JP2005180322A - Exhaust gas after-treatment device for diesel engine - Google Patents

Exhaust gas after-treatment device for diesel engine Download PDF

Info

Publication number
JP2005180322A
JP2005180322A JP2003422640A JP2003422640A JP2005180322A JP 2005180322 A JP2005180322 A JP 2005180322A JP 2003422640 A JP2003422640 A JP 2003422640A JP 2003422640 A JP2003422640 A JP 2003422640A JP 2005180322 A JP2005180322 A JP 2005180322A
Authority
JP
Japan
Prior art keywords
temperature
filter
estimated
diesel engine
aftertreatment device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003422640A
Other languages
Japanese (ja)
Other versions
JP4075795B2 (en
Inventor
Shoichiro Ueno
昌一郎 上野
Junichi Kawashima
純一 川島
Masahiko Nakano
雅彦 中野
Mitsunori Kondo
光徳 近藤
Makoto Otake
真 大竹
Naoya Tsutsumoto
直哉 筒本
Toshimasa Koga
俊雅 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003422640A priority Critical patent/JP4075795B2/en
Priority to DE602004002843T priority patent/DE602004002843T2/en
Priority to EP04029233A priority patent/EP1548257B1/en
Priority to CNB2004100821211A priority patent/CN100335757C/en
Priority to US11/013,473 priority patent/US7322182B2/en
Publication of JP2005180322A publication Critical patent/JP2005180322A/en
Application granted granted Critical
Publication of JP4075795B2 publication Critical patent/JP4075795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten development time by enabling estimation of characteristic temperature by successfully combining a temperature characteristic of a filter represented as a physical model with filter outlet temperature and filter inlet temperature. <P>SOLUTION: This exhaust gas after-treatment device for a diesel engine is provided with a means (16) having the filter (4) for collecting and accumulating particulates of exhaust gas and detecting temperature of either upstream or downstream side of the filter (4) as first temperature; a means (17) detecting temperature of the other of upstream or downstream side of the filter (4) as second temperature; a means (11) calculating estimated bed temperature of the filter (4) based on at least either of the first or second temperature; and a means (11) increasing exhaust temperature based on the estimated bed temperature and performing regeneration treatment of the filter (4). The exhaust gas after-treatment device for the diesel engine is further provided with a means (11) calculating estimated temperature of the second temperature of one of the upstream or downstream side of the filter (4) based on the first temperature of the other of the upstream or downstream side of the filter (4). The estimated bed temperature is determined, based on the detected second temperature and the estimated temperature of the second temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はディーゼルエンジンの排気パティキュレートを処理する排気後処理装置、特に排気通路にエンジンから排出されるパティキュレートを捕集するフィルタを配置し、フィルタに所定量のパティキュレートが堆積したとき、フィルタ温度を昇温させてフィルタに堆積しているパティキュレートを燃焼処理する、いわゆるフィルタの再生処理を行うものに関する。   The present invention relates to an exhaust aftertreatment device for treating exhaust particulates of a diesel engine, and in particular, a filter for collecting particulates discharged from the engine in an exhaust passage, and when a predetermined amount of particulates is deposited on the filter, the filter The present invention relates to a so-called filter regeneration process in which the particulates accumulated in a filter are burned by raising the temperature.

排気通路にNOx還元触媒を設け、この触媒を高いNOx浄化率が得られる所定の温度範囲に保つため、触媒の温度を推定しこの推定触媒温度に基づいて触媒を流れる排気流量を制御するものが提案されている(特許文献1参照)。
特開平10−68315号公報
A NOx reduction catalyst is provided in the exhaust passage, and in order to keep this catalyst in a predetermined temperature range in which a high NOx purification rate can be obtained, the temperature of the catalyst is estimated and the exhaust flow rate flowing through the catalyst is controlled based on the estimated catalyst temperature. It has been proposed (see Patent Document 1).
JP-A-10-68315

上記の特許文献1の技術では、触媒入口の排気温度Tg1と触媒出口の排気温度Tg2から次式により推定触媒温度Tcを算出している。   In the technique disclosed in Patent Document 1, the estimated catalyst temperature Tc is calculated from the exhaust gas temperature Tg1 at the catalyst inlet and the exhaust gas temperature Tg2 at the catalyst outlet according to the following equation.

Tc=p×Tg1+q×Tg2(p、qは実験から求めた係数)
しかしながら、上記の算出方法だと、触媒の温度推定をpとqの2つの係数で、図4に示すように、触媒担体の熱容量による入口温度上昇に対する出口温度上昇の時間的な応答遅れと、フィルタの再生による温度上昇や酸化触媒を担持したフィルタであれば触媒の反応による温度上昇分との2つの要素を様々な運転条件で適合しなければならず、実験適合に膨大な時間がかかり、また適合した結果も膨大なマップデータとなり触媒温度推定制御のためのデータ容量を大きくとらなければならない。かといって触媒温度推定制御のデータ容量を小さくすべく固定の定数にすると触媒温度推定の精度が落ちて、フィルタの再生処理時に異常な高温状態になり、触媒の熱劣化やフィルタの溶損の恐れがある。
Tc = p × Tg1 + q × Tg2 (p and q are coefficients obtained from experiments)
However, according to the above calculation method, the temperature estimation of the catalyst is estimated by two coefficients p and q, and as shown in FIG. 4, the time response delay of the outlet temperature rise with respect to the inlet temperature rise due to the heat capacity of the catalyst carrier, If the filter supports the temperature rise due to the regeneration of the filter or the oxidation catalyst, the two factors of the temperature rise due to the reaction of the catalyst must be adapted under various operating conditions, and it takes an enormous amount of time to adapt the experiment, In addition, the conforming result also becomes enormous map data, and the data capacity for catalyst temperature estimation control must be increased. However, if a fixed constant is used to reduce the data volume of the catalyst temperature estimation control, the accuracy of the catalyst temperature estimation will be reduced, resulting in an abnormally high temperature during the filter regeneration process. There is a fear.

