより集光されて集光光学素子20の上面21から入射した入射光が、集光光学素子20内に入射して以降、集光光学素子20と空気層との全ての界面(集光反射面23、上面21、下面22、ならびに側面24及び25)で全反射され、出射面26に導かれる。そのため、集光光学素子20に入射した光の波長依存性が低く、かつ閉じ込め効率が高い。こうして、集光した光を高効率で出射面26に導くことができる。 According to such a configuration, the incident light that has been collected by the condenser lens 10 ij and entered from the upper surface 21 of the condenser optical element 20 enters the condenser optical element 20 and then enters the condenser optical element 20. Are totally reflected at all the interfaces (the condensing reflection surface 23, the upper surface 21, the lower surface 22, and the side surfaces 24 and 25) between the air layer and the air layer. Therefore, the wavelength dependency of the light incident on the condensing optical element 20 is low and the confinement efficiency is high. In this way, the condensed light can be guided to the emission surface 26 with high efficiency.
 また、各図に示されるように、集光装置1においては、集光レンズ10及び集光光学素子20は、集光レンズ10ijにより集光されて集光光学素子20の内部に入射する入射光がほぼ集光反射面23の面上に焦点を結ぶように構成される。 Further, as shown in each drawing, in the condensing device 1, the condensing lens 10 and the condensing optical element 20 are incident on the condensing optical element 20 after being condensed by the condensing lens 10ij. The light is configured so as to be focused on the surface of the light collecting / reflecting surface 23.
 なお、物質の屈折率は透過する光の波長λによって変化する。そのため、集光しようとする光の波長λが変化幅を持つ場合に、短波長側の光の焦点位置と長波長側の光の焦点位置とは一般的に相異なる。したがって、焦点位置は、波長帯域の広さに応じた変化幅を持つ。集光装置1においては、入射光の波長を太陽光の放射スペクトルに応じてλ=350~1100nmとしたときに集光レンズ10ijとして色収差の少ないレンズが用いられるとともに、集光反射面23上でビームスポット径が最小となるように設定されている。 Note that the refractive index of the substance varies depending on the wavelength λ of the transmitted light. Therefore, when the wavelength λ of the light to be collected has a change width, the focal position of the light on the short wavelength side is generally different from the focal position of the light on the long wavelength side. Therefore, the focal position has a change width corresponding to the width of the wavelength band. In the condensing device 1, when the wavelength of incident light is λ = 350 to 1100 nm according to the radiation spectrum of sunlight, a lens with little chromatic aberration is used as the condensing lens 10 ij , and on the condensing reflection surface 23. The beam spot diameter is set to be minimum.
 このような構成により、集光反射面23の投影面積を最小化することができ、したがって、集光光学素子20の厚さを最小化することができる。なお入射光の波長帯域が狭い場合や色収差を補償可能な場合には、入射光の焦点位置を集光反射面23上に合わせて設定することができる。焦点位置における入射光のパワー密度等に応じて僅かにデフォーカスが行われるようにしても良い。 With such a configuration, the projection area of the condensing reflection surface 23 can be minimized, and therefore the thickness of the condensing optical element 20 can be minimized. When the wavelength band of incident light is narrow or when chromatic aberration can be compensated, the focal position of incident light can be set on the condensing reflection surface 23. Slight defocusing may be performed according to the power density of incident light at the focal position.
 このようにして集光反射面23に集光入射され、集光反射面で全反射された光が、上面21、下面22、側面24、側面25の各面で全反射されて集光光学素子20内をx軸方向に伝播し、出射面26から導出される。出射面26はy-z平面に沿って形成される。端面(出射面26)が研磨されてARコートが施されている。したがって、集光光学素子20内を伝播して出射面26に入射した光は、出射面26で反射されることなく出射して光電変換素子5に入射する。 The light condensed and incident on the condensing / reflecting surface 23 in this way and totally reflected by the condensing / reflecting surface is totally reflected on each of the upper surface 21, the lower surface 22, the side surface 24, and the side surface 25, thereby collecting optical elements. 20 propagates in the x-axis direction and is derived from the exit surface 26. The emission surface 26 is formed along the yz plane. The end face (outgoing face 26) is polished and AR coated. Therefore, light that has propagated through the condensing optical element 20 and entered the exit surface 26 exits without being reflected by the exit surface 26 and enters the photoelectric conversion element 5.
 以上、集光装置1の基本構成(各構成単位の構成)について説明した。上述した説明では、集光反射面23に入射した光を、屈折率差を利用した全反射で反射する集光反射面23の構成について説明した。しかし、集光反射面23を、例えばAu,Ag,Al等の金属を蒸着したミラーで構成し、そのミラーが集光反射面23に入射した光を反射してもよい。この場合、集光反射面23において反射損失が発生するが、光軸入射角θLAを小さく(集光反射面23の傾斜角θ23を小さく)することができる。例えば、光軸入射角θLA(集光反射面23の傾斜角θ23)を45度にすることができる。集光反射面23の傾斜角θ23を小さくすると、集光反射面23で反射された光の、上面21、下面22、側面24及び側面25への最小入射角が大きくなる。集光反射面23で反射された光の、上面21、下面22、側面24及び側面25への最小入射角は、全反射の臨界角まで小さくすることができるため、より開口数が大きい短焦点の集光レンズ10ijを用いることができる。短焦点の集光レンズ10ijを用いることができると、集光レンズ10ijから集光反射面23までの距離が短くなるため、これにより集光装置1の厚さを低減することができる。なお、説明簡明化のため、集光反射面23を平面とした場合を例示したが、集光反射面23を所定形状の凸面または凹面等としても良い。 The basic configuration (configuration of each structural unit) of the light collecting apparatus 1 has been described above. In the above description, the configuration of the condensing / reflecting surface 23 that reflects the light incident on the condensing / reflecting surface 23 by total reflection using the refractive index difference has been described. However, the condensing / reflecting surface 23 may be configured by a mirror on which a metal such as Au, Ag, or Al is deposited, and the mirror may reflect the light incident on the condensing / reflecting surface 23. In this case, the reflection loss in the light converging reflection surface 23 is generated, it is possible to reduce the optical axis incident angle theta LA (small inclination angle theta 23 of condensing and reflecting surface 23). For example, the optical axis incident angle θ LA (the inclination angle θ 23 of the condensing reflection surface 23 ) can be set to 45 degrees. A smaller inclination angle theta 23 of condensing and reflecting surface 23, the light reflected by the condensing and reflecting surface 23, top surface 21, bottom surface 22, the minimum incident angle to the side surfaces 24 and the side surface 25 increases. Since the minimum incident angle of the light reflected by the condensing reflection surface 23 to the upper surface 21, the lower surface 22, the side surface 24, and the side surface 25 can be reduced to the critical angle of total reflection, the short focal point having a larger numerical aperture. The condensing lens 10 ij can be used. If it is possible to use a condenser lens 10 ij at the short focal, since the distance from the condenser lens 10 ij to condensing and reflecting surface 23 is reduced, thereby reducing the thickness of the condenser 1. In addition, for the sake of simplicity of explanation, the case where the condensing reflection surface 23 is a flat surface is illustrated, but the condensing reflection surface 23 may be a convex surface or a concave surface having a predetermined shape.
