JP2003101046A - Photoelectric transducer - Google Patents

Photoelectric transducer

Info

Publication number
JP2003101046A
JP2003101046A JP2001294753A JP2001294753A JP2003101046A JP 2003101046 A JP2003101046 A JP 2003101046A JP 2001294753 A JP2001294753 A JP 2001294753A JP 2001294753 A JP2001294753 A JP 2001294753A JP 2003101046 A JP2003101046 A JP 2003101046A
Authority
JP
Japan
Prior art keywords
resin
layer
particles
insulating
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001294753A
Other languages
Japanese (ja)
Inventor
Makoto Sugawara
信 菅原
Takeshi Kyoda
豪 京田
Jun Fukuda
潤 福田
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001294753A priority Critical patent/JP2003101046A/en
Publication of JP2003101046A publication Critical patent/JP2003101046A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the conversion efficiency of the conventional photoelectric transducer using crystalline semiconductor particles is low. SOLUTION: In this photoelectric transducer, a large number of crystalline semiconductor particles of a first conductivity are arranged on a substrate turning to one side electrode, an insulating substance is interposed between the particles, and a semiconductor layer of a second conductivity is formed on the particles. In the transducer, the insulating substance is constituted of a resin-insulating layer, where the refractive index is at least 1.4 and the transmittance of wavelength of 400-1,200 nm is at least 80%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光電変換装置に関
し、特に太陽光発電に使用される結晶質半導体粒子を用
いた光電変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device, and more particularly to a photoelectric conversion device using crystalline semiconductor particles used for photovoltaic power generation.

【0002】[0002]

【従来の技術】省シリコン原料の低コストな次世代太陽
電池の出現が強く望まれている。省資源に有利な粒形も
しくは球形のシリコン結晶粒子を用いる従来の光電変換
装置を図3に示す(例えば特許第2641800号公報
参照)。この光電変換装置は、基板1上に低融点金属層
10を形成し、この低融点金属層10上に第1導電形の
結晶質半導体粒子3を配設し、この結晶質半導体粒子3
上に第2導電形のアモルファス半導体層9と透明導電層
8を上記低融点金属層10との間に絶縁層2を介して形
成する光電変換装置が開示されている。
2. Description of the Related Art The advent of low-cost next-generation solar cells using silicon-saving raw materials is strongly desired. FIG. 3 shows a conventional photoelectric conversion device using grain-shaped or spherical silicon crystal particles advantageous for resource saving (see, for example, Japanese Patent No. 2641800). In this photoelectric conversion device, a low melting point metal layer 10 is formed on a substrate 1, crystalline semiconductor particles 3 of the first conductivity type are arranged on the low melting point metal layer 10, and the crystalline semiconductor particles 3 are formed.
There is disclosed a photoelectric conversion device in which an amorphous semiconductor layer 9 of the second conductivity type and a transparent conductive layer 8 are formed between the low melting point metal layer 10 and an insulating layer 2 therebetween.

【0003】また、図4に示すように、p形シリコン基
体11a、n形シリコン層11b及び外側電極層11c
からなる半球状太陽電池セル11が導電性基板12上に
配設され半球状太陽電池セル11間領域にポリイミド樹
脂層13を介してハンダ層14を形成した光電変換装置
が開示されている(例えば特開2001−177132
号公報参照)。
Further, as shown in FIG. 4, a p-type silicon substrate 11a, an n-type silicon layer 11b and an outer electrode layer 11c.
There is disclosed a photoelectric conversion device in which a hemispherical solar cell 11 made of is formed on a conductive substrate 12 and a solder layer 14 is formed in a region between the hemispherical solar cells 11 via a polyimide resin layer 13 (for example, Japanese Patent Laid-Open No. 2001-177132
(See the official gazette).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図3に
示す従来の光電変換装置では、絶縁層2に関する具体的
な記述、特に樹脂絶縁層を用いることについての具体的
な記述はない。
However, in the conventional photoelectric conversion device shown in FIG. 3, there is no specific description regarding the insulating layer 2, particularly about using a resin insulating layer.

【0005】また、図4に示す従来の光電変換装置で
は、半球状太陽電池セル11の間にポリイミド絶縁層1
3を形成するとあるが、半球状太陽電池セル11に直接
入射せず、ポリイミド絶縁層13に入射した光はポリイ
ミド絶縁層13の透過率が低いために、ポリイミド絶縁
層13に吸収され、発電に寄与することができなくな
り、低変換効率であるという問題点があった。
In the conventional photoelectric conversion device shown in FIG. 4, the polyimide insulating layer 1 is provided between the hemispherical solar cells 11.
3 is formed, but the light that does not directly enter the hemispherical solar battery cells 11 and enters the polyimide insulating layer 13 is absorbed by the polyimide insulating layer 13 due to the low transmittance of the polyimide insulating layer 13, and thus power generation. There is a problem in that it cannot contribute and the conversion efficiency is low.