本発明は、フィルタの上流または下流の一方の温度を第一温度として、またフィルタの他方の温度を第二温度としてそれぞれ検出し、これら第一温度または第二温度の少なくともいずれかの温度からフィルタの推定ベッド温度を算出し、この推定ベッド温度に基づいて、排気温度を昇温させてフィルタの再生処理を行うディーゼルエンジンの排気後処理装置において、前記一方の第一温度に基づいて他方の第二温度の推定温度を算出し、前記推定ベッド温度を前記検出される第二温度と前記第二温度の推定温度とに基づいて求めるように構成する。   The present invention detects one temperature upstream or downstream of the filter as a first temperature and the other temperature of the filter as a second temperature, respectively, and detects the filter from at least one of the first temperature and the second temperature. In the exhaust aftertreatment device for a diesel engine that performs the regeneration process of the filter by raising the exhaust gas temperature based on the estimated bed temperature, the other first gas temperature is calculated based on the one first temperature. An estimated temperature of two temperatures is calculated, and the estimated bed temperature is obtained based on the detected second temperature and the estimated temperature of the second temperature.

本発明によれば、フィルタの入口温度(第一温度)と出口温度(第二温度)を検出し、これらフィルタの入口または出口いずれかの温度に基づいてベッド温度を推定し、フィルタの出口温度を検出した第二温度と、フィルタの入口温度に時間遅れを持たせた第二温度の推定温度との差温をとり、その差温を推定したベッド温度にフィードバックすることで、ベッド温度推定制御に多大なデータ容量をとることなくベッド温度を精度よく推定することが可能になり、フィルタ再生処理時の異常な高温による触媒の劣化やフィルタの溶損を回避することが可能になる。   According to the present invention, the inlet temperature (first temperature) and the outlet temperature (second temperature) of the filter are detected, the bed temperature is estimated based on the temperature of either the inlet or outlet of the filter, and the outlet temperature of the filter. Bed temperature estimation control by taking the temperature difference between the detected second temperature and the estimated temperature of the second temperature with a time delay in the filter inlet temperature and feeding back the temperature difference to the estimated bed temperature In addition, it is possible to accurately estimate the bed temperature without taking up a large amount of data, and it is possible to avoid catalyst deterioration and filter melting due to an abnormally high temperature during the filter regeneration process.

以下、本発明の実施形態を添付図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は本発明の一実施形態を示す概略構成図である。図1において、1はディーゼルエンジンで、2は吸気通路、3は排気通路を示している。   FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention. In FIG. 1, 1 is a diesel engine, 2 is an intake passage, and 3 is an exhaust passage.

燃料噴射装置は、サプライポンプ6、コモンレール7、インジェクタ8からなるコモンレール式噴射装置で、主にマイクロプロセッサで構成されるエンジンコントローラ11により燃料噴射制御が行われる。すなわち、全負荷付近で多く発生するスモークを防止するため、エアフローメータ15の出力から算出されるシリンダ吸入空気量Qacと、エンジン回転速度センサ13からのエンジン回転速度Neとに応じて最大噴射量Qfmaxを定めており、アクセルセンサ14からのアクセル開度に応じた基本燃料噴射量をこの最大噴射量Qfmaxで制限し、この制限後の燃料噴射量Qfを最適な時期に燃料噴射装置を用いて噴射する。   The fuel injection device is a common rail type injection device including a supply pump 6, a common rail 7, and an injector 8. Fuel injection control is performed by an engine controller 11 mainly composed of a microprocessor. That is, the maximum injection amount Qfmax is determined in accordance with the cylinder intake air amount Qac calculated from the output of the air flow meter 15 and the engine rotational speed Ne from the engine rotational speed sensor 13 in order to prevent smoke that occurs frequently near the full load. The basic fuel injection amount corresponding to the accelerator opening from the accelerator sensor 14 is limited by the maximum injection amount Qfmax, and the fuel injection amount Qf after the limitation is injected using a fuel injection device at an optimal time. To do.

排気通路3には排気中のパティキュレートを捕集するフィルタ4を備える。フィルタ4のパティキュレートの捕集量(堆積量)が所定値に達すると、排気温度を上昇させてパティキュレートを燃焼除去する。また、フィルタ4の担体(セラミックあるいは金属等)には排気中のHC及びCOを浄化する酸化触媒が担持されている。   The exhaust passage 3 includes a filter 4 that collects particulates in the exhaust. When the collected amount (deposition amount) of the particulates of the filter 4 reaches a predetermined value, the exhaust temperature is raised and the particulates are burned and removed. Further, an oxidation catalyst for purifying HC and CO in the exhaust is carried on the carrier (ceramic or metal) of the filter 4.

フィルタ4の圧力損失(フィルタ4の上流と下流の圧力差)を検出するためにフィルタ4をバイパスする差圧検出通路に差圧センサ12が設けられる。   In order to detect the pressure loss of the filter 4 (the pressure difference between the upstream and downstream of the filter 4), the differential pressure sensor 12 is provided in the differential pressure detection passage that bypasses the filter 4.

この差圧センサ12により検出されるフィルタ4の圧力損失は、エンジンコントローラ11に送られ、エンジンコントローラ11では、これに基づいてフィルタ4の再生処理を行う。すなわち、再生処理前には差圧センサ12により検出した圧力損失ΔPと再生開始判定値とを比較して再生開始時期になったかどうかを判定し、再生開始時期になったとき排気温度を上昇させてのフィルタ4の再生処理を開始する一方で、再生処理中に差圧センサ12により検出した圧力損失ΔPと再生終了判定値とを比較して再生終了時期になったかどうかを判定し、再生終了時期になったとき再生処理を終了する。   The pressure loss of the filter 4 detected by the differential pressure sensor 12 is sent to the engine controller 11, and the engine controller 11 regenerates the filter 4 based on the pressure loss. That is, before the regeneration process, the pressure loss ΔP detected by the differential pressure sensor 12 is compared with the regeneration start determination value to determine whether the regeneration start time has come, and when the regeneration start time has come, the exhaust temperature is raised. While the regeneration process for all the filters 4 is started, the pressure loss ΔP detected by the differential pressure sensor 12 during the regeneration process is compared with the regeneration end determination value to determine whether the regeneration end time has come, and the regeneration end When the time comes, the playback process is terminated.

