JP2010199418A - Substrate for thin film solar cell and thin film solar cell using the same - Google Patents

Substrate for thin film solar cell and thin film solar cell using the same Download PDF

Info

Publication number
JP2010199418A
JP2010199418A JP2009044457A JP2009044457A JP2010199418A JP 2010199418 A JP2010199418 A JP 2010199418A JP 2009044457 A JP2009044457 A JP 2009044457A JP 2009044457 A JP2009044457 A JP 2009044457A JP 2010199418 A JP2010199418 A JP 2010199418A
Authority
JP
Japan
Prior art keywords
solar cell
substrate
thin film
film solar
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009044457A
Other languages
Japanese (ja)
Other versions
JP5582488B2 (en
Inventor
Hitoshi Sai
均 齋
Michio Kondo
道雄 近藤
Yoshiaki Kanamori
義明 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tohoku University NUC
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tohoku University NUC
Priority to JP2009044457A priority Critical patent/JP5582488B2/en
Publication of JP2010199418A publication Critical patent/JP2010199418A/en
Application granted granted Critical
Publication of JP5582488B2 publication Critical patent/JP5582488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for a thin film solar cell, which has high light confinement effect and reflectivity and whose surface shape is flat to such a degree that it does not exert a bad influence on a power generation layer formed thereupon. <P>SOLUTION: On the substrate 1 for the thin film solar cell, the power generation layer 2, and a transparent conductive film 9 and a silver electrode 10 forming an upper electrode are formed. The substrate 1 for the thin film solar cell includes a high-reflectivity substrate 3 having a high-reflectivity reflecting surface on a surface and a transparent and conductive composite film formed thereupon. The transparent composite film is formed by dispersing and arranging, in a substrate in-plane direction, two or more kinds of materials, for example, a high-reflectivity material 4 and a low-reflectivity material 5 which are transparent and different in reflectivity to light in the visible range to the near-infrared range, and at least one of the high-reflectivity material 4 and low-reflectivity material 5 has conductivity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、その上に発電層である半導体層を形成するための薄膜太陽電池用基板およびそれを用いた薄膜太陽電池に関するものである。   The present invention relates to a thin film solar cell substrate for forming a semiconductor layer as a power generation layer thereon and a thin film solar cell using the same.

太陽電池は、化石燃料を使用せずに電力を得ることができる再生可能エネルギー源として注目され、普及が進められている。特に薄膜シリコン太陽電池は、厚さ0.2〜5μm程度のシリコン薄膜を光吸収層として用いており、他の太陽電池と較べて資源的制約が少ないため、大規模普及に適した太陽電池として大きな期待が寄せられている。ところで、太陽電池の課題の一つとして光変換効率の向上が挙げられる。光変換効率を向上させる手段として、下部電極に反射機能を持たせると共に凹凸構造を作り込んで光閉じ込め効果を利用することが広く採用されている(例えば特許文献1参照)。   Solar cells are attracting attention as a renewable energy source capable of obtaining electric power without using fossil fuels, and are being popularized. In particular, thin-film silicon solar cells use a silicon thin film with a thickness of about 0.2 to 5 μm as a light absorption layer, and have fewer resource restrictions than other solar cells. There are great expectations. By the way, improvement of the light conversion efficiency is mentioned as one of the subjects of a solar cell. As a means for improving the light conversion efficiency, it is widely adopted that the lower electrode is provided with a reflection function and an uneven structure is formed to use the light confinement effect (see, for example, Patent Document 1).

従来用いられてきた光閉じ込め構造には、化学気相堆積法によって透明導電膜や光吸収層を製膜する際に自己形成される凹凸構造、透明導電膜を化学エッチングする際に形成される凹凸構造、反応性スパッタリング法によって金属電極を製膜する際に自己形成される凹凸構造、などがある。一般に、これらの凹凸構造の平均自乗粗さ(RMS)は30〜200nmである。このような凹凸構造を持った基板を薄膜太陽電池に用いて、(i)光散乱効果、(ii)光吸収層の界面における全反射効果、を利用して光の吸収量を増やし、結果として光電流を増加させることができる。従って、薄膜太陽電池用の基板に適切な凹凸形状を設けることにより、太陽電池の発電効率を向上させ、その価値を高めることができる。   Conventionally used light confinement structures include a concavo-convex structure that is self-formed when a transparent conductive film and a light absorbing layer are formed by chemical vapor deposition, and a concavo-convex structure that is formed when a transparent conductive film is chemically etched. There are, for example, a concavo-convex structure that is self-formed when a metal electrode is formed by a reactive sputtering method. In general, the mean square roughness (RMS) of these concavo-convex structures is 30 to 200 nm. Using a substrate having such a concavo-convex structure for a thin-film solar cell, the amount of light absorption is increased by using (i) the light scattering effect and (ii) the total reflection effect at the interface of the light absorption layer. The photocurrent can be increased. Therefore, by providing an appropriate uneven shape on the thin film solar cell substrate, the power generation efficiency of the solar cell can be improved and its value can be increased.