【0006】本発明は上記従来技術における問題点に鑑
みてなされたものであり、その目的は高い変換効率且つ
高い信頼性を有する光電変換装置を提供することにあ
る。
The present invention has been made in view of the above problems in the prior art, and an object thereof is to provide a photoelectric conversion device having high conversion efficiency and high reliability.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1に係る光電変換装置によれば、一
方の電極となる基板上に、第1導電形の結晶質半導体粒
子を多数配設し、この結晶質半導体粒子間に絶縁物質を
介在させ、この結晶質半導体粒子上に第2導電形の半導
体層を形成した光電変換装置において、前記絶縁物質が
屈折率1.4以上且つ波長400nm〜1200nmの
透過率が80%以上の樹脂絶縁層からなることを特徴と
する。
In order to achieve the above object, according to the photoelectric conversion device of the first aspect of the present invention, the crystalline semiconductor particles of the first conductivity type are formed on the substrate to be one of the electrodes. In a photoelectric conversion device in which an insulating material is interposed between the crystalline semiconductor particles and a semiconductor layer of the second conductivity type is formed on the crystalline semiconductor particles. The resin insulating layer has a transmittance of 80% or more at a wavelength of 400 nm to 1200 nm.

【0008】上記光電変換装置は、前記樹脂絶縁層中に
絶縁性粒子が分散し、この絶縁性粒子の屈折率が前記樹
脂絶縁層の屈折率の0.9倍以下又は1.1倍以上であ
ることが望ましい。
In the above photoelectric conversion device, insulating particles are dispersed in the resin insulating layer, and the refractive index of the insulating particles is 0.9 times or less or 1.1 times or more the refractive index of the resin insulating layer. Is desirable.

【0009】上記光電変換装置は、前記絶縁性粒子の波
長400nm〜1200nmの透過率が80%以上であ
ることが望ましい。
In the above photoelectric conversion device, it is desirable that the insulating particles have a transmittance of 80% or more at a wavelength of 400 nm to 1200 nm.

【0010】本発明の請求項4に係る光電変換装置によ
れば、一方の電極となる基板上に、第1導電形の結晶質
半導体粒子を多数配設し、この結晶質半導体粒子間に絶
縁物質を介在させ、この結晶質半導体粒子上に第2導電
形の半導体層を形成し、この上部に樹脂保護層を形成し
た光電変換装置において、前記樹脂保護層は波長400
nm〜1200nmの透過率が80%以上であり、この
樹脂保護層中に絶縁性粒子が分散し、この絶縁性粒子の
屈折率が前記樹脂保護層の屈折率の0.9倍以下又は
1.1倍以上であることを特徴とする。
According to the photoelectric conversion device of the fourth aspect of the present invention, a large number of first-conductivity-type crystalline semiconductor particles are provided on a substrate which is to be one of the electrodes, and insulation is provided between the crystalline semiconductor particles. In a photoelectric conversion device in which a second conductive type semiconductor layer is formed on the crystalline semiconductor particles with a substance interposed and a resin protective layer is formed on the semiconductor layer, the resin protective layer has a wavelength of 400 nm.
nm to 1200 nm has a transmittance of 80% or more, insulating particles are dispersed in the resin protective layer, and the refractive index of the insulating particles is 0.9 times or less the refractive index of the resin protective layer or 1. It is characterized by being more than 1 time.

【0011】[0011]

【発明の実施の形態】以下、図面に基づいて本発明を詳
細に説明する。図1は請求項1に係る光電変換装置の一
実施形態を示す断面図であり、1は基板、2は樹脂絶縁
層、3は第1導電形の粒状結晶シリコン、4は第2導電
形の半導体部、5は上部電極層である。図2は請求項4
に係る光電変換装置の一実施形態を示す断面図であり、
1は基板、2は樹脂絶縁層、3は第1導電形の粒状結晶
シリコン、4は第2導電形の半導体部、5は上部電極
層、6は樹脂保護層、7は絶縁粒子である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of a photoelectric conversion device according to claim 1, 1 is a substrate, 2 is a resin insulating layer, 3 is granular crystalline silicon of the first conductivity type, and 4 is a second conductivity type. The semiconductor portion 5 is an upper electrode layer. FIG. 2 shows claim 4.
It is a cross-sectional view showing an embodiment of a photoelectric conversion device according to
1 is a substrate, 2 is a resin insulating layer, 3 is a first conductivity type granular crystalline silicon, 4 is a second conductivity type semiconductor part, 5 is an upper electrode layer, 6 is a resin protective layer, and 7 is an insulating particle.

【0012】基板1としては、金属、ガラス、セラミッ
ク及び樹脂等が用いられる。好ましくは、銀、アルミニ
ウム、銅等の高反射金属が用いられる。基板1の反射率
が大きいことで、光を基板1で反射させ粒状結晶シリコ
ン3へより多くの光を導くことができ、変換効率が向上
するために好ましい。また、基板1として絶縁体を用い
る場合には、基板1の表面に下部電極となる導電層1a
を形成する必要がある。この導電層1aは、高反射材料
であることが好ましい。
As the substrate 1, metal, glass, ceramics, resin or the like is used. Preferably, a highly reflective metal such as silver, aluminum or copper is used. The large reflectance of the substrate 1 is preferable because the light can be reflected by the substrate 1 and more light can be guided to the granular crystalline silicon 3 and the conversion efficiency is improved. When an insulator is used as the substrate 1, a conductive layer 1a serving as a lower electrode is formed on the surface of the substrate 1.
Need to be formed. The conductive layer 1a is preferably made of a highly reflective material.