フィルタ4の再生処理は、燃料噴射装置から噴射される燃料の噴射時期を通常よりも遅らせたり、あるいは通常の噴射後にさらに1回噴射(ポスト噴射)することなどにより、排気温度を上昇させることで実行する。   The regeneration process of the filter 4 is performed by increasing the exhaust temperature by delaying the injection timing of the fuel injected from the fuel injection device than usual or by performing another injection (post injection) after the normal injection. Execute.

フィルタ41の再生処理を行うこうしたエンジンを前提として、本発明ではフィルタ4の再生処理中にフィルタ4の物理モデル化した温度特性と、フィルタ入口温度Tin(第一温度)及びフィルタ出口温度Tout(第二温度)とに基づいてフィルタ4のベッド温度を推定し、この推定ベッド温度がフィルタ限界温度を超えることがないようにフィルタ4の再生処理を行う。   On the premise of such an engine that performs the regeneration process of the filter 41, in the present invention, the temperature characteristics of the filter 4 physically modeled during the regeneration process of the filter 4, the filter inlet temperature Tin (first temperature), and the filter outlet temperature Tout (second The bed temperature of the filter 4 is estimated based on the second temperature), and the regeneration process of the filter 4 is performed so that the estimated bed temperature does not exceed the filter limit temperature.

図2はエンジンコントローラ11により実行される推定ベッド温度Tbed2の算出に関わる機能をブロックで構成したもので、推定ベッド温度算出手段は、加重平均部31及び32と、乗算部33と、減算部34と、加算部35と、図示しないが31〜35の各処理を一定周期(例えば20μs程度)毎に繰り返し実行させる手段とからなっている。   FIG. 2 is a block diagram showing functions related to the calculation of the estimated bed temperature Tbed2 executed by the engine controller 11. The estimated bed temperature calculation means includes weighted average units 31 and 32, a multiplication unit 33, and a subtraction unit 34. And an adder 35 and means for repeatedly executing each process 31-35 (not shown) at regular intervals (for example, about 20 μs).

まず加重平均部31では、温度センサ16により検出されるフィルタ入口温度Tinから次式によりフィルタ4の仮ベッド温度Tbed1を算出する。   First, the weighted average unit 31 calculates the temporary bed temperature Tbed1 of the filter 4 from the filter inlet temperature Tin detected by the temperature sensor 16 by the following equation.

Tbed1=Tin×K1+Tbed1(前回値)×(1−K1)…(1)
ただし、K1 ;加重平均係数、
Tbed1(前回値);1演算周期前のTbed1、
(1)式はフィルタ入口温度Tinに対して一次遅れで変化する温度をフィルタ4の仮ベッド温度として算出する式である。
Tbed1 = Tin × K1 + Tbed1 (previous value) × (1−K1) (1)
Where K1: weighted average coefficient,
Tbed1 (previous value); Tbed1 one calculation cycle before,
Equation (1) is an equation for calculating a temperature that changes with a first-order lag with respect to the filter inlet temperature Tin as the temporary bed temperature of the filter 4.

ここで、フィルタ4は円柱状であり、この円柱状のフィルタ4において排気はフィルタ前面4aより軸方向(図1では右方向)に流入しフィルタ後面4bより流出する構成であるので、単に「ベッド温度」といってもフィルタ前面4aに近い部位の温度(フィルタ入口温度Tinに近い)からフィルタ後面4bに近い部位の温度(フィルタ出口温度Toutに近い)まで所定の幅を有している。ここではフィルタ前面4aからフィルタ後面4bまでのうち温度が最も高くなる部位(軸方向中央よりは下流側の位置)の温度を「ベッド温度」という。   Here, the filter 4 has a columnar shape, and in the columnar filter 4, the exhaust gas flows in the axial direction (rightward in FIG. 1) from the filter front surface 4 a and flows out from the filter rear surface 4 b. “Temperature” has a predetermined width from a temperature near the filter front surface 4a (close to the filter inlet temperature Tin) to a temperature close to the filter rear surface 4b (close to the filter outlet temperature Tout). Here, the temperature of the portion (the position downstream of the center in the axial direction) where the temperature is highest among the filter front surface 4a and the filter rear surface 4b is referred to as “bed temperature”.

上記(1)式はフィルタ前面4から温度Tinの排気が導入されたとき、フィルタ4のベッド温度がこれに応じてステップ的にTinへと上昇するのではなく、Tinに対してフィルタ前面4bから最高温度になる部位(以下「最高温度部位」という)までの熱容量に応じた分だけベッド温度の上昇が遅れるので、この遅れを一次遅れで近似したもの、つまり最高温度部位の温度特性を物理モデルで表したものである。従って、(1)式において適合する値は加重平均係数K1で、このK1はフィルタ前面4aから最高温度部位までの熱容量に依存して定まる。   In the above equation (1), when exhaust of temperature Tin is introduced from the filter front surface 4, the bed temperature of the filter 4 does not increase stepwise in response to this, but instead of Tin from the filter front surface 4b. Since the rise in bed temperature is delayed by an amount corresponding to the heat capacity up to the highest temperature (hereinafter referred to as the “highest temperature”), this delay is approximated by a first order delay, that is, the temperature characteristics of the highest temperature It is represented by. Therefore, the value that is suitable in the equation (1) is the weighted average coefficient K1, and this K1 is determined depending on the heat capacity from the filter front surface 4a to the maximum temperature region.

次に、加重平均部32では仮ベッド温度Tbed1から次式によりフィルタ4の推定出口温度Tbede1を算出する。   Next, the weighted average unit 32 calculates the estimated outlet temperature Tbede1 of the filter 4 from the temporary bed temperature Tbed1 by the following equation.