一方、凹凸構造を持つ太陽電池基板には、光閉じ込め効果をもたらす利点とは別に、その上に製膜される半導体太陽電池発電層の内部に欠陥を生じさせ、開放電圧や曲線因子を悪化させる欠点もある。一般に、高い光閉じ込め効果を得るためには、凹凸形状を大きくかつ深いものにする必要がある。しかし、過度に凹凸形状を大きくかつ深くすると、光電流が増加したとしても、開放電圧や曲線因子の劣化がより顕著となって、結果として得られる発電効率は低下する(例えば非特許文献1参照)。そのため、通常は、開放電圧や曲線因子がさほど劣化しないような、比較的緩やかな表面形状を持つ凹凸構造が利用されている(例えば特許文献2参照)。
以上のことから、従来型の凹凸構造を利用した光閉じ込め構造を用いる限り、光電流と開放電圧・曲線因子の間にはトレードオフの関係があり、全てを独立に最大化して、太陽電池の発電効率を向上させることは極めて困難である。
On the other hand, the solar cell substrate having a concavo-convex structure causes defects inside the semiconductor solar cell power generation layer formed on the solar cell substrate, which worsens the open-circuit voltage and the fill factor, in addition to the advantage of providing the light confinement effect. There are also drawbacks. Generally, in order to obtain a high light confinement effect, it is necessary to make the uneven shape large and deep. However, if the uneven shape is excessively large and deep, even if the photocurrent increases, the degradation of the open circuit voltage and the fill factor becomes more remarkable, and the resulting power generation efficiency decreases (for example, see Non-Patent Document 1). ). For this reason, a concavo-convex structure having a relatively gentle surface shape is generally used so that the open circuit voltage and the fill factor do not deteriorate so much (see, for example, Patent Document 2).
From the above, as long as the optical confinement structure using the conventional uneven structure is used, there is a trade-off relationship between the photocurrent and the open-circuit voltage / curve factor. It is extremely difficult to improve the power generation efficiency.

これを解決するための手段として、表面が平坦でなおかつ凹凸のある光反射面を有する太陽電池用基板がいくつか提案されている(例えば特許文献3参照)。特許文献3に記載されたものでは、片面に多角錐形状の凹凸構造を有し、もう一方の面が平坦な形状の透光性基板を用いており、凹凸面に光反射層を形成し、平坦面側に透明導電膜に挟まれた発電層を形成している。この技術によれば、光閉じ込めができると共に良好な品質の半導体膜(この場合は、結晶質シリコン膜)を形成することができる、としている。   As means for solving this problem, several solar cell substrates having a flat surface and an uneven light reflecting surface have been proposed (for example, see Patent Document 3). In what is described in Patent Document 3, a light-transmitting substrate having a polygonal pyramid-shaped concavo-convex structure on one surface and a flat shape on the other surface is formed, and a light reflecting layer is formed on the concavo-convex surface. A power generation layer sandwiched between transparent conductive films is formed on the flat surface side. According to this technique, light can be confined and a semiconductor film of good quality (in this case, a crystalline silicon film) can be formed.

特開2001−15780号公報JP 2001-15780 A 特開2000−340815号公報JP 2000-340815 A 特開2002−299661号公報JP 2002-299661 A

Journal of Non-Crystalline Solids Vol. 299-302 (2002), pp. 1152-1156Journal of Non-Crystalline Solids Vol. 299-302 (2002), pp. 1152-1156

しかしながら、特許文献3によると、光反射層となる金属薄膜が凹凸形状を有する面に形成されているので、金属薄膜も凹凸形状を有することになる。一般に、金属膜は表面粗さを持つことによって光散乱性を呈するが、同時に光吸収が増加する傾向があり、全体として反射率が低下し、発電層に反射される光の量が減少してしまう。また、発電層に接してその下層側に透光性導電膜が配置されており、透光性導電膜の屈折率が発電層よりも一般に小さいことから、発電層内部での光散乱角は透光性導電膜内部に較べて小さくなってしまう。
本発明の課題は、上述した従来技術の問題点を解決することであって、その目的は、光閉じ込め効果および反射率が高く、かつ表面形状がその上に形成される発電層に悪影響を与えない程度に平坦な薄膜太陽電池用基板およびそれを用いた薄膜太陽電池を提供できるようにすることである。
However, according to Patent Document 3, since the metal thin film serving as the light reflection layer is formed on the surface having an uneven shape, the metal thin film also has an uneven shape. In general, a metal film has light scattering properties due to its surface roughness, but at the same time, there is a tendency for light absorption to increase. As a whole, the reflectance decreases and the amount of light reflected by the power generation layer decreases. End up. In addition, since the light-transmitting conductive film is disposed on the lower layer side in contact with the power generation layer, and the refractive index of the light-transmitting conductive film is generally smaller than that of the power generation layer, the light scattering angle inside the power generation layer is transparent. It becomes smaller than the inside of the photoconductive film.
An object of the present invention is to solve the above-mentioned problems of the prior art, and its purpose is to have a high light confinement effect and reflectivity, and to adversely affect the power generation layer formed thereon. An object of the present invention is to provide a thin film solar cell substrate that is flat to an extent and a thin film solar cell using the same.

上記の目的を達成するため、本発明によれば、表面が平坦でかつ表面が光反射面となる基体と、前記基体上に形成された、可視〜近赤外域の光に対して透明でかつ屈折率の異なる二種類以上の材料からなる、垂直方向に導電性を有する透明複合膜と、を有することを特徴とする薄膜太陽電池基板、が提供される。   In order to achieve the above object, according to the present invention, a substrate having a flat surface and a surface serving as a light reflecting surface, and transparent to visible to near-infrared light formed on the substrate and There is provided a thin film solar cell substrate comprising a transparent composite film made of two or more materials having different refractive indexes and having conductivity in the vertical direction.