【0013】樹脂絶縁層2は、正極と負極の分離を行う
ために粒状結晶シリコン3間に充填する。この樹脂絶縁
層2は屈折率1.4以上且つ波長400nm〜1200
nmの透過率が80%以上である。この屈折率は波長4
00nm〜1200nmの屈折率の平均とした。樹脂絶
縁層2の屈折率が1.4未満のとき、樹脂絶縁層2へ入
射した光が大きく屈折せず粒状結晶シリコン3へ導かれ
ないため変換効率が低下するために好ましくない。より
好ましくは、屈折率1.5以上である。また、波長40
0nm〜1200nmの透過率が80%未満のとき、樹
脂絶縁層2へ入射した光が樹脂絶縁層2で大きく吸収さ
れてしまうため、粒状結晶シリコン3へ導かれる光が減
少して変換効率が低下するために好ましくない。より好
ましくは、透過率90%以上である。樹脂絶縁層2とし
て、ポリエーテルイミド、ポリエーテルスルフォン、ポ
リメチルペンテン、ポリアリルスルフォン、ベンゾシク
ロブテン、ポリウレタン、エポキシ樹脂、フェノキシ樹
脂等を用いる。また、樹脂絶縁層2の耐熱温度は、好ま
しくは150℃以上、特に好ましくは200℃以上であ
る。
The resin insulating layer 2 is filled between the granular crystalline silicon 3 in order to separate the positive electrode and the negative electrode. The resin insulating layer 2 has a refractive index of 1.4 or more and a wavelength of 400 nm to 1200.
The transmittance of nm is 80% or more. This refractive index is wavelength 4
The average of the refractive indices of 00 nm to 1200 nm was used. When the refractive index of the resin insulating layer 2 is less than 1.4, the light incident on the resin insulating layer 2 is not largely refracted and is not guided to the granular crystalline silicon 3, which is not preferable because the conversion efficiency is lowered. More preferably, the refractive index is 1.5 or more. Also, the wavelength 40
When the transmittance of 0 nm to 1200 nm is less than 80%, the light incident on the resin insulating layer 2 is largely absorbed by the resin insulating layer 2, so that the light guided to the granular crystalline silicon 3 decreases and the conversion efficiency decreases. It is not preferable to do. More preferably, the transmittance is 90% or more. As the resin insulating layer 2, polyetherimide, polyether sulfone, polymethylpentene, polyallyl sulfone, benzocyclobutene, polyurethane, epoxy resin, phenoxy resin, or the like is used. The heat resistant temperature of the resin insulation layer 2 is preferably 150 ° C. or higher, particularly preferably 200 ° C. or higher.

【0014】また、樹脂絶縁層2中に絶縁粒子7を分散
させてもよい。絶縁粒子7を分散させることで樹脂絶縁
層2へ入射した光が散乱されて粒状結晶シリコン3へ導
かれやすくなるために好ましい。絶縁粒子7の屈折率は
樹脂絶縁層2の屈折率の0.9倍以下又は1.1倍以上
である。絶縁粒子7の屈折率が樹脂絶縁層2の屈折率の
0.9倍を超え且つ1.1倍未満であるとき、樹脂絶縁
層2へ入射した光の屈折・散乱効果が小さくて変換効率
向上効果が小さいために好ましくない。絶縁粒子7とし
て、酸化硅素、酸化アルミニウム、酸化ホウ素、ポリエ
ステル、空気及びその合成材料等を用いる。また、絶縁
粒子7の波長400nm〜1200nmの透過率は80
%以上であることが好ましい。絶縁粒子7の波長400
nm〜1200nmの透過率が80%未満であるとき、
絶縁粒子7の光吸収が大きくなって粒状結晶シリコン3
へ導かれる光が減少して変換効率が低下するために好ま
しくない。絶縁粒子の粒径は例えば0.5μm以上20
μm以下である。
Insulating particles 7 may be dispersed in the resin insulating layer 2. Dispersing the insulating particles 7 is preferable because the light incident on the resin insulating layer 2 is scattered and easily guided to the granular crystalline silicon 3. The refractive index of the insulating particles 7 is 0.9 times or less or 1.1 times or more the refractive index of the resin insulating layer 2. When the refractive index of the insulating particles 7 is more than 0.9 times and less than 1.1 times the refractive index of the resin insulating layer 2, the refraction / scattering effect of the light incident on the resin insulating layer 2 is small and the conversion efficiency is improved. It is not preferable because the effect is small. As the insulating particles 7, silicon oxide, aluminum oxide, boron oxide, polyester, air and synthetic materials thereof are used. Further, the transmittance of the insulating particles 7 at a wavelength of 400 nm to 1200 nm is 80.
% Or more is preferable. Insulating particle 7 wavelength 400
When the transmittance of nm to 1200 nm is less than 80%,
The light absorption of the insulating particles 7 becomes large and the granular crystalline silicon 3
This is not preferable because the amount of light guided to is reduced and the conversion efficiency is reduced. The particle size of the insulating particles is, for example, 0.5 μm or more 20
μm or less.