Tbede1=Tbed1×K2+Tbede1(前回値)×(1−K2)…(2)
ただし、K2 ;加重平均係数、
Tbede1(前回値);1演算周期前のTbede1、
(2)式は仮ベッド温度Tbed1に対して一次遅れで変化する温度をフィルタ4の推定出口温度Tbede1として算出する式である。これは、仮ベッド温度Tbed1に対して最高温度部位からフィルタ後面4bまでの熱容量に応じた分だけフィルタ4の出口温度の上昇がさらに遅れるので、この遅れを一次遅れで近似したもの、フィルタ後面4bの温度特性を物理モデルで表したものである。従って、(2)式においても適合する値は加重平均係数K2で、このK2は最高温度部位からフィルタ後面4bまでの熱容量に依存して定まる。
Tbede1 = Tbed1 * K2 + Tbede1 (previous value) * (1-K2) (2)
Where K2: weighted average coefficient,
Tbede1 (previous value); Tbede1 one calculation cycle before,
The expression (2) is an expression for calculating a temperature that changes with a first-order lag with respect to the temporary bed temperature Tbed1 as the estimated outlet temperature Tbede1 of the filter 4. This is because the rise in the outlet temperature of the filter 4 is further delayed by an amount corresponding to the heat capacity from the highest temperature portion to the filter rear surface 4b with respect to the temporary bed temperature Tbed1, and this delay is approximated by a first order delay, the filter rear surface 4b. The temperature characteristics of are represented by a physical model. Accordingly, a value that is suitable also in the equation (2) is the weighted average coefficient K2, and this K2 is determined depending on the heat capacity from the highest temperature region to the filter rear surface 4b.

乗算部33では、次式によりフィルタ4の推定出口温度Tbede2を算出する。   The multiplier 33 calculates the estimated outlet temperature Tbede2 of the filter 4 by the following equation.

Tbede2=Tbede1×K3…(3)
ただし、K3;フィルタの放熱係数、
フィルタ4の雰囲気温度は大気(外気)であるため、フィルタ4の高温の担体より外気へと放熱が行われるので、(3)式はこのフィルタ4の担体から外気へと奪われる熱の分だけベッド温度が低下するのを反映させるようにしたものである。すなわち、(3)式の放熱係数K3は1.0より小さい正の値であり、図3のように外気温をパラメータとする可変値である。外気温が低いほどフィルタ4のベッドより奪われる熱も大きくなるので、放熱係数K3は外気温が低いほど小さくしている。外気温度は温度センサ18により検出すればよい。
Tbede2 = Tbede1 × K3 (3)
Where K3: heat dissipation coefficient of the filter,
Since the atmospheric temperature of the filter 4 is the atmosphere (outside air), heat is radiated from the high temperature carrier of the filter 4 to the outside air, so the equation (3) is the amount of heat taken away from the carrier of the filter 4 to the outside air. It reflects the decrease in bed temperature. That is, the heat radiation coefficient K3 in the equation (3) is a positive value smaller than 1.0, and is a variable value using the outside air temperature as a parameter as shown in FIG. Since the heat taken away from the bed of the filter 4 increases as the outside air temperature decreases, the heat radiation coefficient K3 decreases as the outside air temperature decreases. The outside air temperature may be detected by the temperature sensor 18.

減算部34では、温度センサ17により検出されるフィルタ4の出口温度Tout(検出される第二温度)からフィルタ4の推定出口温度Tbede2(第二温度の推定温度)を差し引いて温度差ΔT(=Tout−Tbede2)を算出する。つまり、次式により温度差ΔTを求める。   The subtracting unit 34 subtracts the estimated outlet temperature Tbede2 (estimated temperature of the second temperature) of the filter 4 from the outlet temperature Tout (detected second temperature) of the filter 4 detected by the temperature sensor 17 to obtain a temperature difference ΔT (= Tout−Tbede2) is calculated. That is, the temperature difference ΔT is obtained by the following equation.

ΔT=Tout−Tbede2…(4)
ここで、フィルタ4にパティキュレートが全く堆積しておらず、かつフィルタ4の担体に酸化触媒を全く担持していなければ、フィルタ4内でパティキュレートが燃焼することもなく、かつ酸化触媒により排気中のHC、COが酸化(つまり燃焼)することもないので、このときにはフィルタ4の推定出口温度Tbede2は、温度センサ17により検出される実際のフィルタ出口温度Toutに一致し、従って上記(4)式の温度差ΔTはほぼゼロとなるはずである。
ΔT = Tout−Tbede2 (4)
Here, if no particulates are accumulated on the filter 4 and no oxidation catalyst is supported on the carrier of the filter 4, the particulates are not burned in the filter 4 and are exhausted by the oxidation catalyst. In this case, the estimated outlet temperature Tbede2 of the filter 4 coincides with the actual filter outlet temperature Tout detected by the temperature sensor 17, and therefore the above (4). The temperature difference ΔT in the equation should be almost zero.

実際には再生処理時にフィルタ4のベッドに堆積しているパティキュレートが燃焼するほか、担体に担持している酸化触媒の触媒反応により排気中のHC、COが燃焼するので、フィルタ4のベッドにおけるパティキュレートの燃焼に伴う第1の温度上昇分ΔT1と、排気中のHC、COの酸化触媒反応(燃焼)に伴う第2の温度上昇分ΔT2とを合計した値ΔT(=ΔT1+ΔT2)を上記の仮ベッド温度Tbed1に加算した値を推定ベッド温度であるとして再構成する必要がある。   Actually, particulates accumulated in the bed of the filter 4 are burned during the regeneration process, and HC and CO in the exhaust gas are burned by the catalytic reaction of the oxidation catalyst carried on the carrier. A value ΔT (= ΔT1 + ΔT2) obtained by summing the first temperature increase ΔT1 associated with particulate combustion and the second temperature increase ΔT2 associated with the oxidation catalytic reaction (combustion) of HC and CO in the exhaust is expressed as above. It is necessary to reconstruct the value added to the temporary bed temperature Tbed1 as the estimated bed temperature.