また、上記の目的を達成するため、本発明によれば、薄膜太陽電池用基板上に、発電層となる、1ないし複数の半導体接合を有する半導体層を有し、その上に上部電極を有することを特徴とする薄膜太陽電池、が提供される。   Moreover, in order to achieve said objective, according to this invention, it has a semiconductor layer which has a 1 or several semiconductor junction used as a power generation layer on the board | substrate for thin film solar cells, and has an upper electrode on it. There is provided a thin film solar cell characterized in that.

本発明による薄膜太陽電池用基板によれば、光反射面は平坦面に形成されるので、高い光反射率を有する光反射面を利用することができる。光反射面上に形成された透明複合膜には異なる屈折率を有する複数の透明材料が分散配置されているため、ここを透過する光は反射、屈折、回折されることになり、高い光閉じ込め効果が期待できる。さらに、透明複合膜はその表面が平坦であるために、従来型の凹凸構造を有する基板と比較してその上に形成される太陽電池層の高品質化が可能であり、高い効率の薄膜太陽電池が実現できる。   According to the thin film solar cell substrate according to the present invention, the light reflecting surface is formed to be a flat surface, and thus a light reflecting surface having a high light reflectance can be used. Since the transparent composite film formed on the light reflecting surface has a plurality of transparent materials having different refractive indexes distributed, the light passing through the transparent composite film is reflected, refracted and diffracted, resulting in high light confinement. The effect can be expected. Furthermore, since the surface of the transparent composite film is flat, it is possible to improve the quality of the solar cell layer formed thereon compared to a substrate having a conventional uneven structure, and a highly efficient thin film solar A battery can be realized.

本発明に係る薄膜太陽電池用基板を用いて形成された薄膜太陽電池を示す断面図。Sectional drawing which shows the thin film solar cell formed using the board | substrate for thin film solar cells which concerns on this invention. 本発明に係る薄膜太陽電池用基板の一例を示す斜視図。The perspective view which shows an example of the board | substrate for thin film solar cells which concerns on this invention. 本発明に係る薄膜太陽電池用基板の他の例を示す斜視図。The perspective view which shows the other example of the board | substrate for thin film solar cells which concerns on this invention. 本発明に係る薄膜太陽電池用基板の作製方法の一例を示す工程順の断面図。Sectional drawing of order of a process which shows an example of the preparation methods of the board | substrate for thin film solar cells which concerns on this invention. 本発明に係る薄膜太陽電池用基板の作製方法の他の例を示す工程順の断面図。Sectional drawing of the order of a process which shows the other example of the manufacturing method of the board | substrate for thin film solar cells concerning this invention. 本発明に係る薄膜太陽電池用基板を用いた場合の、光の伝搬挙動を数値計算により求めた結果を示す図。The figure which shows the result of having calculated | required the propagation behavior of light by the numerical calculation at the time of using the board | substrate for thin film solar cells which concerns on this invention.

次に、本発明の実施の形態について図面を参照して詳細に説明する。
図1は、本発明に係る薄膜太陽電池用基板を利用して作製した薄膜シリコン太陽電池を示す断面図である。本発明に係る薄膜太陽電池は、太陽電池用基板1、発電層2および表面電極(透明導電膜9、銀電極10)から構成される。太陽電池用基板1は、高反射率の反射面を有する高反射率基板3と、その上に形成された、高屈折率材料4と低屈折率材料5とを含む透明複合膜から構成される。この透明複合膜は、下部電極の一部をなすものであって、導電性を持つ必要があり、材料4、5のうち少なくとも一方は導電性を有することが求められる。この上に、n型、真性およびp型の結晶質薄膜シリコン層からなる発電層2が形成され、さらに反射防止効果を発揮するよう厚さを調整した透明導電膜9および銀電極10が形成されている。図1に示す実施の形態では、半導体層として結晶質薄膜シリコン層を用いているが、太陽電池特性が得られるものであれば他の半導体層でも構わない。つまり、非晶質半導体でもよく、また材料として化合物半導体(SiC、SiGeを含む)や有機材料であってもよく、さらには複数の接合が積層されたいわゆるタンデム構造をなすものであってもよい。また、バンドギャップが不連続となるヘテロ接合を含んでいてもよい。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing a thin film silicon solar cell produced by using the thin film solar cell substrate according to the present invention. The thin film solar cell according to the present invention includes a solar cell substrate 1, a power generation layer 2, and surface electrodes (transparent conductive film 9, silver electrode 10). The solar cell substrate 1 is composed of a high-reflectance substrate 3 having a high-reflectivity reflecting surface and a transparent composite film including a high-refractive index material 4 and a low-refractive index material 5 formed thereon. . This transparent composite film forms a part of the lower electrode and needs to have conductivity, and at least one of the materials 4 and 5 is required to have conductivity. On top of this, a power generation layer 2 composed of an n-type, intrinsic and p-type crystalline thin film silicon layer is formed, and further, a transparent conductive film 9 and a silver electrode 10 whose thicknesses are adjusted so as to exhibit an antireflection effect are formed. ing. In the embodiment shown in FIG. 1, a crystalline thin film silicon layer is used as a semiconductor layer, but other semiconductor layers may be used as long as solar cell characteristics can be obtained. That is, it may be an amorphous semiconductor, a compound semiconductor (including SiC, SiGe) or an organic material as a material, or a so-called tandem structure in which a plurality of junctions are stacked. . Further, a heterojunction in which the band gap is discontinuous may be included.