 上述したように、集光レンズ10により集光される光は太陽光であっても良い。図2(b)に示すように、太陽光が光軸LAに対して平行に集光レンズ10ijに入射することが、より好ましい。そのため、集光装置1は太陽を自動的に追尾することが好ましい。太陽光を集光する場合は、太陽光のスペクトルのうち少なくとも特定の波長範囲の光が集光されるように集光装置1を構成しても良い。波長範囲は光電変換素子5の分光感度特性に応じて決定することができる。例えば、光電変換素子5の変換効率が実質的に0でない波長範囲の光が集光されるように、集光装置1を構成することができる。また、少なくとも光電変換効率が最大となる波長の光が集光されるように集光装置1を構成しても良い。 As described above, the light collected by the condenser lens 10 may be sunlight. As shown in FIG. 2 (b), it is more preferable that sunlight is incident on the condenser lens 10ij in parallel with the optical axis LA. Therefore, it is preferable that the condensing device 1 automatically tracks the sun. When condensing sunlight, the condensing device 1 may be configured such that at least light in a specific wavelength range in the sunlight spectrum is condensed. The wavelength range can be determined according to the spectral sensitivity characteristics of the photoelectric conversion element 5. For example, the condensing device 1 can be configured such that light in a wavelength range in which the conversion efficiency of the photoelectric conversion element 5 is not substantially zero is collected. Moreover, you may comprise the condensing apparatus 1 so that the light of the wavelength which becomes the maximum photoelectric conversion efficiency may be condensed.
 集光装置1で集光レンズ10により集光される光の具体的な波長範囲としては、例えば、350~1800nmであっても良いし、本実施の形態の説明にあるように350~1100nmであっても良い。集光装置1で集光レンズ10により集光される光の波長範囲が350~1800nmであるとき、その集光された光を光電変換する光電変換素子5として、多接合型の光電変換素子を適用することができる。集光装置1で集光レンズ10により集光される光の波長範囲が350~1100nmであるとき、その集光された光を光電変換する光電変換素子5として、結晶シリコンの光電変換素子を適用することができる。 The specific wavelength range of the light condensed by the condensing lens 10 in the condensing device 1 may be, for example, 350 to 1800 nm, or may be 350 to 1100 nm as described in the present embodiment. There may be. When the wavelength range of the light collected by the condenser lens 10 in the condenser 1 is 350 to 1800 nm, a multi-junction photoelectric conversion element is used as the photoelectric conversion element 5 that photoelectrically converts the collected light. Can be applied. When the wavelength range of the light condensed by the condensing lens 10 in the condensing device 1 is 350 to 1100 nm, a photoelectric conversion element of crystalline silicon is applied as the photoelectric conversion element 5 that photoelectrically converts the collected light. can do.
(集光装置の具体的構成)
 集光装置1の具体的な構成について、図5及び図6を併せて参照しながら説明する。図5(a)は集光光学素子20の側面図であり、図5(b)は集光光学素子20の平面図である。図6は集光光学素子20に含まれる1つの素子ユニット200を斜め上方から見た斜視図である。なお、図5及び図6においては、集光光学素子20を上方から見たときの集光反射面23を実線で示している。
(Concrete configuration of condensing device)
A specific configuration of the light collecting apparatus 1 will be described with reference to FIGS. 5 and 6 together. FIG. 5A is a side view of the condensing optical element 20, and FIG. 5B is a plan view of the condensing optical element 20. FIG. 6 is a perspective view of one element unit 200 included in the condensing optical element 20 as viewed obliquely from above. 5 and 6, the condensing reflection surface 23 when the condensing optical element 20 is viewed from above is indicated by a solid line.
 図1を参照して最初に説明したように、集光装置1はm行×n列の複数の集光レンズ10ij及び複数の集光反射面23を有して構成される。換言すれば、図2~図4を参照して説明した基本構成を有する構成単位がm行×n列設けられて集光装置1が構成される。図5及び図6においては、集光光学素子20における1行×n列分を1つの素子ユニット200(201,202,203…)とし、これをm個(m行分)連結して、一体の集光光学素子20を形成している。 As described first with reference to FIG. 1, the condensing device 1 is configured to include a plurality of condensing lenses 10 ij and a plurality of condensing reflection surfaces 23 of m rows × n columns. In other words, the condensing device 1 is configured by providing m rows × n columns of structural units having the basic configuration described with reference to FIGS. 5 and 6, one row × n columns in the condensing optical element 20 is defined as one element unit 200 (201, 202, 203...), And m (m rows) are connected and integrated. The condensing optical element 20 is formed.
 図5(a)および図5(b)は上記のように一体形成した集光光学素子20の側面図及び平面図であり、図6はn個の集光反射面23を含む1つの素子ユニット200を斜め上方から見た斜視図である。各図には、m=n=10、すなわち集光装置1が10行×10列の構成単位を含むとした場合の集光装置1に含まれる集光光学素子20が例示されている。 FIGS. 5A and 5B are a side view and a plan view of the condensing optical element 20 integrally formed as described above, and FIG. 6 shows one element unit including n condensing reflection surfaces 23. It is the perspective view which looked at 200 from diagonally upward. Each figure illustrates the condensing optical element 20 included in the condensing device 1 when m = n = 10, that is, when the condensing device 1 includes 10 rows × 10 columns of structural units.
 各素子ユニット200には、10個の集光反射面23がx軸に沿って所定間隔で並んで形成されている。これらの集光反射面23は、各集光反射面で反射された光が他の集光反射面にかからないように、すなわち各集光反射面で反射された光が他の集光反射面により遮られないように、集光反射面23、ならびに側面24及び25がx軸から僅かに傾斜して(図5(b)においては数度程度傾斜して)形成されている。側面24及び25のうち、一方の側面(図5及び6においては側面25)は連続する1枚の平面で形成され、他方の側面(図5及び6においては側面24)は集光反射面23を挟んで階段状に形成される。 In each element unit 200, ten condensing / reflecting surfaces 23 are formed at predetermined intervals along the x-axis. These condensing reflection surfaces 23 are arranged so that the light reflected by each condensing reflection surface does not strike other condensing reflection surfaces, that is, the light reflected by each condensing reflection surface is reflected by the other condensing reflection surfaces. The condensing / reflecting surface 23 and the side surfaces 24 and 25 are formed so as to be slightly inclined from the x-axis (in FIG. 5B, inclined by several degrees) so as not to be blocked. Of the side surfaces 24 and 25, one side surface (the side surface 25 in FIGS. 5 and 6) is formed by one continuous plane, and the other side surface (the side surface 24 in FIGS. 5 and 6) is the condensing reflection surface 23. It is formed in a staircase shape with a gap in between.