そこで、加算部35では推定ベッド温度としての仮ベッド温度Tbed1に上記(4)式の温度差ΔTを加えた値を推定ベッド温度Tbed2として、つまり次式により推定ベッド温度Tbed2を算出する。   Therefore, the adding unit 35 calculates the estimated bed temperature Tbed2 as the estimated bed temperature Tbed2 by adding the temperature difference ΔT of the above equation (4) to the temporary bed temperature Tbed1 as the estimated bed temperature, that is, the following equation.

Tbed2=Tbed1+ΔT…(5)
これに伴い上記(2)式右辺のTbed1をTbed2へと置き換えてやる必要があり、このとき上記(2)式は次のようになる。
Tbed2 = Tbed1 + ΔT (5)
Along with this, it is necessary to replace Tbed1 on the right side of the equation (2) with Tbed2, and at this time, the equation (2) becomes as follows.

Tbede1=Tbed2×K2+Tbede1(前回値)×(1−K2)
…(2A)
ただし、K2 ;加重平均係数、
Tbede1(前回値);1演算周期前のTbede1、
このように、フィルタ4の出口温度Toutとフィルタ4の推定出口温度Tbede2との差温ΔTをとり、その差温ΔTを推定ベッド温度にフィードバックすることで、推定ベッド温度の算出に多大なデータ容量をとることなく推定ベッド温度を精度よく算出することが可能になり、フィルタ再生処理時の異常な高温による触媒の劣化やフィルタ4の溶損を回避することが可能になる。
Tbede1 = Tbed2 × K2 + Tbede1 (previous value) × (1−K2)
... (2A)
Where K2: weighted average coefficient,
Tbede1 (previous value); Tbede1 one calculation cycle before,
Thus, by taking the difference temperature ΔT between the outlet temperature Tout of the filter 4 and the estimated outlet temperature Tbede2 of the filter 4, and feeding back the difference temperature ΔT to the estimated bed temperature, a large amount of data capacity is required for calculating the estimated bed temperature. It is possible to calculate the estimated bed temperature with high accuracy without taking the above, and it is possible to avoid the deterioration of the catalyst and the melting damage of the filter 4 due to the abnormally high temperature during the filter regeneration process.

そして、上記の加重平均部31及び32、乗算部33、減算部34、加算部35での各処理は一定周期(例えば20μs程度)毎に繰り返し実行させる。   And each process in said weighted average part 31 and 32, the multiplication part 33, the subtraction part 34, and the addition part 35 is repeatedly performed for every fixed period (for example, about 20 microseconds).

このようにして推定ベッド温度算出手段を構成したときに、定常状態において再生処理の開始より上記の仮ベッド温度Tbed1、推定出口温度Tbede2、推定ベッド温度Tbed2の各温度がどのように変化するのかを実験してみたところ、図4に示す結果が得られた。   When the estimated bed temperature calculation means is configured in this way, how the temperatures of the temporary bed temperature Tbed1, the estimated outlet temperature Tbed2, and the estimated bed temperature Tbed2 change from the start of the regeneration process in a steady state. When experimented, the result shown in FIG. 4 was obtained.

ここで、定常状態や準定常状態において演算値(仮ベッド温度Tbed1、推定出口温度Tbede2、推定ベッド温度Tbed2の各温度)は実際値とよく一致することを確認している。ただし、図4はわかりやすいようにモデルで示している。   Here, it is confirmed that the calculated values (temporary bed temperature Tbed1, estimated outlet temperature Tbede2, and estimated bed temperature Tbed2) in the steady state and the quasi-steady state are in good agreement with the actual values. However, FIG. 4 shows a model for easy understanding.

図4を解説すると、推定ベッド温度Tbed2は再生処理の開始より所定の時間が経過した時刻t1においてピークを採り、その後は低下して、仮ベッド温度Tbed1に一致している。つまり、推定ベッド温度Tbed2と仮ベッド温度Tbed1の差がパティキュレートの燃焼に伴う第1の温度上昇分ΔT1に相当する。パティキュレートの燃焼に伴う温度上昇分ΔT1はフィルタ処理開始後にパティキュレートが活発に燃焼する時期にピークをとりその後は徐々に低下して全てのパティキュレートが燃焼した後にはゼロとなるはずであるので、推定ベッド温度Tbed2と仮ベッド温度Tbed1の差はこうした現象をよく表していることになる。   Explaining FIG. 4, the estimated bed temperature Tbed2 takes a peak at a time t1 when a predetermined time has elapsed from the start of the regeneration process, and then decreases to coincide with the temporary bed temperature Tbed1. That is, the difference between the estimated bed temperature Tbed2 and the temporary bed temperature Tbed1 corresponds to the first temperature increase ΔT1 associated with particulate combustion. The temperature rise ΔT1 due to the burning of the particulates should peak at the time when the particulates are actively burned after the start of filtering, and then gradually decrease and become zero after all the particulates are burned. The difference between the estimated bed temperature Tbed2 and the temporary bed temperature Tbed1 represents this phenomenon well.

一方、仮ベッド温度Tbed1と推定出口温度Tbede2の差は排気中のHC、COの酸化触媒反応(燃焼)に伴う第2の温度上昇分ΔT2に相当することもわかる。これは定常状態では排気中のHC、COの量は一定であり、これに応じて仮ベッド温度Tbed1が推定出口温度Tbede2より一定値だけ高い温度になっていると思われるからである。言い換えると仮ベッド温度Tbed1はフィルタ4の担体に担持した酸化触媒が反応する状態でのベッド温度を表し、パティキュレートの燃焼、非燃焼の影響を受けないのである。   On the other hand, it can also be seen that the difference between the temporary bed temperature Tbed1 and the estimated outlet temperature Tbede2 corresponds to the second temperature increase ΔT2 associated with the oxidation catalytic reaction (combustion) of HC and CO in the exhaust. This is because the amount of HC and CO in the exhaust gas is constant in the steady state, and accordingly, the temporary bed temperature Tbed1 is considered to be higher than the estimated outlet temperature Tbede2 by a constant value. In other words, the temporary bed temperature Tbed1 represents the bed temperature in a state in which the oxidation catalyst supported on the carrier of the filter 4 reacts, and is not affected by particulate combustion or non-combustion.