高反射率基板3は、高反射率を実現すべく少なくともその表面は高反射率の金属材料(例えばAg、AgPdCu合金、Alなど)で形成され、かつその表面は平坦になされている。高反射率基板3は、単一の金属材料によって構成されていてもよく、また金属材料もしくは非金属材料の基板上に高反射率金属材料の被覆を施したものであってもよい。この高反射率基板3は、その上の透明複合膜と共に下部電極を構成している。   The high reflectivity substrate 3 has at least a surface formed of a highly reflective metal material (for example, Ag, AgPdCu alloy, Al, etc.) and a flat surface in order to achieve high reflectivity. The high reflectivity substrate 3 may be composed of a single metal material, or may be a metal material or non-metal material coated with a high reflectivity metal material. This high reflectance substrate 3 constitutes a lower electrode together with the transparent composite film thereon.

高反射率基板3上に形成される透明複合膜は、屈折率の異なる二種以上の材料を含むものであればよく、そしてその内の少なくとも一つは導電性を有することが求められる。図1に示した例では、高屈折率材料4と低屈折率材料5とが共に高反射率基板3とn型シリコン薄膜6とに接するように形成されているが、少なくとも導電性のある材料の一つが高反射率基板3とn型シリコン薄膜6とに接していればよく、導電性を有しない材料については、高反射率基板3とn型シリコン薄膜6のいずれか一方またはその両方と接していなくてもよい。屈折率の異なる材料の接する界面は、図1のように垂直でなくてもよく任意の角度の面を含んでいてもよい。
透明複合膜の表面は、その上に製膜される発電半導体層に悪影響を及ぼさない程度に平坦であることが望まれる。好ましい平均自乗表面粗さ(RMS)は、25nm以下である。
The transparent composite film formed on the high reflectivity substrate 3 may be any material as long as it contains two or more materials having different refractive indexes, and at least one of them is required to have conductivity. In the example shown in FIG. 1, the high refractive index material 4 and the low refractive index material 5 are both formed so as to be in contact with the high reflectance substrate 3 and the n-type silicon thin film 6, but at least a conductive material. Is required to be in contact with the high-reflectance substrate 3 and the n-type silicon thin film 6, and the non-conductive material may be either one of the high-reflectance substrate 3 or the n-type silicon thin film 6 or both. It is not necessary to touch. The interface with which the materials having different refractive indexes are in contact with each other may not be vertical as shown in FIG.
The surface of the transparent composite film is desired to be flat enough not to adversely affect the power generation semiconductor layer formed thereon. A preferred mean square surface roughness (RMS) is 25 nm or less.

図2、図3は、本発明に係る薄膜太陽電池用基板の例を示す斜視図である。図2、図3に示すように、高反射率基板3上に、透明の高屈折率材料4と透明の低屈折率材料5とから構成される一つの膜、透明複合膜が形成されている。図2に示す例では、ランダムな大きさの高屈折率材料4が低屈折率材料5中にランダムな分布で分散配置されている。この分散の間隔および分散粒の大きさは、光閉じ込めの対象となる波長と同程度であることが好ましく、太陽光を光電変換する変換装置の太陽電池用基板に用いる場合、0.1〜2μmの範囲にあることが望ましい。ここで、分散粒は、三次元的な配置を取ってもよい。   2 and 3 are perspective views showing examples of the thin film solar cell substrate according to the present invention. As shown in FIG. 2 and FIG. 3, a single film composed of a transparent high refractive index material 4 and a transparent low refractive index material 5, a transparent composite film, is formed on the high reflectance substrate 3. . In the example shown in FIG. 2, the high refractive index material 4 having a random size is dispersed and arranged in a random distribution in the low refractive index material 5. The interval between the dispersions and the size of the dispersed particles are preferably approximately the same as the wavelength that is the target of light confinement. When used for a solar cell substrate of a conversion device that photoelectrically converts sunlight, 0.1 to 2 μm. It is desirable to be in the range. Here, the dispersed particles may take a three-dimensional arrangement.

一方、図3に示す例では、一定の大きさの高屈折率材料4が低屈折率材料5中に規則性を持って配置されており、回折格子を構成している。このような配置によれば、光学特性をより緻密に制御することができる。この場合にも、高屈折率材料4の大きさとその間隔は、0.1〜2μmの範囲にあることが望ましい。図示した例では、回折格子の格子定数は一種のみであったが、高屈折率材料4のサイズあるいは間隔を二種以上とし複数の格子定数を持つ回折格子を用いてもよい。さらに、格子定数の異なる複数の回折格子を積層して一つの透明複合膜を構成するようにしてもよい。これにより、三次元構造の回折格子を構成することができる。   On the other hand, in the example shown in FIG. 3, the high refractive index material 4 having a certain size is arranged with regularity in the low refractive index material 5 to constitute a diffraction grating. According to such an arrangement, the optical characteristics can be controlled more precisely. Also in this case, it is desirable that the size and the interval of the high refractive index material 4 are in the range of 0.1 to 2 μm. In the illustrated example, the diffraction grating has only one grating constant, but a diffraction grating having a plurality of grating constants with two or more sizes or intervals of the high refractive index material 4 may be used. Further, a plurality of diffraction gratings having different lattice constants may be laminated to form one transparent composite film. Thereby, a diffraction grating having a three-dimensional structure can be formed.