【0015】また、樹脂絶縁層2は凹形状であることが
好ましい。樹脂絶縁層2が凹形状であるとき、樹脂絶縁
層2へ入射した光が粒状結晶シリコン3の方向へ屈折す
るため、粒状結晶シリコン3へ導かれる光が増加し、変
換効率が向上するために好ましい。樹脂絶縁層2の形状
が平らであるとき屈折角度が小さく粒状結晶シリコン3
へ導かれる光が凹形状より少なくなり、変換効率が低く
なるために好ましくない。より好ましい樹脂絶縁層2の
凹形状は、樹脂絶縁層2の最大厚みと最小厚みの差が5
%以上である。
The resin insulation layer 2 is preferably concave. When the resin insulating layer 2 has a concave shape, the light incident on the resin insulating layer 2 is refracted in the direction of the granular crystalline silicon 3, so that the light guided to the granular crystalline silicon 3 increases and the conversion efficiency improves. preferable. When the resin insulating layer 2 has a flat shape, the refraction angle is small and the granular crystalline silicon 3
This is not preferable because the amount of light guided to is less than that of the concave shape and the conversion efficiency is low. The more preferable concave shape of the resin insulating layer 2 is such that the difference between the maximum thickness and the minimum thickness of the resin insulating layer 2 is 5
% Or more.

【0016】第1導電形の粒状結晶シリコン3は、シリ
コンからなるが、シリコンに微量元素としてB、P、A
l、As、Sbを含んでもよい。前記粒状結晶シリコン
3は、気相成長法、アトマイズ法、直流プラズマ法等で
形成可能であるが、非接触環境下に融液を落下させる融
液落下法が好ましい。また、第1導電形の粒状結晶シリ
コン3はp形であることが好ましい。例えば、シリコン
に添加すると、p形を呈するB、Alを1×1014〜1
20atm/cm3程度添加したものである。
The first-conductivity-type granular crystalline silicon 3 is composed of silicon, and B, P, A as trace elements in silicon.
It may include 1, As, Sb. The granular crystalline silicon 3 can be formed by a vapor phase growth method, an atomizing method, a direct current plasma method or the like, but a melt dropping method of dropping the melt in a non-contact environment is preferable. Further, the first conductivity type granular crystalline silicon 3 is preferably p-type. For example, when added to silicon, B and Al exhibiting p-type are 1 × 10 14 to 1
About 0 20 atm / cm 3 was added.

【0017】第2導電形の半導体部4は、プラズマドー
ピング法、熱拡散法、イオン注入法、VHF−CVD
法、プラズマCVD法、触媒CVD法等で形成する。第
2導電形の半導体層4の微量元素濃度は、例えば1×1
14〜1022atm/cm3程度である。
The second conductivity type semiconductor portion 4 is formed by plasma doping method, thermal diffusion method, ion implantation method, VHF-CVD.
Method, plasma CVD method, catalytic CVD method, or the like. The trace element concentration of the second conductivity type semiconductor layer 4 is, for example, 1 × 1.
It is about 0 14 to 10 22 atm / cm 3 .

【0018】上部電極膜5は、酸化錫、酸化インジウム
等をスパッタリング法等で形成する。膜厚及び屈折率を
調整することにより反射防止効果を持たせることも可能
である。更に、その上に銀又は銅ペーストの適切なパタ
ーンで補助電極を形成してもよい。
The upper electrode film 5 is formed of tin oxide, indium oxide or the like by a sputtering method or the like. It is also possible to provide an antireflection effect by adjusting the film thickness and the refractive index. Furthermore, an auxiliary electrode may be formed on it with a suitable pattern of silver or copper paste.

【0019】樹脂保護層6は、酸化による腐食等を押さ
えるための封止部材として用いる。樹脂保護層6は波長
400nm〜1200nmの透過率が80%以上であ
る。樹脂保護層6の波長400nm〜1200nmの透
過率が80%未満のとき、樹脂保護層6へ入射した光が
樹脂保護層6で大きく吸収されてしまうため、粒状結晶
シリコン3へ導かれる光が減少して変換効率が低下する
ために好ましくない。より好ましくは、透過率90%以
上である。樹脂保護層6として、ポリエーテルイミド、
ポリエーテルスルフォン、ポリメチルペンテン、ポリア
リルスルフォン、ベンゾシクロブテン、ポリウレタン、
ポリエステル、エポキシ樹脂、フェノキシ樹脂、EVA
等を用いる。
The resin protective layer 6 is used as a sealing member for suppressing corrosion and the like due to oxidation. The resin protective layer 6 has a transmittance of 80% or more at a wavelength of 400 nm to 1200 nm. When the transmittance of the resin protective layer 6 at a wavelength of 400 nm to 1200 nm is less than 80%, the light incident on the resin protective layer 6 is largely absorbed by the resin protective layer 6, so that the light guided to the granular crystalline silicon 3 is reduced. Then, the conversion efficiency is lowered, which is not preferable. More preferably, the transmittance is 90% or more. As the resin protective layer 6, polyetherimide,
Polyethersulfone, polymethylpentene, polyallylsulfone, benzocyclobutene, polyurethane,
Polyester, epoxy resin, phenoxy resin, EVA
Etc. are used.