このようにして、推定ベッド温度Tbed2が得られると、この温度Tbed2はベッド最高温度を表すので、再生処理に際して、推定ベッド温度Tbed2とフィルタ限界温度を比較し、推定ベッド温度Tbed2がフィルタ限界温度を超えるときには排気中の酸素濃度を低下させる制御を行わせる。例えば、ベッドでの燃焼温度は排気中の酸素濃度に依存し、パティキュレート堆積量が同じであれば酸素濃度が低いときより酸素濃度が高いときのほうが燃焼温度が上昇するので、推定ベッド温度Tbed2がフィルタ限界温度を超えるときには排気中の酸素濃度を低下させる制御を行う。排気中の酸素濃度を低下させるには吸入空気量を減らすか燃料噴射量を増やしてやればよい。吸入空気量を減らすには可変容量ターボ過給機21を備えているときには可変ノズル22の開度を大きくしてやればよいし、EGR弁23(EGR装置)を備えているときにはEGR率やEGR量を増加させればよい。   Thus, when the estimated bed temperature Tbed2 is obtained, this temperature Tbed2 represents the bed maximum temperature. Therefore, in the regeneration process, the estimated bed temperature Tbed2 is compared with the filter limit temperature, and the estimated bed temperature Tbed2 is set to the filter limit temperature. When it exceeds, control to lower the oxygen concentration in the exhaust is performed. For example, the combustion temperature in the bed depends on the oxygen concentration in the exhaust gas, and if the particulate deposition amount is the same, the combustion temperature rises when the oxygen concentration is higher than when the oxygen concentration is low, so the estimated bed temperature Tbed2 When the temperature exceeds the filter limit temperature, control is performed to reduce the oxygen concentration in the exhaust gas. In order to reduce the oxygen concentration in the exhaust, the intake air amount may be reduced or the fuel injection amount may be increased. In order to reduce the intake air amount, the opening of the variable nozzle 22 can be increased when the variable capacity turbocharger 21 is provided, and the EGR rate and EGR amount can be set when the EGR valve 23 (EGR device) is provided. Increase it.

ここで本実施形態の作用を図4を参照しながら説明する。   Here, the operation of the present embodiment will be described with reference to FIG.

本実施形態によれば、フィルタ4の物理モデル化した温度特性と、フィルタ入口温度Tin(第一温度)及びフィルタ出口温度Tout(第二温度)とに基づいてフィルタ4の再生処理中の最高温度部位(フィルタ前面4aとフィルタ後面4bの間の途中部位)の温度を推定ベッド温度Tbed2として算出するようにしたので、その算出した推定ベッド温度Tbed2により、フィルタ4のパティキュレート堆積量の如何に拘わらず、堆積したパティキュレートの燃焼による温度上昇分ΔT1を含めた最高温度部位の温度を簡潔かつ正確に把握できることになった。   According to the present embodiment, the maximum temperature during the regeneration process of the filter 4 based on the temperature characteristics of the filter 4 that are physically modeled, the filter inlet temperature Tin (first temperature), and the filter outlet temperature Tout (second temperature). Since the temperature of the part (the intermediate part between the filter front face 4a and the filter rear face 4b) is calculated as the estimated bed temperature Tbed2, the calculated accumulated bed temperature Tbed2 is used regardless of the particulate deposition amount of the filter 4. Therefore, the temperature of the highest temperature region including the temperature increase ΔT1 due to combustion of the accumulated particulates can be grasped simply and accurately.

また、フィルタ4の温度特性つまり仮ベッド温度Tbed1、推定出口温度Tbede1(第二温度の推定温度)を一次遅れ処理(物理モデル)で求めるだけなので(請求項2に記載の発明)、一次遅れ処理に用いる加重平均係数K1、K2のみが適合値となり、このK1、K2の値はそれぞれフィルタ前面4aから最高温度部位までのフィルタ4の熱容量のみに、最高温度部位からフィルタ後面4bまでのフィルタ4の熱容量にのみ依存して定まる。すなわち、適合値であるK1、K2は運転条件やフィルタ4のパティキュレート堆積量に依存することなく定まるので、テーブルやマップの適合に要する多大の工数を省略でき、かつフィルタ4の仕様の変更に対しても変更後のフィルタ4の熱容量に対応させればよいだけなので容易に対応できる。   Further, since the temperature characteristics of the filter 4, that is, the temporary bed temperature Tbed1 and the estimated outlet temperature Tbede1 (the estimated temperature of the second temperature) are only obtained by the first order lag process (physical model) (the invention according to claim 2), the first order lag process is performed. Only the weighted average coefficients K1 and K2 used in the above are applicable values, and the values of K1 and K2 are respectively only the heat capacity of the filter 4 from the filter front surface 4a to the maximum temperature region, and the values of the filter 4 from the maximum temperature region to the filter rear surface 4b. It depends only on the heat capacity. In other words, the conforming values K1 and K2 are determined without depending on the operating conditions and the particulate accumulation amount of the filter 4, so that a great amount of man-hours required for conforming the table and the map can be omitted and the specification of the filter 4 can be changed. However, since it is only necessary to correspond to the heat capacity of the filter 4 after the change, it can be easily handled.

外気温が低い場合にはフィルタ4の担体から外気への放熱量が大きくなり、その分の誤差が推定ベッド温度Tbed2に生じるのであるが、本実施形態(請求項6に記載の発明)によれば、推定出口温度Tbede1をフィルタ4から外気への放熱に応じて補正するので、外気温が低い場合においても推定ベッド温度Tbed2を精度よく求めることができる。   When the outside air temperature is low, the amount of heat released from the carrier of the filter 4 to the outside air becomes large, and an error corresponding to the amount is generated in the estimated bed temperature Tbed2. However, according to this embodiment (the invention according to claim 6). For example, since the estimated outlet temperature Tbede1 is corrected according to the heat radiation from the filter 4 to the outside air, the estimated bed temperature Tbed2 can be accurately obtained even when the outside air temperature is low.