 すなわち、上下面21、下面22、集光反射面23、側面24、側面25、及び出射面26を有する角柱状の単位集光素子(図5(a)及び図6参照)を10個並列に束ね、相互に接する側面24及び25を排して側面を共有化し、これにより10個の単位集光素子を一体に集積したものが素子ユニット200(図5(b)参照)である。素子ユニット200は、n個の集光反射面23、n個の集光反射面23にそれぞれ対応するn個の側面24、ならびにn個の集光反射面23に共通して対応する側面25、上面21、下面22、及び出射面26を有する。集光光学素子20は、この素子ユニット200を10枚並列に並べて(10行並べて)一体のプレート状に形成したものであり、1個1個が集光装置1の各構成単位(1行×1列分)に対応する100個の単位集光素子を一体に集積した機能素子に相当する。 That is, ten prismatic unit condensing elements (see FIG. 5A and FIG. 6) having upper and lower surfaces 21, a lower surface 22, a condensing reflection surface 23, a side surface 24, a side surface 25, and an exit surface 26 are arranged in parallel. The element unit 200 (see FIG. 5B) is formed by bundling and removing the side surfaces 24 and 25 that are in contact with each other to share the side surfaces, thereby integrating the 10 unit light collecting elements integrally. The element unit 200 includes n light collecting / reflecting surfaces 23, n side surfaces 24 corresponding to the n light collecting / reflecting surfaces 23, and side surfaces 25 corresponding to the n light collecting / reflecting surfaces 23 in common. It has an upper surface 21, a lower surface 22, and an exit surface 26. The condensing optical element 20 is formed by arranging 10 element units 200 in parallel (10 rows) in an integrated plate shape, and each element unit 200 is a component unit (1 row × 1). This corresponds to a functional element in which 100 unit condensing elements corresponding to one column) are integrated together.
 そのため、集光反射面23に集光入射され、各集光反射面により全反射された光が、各素子ユニット200(201,202,203…209,210)において、上面21、下面22、側面24及び側面25で全反射され、x軸方向に導かれる過程で、ひとつの素子ユニット200ごとに1行分の光(10個の集光反射面23により反射された10個の光束)が集光される。各素子ユニット200で集光された光は隣接する素子ユニットとの接合部で集合され、共通の出射面26から導出される。出射面26から導出された光は光電変換素子5に入射して光電変換される。 Therefore, the light that is condensed and incident on the condensing / reflecting surface 23 and totally reflected by each condensing / reflecting surface is the upper surface 21, the lower surface 22, the side surface in each element unit 200 (201, 202, 203... 209, 210). In the process of being totally reflected at 24 and the side surface 25 and guided in the x-axis direction, one row of light (10 light fluxes reflected by the 10 condensing reflection surfaces 23) is collected for each element unit 200. Lighted. The light condensed by each element unit 200 is gathered at the junction with the adjacent element unit and is led out from the common emission surface 26. Light derived from the exit surface 26 enters the photoelectric conversion element 5 and is photoelectrically converted.
 各集光レンズ10ijの大きさを10×10mmとし、集光レンズ10ijが10行×10列に並べられて100×100mmの大きさで形成されるレンズアレイにより集光された収束光が、厚さ1mm×幅100mmの出射面26に集光されるとしたときの集光倍率は100倍となる。 The size of each condenser lens 10 ij and 10 × 10 mm, convergent light converged by the lens array condensing lens 10 ij is formed in the size of the aligned and 100 × 100 mm in 10 rows × 10 columns When the light is condensed on the exit surface 26 having a thickness of 1 mm and a width of 100 mm, the light condensing magnification is 100 times.
 このような構成の集光装置1によれば、m行×n列の集光レンズ10からなる1枚のレンズアレイと、これに対応した集光反射面23を有する1枚の集光光学素子20からなる極めて簡明かつ薄型の構成で、殆ど損失がなく集光効率が高い集光装置を提供することができる。従来の集光装置においては多数の太陽電池セルがレンズ等の焦点位置に分散配置されるために集光装置が複雑化するという問題があるが、本実施の形態における集光装置1においてはz軸方向(集光光学素子20の厚さ方向)の長さが短い出射面26に沿って光電変換素子5を一体配置するため、集光装置が複雑化しない。集光光学素子20及び集光レンズ10のレンズアレイは、例えば、低融点ガラスを用いたホットプレス成型や、PMMA等の樹脂を射出成型して構成することができ、良好な生産性で低価格に生産することができる。 According to the condensing device 1 having such a configuration, one condensing optical element having one lens array including condensing lenses 10 of m rows × n columns and a condensing reflection surface 23 corresponding thereto. It is possible to provide a light collecting device having a very simple and thin configuration of 20 with almost no loss and high light collecting efficiency. In the conventional light collecting device, there is a problem that the light collecting device becomes complicated because a large number of solar cells are dispersedly arranged at the focal position of a lens or the like, but in the light collecting device 1 in the present embodiment, z Since the photoelectric conversion elements 5 are integrally disposed along the emission surface 26 having a short length in the axial direction (thickness direction of the condensing optical element 20), the condensing device is not complicated. The lens array of the condensing optical element 20 and the condensing lens 10 can be configured by, for example, hot press molding using a low melting point glass or injection molding of a resin such as PMMA. Can be produced.
 なお、以上の説明では、ひとつの素子ユニット200で1行×10列の集束光が集光され、10個の素子ユニットを一体化して用いて10行×10列の集束光を集光する集光光学素子20を例示したが、素子ユニット200の構成や複数の素子ユニットの統合形態は任意である。例えば、1つまたは複数の素子ユニットごとに出射面26を設けて各出射面から出射された光を光電変換素子5に入射させても良い。集光レンズの配置に合わせて素子ユニットを星形に形成するなどしても良い。側面24を階段状に形成した構成を例示したが、側面24を1枚の平面とし側面25を階段状に形成しても良い。複数の集光反射面23をそれぞれx軸と数度程度傾斜した軸上に所定間隔で並んで形成するとともに、側面24,25をx軸に沿って形成しても良い。 In the above description, the focused light of 1 row × 10 columns is collected by one element unit 200, and the focused light of 10 rows × 10 columns is collected using 10 element units integrated. Although the optical optical element 20 is illustrated, the configuration of the element unit 200 and the integrated form of a plurality of element units are arbitrary. For example, an exit surface 26 may be provided for each of one or a plurality of element units, and light emitted from each exit surface may be incident on the photoelectric conversion element 5. The element unit may be formed in a star shape according to the arrangement of the condenser lenses. Although the configuration in which the side surface 24 is formed in a step shape is illustrated, the side surface 24 may be formed as a single plane and the side surface 25 may be formed in a step shape. A plurality of condensing reflection surfaces 23 may be formed side by side at predetermined intervals on an axis inclined by several degrees with respect to the x axis, and the side surfaces 24 and 25 may be formed along the x axis.
(具体例)
 太陽光を集光装置1によって集光する場合の具体例について図2及び図7~図11を参照しながら説明する。
(Concrete example)
A specific example in which sunlight is condensed by the light collecting device 1 will be described with reference to FIG. 2 and FIGS.