【0020】また、樹脂保護層6中に絶縁粒子7を分散
させる。絶縁粒子7を分散させることで樹脂保護層6に
入射した光が散乱されて粒状結晶シリコン3へ導かれや
すくなる。絶縁粒子7の屈折率は樹脂保護層6の屈折率
の0.9倍以下又は1.1倍以上である。絶縁粒子7の
屈折率が樹脂保護層6の屈折率の0.9倍を超え且つ
1.1倍未満であるときは、樹脂保護層6へ入射した光
の屈折・散乱効果が小さく、変換効率向上効果が小さい
ために好ましくない。絶縁粒子7として、酸化硅素、酸
化アルミニウム、PET、空気等を用いる。また、絶縁
粒子7の波長400nm〜1200nmの透過率は80
%以上であることが好ましい。絶縁粒子7の波長400
nm〜1200nmの透過率が80%未満であるとき
は、絶縁粒子7の光吸収が大きくなり、粒状結晶シリコ
ン3へ導かれる光が減少して変換効率が低下するために
好ましくない。絶縁粒子7の粒径は例えば0.5μm以
上20μm以下である。
Insulating particles 7 are dispersed in the resin protective layer 6. By dispersing the insulating particles 7, the light incident on the resin protective layer 6 is scattered and easily guided to the granular crystalline silicon 3. The refractive index of the insulating particles 7 is 0.9 times or less or 1.1 times or more that of the resin protective layer 6. When the refractive index of the insulating particles 7 is more than 0.9 times and less than 1.1 times the refractive index of the resin protective layer 6, the refraction / scattering effect of the light incident on the resin protective layer 6 is small and the conversion efficiency is low. It is not preferable because the improvement effect is small. As the insulating particles 7, silicon oxide, aluminum oxide, PET, air or the like is used. Further, the transmittance of the insulating particles 7 at a wavelength of 400 nm to 1200 nm is 80.
% Or more is preferable. Insulating particle 7 wavelength 400
When the transmittance in the range of nm to 1200 nm is less than 80%, the light absorption of the insulating particles 7 increases, the light guided to the granular crystalline silicon 3 decreases, and the conversion efficiency decreases, which is not preferable. The particle size of the insulating particles 7 is, for example, 0.5 μm or more and 20 μm or less.

【0021】また、樹脂保護層6は絶縁層2よりも屈折
率が小さいことが好ましい。樹脂保護層6の屈折率が絶
縁層2よりも小さいと、粒状結晶シリコン3へ導かれる
方向に光が屈折するため、変換効率が向上して好まし
い。樹脂保護層6の形状が部分的に下に凸形状となり、
絶縁層2のシリコン粒子間が部分的に凹形状であること
が好ましい。
The resin protective layer 6 preferably has a smaller refractive index than the insulating layer 2. When the refractive index of the resin protective layer 6 is smaller than that of the insulating layer 2, light is refracted in the direction of being guided to the granular crystalline silicon 3, which is preferable because the conversion efficiency is improved. The shape of the resin protective layer 6 is partially convex downward,
It is preferable that the silicon particles of the insulating layer 2 are partially concave.

【0022】[0022]

【実施例】次に、本発明の光電変換装置について具体例
を説明する。まず、アルミニウム基板1上に平均粒径4
00μmの粒状結晶p形シリコン3を密に1層配設し、
加熱して基板1と粒状結晶シリコン3を溶着させた。次
に、粒状結晶シリコン3の間にフェノキシ樹脂からなる
樹脂絶縁材料を充填し、樹脂絶縁層2を厚み100μm
程度で、部分的に凹形状に形成した。フェノキシ樹脂の
材料、形成温度等を変化させ、屈折率及び透過率を変え
変換効率を評価した結果を表1にまとめる。次に、粒状
結晶p形シリコン3にプラズマドーピング法によってP
イオンを拡散させてn形シリコン部4を形成した。その
上に酸化錫からなる保護膜5を100nm形成した。
EXAMPLES Next, specific examples of the photoelectric conversion device of the present invention will be described. First, an average particle size of 4 on the aluminum substrate 1.
One layer of granular crystal p-type silicon 3 of 00 μm is densely arranged,
The substrate 1 and the granular crystalline silicon 3 were welded by heating. Next, a resin insulating material made of phenoxy resin is filled between the granular crystalline silicon 3 to form a resin insulating layer 2 having a thickness of 100 μm.
It was partially formed into a concave shape. Table 1 shows the results of evaluating the conversion efficiency by changing the refractive index and the transmittance by changing the material, forming temperature, etc. of the phenoxy resin. Next, the granular crystal p-type silicon 3 is doped with P by the plasma doping method.
Ions were diffused to form the n-type silicon portion 4. A protective film 5 made of tin oxide was formed thereon to a thickness of 100 nm.

【0023】[0023]

【表1】 [Table 1]

【0024】上記結果から分かるように、樹脂絶縁層2
の屈折率が1.4以上且つ透過率が80%以上のとき、
変換効率が向上して好ましい。樹脂絶縁層2の屈折率が
1.3以下、透過率が70%以下のとき、変換効率が低
下して好ましくない。より好ましくは透過率が90%以
上である。
As can be seen from the above results, the resin insulation layer 2
When the refractive index is 1.4 or more and the transmittance is 80% or more,
It is preferable because the conversion efficiency is improved. When the refractive index of the resin insulating layer 2 is 1.3 or less and the transmittance thereof is 70% or less, the conversion efficiency is lowered, which is not preferable. More preferably, the transmittance is 90% or more.