図2、図3に示される例では、高屈折率材料4が低屈折率材料5中に分散配置されていたが、この配置例とは逆に、低屈折率材料5が高屈折率材料4中に分散配置されていてもよい。光散乱を強くするために、基板において用いられる複数の透明材料の屈折率の差はできるだけ大きい方が望ましく、その差は0.5以上であることが望ましい。また、発電層と複合透明膜との界面での反射を少なくするために、透明材料の一方は発電層を構成する半導体と同じかそれに近い屈折率を持つことが望まれる。さらにまた、これらの透明材料は、発電層を通って基板に到達する太陽光に対して、できるだけ小さい吸収係数を有することが望ましい。一つの例としては、高屈折率材料にアモルファスシリコン(屈折率〜3.5)、低屈折率材料に酸化シリコン(屈折率〜1.5)あるいは酸化亜鉛(屈折率〜2.0)、酸化錫(屈折率〜2.0)、ITO(屈折率〜2.1)などの酸化物を利用することが挙げられる。低屈折率材料としては、無機酸化物材料のほか、樹脂材料や空気を用いることも可能である。空気の場合、気泡として高屈折率材料中に分散配置される。   In the example shown in FIGS. 2 and 3, the high refractive index material 4 is dispersedly arranged in the low refractive index material 5. On the contrary, the low refractive index material 5 is the high refractive index material 4. It may be distributed inside. In order to increase light scattering, it is desirable that the difference in refractive index of the plurality of transparent materials used in the substrate is as large as possible, and the difference is preferably 0.5 or more. Further, in order to reduce reflection at the interface between the power generation layer and the composite transparent film, one of the transparent materials is desired to have a refractive index that is the same as or close to that of the semiconductor constituting the power generation layer. Furthermore, it is desirable that these transparent materials have as small an absorption coefficient as possible with respect to sunlight that reaches the substrate through the power generation layer. As an example, amorphous silicon (refractive index ~ 3.5) is used as a high refractive index material, silicon oxide (refractive index ~ 1.5) or zinc oxide (refractive index ~ 2.0), oxide is used as a low refractive index material. Use of oxides such as tin (refractive index˜2.0) and ITO (refractive index˜2.1) can be mentioned. As the low refractive index material, in addition to the inorganic oxide material, a resin material or air can be used. In the case of air, it is distributed in the high refractive index material as bubbles.

図4は、本発明に係る薄膜太陽電池用基板の作製方法の一例を示す工程順の断面図である。まず、表面に高反射率の反射面を有する高反射率基板3を用意する〔図4(A)〕。その上に、高屈折率材料4の微粒子を有機溶媒に分散させたコロイド溶液を塗布し、有機溶媒を蒸発させて、基板上に微粒子を分散配置する。この微粒子の大きさは0.1〜2μmであり、かつ微粒子の分散される間隔も同程度となるように分散条件を調整する〔図4(B)〕。この微粒子を適度な粘度を持つ溶液によって埋め込み、基板表面に固定する。この溶液は、シリコンあるいは亜鉛を含む溶液など、熱処理によって容易に酸化して酸化物となるものを用いる。その一例としてSOG(spin on glass)が挙げられる。あるいは、低屈折率の樹脂材料を用いてもよい。これにより、高屈折率の微粒子が低屈折率材料5の層に分散した膜が得られる〔図4(C)〕。最後に、膜表面の平坦化を行い、高屈折率層を露出させる〔図4(D)〕。平坦化する方法としては、機械的な圧力を加える方法、研磨による方法、熱処理による方法、化学的な反応を用いる方法、あるいはそれらの組み合わせ、例えばCMPなどが考えられる。   FIG. 4 is a cross-sectional view in order of steps showing an example of a method for producing a thin film solar cell substrate according to the present invention. First, a high reflectance substrate 3 having a reflective surface with a high reflectance on the surface is prepared [FIG. 4A]. A colloidal solution in which fine particles of the high refractive index material 4 are dispersed in an organic solvent is applied thereon, the organic solvent is evaporated, and the fine particles are dispersedly arranged on the substrate. The size of the fine particles is 0.1 to 2 μm, and the dispersion conditions are adjusted so that the intervals at which the fine particles are dispersed are similar [FIG. 4B]. The fine particles are embedded with a solution having an appropriate viscosity and fixed on the substrate surface. As this solution, a solution that is easily oxidized by heat treatment to become an oxide, such as a solution containing silicon or zinc, is used. One example is SOG (spin on glass). Alternatively, a low refractive index resin material may be used. As a result, a film in which fine particles having a high refractive index are dispersed in the layer of the low refractive index material 5 is obtained [FIG. 4C]. Finally, the film surface is flattened to expose the high refractive index layer (FIG. 4D). As a planarization method, a method of applying mechanical pressure, a method of polishing, a method of heat treatment, a method of using a chemical reaction, or a combination thereof, for example, CMP can be considered.