本実施形態(請求項8に記載の発明)によれば、フィルタ4の担体に排気中のHC、COを浄化する酸化触媒を有するからといって、推定ベッド温度算出手段の構成を変える必要がないばかりか、フィルタ4の担体に排気中のHC、COを浄化する酸化触媒を有する場合においても、推定ベッド温度Tbed2により、パティキュレート堆積量や負荷、回転速度で定まる運転条件の相違に拘わらず、堆積したパティキュレートの燃焼による温度上昇分ΔT1と、HC及びCOの触媒反応による温度上昇分ΔT2とを含めた最高温度部位の温度を簡潔かつ正確に把握できる。かつ、触媒が劣化したときにはその劣化状態での温度上昇分を簡潔かつ正確に把握できる。   According to the present embodiment (the invention described in claim 8), it is necessary to change the configuration of the estimated bed temperature calculation means simply because the carrier of the filter 4 has the oxidation catalyst for purifying HC and CO in the exhaust. In addition, even when the carrier of the filter 4 has an oxidation catalyst for purifying HC and CO in the exhaust, the estimated bed temperature Tbed2 is used regardless of the operating conditions determined by the particulate deposition amount, load, and rotational speed. The temperature at the highest temperature region including the temperature increase ΔT1 due to combustion of the accumulated particulates and the temperature increase ΔT2 due to the catalytic reaction of HC and CO can be grasped simply and accurately. And when a catalyst deteriorates, the temperature rise in the deterioration state can be grasped | ascertained simply and correctly.

実施形態ではフィルタ4の担体に酸化触媒を担持している場合で説明したが(請求項8に記載の発明)、フィルタ4の担体に酸化触媒を担持していない場合にも本発明の適用がある(請求項1に記載の発明)。   In the embodiment, the case where the support of the filter 4 carries the oxidation catalyst has been described (the invention according to claim 8), but the present invention can be applied to the case where the support of the filter 4 does not carry the oxidation catalyst. (Invention of claim 1)

実施形態ではフィルタ前面4aとフィルタ後面の4b間の途中部位が、最高温度部位である場合で説明したが、これに限られるものでない。   In the embodiment, the intermediate portion between the filter front surface 4a and the filter rear surface 4b has been described as the highest temperature portion, but is not limited thereto.

実施形態ではフィルタ口温度を温度センサ16により検出する場合で説明したが、運転条件により公知の手法を用いてフィルタ入口温度を推定するようにしてもかまわない。   In the embodiment, the case where the filter mouth temperature is detected by the temperature sensor 16 has been described. However, the filter inlet temperature may be estimated using a known method according to the operating conditions.

本実施例はフィルタの入口温度に時間遅れを持たせて得た出口温度の推定温度と、検出した出口温度との差温を推定ベッド温度にフィードバック補正する場合で説明したが、本発明はこれに限らず、フィルタの出口温度に時間進みを持たせて得た入口温度の推定温度と、検出した入口温度との差温を推定ベッド温度にフィードバック補正してもよい(請求項9に記載の発明)。   In this embodiment, the difference between the estimated outlet temperature obtained by giving a time delay to the inlet temperature of the filter and the detected outlet temperature is feedback-corrected to the estimated bed temperature. However, the difference between the estimated temperature of the inlet temperature obtained by giving a time advance to the outlet temperature of the filter and the detected inlet temperature may be feedback-corrected to the estimated bed temperature (claim 9). invention).

請求項1に記載の発明の推定ベッド温度算出手段の機能は図2のブロックにより、推定温度算出手段の機能は図2の加重平均部31、32及び減算部34により、再生処理実行手段の機能はエンジンコントローラ11により果たされている。   The function of the estimated bed temperature calculating means of the invention according to claim 1 is the function of the regeneration processing execution means by the block of FIG. 2, and the function of the estimated temperature calculating means is the function of the weighted average parts 31, 32 and the subtracting part 34 of FIG. Is fulfilled by the engine controller 11.

本発明の一実施形態を示す概略構成図。The schematic block diagram which shows one Embodiment of this invention. 推定ベッド温度算出手段のブロック図。The block diagram of an estimated bed temperature calculation means. 放熱係数の特性図。The characteristic figure of a heat dissipation coefficient. 再生処理時の温度変化図。The temperature change figure at the time of a reproduction | regeneration process.

符号の説明Explanation of symbols

1 エンジン
3 排気通路
4 フィルタ
11 エンジンコントローラ
12 差圧センサ
16 温度センサ(第一温度または第二温度の検出手段)
17 温度センサ(第一温度または第二温度の検出手段)
DESCRIPTION OF SYMBOLS 1 Engine 3 Exhaust passage 4 Filter 11 Engine controller 12 Differential pressure sensor 16 Temperature sensor (Detection means of 1st temperature or 2nd temperature)
17 Temperature sensor (first temperature or second temperature detection means)

Claims (11)