【0025】次に、平均粒径600μmの結晶質p形シ
リコン粒子を、アルミナ(正しいですか?→正しいで
す。念のため絶縁性基板の場合を実施例にいれておきた
い為です。)基材上にアルミニウム電極層を設けた基板
1上に密に1層配設し、加熱して基板1と溶着させた。
次に、粒状結晶シリコン3の間にポリエーテルイミド樹
脂中に粒状酸化硅素が分散した樹脂絶縁材料を充填し、
樹脂絶縁層2を厚み150μmで、部分的に凹形状に形
成した。ポリエーテルイミド樹脂の材料、形成温度、粒
状絶縁の材料、形成方法等を変化させてポリエーテルイ
ミド樹脂と粒状絶縁材料の屈折率比及び粒状酸化硅素の
透過率を変えて変換効率を評価した結果を表2にまとめ
る。粒状絶縁材料には、空気、酸化硅素、酸化アルミニ
ウム及びその合成物を用いて調整した。次に、粒状結晶
p形シリコン3上に気相成長法によってn形シリコン部
4を形成した。その上に酸化亜鉛からなる保護膜5を1
00nm形成した。
Next, the crystalline p-type silicon particles having an average particle diameter of 600 μm were converted into alumina ( correct?
You As a precaution, the case of an insulating substrate is included in the example.
Because it is. ) One layer was densely arranged on the substrate 1 having the aluminum electrode layer provided on the base material and heated to be welded to the substrate 1.
Next, a resin insulating material in which granular silicon oxide is dispersed in a polyetherimide resin is filled between the granular crystalline silicon 3,
The resin insulating layer 2 was formed in a partially concave shape with a thickness of 150 μm. The conversion efficiency was evaluated by changing the refractive index ratio of the polyetherimide resin and the granular insulating material and the transmittance of the granular silicon oxide by changing the material of the polyetherimide resin, the forming temperature, the material of the granular insulating material, the forming method, etc. Are summarized in Table 2. For the granular insulating material, air, silicon oxide, aluminum oxide and their composites were used. Next, the n-type silicon portion 4 was formed on the granular crystal p-type silicon 3 by the vapor phase growth method. On top of that, a protective film 5 made of zinc oxide 1
Was formed to a thickness of 00 nm.

【0026】[0026]

【表2】 [Table 2]

【0027】(表2の「以上」と「超える」、「以下」
と「未満」を正確に使用してください。請求項中の「以
上」と「以下」との関係で、表を含めた明細書全体をと
おして「以上」と「超える」、「以下」と「未満」を正
確に使用してください。 →表からは屈折率比1.0の
みが従属項の範囲から外れる、請求項では1.1以上又
は0.9以下としたいのですが、明細書、表2の記述に
矛盾がないでしょうか確認を御願い致します。 ) 上記結果から分かるように、樹脂材料と粒状絶縁材料の
屈折率比が0.9以下又は1.1以上であるときに高変
換効率となって好ましい。より好ましくは樹脂材料と粒
状絶縁材料の屈折率比が0.8以下又は1.2以上であ
る。また、粒状絶縁材料の透過率が80%以上のとき
に、高変換効率となって好ましい。より好ましくは粒状
絶縁材料の透過率は90%以上である。
( “More than”, “more”, and “less than” in Table 2
Use "and" exactly. In the claim
In relation to "above" and "below", the entire specification including tables is
Correct the "more than" and "exceed", "less than" and "less than"
Please use it properly. → From the table, the refractive index ratio of 1.0
Is outside the scope of the dependent claims, and in the claims 1.1 or more
Is 0.9 or less, but in the description and Table 2
Please check if there is any contradiction. As can be seen from the above results, it is preferable that the refractive index ratio of the resin material and the granular insulating material is 0.9 or less or 1.1 or more, because the conversion efficiency is high. More preferably, the refractive index ratio between the resin material and the granular insulating material is 0.8 or less or 1.2 or more. Further, when the transmittance of the granular insulating material is 80% or more, high conversion efficiency is obtained, which is preferable. More preferably, the transmittance of the granular insulating material is 90% or more.

【0028】次に、保護膜5の上に樹脂保護層6を設
け、樹脂保護層6の透過率及び粒状絶縁材料との屈折率
比を変化させて変換効率を評価した結果を表3に示す。
Next, a resin protective layer 6 is provided on the protective film 5, and the conversion efficiency is evaluated by changing the transmittance of the resin protective layer 6 and the refractive index ratio with the granular insulating material. .

【0029】[0029]

【表3】 [Table 3]

【0030】上記結果から分かるように、樹脂保護層の
透過率が80%以上で且つ粒状絶縁材料との屈折率比が
0.9以下又は1.1以上であるときに好ましい。より
好ましくは透過率90%以上である。
As can be seen from the above results, it is preferable that the resin protective layer has a transmittance of 80% or more and a refractive index ratio with the granular insulating material of 0.9 or less or 1.1 or more. The transmittance is more preferably 90% or more.