図5は、本発明に係る薄膜太陽電池用基板の作製方法の他の例を示す工程順の断面図である。まず、図4の場合と同様に高反射率基板3を用意し〔図5(A)〕、その上に低屈折率材料5の薄膜を形成する〔図5(B)〕。この表面にスピン塗布、フォトリソグラフィ法などの方法によってエッチングマスクとなるレジスト膜11を形成する〔図5(C)〕。そして、このレジスト膜11をマスクとして低屈折率材料5の膜をエッチングすることにより、低屈折率材料5のパターンを形成する〔図5(D)〕。このパターンの周期は0.1〜2μmとなるよう調整する。レジスト膜11を除去し〔図5(E)〕、その後高屈折率材料4の薄膜を形成する〔図5(F)〕。最後に、図4の場合と同様に平坦化処理を行う〔図5(G)〕。なお、マスク除去行程は必ずしも必要ではない。
図5(D)に示すエッチング工程において、下地の高反射率基板3の表面が荒らされ、その表面の反射率が低下してしまう恐れがある。これに対処するには、高反射率基板3の表面にITO膜などの透明導電膜を形成しておくことが有効である。そのようにする場合には、エッチング工程後の高屈折率材料4の薄膜の形成を、CVD法などの真空技術を用いる製膜法により行っても、製膜工程において高反射率基板3の表面が荒らされることも回避できる。
FIG. 5: is sectional drawing of the order of a process which shows the other example of the manufacturing method of the board | substrate for thin film solar cells which concerns on this invention. First, as in the case of FIG. 4, a high reflectance substrate 3 is prepared [FIG. 5A], and a thin film of a low refractive index material 5 is formed thereon [FIG. 5B]. A resist film 11 serving as an etching mask is formed on the surface by a method such as spin coating or photolithography [FIG. 5C]. Then, the pattern of the low refractive index material 5 is formed by etching the film of the low refractive index material 5 using the resist film 11 as a mask [FIG. 5D]. The period of this pattern is adjusted to be 0.1 to 2 μm. The resist film 11 is removed [FIG. 5E], and then a thin film of the high refractive index material 4 is formed [FIG. 5F]. Finally, a flattening process is performed in the same manner as in FIG. 4 (FIG. 5G). The mask removal process is not always necessary.
In the etching step shown in FIG. 5D, the surface of the underlying high-reflectance substrate 3 may be roughened, and the reflectance of the surface may be reduced. In order to cope with this, it is effective to form a transparent conductive film such as an ITO film on the surface of the high reflectance substrate 3. In such a case, even if the thin film of the high refractive index material 4 after the etching process is formed by a film forming method using a vacuum technique such as a CVD method, the surface of the high reflectance substrate 3 in the film forming process. Can be avoided.

図6は、本発明に係る薄膜太陽電池用基板による、光散乱の様子を数値計算により具体的に求めたグラフである。この計算で仮定した薄膜太陽電池用基板は、高屈折率材料にシリコン、低屈折率材料に酸化シリコンを用いた平坦な回折格子と、その裏面の銀の反射層からなる構造を有する。また、基板の上に形成される発電層としてシリコンを仮定している。図中の横軸が波長、縦軸が基板表面における反射角度を表しており、図中の色が濃いところほど強い反射が生じていることを意味する。図6から、光閉じ込めが重要となる波長0.9μmよりも長波長側において、角度20〜40度の範囲に強い反射光が生じている。この結果から、適切な屈折率の材料と構造パラメータを用いれば、表面が平坦な基板であっても、光が斜め方向に強く散乱(回折)されることが理解される。これにより、光路長が増すとともに発電層界面において全反射が生じ、結果的に光が発電層内部に閉じ込められて効率よく吸収されることが期待できる。   FIG. 6 is a graph specifically obtained by numerical calculation of the state of light scattering by the thin film solar cell substrate according to the present invention. The thin film solar cell substrate assumed in this calculation has a structure comprising a flat diffraction grating using silicon as a high refractive index material and silicon oxide as a low refractive index material, and a silver reflective layer on the back surface thereof. In addition, silicon is assumed as a power generation layer formed on the substrate. The horizontal axis in the figure represents the wavelength, and the vertical axis represents the reflection angle on the substrate surface. The darker the color in the figure, the stronger the reflection. FIG. 6 shows that strong reflected light is generated in the range of 20 to 40 degrees on the longer wavelength side than the wavelength of 0.9 μm where light confinement is important. From this result, it is understood that if a material having an appropriate refractive index and structural parameters are used, light is strongly scattered (diffracted) in an oblique direction even on a substrate having a flat surface. As a result, the optical path length increases and total reflection occurs at the power generation layer interface. As a result, it can be expected that light is confined inside the power generation layer and efficiently absorbed.

以上に説明したように、本発明に係る太陽電池用基板を用いることにより、その上に形成する発電層の品質を劣化させることなく、薄膜太陽電池において非常に良好な光閉じ込め効果を得ることができ、ひいては高い発電効率が期待できる。また、表面形状が平坦であることから、ウエハーの貼り合わせ技術とも整合性がよく、メカニカルスタック型の太陽電池にも適用できる。また、転写法などを大量生産に適した作製方法を選ぶことにより、本発明に係る太陽電池基板並びに太陽電池素子を安価に提供できる可能性もある。   As described above, by using the solar cell substrate according to the present invention, it is possible to obtain a very good light confinement effect in the thin film solar cell without deteriorating the quality of the power generation layer formed thereon. And by extension, high power generation efficiency can be expected. Further, since the surface shape is flat, it has good consistency with the wafer bonding technique and can be applied to a mechanical stack type solar cell. Further, by selecting a production method suitable for mass production such as a transfer method, the solar cell substrate and the solar cell element according to the present invention may be provided at low cost.