 集光レンズ10ijにより集光され上面21から集光光学素子20内に入射した光を、集光反射面23、上面21、下面22、側面24、及び側面25の全ての界面で全反射させる場合に、集光反射面23の傾斜角θ23は、集光レンズ10ijの開口数NAに応じて変化する。集光光学素子20の屈折率Nを設定した場合には、集光反射面23の傾斜角θ23は、一般的に集光レンズ10ijの焦点距離fに応じて変化する。 The light condensed by the condensing lens 10 ij and incident on the condensing optical element 20 from the upper surface 21 is totally reflected at all interfaces of the condensing reflection surface 23, the upper surface 21, the lower surface 22, the side surface 24, and the side surface 25. If the inclination angle theta 23 of condensing and reflecting surface 23 varies according to the numerical aperture NA of the condensing lens 10 ij. If you set the refractive index N of the converging optical element 20, the tilt angle theta 23 of condensing and reflecting surface 23 is generally varied in accordance with the focal length f of the condenser lens 10 ij.
 そこで、集光レンズ10及び集光光学素子20をPMMA(ポリメチルメタクリレート)を用いて構成し、波長350nm~1100nmの太陽光を集光レンズ10及び集光光学素子20によって集光する場合のシミュレーションを行った。PMMAの屈折率として、図7に示す表に記載された離散値を直線補間したものを用いる。入射光のスペクトル密度として、太陽光スペクトルに基づいて図8に示すものを用いる。集光光学素子20の厚さは1mmとした。この共通条件のもとで、集光レンズ10の焦点距離fがf=20mmの場合と、f=30mmの場合とについて、集光反射面23で全ての光線を全反射させるための集光反射面23の傾斜角θ23を、次のように算出することができる。
・f=20mmの場合、傾斜角θ23≧51.2度
・f=30mmの場合、傾斜角θ23≧48.5度
Therefore, a simulation in which the condensing lens 10 and the condensing optical element 20 are configured using PMMA (polymethylmethacrylate) and sunlight with a wavelength of 350 nm to 1100 nm is condensed by the condensing lens 10 and the condensing optical element 20. Went. As the refractive index of PMMA, linear interpolation of discrete values described in the table shown in FIG. 7 is used. As the spectral density of the incident light, the one shown in FIG. 8 is used based on the sunlight spectrum. The thickness of the condensing optical element 20 was 1 mm. Under this common condition, the condensing reflection for totally reflecting all the light beams on the condensing reflection surface 23 in the case where the focal length f of the condensing lens 10 is f = 20 mm and in the case where f = 30 mm. the inclination angle theta 23 surface 23 can be calculated as follows.
・ If f = 20 mm, tilt angle θ 23 ≧ 51.2 degrees ・ If f = 30 mm, tilt angle θ 23 ≧ 48.5 degrees
 太陽の見込み角や製造誤差等による光軸LAの傾きを考慮すると、集光反射面23は大きい方、すなわち集光反射面23の傾斜角θ23は小さい方が、光軸LAの最大許容角度幅が大きくなり好ましい。 Considering the inclination of the optical axis LA due to the expected angle of the sun, manufacturing errors, etc., the maximum allowable angle of the optical axis LA is larger when the condensing reflection surface 23 is larger, that is, when the inclination angle θ23 of the condensing reflection surface 23 is smaller. This is preferable because the width is increased.
 また、光軸LAの角度幅が±αのとき、焦点位置のずれ幅δxは、δx=2・f・tanαとなる。集光反射面23のx軸方向の長さはX=1/tanθ23である。光線が1点に集光する場合を仮定すると、X=δxのときに光軸LAの角度幅は最大許容角度幅±αmaxとなる。すなわち、集光レンズ10の焦点距離fが短いほど、最大許容角度幅±αmaxが大きくなるので好ましい。上記具体例では次のように算出されるため、より角度幅の大きいf=20mmの場合が好ましい。
・f=20mmの場合、最大許容角度幅±αmax=±1.15度
・f=30mmの場合、最大許容角度幅±αmax=±0.84度
When the angular width of the optical axis LA is ± α, the focal position shift width δx is δx = 2 · f · tan α. X-axis direction length of the condensing and reflecting surface 23 is X = 1 / tanθ 23. Assuming that light rays are collected at one point, when X = δx, the angular width of the optical axis LA is the maximum allowable angular width ± α max . That is, the shorter the focal length f of the condenser lens 10, the larger the maximum allowable angular width ± αmax, which is preferable. In the above specific example, since it is calculated as follows, it is preferable that the angle width is f = 20 mm.
・ When f = 20 mm, maximum permissible angular width ± α max = ± 1.15 degrees ・ When f = 30 mm, maximum permissible angular width ± α max = ± 0.84 degrees
 上記共通条件に加えて、集光レンズ10の焦点距離f=20mm、集光反射面23の傾斜角θ23=52度として、10行×10列の集光レンズ10及び集光光学素子20からなる集光装置1について光線追跡(Ray-trace)のシミュレーションを行った。図9は集光装置1をy軸方向(側方)から見た姿勢位置における光線追跡のシミュレーションデータ、図10は集光装置1を斜め上方から見た姿勢位置における光線追跡のシミュレーションデータ、図11は集光光学素子20をz軸方向(上方)から見た姿勢位置における光線追跡のシミュレーションデータである。 In addition to the above common conditions, the focal length f of the condensing lens 10 is 20 mm and the inclination angle θ 23 of the condensing reflection surface 23 is 52 degrees. From the 10 rows × 10 columns of the condensing lens 10 and the condensing optical element 20 A ray-trace simulation was performed on the condensing device 1. 9 is a ray tracing simulation data at the posture position when the light collecting device 1 is seen from the y-axis direction (side), and FIG. 10 is a ray tracing simulation data at the posture position when the light collecting device 1 is seen obliquely from above. Reference numeral 11 denotes simulation data of ray tracing at a posture position when the condensing optical element 20 is viewed from the z-axis direction (above).
 これらの図面に示すシミュレーションデータから、複数の素子ユニット200(201,202,203…209,210)のそれぞれに含まれる複数の集光反射面23に集光入射した光線が、集光反射面23、上面21、下面22、側面24及び側面25で全反射されてx軸方向に導かれ、複数の素子ユニット200の基端側(出射面26側)に至るにつれて、光線密度が高くなっていくことが分かる。つまり、図9、図10及び図11において、出射面26からx軸方向に離れた位置では光線数が少なく、出射面26付近では光線数が多い。図11において、集光光学素子20から外部に出射(漏出)しているように見える光線は、外部に漏出しているわけではなく、むしろ外部からの光が集光レンズ10により集光反射面23へ集光されて入射することを示す光線である。図11によれば、集光反射面23により集光光学素子20の内部で反射された光線は、その後に集光光学素子20から漏出することが殆どなく出射面26から導出されている様子が理解される。 From the simulation data shown in these drawings, the light rays collected and incident on the plurality of condensing reflection surfaces 23 included in each of the plurality of element units 200 (201, 202, 203... 209, 210) The light density increases as it is totally reflected by the upper surface 21, the lower surface 22, the side surface 24, and the side surface 25 and guided in the x-axis direction and reaches the base end side (exit surface 26 side) of the plurality of element units 200. I understand that. That is, in FIGS. 9, 10, and 11, the number of light rays is small at a position away from the emission surface 26 in the x-axis direction, and the number of light rays is large near the emission surface 26. In FIG. 11, the light beam that appears to be emitted (leaked) from the condensing optical element 20 is not leaked to the outside, but rather the light from the outside is condensed and reflected by the condensing lens 10. It is a light beam indicating that the light is condensed and incident on the light source 23. According to FIG. 11, the light beam reflected inside the condensing optical element 20 by the condensing reflection surface 23 hardly leaks from the condensing optical element 20 and is led out from the emission surface 26. Understood.