【0031】[0031]

【発明の効果】以上のように、請求項1に係る光電変換
装置によれば、一方の電極となる基板上に、第1導電形
の結晶質半導体粒子を多数配設し、この結晶質半導体粒
子間に絶縁物質を介在させ、この結晶質半導体粒子上に
第2導電形の半導体層を形成した光電変換装置におい
て、前記絶縁物質が屈折率1.4以上且つ波長400n
m〜1200nmの透過率が80%以上の樹脂絶縁層か
らなることにより、高い変換効率の光電変換装置が実現
できる。
As described above, according to the photoelectric conversion device of the first aspect, a large number of first-conductivity-type crystalline semiconductor particles are provided on the substrate that serves as one electrode, and the crystalline semiconductor In a photoelectric conversion device in which an insulating material is interposed between particles and a semiconductor layer of the second conductivity type is formed on the crystalline semiconductor particles, the insulating material has a refractive index of 1.4 or more and a wavelength of 400 n.
A photoelectric conversion device having high conversion efficiency can be realized by using a resin insulating layer having a transmittance of 80% or more for m to 1200 nm.

【0032】また、請求項4に係る光電変換装置によれ
ば、一方の電極となる基板上に、第1導電形の結晶質半
導体粒子を多数配設し、この結晶質半導体粒子間に絶縁
物質を介在させ、この結晶質半導体粒子上に第2導電形
の半導体層を形成し、この上部に樹脂保護層を形成した
光電変換装置において、前記樹脂保護層は波長400n
m〜1200nmの透過率が80%以上であり、この樹
脂保護層中に絶縁性粒子が分散し、この絶縁性粒子の屈
折率が前記樹脂保護層の屈折率の0.9倍以下又は1.
1倍以上であることから、高い変換効率の光電変換装置
が実現できる。
Further, according to the photoelectric conversion device of the fourth aspect, a large number of first-conductivity-type crystalline semiconductor particles are provided on the substrate that serves as one of the electrodes, and an insulating material is provided between the crystalline semiconductor particles. In a photoelectric conversion device in which a semiconductor layer of the second conductivity type is formed on the crystalline semiconductor particles and a resin protective layer is formed on the crystalline semiconductor particle, the resin protective layer having a wavelength of 400 n
The transmittance of m to 1200 nm is 80% or more, the insulating particles are dispersed in the resin protective layer, and the refractive index of the insulating particles is 0.9 times or less the refractive index of the resin protective layer or 1.
Since it is 1 time or more, a photoelectric conversion device with high conversion efficiency can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光電変換装置を示す断面図である。FIG. 1 is a cross-sectional view showing a photoelectric conversion device of the present invention.

【図2】本発明の光電変換装置を示す断面図である。FIG. 2 is a cross-sectional view showing a photoelectric conversion device of the present invention.

【図3】従来の光電変換装置を示す断面図である。FIG. 3 is a cross-sectional view showing a conventional photoelectric conversion device.

【図4】従来の他の光電変換装置を示す断面図である。FIG. 4 is a cross-sectional view showing another conventional photoelectric conversion device.

【符号の説明】[Explanation of symbols]