1 太陽電池用基板
2 発電層
3 高反射率基板
4 高屈折率材料
5 低屈折率材料
6 n型シリコン薄膜
7 真性シリコン薄膜
8 p型シリコン薄膜
9 透明導電膜
10 銀電極
11 レジスト膜
DESCRIPTION OF SYMBOLS 1 Substrate for solar cells 2 Power generation layer 3 High reflectance substrate 4 High refractive index material 5 Low refractive index material 6 n-type silicon thin film 7 intrinsic silicon thin film 8 p-type silicon thin film 9 transparent conductive film 10 silver electrode 11 resist film

Claims (12)

表面が平坦でかつ表面が光反射面となる基体と、前記基体上に形成された、可視〜近赤外域の光に対して透明でかつ屈折率の異なる二種類以上の材料からなる、垂直方向に導電性を有する透明複合膜と、を有することを特徴とする薄膜太陽電池基板。   A vertical surface consisting of a substrate having a flat surface and a light reflecting surface, and two or more materials formed on the substrate and transparent to visible to near-infrared light and having different refractive indexes. A thin film solar cell substrate comprising: a transparent composite film having conductivity. その表面の平均自乗表面粗さが25nm以下であることを特徴とする請求項1に記載の薄膜太陽電池用基板。   2. The thin-film solar cell substrate according to claim 1, wherein an average square surface roughness of the surface is 25 nm or less. 前記透明複合膜を構成する二種類以上の材料のうち、少なくとも一つの組み合わせにおいて屈折率差が0.5以上であることを特徴とする請求項1または2に記載の薄膜太陽電池用基板。   The thin film solar cell substrate according to claim 1 or 2, wherein a refractive index difference is 0.5 or more in at least one combination among two or more kinds of materials constituting the transparent composite film. 前記透明複合膜に分散する透明材料の分散粒の大きさおよび分散粒同士の距離が0.1〜2μmの範囲にあることを特徴とする請求項1から3のいずれかに記載の薄膜太陽電池用基板。   4. The thin-film solar cell according to claim 1, wherein the size of the dispersed particles of the transparent material dispersed in the transparent composite film and the distance between the dispersed particles are in the range of 0.1 to 2 μm. Substrate. 前記透明複合膜に用いられる透明材料が、シリコンまたは金属酸化物を含むことを特徴とする請求項1から4のいずれかに記載の薄膜太陽電池用基板。   The transparent material used for the said transparent composite film contains a silicon | silicone or a metal oxide, The board | substrate for thin film solar cells in any one of Claim 1 to 4 characterized by the above-mentioned. 前記基体が、金属単体、または、金属単体上に透明導電膜が形成されたもの、または、支持体上に金属膜の形成されたもの、または、支持体上に金属膜と透明導電膜との積層膜が形成されたもの、の中のいずれかであることを特徴とする請求項1から5のいずれかに記載の薄膜太陽電池用基板。   The substrate is a simple metal, or a transparent conductive film formed on a single metal, or a metal film formed on a support, or a metal film and a transparent conductive film on a support. The thin film solar cell substrate according to any one of claims 1 to 5, wherein the thin film solar cell substrate is one having a laminated film formed thereon. 前記透明複合膜において、二種類以上の透明材料の一つが規則性を持って配置され、回折格子を構成していることを特徴とする請求項1から6のいずれかに記載の薄膜太陽電池用基板。   The thin film solar cell according to any one of claims 1 to 6, wherein in the transparent composite film, one of two or more kinds of transparent materials is arranged with regularity to form a diffraction grating. substrate. 前記回折格子の周期が0.1〜2μmの範囲にあることを特徴とする請求項7に記載の薄膜太陽電池用基板。   The thin film solar cell substrate according to claim 7, wherein a period of the diffraction grating is in a range of 0.1 to 2 μm. 回折格子が二つ以上の異なる周期を持つことを特徴とする請求項7または8に記載の薄膜太陽電池用基板。   The thin-film solar cell substrate according to claim 7 or 8, wherein the diffraction grating has two or more different periods. 回折格子が二次元または三次元構造を持つことを特徴とする請求項7から9のいずれかに記載の薄膜太陽電池用基板。   The substrate for a thin film solar cell according to any one of claims 7 to 9, wherein the diffraction grating has a two-dimensional or three-dimensional structure. 請求項1から10のいずれかに記載の薄膜太陽電池用基板上に、発電層となる、1ないし複数の半導体接合を有する半導体層を有し、その上に上部電極を有することを特徴とする薄膜太陽電池。   A thin film solar cell substrate according to any one of claims 1 to 10, comprising a semiconductor layer having one or more semiconductor junctions to be a power generation layer, and having an upper electrode thereon. Thin film solar cell. 前記半導体層が、シリコンまたはその合金の非晶質体若しくは結晶質体またはそれらの組み合わせにより構成されていることを特徴とする請求項11に記載の薄膜太陽電池。   The thin film solar cell according to claim 11, wherein the semiconductor layer is made of an amorphous body or a crystalline body of silicon or an alloy thereof, or a combination thereof.
JP2009044457A 2009-02-26 2009-02-26 Thin film solar cell substrate and thin film solar cell using the same Active JP5582488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044457A JP5582488B2 (en) 2009-02-26 2009-02-26 Thin film solar cell substrate and thin film solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044457A JP5582488B2 (en) 2009-02-26 2009-02-26 Thin film solar cell substrate and thin film solar cell using the same

Publications (2)