 図12は、集光光学素子20のy軸方向の位置を横軸、出射面26から出射する光線の本数を縦軸として、集光光学素子のy軸方向の位置に対する出射面から出射する光線の本数をプロットしたグラフである。このグラフから、個々の素子ユニット201,202,203…209,210において、ユニット単位で集光される光のy軸方向の光線分布が均一であること、及び、集光光学素子20全体において、出射面26から出射する光の光線分布が均一であることが分かる。出射面26から出射する光の光線分布が均一であるというのは、出射面26の面内において、出射光の光線数分布が一様であるということであり、したがって、出射面26の面内における出射光の強度分布は一様である。 FIG. 12 shows the light beam emitted from the exit surface relative to the position of the condensing optical element 20 in the y-axis direction, where the horizontal axis represents the position of the condensing optical element 20 in the y-axis direction and the vertical axis represents the number of light beams emitted from the exit surface 26. It is the graph which plotted the number of. From this graph, in the individual element units 201, 202, 203... 209, 210, the light distribution in the y-axis direction of the light collected in units is uniform, and in the entire light collecting optical element 20, It can be seen that the light distribution of the light emitted from the emission surface 26 is uniform. The fact that the light distribution of the light emitted from the emission surface 26 is uniform means that the distribution of the number of rays of the emitted light is uniform within the surface of the emission surface 26. The intensity distribution of the emitted light at is uniform.
 このシミュレーションによる解析結果を、数値に基づいてまとめると、以下のようになる。光軸LAの角度幅をゼロとすると、集光レンズ10ijには完全な平行光束が到来していることとなる。その完全な平行光束で構成される太陽光が、集光レンズ10ijにより集光されて集光光学素子20に入射した際の太陽光の全光線量を100としたとき、出射面26から出射される光の全光量は99.7であり、集光効率は99.7%となる。光軸LAの角度幅を±0.5度としたとき、すなわち光軸LAの周りに0.5度の幅を持つ均等な入射角分布で光が集光レンズ10ijに到来するとき、集光光学素子20に入射した際の太陽光の全光線量100に対して出射面26から出射される光の全光量は99.5であり、集光効率は99.5%となる。このシミュレーション結果から、集光装置1によれば、極めて高い集光効率で太陽光を集光できることが確認された。 The analysis results by this simulation are summarized based on numerical values as follows. If the angular width of the optical axis LA is zero, a completely parallel light beam has arrived at the condenser lens 10 ij . When the sunlight composed of the completely parallel light flux is condensed by the condenser lens 10 ij and incident on the condensing optical element 20, the sunlight exits from the exit surface 26 when the total amount of sunlight is 100. The total amount of light emitted is 99.7, and the light collection efficiency is 99.7%. When the angle width of the optical axis LA is ± 0.5 degrees, that is, when light arrives at the condenser lens 10 ij with a uniform incident angle distribution having a width of 0.5 degrees around the optical axis LA, The total amount of light emitted from the emission surface 26 is 99.5 with respect to the total light amount 100 of sunlight when entering the optical optical element 20, and the light collection efficiency is 99.5%. From this simulation result, it was confirmed that according to the condensing device 1, sunlight can be condensed with extremely high condensing efficiency.
(集光光学素子の端部における光エネルギーの取り出し手法)
 以上で説明した集光装置1において、集光レンズ10及び集光光学素子20により集光されて出射面26から出射する光のエネルギーの取り出し手法について、幾つかの代表的な手法の概念を例示する図13(a)~(e)を参照しながら簡明に説明する。
(Extraction method of light energy at the end of the condensing optical element)
In the condensing device 1 described above, examples of the concept of some typical methods are illustrated for the method of extracting the energy of the light that is condensed by the condensing lens 10 and the condensing optical element 20 and is emitted from the exit surface 26. A brief description will be given with reference to FIGS. 13 (a) to 13 (e).
 図13(a)は、集光光学素子20の端部に集光された光を出射面26からそのまま取り出し、光として利用するための構成例の概念図である。図13(a)には、集光光学素子20の出射面26から出射する光をシリンドリカルレンズ91や集光ロッド92等を介して集光し、集光された光を光ファイバー93により所望位置に導光する構成が例示される。 FIG. 13A is a conceptual diagram of a configuration example for taking out the light collected at the end of the condensing optical element 20 as it is from the emission surface 26 and using it as light. In FIG. 13A, the light emitted from the emission surface 26 of the condensing optical element 20 is condensed through a cylindrical lens 91, a condensing rod 92, and the like, and the condensed light is brought to a desired position by an optical fiber 93. The structure which guides light is illustrated.
 図13(b)は、集光光学素子20の端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用するための一つの構成例の概念図である。図13(b)は、光電変換素子5を集光光学素子20の出射面26に結合し、集光された光のエネルギーを光電変換素子5による光電変換を介して電気エネルギーとして取り出す構成例を示す。こうして、集光装置1と光電変換素子5とを含む光発電装置が得られる。光電変換素子5の代わりに、集光された光のエネルギーを熱エネルギーとして取り出す光熱変換素子を集光光学素子20の出射面26に結合することにより、集光装置1と光熱変換素子とを含む光熱変換装置が得られる。集光された光を熱エネルギーに光熱変換する光熱変換素子として、光吸収体付きのヒートパイプ等が用いられるのが好ましい。 FIG. 13B is a conceptual diagram of one configuration example for using the light collected at the end of the condensing optical element 20 by converting it into electric energy or heat energy. FIG. 13B shows a configuration example in which the photoelectric conversion element 5 is coupled to the emission surface 26 of the condensing optical element 20 and the energy of the collected light is extracted as electric energy through photoelectric conversion by the photoelectric conversion element 5. Show. In this way, a photovoltaic device including the condensing device 1 and the photoelectric conversion element 5 is obtained. Instead of the photoelectric conversion element 5, a condensing device 1 and the photothermal conversion element are included by coupling a photothermal conversion element that extracts the energy of the collected light as heat energy to the emission surface 26 of the condensing optical element 20. A photothermal conversion device is obtained. It is preferable to use a heat pipe with a light absorber or the like as a light-to-heat conversion element that converts the collected light into heat energy.