1・・・・基板 2・・・・絶縁層 3・・・・第1導電形の粒状結晶シリコン 4・・・・第2導電形の半導体部 5・・・・保護膜 6・・・・樹脂保護層 7・・・・絶縁粒子 8・・・・透明導電層 9・・・・非晶質半導体層 10・・・低融点金属層 11・・・半球状太陽電池セル 11a・・p形シリコン基体 11b・・n形シリコン層 11c・・外側電極層 12・・・導電性基板 13・・・ポリイミド樹脂層 14・・・ハンダ層 1 ... substrate 2 ... Insulating layer 3 ··· First conductivity type granular crystalline silicon 4 ... Semiconductor part of the second conductivity type 5 ... Protective film 6 ... Resin protective layer 7 ... Insulating particles 8 ... Transparent conductive layer 9 ... Amorphous semiconductor layer 10 ... Low melting point metal layer 11 ... Hemispherical solar cells 11a ... p type silicon substrate 11b ··· n-type silicon layer 11c ... Outer electrode layer 12 ... Conductive substrate 13: Polyimide resin layer 14 ... Solder layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有宗 久雄 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀八日市工場内 Fターム(参考) 5F051 AA02 CB18 CB30 DA03 DA20 FA23 GA02 GA03 HA20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hisao Arimune             6 at 1166 Haseno, Jamizo-cho, Yokaichi-shi, Shiga               Kyocera Corporation Shiga Yokaichi Factory F term (reference) 5F051 AA02 CB18 CB30 DA03 DA20                       FA23 GA02 GA03 HA20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一方の電極となる基板上に、第1導電形
の結晶質半導体粒子を多数配設し、この結晶質半導体粒
子間に絶縁物質を介在させ、この結晶質半導体粒子上に
第2導電形の半導体層を形成した光電変換装置におい
て、前記絶縁物質が屈折率1.4以上且つ波長400n
m〜1200nmの透過率が80%以上の樹脂絶縁層か
らなることを特徴とする光電変換装置。
1. A large number of first-conductivity-type crystalline semiconductor particles are provided on a substrate to be one electrode, an insulating material is interposed between the crystalline semiconductor particles, and a first semiconductor is formed on the crystalline semiconductor particles. In a photoelectric conversion device having a two-conductivity type semiconductor layer, the insulating material has a refractive index of 1.4 or more and a wavelength of 400 n.
A photoelectric conversion device comprising a resin insulating layer having a transmittance of 80% or more for m to 1200 nm.
【請求項2】 前記樹脂絶縁層中に絶縁性粒子が分散
し、この絶縁性粒子の屈折率が前記樹脂絶縁層の屈折率
の0.9倍以下又は1.1倍以上であることを特徴とす
る請求項1記載の光電変換装置。
2. Insulating particles are dispersed in the resin insulating layer, and the refractive index of the insulating particles is 0.9 times or less or 1.1 times or more the refractive index of the resin insulating layer. The photoelectric conversion device according to claim 1.
【請求項3】 前記絶縁性粒子の波長400nm〜12
00nmの透過率が80%以上であることを特徴とする
請求項2記載の光電変換装置。
3. The wavelength of the insulating particles is 400 nm to 12
The photoelectric conversion device according to claim 2, wherein the transmittance at 00 nm is 80% or more.
【請求項4】 一方の電極となる基板上に、第1導電形
の結晶質半導体粒子を多数配設し、この結晶質半導体粒
子間に絶縁物質を介在させ、この結晶質半導体粒子上に
第2導電形の半導体層を形成し、この上部に樹脂保護層
を形成した光電変換装置において、前記樹脂保護層は波
長400nm〜1200nmの透過率が80%以上であ
り、この樹脂保護層中に絶縁性粒子が分散し、この絶縁
性粒子の屈折率が前記樹脂保護層の屈折率の0.9倍以
下又は1.1倍以上であることを特徴とする光電変換装
置。
4. A large number of first-conductivity-type crystalline semiconductor particles are provided on a substrate that serves as one of the electrodes, and an insulating material is interposed between the crystalline semiconductor particles. In a photoelectric conversion device in which a semiconductor layer of two conductivity type is formed and a resin protective layer is formed on the semiconductor layer, the resin protective layer has a transmittance of 80% or more at a wavelength of 400 nm to 1200 nm, and the resin protective layer is insulated. Particles are dispersed, and the refractive index of the insulating particles is 0.9 times or less or 1.1 times or more the refractive index of the resin protective layer.
JP2001294753A 2001-09-26 2001-09-26 Photoelectric transducer Pending JP2003101046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001294753A JP2003101046A (en) 2001-09-26 2001-09-26 Photoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294753A JP2003101046A (en) 2001-09-26 2001-09-26 Photoelectric transducer

Publications (1)

Publication Number Publication Date
JP2003101046A true JP2003101046A (en) 2003-04-04

Family

ID=19116304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294753A Pending JP2003101046A (en) 2001-09-26 2001-09-26 Photoelectric transducer

Country Status (1)

Country Link
JP (1) JP2003101046A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183945A (en) * 2003-11-27 2005-07-07 Kyocera Corp Photoelectric converter and its manufacturing method
JP2010199418A (en) * 2009-02-26 2010-09-09 National Institute Of Advanced Industrial Science & Technology Substrate for thin film solar cell and thin film solar cell using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183945A (en) * 2003-11-27 2005-07-07 Kyocera Corp Photoelectric converter and its manufacturing method
JP2010199418A (en) * 2009-02-26 2010-09-09 National Institute Of Advanced Industrial Science & Technology Substrate for thin film solar cell and thin film solar cell using the same

Similar Documents

Publication Publication Date Title
US6653552B2 (en) Photoelectric conversion device and method of manufacturing the same
JP4695850B2 (en) Chalcopyrite solar cell
US6563041B2 (en) Photoelectric conversion device
JP5968244B2 (en) Photoelectric conversion module and manufacturing method thereof
JP2003101046A (en) Photoelectric transducer
JP4693492B2 (en) Photoelectric conversion device and photovoltaic device using the same
CN103137716B (en) Solar cell, solar battery group and preparation method thereof
JP2011054971A (en) Solar cell
KR101155891B1 (en) Paste and SOLAR CELL using this
TWM502963U (en) Solar cell module
JP5745622B2 (en) Solar cell and method for manufacturing the same
JP2006210549A (en) Photo-electric converter
JP4969337B2 (en) Photoelectric conversion device
JP2002299656A (en) Photoelectric transducing apparatus
KR101101159B1 (en) Solar Electricity Generation Module using Condensing of Reflector and Heat Radiation of Thermal Conduction Flate
JP2004047615A (en) Photoelectric converter
JP2007134440A (en) Photoelectric conversion device
JP4693505B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2018018894A (en) Solar cell and solar cell module
JP4780951B2 (en) Photoelectric conversion device
JP2003218369A (en) Photoelectric conversion device
JP2003158278A (en) Photoelectric convertor and its manufacturing method
CN102201475B (en) Solar cell element and device
JP2004200513A (en) Photoelectric converter and manufacturing method therefor
TWI438908B (en) Solar cell structures and apparatus comprising the same