Publication Number Publication Date
JP2010199418A true JP2010199418A (en) 2010-09-09
JP5582488B2 JP5582488B2 (en) 2014-09-03

Family

ID=42823824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044457A Active JP5582488B2 (en) 2009-02-26 2009-02-26 Thin film solar cell substrate and thin film solar cell using the same

Country Status (1)

Country Link
JP (1) JP5582488B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111768A1 (en) * 2011-02-18 2012-08-23 国立大学法人北海道大学 Solar cell
WO2013051519A1 (en) * 2011-10-04 2013-04-11 旭硝子株式会社 Thin film solar cell module and method for manufacturing thin film solar cell module
KR101840800B1 (en) * 2017-01-31 2018-03-22 엘지전자 주식회사 Compound semiconductor solar cell and method for manufacturing the same
CN110741480A (en) * 2017-06-30 2020-01-31 美国圣戈班性能塑料公司 Solar control film
WO2022073863A3 (en) * 2020-10-06 2022-08-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Multiple solar cell and use of a multiple solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163405A (en) * 1992-11-27 1994-06-10 Sanyo Electric Co Ltd Base substrate for forming semiconductor thin film, solid growth method for semiconductor thin film and photovoltaic device using substrate
JP2003101046A (en) * 2001-09-26 2003-04-04 Kyocera Corp Photoelectric transducer
JP2006154100A (en) * 2004-11-26 2006-06-15 Konica Minolta Holdings Inc Diffraction grating element and optical device
JP2006171026A (en) * 2004-12-10 2006-06-29 Mitsubishi Heavy Ind Ltd Light-scattering film and optical device using the same
JP2009016556A (en) * 2007-07-04 2009-01-22 Toppan Printing Co Ltd Light scattering film for solar battery, optical member for solar battery and solar battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163405A (en) * 1992-11-27 1994-06-10 Sanyo Electric Co Ltd Base substrate for forming semiconductor thin film, solid growth method for semiconductor thin film and photovoltaic device using substrate
JP2003101046A (en) * 2001-09-26 2003-04-04 Kyocera Corp Photoelectric transducer
JP2006154100A (en) * 2004-11-26 2006-06-15 Konica Minolta Holdings Inc Diffraction grating element and optical device
JP2006171026A (en) * 2004-12-10 2006-06-29 Mitsubishi Heavy Ind Ltd Light-scattering film and optical device using the same
JP2009016556A (en) * 2007-07-04 2009-01-22 Toppan Printing Co Ltd Light scattering film for solar battery, optical member for solar battery and solar battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111768A1 (en) * 2011-02-18 2012-08-23 国立大学法人北海道大学 Solar cell
WO2013051519A1 (en) * 2011-10-04 2013-04-11 旭硝子株式会社 Thin film solar cell module and method for manufacturing thin film solar cell module
KR101840800B1 (en) * 2017-01-31 2018-03-22 엘지전자 주식회사 Compound semiconductor solar cell and method for manufacturing the same
CN110741480A (en) * 2017-06-30 2020-01-31 美国圣戈班性能塑料公司 Solar control film
US11782198B2 (en) 2017-06-30 2023-10-10 Saint-Gobain Performance Plastics Corporation Solar control film
WO2022073863A3 (en) * 2020-10-06 2022-08-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Multiple solar cell and use of a multiple solar cell

Also Published As

Publication number Publication date
JP5582488B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
Gaucher et al. Ultrathin epitaxial silicon solar cells with inverted nanopyramid arrays for efficient light trapping
JP5147818B2 (en) Substrate for photoelectric conversion device
US20140069496A1 (en) Planar Plasmonic Device for Light Reflection, Diffusion and Guiding
US20110186119A1 (en) Light-trapping plasmonic back reflector design for solar cells
WO2011131586A2 (en) Absorbent nanoscale structure of the asymmetric mim type and method of producing such a structure
Leem et al. Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications
Zhou et al. Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells
JP6046619B2 (en) Thin film solar cell and manufacturing method thereof
JP5582488B2 (en) Thin film solar cell substrate and thin film solar cell using the same
JP2010123944A (en) Solar cell having reflective structure
CN103069308A (en) Silicon multilayer anti-reflective film with gradually varying refractive index and manufacturing method therefor, and solar cell having same and manufacturing method therefor
KR20110019143A (en) Fabricating method of antireflection nano structure and fabricating method of photo device integrated with antireflection nano structure
US20130014814A1 (en) Nanostructured arrays for radiation capture structures
KR101164326B1 (en) Silicon thin film solar cells using periodic or random metal nanoparticle layer and fabrication method thereof
Lv et al. Enhanced absorptive characteristics of GaN nanowires for ultraviolet (UV) photocathode
JP2014011229A (en) Solar cell
WO2015015694A1 (en) Photovoltaic device
JP5490031B2 (en) Photovoltaic device and photovoltaic module
JP5409490B2 (en) Photovoltaic device and manufacturing method thereof
JP2012089712A (en) Thin film solar cell and method for manufacturing the same
JP6037288B2 (en) Solar cell, photonic crystal substrate, solar cell panel and device with solar cell
JP6293061B2 (en) Solar cells based on flexible nanowires
KR101315065B1 (en) Solar cell and method of fabricating the same
KR101205451B1 (en) Optical device package and method for fabricating the same
JP2011096730A (en) Thin-film solar cell and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent or registration of utility model

Ref document number: 5582488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250