 図13(c)は、集光光学素子20の端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用するための一つの構成例の概念図である。図13(c)は、集光光学素子20の端部を上面21及び下面22に対して斜めにカットして得られる出射面26にミラー94を配設して(あるいは出射面26に反射膜を形成して)得られる構成の一例を示す図である。図13(c)に示すように、集光光学素子20の端部に集光された光を、集光光学素子20の上面21側(または下面22側)に設けた光電変換素子5に集光させる。これにより、集光光学素子20が薄いシート状の場合であっても、所定面積を占める光電変換素子5を安定的に取り付けることができる。こうして、集光装置1と光電変換素子5とを含む光発電装置が得られる。集光された光のエネルギーを熱エネルギーとして取り出す場合には、上記と同様に光電変換素子5の代わりに光吸収体付きのヒートパイプ等が用いられるのが好ましい。こうして、集光装置1と光熱変換素子とを含む光熱変換装置が得られる。 FIG. 13C is a conceptual diagram of one configuration example for using the light collected at the end of the condensing optical element 20 by converting it into electric energy or heat energy. In FIG. 13C, a mirror 94 is disposed on the exit surface 26 obtained by cutting the end of the condensing optical element 20 obliquely with respect to the upper surface 21 and the lower surface 22 (or a reflective film on the exit surface 26). It is a figure which shows an example of the structure obtained by forming. As shown in FIG. 13C, the light condensed on the end of the condensing optical element 20 is collected on the photoelectric conversion element 5 provided on the upper surface 21 side (or lower surface 22 side) of the condensing optical element 20. Light up. Thereby, even if the condensing optical element 20 is a thin sheet form, the photoelectric conversion element 5 which occupies a predetermined area can be attached stably. In this way, a photovoltaic device including the condensing device 1 and the photoelectric conversion element 5 is obtained. When taking out the energy of the condensed light as thermal energy, it is preferable to use a heat pipe with a light absorber instead of the photoelectric conversion element 5 as described above. Thus, a photothermal conversion device including the light collecting device 1 and the photothermal conversion element is obtained.
 図13(d)は、集光光学素子20の端部に集光された光のエネルギーを、電気エネルギーまたは熱エネルギーに変換して利用するための一つの構成例の概念図である。図13(d)は、集光光学素子20の端部を上面21及び下面22に対して斜めにカットして得られる出射面26にダイクロイックミラー95を配設して(あるいは出射面26に波長選択性のある反射膜を形成して)得られる構成の一例を示す図である。図13(d)に示すように、集光光学素子20の端部に集光された光を分割して、集光光学素子20の上面21側(または下面22側)に設けた光電変換素子5aと、集光光学素子20の側方に設けた光電変換素子5bとにそれぞれ集光させる。このような構成によれば、分割された光の各波長帯域に応じて高効率な光電変換素子を光電変換素子5a及び5bとして用いることができるため、集光装置1と光電変換素子5a及び5bとを含む、比較的低コストで変換効率の高い光発電装置が得られる。 FIG. 13D is a conceptual diagram of one configuration example for converting the energy of the light collected at the end of the condensing optical element 20 into electric energy or heat energy. In FIG. 13D, a dichroic mirror 95 is disposed on the exit surface 26 obtained by cutting the end of the condensing optical element 20 obliquely with respect to the upper surface 21 and the lower surface 22 (or the wavelength on the exit surface 26). It is a figure which shows an example of the structure obtained by forming a reflective film with selectivity. As shown in FIG. 13D, a photoelectric conversion element provided on the upper surface 21 side (or lower surface 22 side) of the condensing optical element 20 by dividing the light collected at the end of the condensing optical element 20. The light is condensed on 5a and the photoelectric conversion element 5b provided on the side of the condensing optical element 20, respectively. According to such a configuration, since a highly efficient photoelectric conversion element can be used as the photoelectric conversion elements 5a and 5b according to each wavelength band of the divided light, the light collecting device 1 and the photoelectric conversion elements 5a and 5b are used. And a photovoltaic device with high conversion efficiency at a relatively low cost.
 分割した光のうちの一方(例えば赤外領域の光)を光吸収体付きのヒートパイプ等に入射して光熱変換により得られる熱エネルギーを利用し、分割した光のうちの他方(例えば可視領域及び紫外領域の光)を光電変換素子5に入射して光電変換により得られる電気エネルギーを利用するような構成も、好適な構成の一例である。 One of the divided light (for example, light in the infrared region) is incident on a heat pipe with a light absorber and the thermal energy obtained by photothermal conversion is used, and the other of the divided light (for example, visible region) In addition, a configuration in which light in the ultraviolet region) is incident on the photoelectric conversion element 5 and electric energy obtained by photoelectric conversion is used is also an example of a preferable configuration.
 図13(e)は、集光光学素子20の端部に集光された光を、さらに集光光学素子20の厚さ方向(集光レンズ10ijの光軸方向)の厚みを薄くするように集光して取り出すための一つの構成例の概念図である。図13(e)において、集光光学素子20は、出射面26の近傍領域で集光光学素子20の厚さが出射面26も向かって徐々に薄くなるパラボリック状に形成されている。したがって、集光光学素子20の内部をx軸方向に進む光が、上面21あるいは下面22で全反射されながら、集光光学素子20の厚さ方向(集光レンズ10ijの光軸方向)において狭められて集光されるようになっている。これにより、例えば集光された光をそのまま利用する場合にシリンドリカルレンズ等を用いずに構成することができ、また集光された光を光電変換素子5やヒートパイプに入射させる場合に、簡明な構成で入射光のパワー密度を高めることができる。 FIG. 13E shows that the light collected at the end of the condensing optical element 20 is further thinned in the thickness direction of the condensing optical element 20 (in the optical axis direction of the condensing lens 10 ij ). It is a conceptual diagram of one structural example for condensing and taking out. In FIG. 13 (e), the condensing optical element 20 is formed in a parabolic shape in which the thickness of the condensing optical element 20 gradually decreases toward the exit surface 26 in the vicinity of the exit surface 26. Therefore, the light traveling in the x-axis direction inside the condensing optical element 20 is totally reflected by the upper surface 21 or the lower surface 22, and is in the thickness direction of the condensing optical element 20 (the optical axis direction of the condensing lens 10ij ). It is narrowed and condensed. Accordingly, for example, when the collected light is used as it is, it can be configured without using a cylindrical lens or the like, and when the collected light is incident on the photoelectric conversion element 5 or the heat pipe, it is simple. With the configuration, the power density of incident light can be increased.
 以上で説明したように、集光装置1においては、集光レンズ10により集光され、集光光学素子20の上面21から集光光学素子20の内部へ入射した入射光が、集光光学素子20内に入射して以降、出射面26を除く全ての界面(集光反射面23、上面21、下面22、ならびに側面24及び25)で全反射され、出射面26から出射する。従って、以上で説明した集光装置1によれば、比較的薄型かつ簡明な構成で、太陽光等の光エネルギーを効率的に利用可能な、新たな集光装置を提供することができる。このような集光装置1を含む光発電装置PVSや光熱変換装置は、光軸方向の厚さが薄く、小型でかつ軽量であり、新たな太陽光発電装置または太陽光集熱装置として好適に適用することができる。 As described above, in the condensing device 1, incident light that is condensed by the condensing lens 10 and enters the condensing optical element 20 from the upper surface 21 of the condensing optical element 20 is collected. After entering the inside 20, the light is totally reflected by all the interfaces (the condensing reflection surface 23, the upper surface 21, the lower surface 22, and the side surfaces 24 and 25) except the exit surface 26, and exits from the exit surface 26. Therefore, according to the condensing apparatus 1 demonstrated above, the new condensing apparatus which can use optical energy, such as sunlight efficiently, can be provided with a comparatively thin and simple structure. The photovoltaic device PVS and the photothermal conversion device including such a condensing device 1 have a small thickness in the optical axis direction, are small and lightweight, and are suitable as a new photovoltaic power generation device or a solar heat collecting device. Can be applied.
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2010年第189386号(2010年8月26日出願)
 
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application No. 2010 189386 (filed on Aug. 26, 2010)

Claims (15)

  1.  集光レンズと、
     前記集光レンズにより集光された光が入射する入射面と、前記入射面に対向する裏面と、前記入射面と前記裏面との間で前記集光レンズの光軸と交差する第1端面と、前記入射面と前記裏面との間で前記第1端面に対向する第2端面とを有し、透明な媒質により形成される集光光学素子とを備え、
     前記第1端面は、前記入射面から前記集光光学素子の内部へ入射した前記光を反射し、
     前記入射面及び前記裏面は、前記第1端面により反射された前記光を全反射し、
     前記第1端面により反射された前記光、前記入射面により全反射された前記光及び前記裏面により全反射された前記光は、前記第2端面に入射する集光装置。
    A condenser lens;
    An incident surface on which light collected by the condensing lens is incident, a back surface facing the incident surface, and a first end surface intersecting the optical axis of the condensing lens between the incident surface and the back surface; A condensing optical element having a second end surface facing the first end surface between the incident surface and the back surface, and formed of a transparent medium,
    The first end surface reflects the light incident on the condensing optical element from the incident surface;
    The incident surface and the back surface totally reflect the light reflected by the first end surface,
    The condensing device in which the light reflected by the first end face, the light totally reflected by the incident face, and the light totally reflected by the back face enter the second end face.
  2.  請求項1に記載の集光装置において、
     前記入射面から前記集光光学素子の内部へ入射して前記第1端面に入射する前記光に含まれる光線の最小入射角が、前記第1端面における全反射臨界角以上となるように、前記第1端面の前記入射面に対する傾斜角が設定される集光装置。
    The light collecting device according to claim 1,
    The minimum incident angle of light included in the light incident on the first end surface from the incident surface into the condensing optical element is equal to or greater than the total reflection critical angle on the first end surface. A condensing device in which an inclination angle of the first end surface with respect to the incident surface is set.
  3.  請求項1または2に記載の集光装置において、
     前記入射面から前記集光光学素子の内部へ入射して前記第1端面に入射する前記光に含まれる光線の最小入射角が、前記第1端面における全反射臨界角以上となるように、前記集光レンズの開口数が設定される集光装置。
    In the condensing device according to claim 1 or 2,
    The minimum incident angle of light included in the light incident on the first end surface from the incident surface into the condensing optical element is equal to or greater than the total reflection critical angle on the first end surface. A condensing device in which the numerical aperture of the condensing lens is set.
  4.  請求項1~3のいずれか1項に記載の集光装置において、
     前記入射面から前記集光光学素子の内部へ入射して前記第1端面に入射する前記光に含まれる光線の最小入射角が、前記第1端面における全反射臨界角以上となるように、前記集光光学素子の屈折率が設定される集光装置。
    The light collecting device according to any one of claims 1 to 3,
    The minimum incident angle of light included in the light incident on the first end surface from the incident surface into the condensing optical element is equal to or greater than the total reflection critical angle on the first end surface. A condensing device in which the refractive index of the condensing optical element is set.
  5.  請求項1~4のいずれか1項に記載の集光装置において、
     前記集光レンズ及び前記集光光学素子は、前記入射面から前記集光光学素子の内部へ入射して前記第1端面に入射する前記光がほぼ前記第1端面に焦点を結ぶように配設される集光装置。
    The light collecting device according to any one of claims 1 to 4,
    The condensing lens and the condensing optical element are arranged so that the light entering the condensing optical element from the incident surface and entering the first end surface is focused on the first end surface. Concentrator.
  6.  請求項1~5のいずれか1項に記載の集光装置において、
     前記集光光学素子は、前記入射面と前記裏面とに接するとともに前記第1端面と前記第2端面との間で相互に対向する第1側面及び第2側面を有し、
     前記第1側面及び前記第2側面は、前記第1端面、前記入射面及び前記裏面により反射された前記光を全反射し、
     前記第1端面により反射された前記光、前記入射面により全反射された前記光、前記裏面により全反射された前記光、前記第1側面により全反射された前記光及び前記第2側面により全反射された前記光は、前記第2端面に入射する集光装置。
    The light collecting device according to any one of claims 1 to 5,
    The condensing optical element has a first side surface and a second side surface that are in contact with the incident surface and the back surface and face each other between the first end surface and the second end surface;
    The first side surface and the second side surface totally reflect the light reflected by the first end surface, the incident surface, and the back surface,
    The light reflected by the first end surface, the light totally reflected by the incident surface, the light totally reflected by the back surface, the light totally reflected by the first side surface, and the light reflected by the second side surface. The reflected light is a light collecting device that enters the second end face.
  7.  請求項1~6のいずれか1項に記載の集光装置において、
     各々が前記集光レンズである複数の集光レンズが並べられ、
     前記集光光学素子は、各々が前記第1端面である複数の第1端面を有して一体に形成される集光装置。
    The light collecting device according to any one of claims 1 to 6,
    A plurality of condenser lenses, each of which is the condenser lens, are arranged,
    The condensing optical element has a plurality of first end surfaces, each of which is the first end surface, and is integrally formed.
  8.  請求項6に記載の集光装置において、
     各々が前記集光レンズである複数の集光レンズが並べられ、
     前記集光光学素子は、各々が前記第1端面である複数の第1端面と、前記複数の第1端面に共通して対応する前記第1側面と、各々が前記第2側面である複数の第2側面とを有して一体に形成される集光装置。
    The light collecting device according to claim 6,
    A plurality of condenser lenses, each of which is the condenser lens, are arranged,
    The condensing optical element includes a plurality of first end surfaces, each of which is the first end surface, a plurality of first side surfaces corresponding to the plurality of first end surfaces in common, and a plurality of each of which is the second side surface. A light collecting device having a second side surface and integrally formed.
  9.  請求項7または8に記載の集光装置において、
     前記複数の集光レンズが、複数行と複数列とから構成されるマトリクス状に配設され、
     前記集光光学素子は、前記複数の集光レンズのうち、前記複数行の各行の集光レンズに対応して前記複数の第1端面、前記第1側面、及び前記複数の第2側面とを有して、前記複数行に対応して一体成型される集光装置。
    The light collecting device according to claim 7 or 8,
    The plurality of condenser lenses are arranged in a matrix composed of a plurality of rows and a plurality of columns,
    The condensing optical element includes the plurality of first end surfaces, the first side surface, and the plurality of second side surfaces corresponding to the condensing lenses of each row of the plurality of condensing lenses. And a light collecting device that is integrally molded corresponding to the plurality of rows.
  10.  請求項9に記載の集光装置において、
     前記複数の第1端面の各々により反射された前記光は、前記複数の第1端面のうちの他の第1端面により遮られないように、前記各行の延伸方向に対して傾斜している集光装置。
    The light collecting device according to claim 9,
    The light reflected by each of the plurality of first end faces is inclined with respect to the extending direction of each row so as not to be blocked by another first end face of the plurality of first end faces. Optical device.
  11.  請求項1~10のいずれか1項に記載の集光装置において、
     前記第1端面と前記第2端面と間の距離が、前記入射面と前記裏面との間の距離よりも充分に大きい集光装置。
    The light collecting device according to any one of claims 1 to 10,
    A condensing device in which a distance between the first end surface and the second end surface is sufficiently larger than a distance between the incident surface and the back surface.
  12.  請求項1~11のいずれか1項に記載の集光装置において、
     前記入射面に入射する前記光は、前記集光レンズが太陽光を集光することにより得られる集光装置。
    The light collecting device according to any one of claims 1 to 11,
    The light incident on the incident surface is a condensing device that is obtained when the condenser lens condenses sunlight.
  13.  請求項1~12のいずれか1項に記載の集光装置において、
     前記入射面と前記裏面とは互いにほぼ平行である集光装置。
    The light collecting device according to any one of claims 1 to 12,
    The condensing device in which the incident surface and the back surface are substantially parallel to each other.
  14.  請求項1~13のいずれか1項に記載の集光装置と、
     前記第2端面に入射した前記光を光電変換する光電変換素子とを備える光発電装置。
    The light collecting device according to any one of claims 1 to 13,
    A photovoltaic device comprising: a photoelectric conversion element that photoelectrically converts the light incident on the second end face.
  15.  請求項1~13のいずれか1項に記載の集光装置と、
     前記第2端面に入射した前記光を光熱変換する光熱変換素子とを備える光熱変換装置。
    The light collecting device according to any one of claims 1 to 13,
    A photothermal conversion device comprising: a photothermal conversion element for photothermal conversion of the light incident on the second end face.
PCT/JP2011/069268 2010-08-26 2011-08-26 Light-condensing device, light power generation device, and photothermal conversion device WO2012026572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012530731A JPWO2012026572A1 (en) 2010-08-26 2011-08-26 Condensing device, photovoltaic power generation device, and photothermal conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010189386 2010-08-26
JP2010-189386 2010-08-26

Publications (1)

Publication Number Publication Date
WO2012026572A1 true WO2012026572A1 (en) 2012-03-01

Family

ID=45723561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069268 WO2012026572A1 (en) 2010-08-26 2011-08-26 Light-condensing device, light power generation device, and photothermal conversion device

Country Status (2)

Country Link
JP (1) JPWO2012026572A1 (en)
WO (1) WO2012026572A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229513A (en) * 2012-04-26 2013-11-07 Kyocera Corp Solar battery module system
WO2014030546A1 (en) * 2012-08-23 2014-02-27 シャープ株式会社 Solar cell module and photovoltaic power generating device
CN103928556A (en) * 2013-01-11 2014-07-16 财团法人工业技术研究院 Light collecting element and light collecting module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391629A (en) * 1986-10-06 1988-04-22 Nec Home Electronics Ltd Converging lighting device for back light of liquid crystal display panel
JP2008015034A (en) * 2006-07-03 2008-01-24 Fuji Xerox Co Ltd Optical transmitter, optical module, and optical transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391629A (en) * 1986-10-06 1988-04-22 Nec Home Electronics Ltd Converging lighting device for back light of liquid crystal display panel
JP2008015034A (en) * 2006-07-03 2008-01-24 Fuji Xerox Co Ltd Optical transmitter, optical module, and optical transmission system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229513A (en) * 2012-04-26 2013-11-07 Kyocera Corp Solar battery module system
WO2014030546A1 (en) * 2012-08-23 2014-02-27 シャープ株式会社 Solar cell module and photovoltaic power generating device
CN103928556A (en) * 2013-01-11 2014-07-16 财团法人工业技术研究院 Light collecting element and light collecting module
JP2014134790A (en) * 2013-01-11 2014-07-24 Industrial Technology Research Institute Convergence device and convergence module

Also Published As

Publication number Publication date
JPWO2012026572A1 (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5346008B2 (en) Thin flat concentrator
EP2169728B1 (en) Method and system for light collection and light energy converting apparatus
US20110297229A1 (en) Integrated concentrating photovoltaics
WO2013147008A1 (en) Secondary lens, solar cell mounting body, light gathering solar energy unit, light gathering solar energy device, and light gathering solar energy module
JP5624064B2 (en) Stimulated emission luminescence optical waveguide solar concentrator
US7910392B2 (en) Method and system for assembling a solar cell package
US20130104984A1 (en) Monolithic photovoltaic solar concentrator
US8791355B2 (en) Homogenizing light-pipe for solar concentrators
EP2519978A1 (en) Photovoltaic concentrator with optical stepped lens and optical stepped lens
KR100933213B1 (en) Concentration lens for solar power generation
CN102498571A (en) Concentrated spectrally separated multiconverter photovoltaic systems and methods thereof
JP2013526786A (en) Light-emitting solar condensing system
JP2006332113A (en) Concentrating solar power generation module and solar power generator
JP2013537004A (en) Multi-band concentrator / energy conversion module
JP2019518236A (en) Opto-mechanical system for capturing and transmitting incident light having a non-uniform incidence direction relative to at least one collection element and corresponding method
WO2012026572A1 (en) Light-condensing device, light power generation device, and photothermal conversion device
JP2013211487A (en) Secondary lens, solar battery mounting body, condensing type photovoltaic power generation unit, and condensing type photovoltaic power generation module
JP2016138911A (en) Fresnel lens, light-condensing type solar power generation module and light-condensing type solar power generation device
JP2007073774A (en) Solar battery
KR101499973B1 (en) Apparatus for solar power generation and device for concentrating light
JP3048553B2 (en) Concentrating photovoltaic power generation device with diffraction surface and concentrating photovoltaic power generation module
JP2014010251A (en) Secondary lens, solar-cell mounting body, condensing type photovoltaic power generation system and condensing type photovoltaic power generation module
JP7306359B2 (en) Photoelectric conversion device for photovoltaic power generation
WO2012067082A1 (en) Condenser device, photovoltaic power generator, and light-heat converter
WO2012033132A1 (en) Light condenser, photovoltaic system, and photothermal converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11820032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012530731

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11820032

Country of ref document: EP

Kind code of ref document: A1