排気中のパティキュレートを捕集して堆積させるフィルタを備え、
フィルタの上流または下流の一方の温度を第一温度として検出する第一温度検出手段と、
フィルタの他方の温度を第二温度として検出する第二温度検出手段と、
前記第一温度または第二温度の少なくともいずれかの温度から、フィルタの推定ベッド温度を算出する推定ベッド温度算出手段と、
前記推定ベッド温度に基づいて、排気温度を昇温させてフィルタの再生処理を行う再生処理実行手段と
を有するディーゼルエンジンの排気後処理装置において、
前記一方の第一温度に基づいて他方の第二温度の推定温度を算出する推定温度算出手段を備え、
前記推定ベッド温度は前記検出される第二温度と前記第二温度の推定温度とに基づいて求められることを特徴とするディーゼルエンジンの排気後処理装置。
It has a filter that collects and deposits particulates in the exhaust,
First temperature detecting means for detecting one temperature upstream or downstream of the filter as the first temperature;
Second temperature detecting means for detecting the other temperature of the filter as the second temperature;
Estimated bed temperature calculating means for calculating an estimated bed temperature of the filter from at least one of the first temperature and the second temperature;
In the exhaust aftertreatment device for a diesel engine, having a regeneration processing execution means for increasing the exhaust temperature based on the estimated bed temperature and performing the regeneration processing of the filter,
An estimated temperature calculating means for calculating an estimated temperature of the other second temperature based on the one first temperature;
The exhaust aftertreatment device for a diesel engine, wherein the estimated bed temperature is obtained based on the detected second temperature and the estimated temperature of the second temperature.
前記第一温度はフィルタ入口温度であり、前記第二温度はフィルタ出口温度であり、前記推定温度算出手段はフィルタ入口温度に時間的な遅れを持たせて算出することを特徴とする請求項1に記載のディーゼルエンジンの排気後処理装置。   The first temperature is a filter inlet temperature, the second temperature is a filter outlet temperature, and the estimated temperature calculation means calculates the filter inlet temperature with a time delay. An exhaust aftertreatment device for a diesel engine as described in 1. 推定ベッド温度算出手段は、前記フィルタ入口温度に時間的な遅れを持たせ、
前記推定温度算出手段は、前記推定ベッド温度に時間的な遅れを持たせ、
これら算出手段による算出を一定周期ごとに繰り返す繰り返し実行手段と
を備えることを特徴とする請求項2に記載のディーゼルエンジンの排気後処理装置。
The estimated bed temperature calculating means gives a time delay to the filter inlet temperature,
The estimated temperature calculation means gives a time delay to the estimated bed temperature,
The exhaust aftertreatment device for a diesel engine according to claim 2, further comprising: a repetitive execution unit that repeats the calculation by the calculation unit at regular intervals.
前記推定温度算出手段は、前記第一温度の一次遅れ処理値を用いて求めることを特徴とする請求項1または2に記載のディーゼルエンジンの排気後処理装置。   3. The exhaust aftertreatment device for a diesel engine according to claim 1, wherein the estimated temperature calculation means is obtained using a first-order lag processing value of the first temperature. 前記推定温度算出手段は、前記推定ベッド温度の一次遅れ処理値を用いて求めることを特徴とする請求項3に記載のディーゼルエンジンの排気後処理装置。   The exhaust aftertreatment device for a diesel engine according to claim 3, wherein the estimated temperature calculating means obtains the estimated temperature using a first-order lag processed value of the estimated bed temperature. 前記推定温度算出手段は、さらに前記フィルタから外気への放熱に応じて補正することを特徴とする請求項1から5までのいずれか一つに記載のディーゼルエンジンの排気後処理装置。   The exhaust aftertreatment device for a diesel engine according to any one of claims 1 to 5, wherein the estimated temperature calculation means further corrects the heat according to heat radiation from the filter to the outside air. 再生処理実行手段は、前記推定ベッド温度がフィルタ限界温度を越えないように再生処理を行うことを特徴とする請求項1から6までのいずれか一つに記載のディーゼルエンジンの排気後処理装置。   The exhaust aftertreatment device for a diesel engine according to any one of claims 1 to 6, wherein the regeneration processing execution means performs the regeneration processing so that the estimated bed temperature does not exceed a filter limit temperature. フィルタの担体に排気中のHC、COを浄化する酸化触媒を有することを特徴とする請求項1から7までのいずれか一つに記載のディーゼルエンジンの排気後処理装置。   The exhaust aftertreatment device for a diesel engine according to any one of claims 1 to 7, wherein the filter carrier has an oxidation catalyst for purifying HC and CO in the exhaust gas. 前記第一温度はフィルタ出口温度であり、前記第二温度はフィルタ入口温度であり、前記推定温度算出手段はフィルタ入口温度に時間進みを持たせることを特徴とする請求項1に記載のディーゼルエンジンの排気後処理装置。   2. The diesel engine according to claim 1, wherein the first temperature is a filter outlet temperature, the second temperature is a filter inlet temperature, and the estimated temperature calculation means gives time advance to the filter inlet temperature. Exhaust aftertreatment device. 前記第一温度検出手段または第二温度検出手段はフィルタ出口温度として再生処理中のフィルタ出口温度の最高温度を検出することを特徴とする請求項2または9に記載のディーゼルエンジンの排気後処理装置。   The exhaust aftertreatment device for a diesel engine according to claim 2 or 9, wherein the first temperature detecting means or the second temperature detecting means detects the maximum temperature of the filter outlet temperature during the regeneration process as the filter outlet temperature. . 前記推定ベッド温度は前記検出される第二温度と前記第二温度の推定温度との差温に基づいて求められることを特徴とする請求項1から10までのいずれか一つに記載のディーゼルエンジンの排気後処理装置。   The diesel engine according to any one of claims 1 to 10, wherein the estimated bed temperature is obtained based on a temperature difference between the detected second temperature and the estimated temperature of the second temperature. Exhaust aftertreatment device.
JP2003422640A 2003-12-19 2003-12-19 Diesel engine exhaust aftertreatment system Expired - Lifetime JP4075795B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003422640A JP4075795B2 (en) 2003-12-19 2003-12-19 Diesel engine exhaust aftertreatment system
DE602004002843T DE602004002843T2 (en) 2003-12-19 2004-12-09 A regeneration system and method for a diesel particulate filter
EP04029233A EP1548257B1 (en) 2003-12-19 2004-12-09 A regeneration system and method for a diesel particle filter
CNB2004100821211A CN100335757C (en) 2003-12-19 2004-12-17 Filter regeneration control
US11/013,473 US7322182B2 (en) 2003-12-19 2004-12-17 Filter regeneration control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422640A JP4075795B2 (en) 2003-12-19 2003-12-19 Diesel engine exhaust aftertreatment system

Publications (2)

Publication Number Publication Date
JP2005180322A true JP2005180322A (en) 2005-07-07
JP4075795B2 JP4075795B2 (en) 2008-04-16

Family

ID=34544912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422640A Expired - Lifetime JP4075795B2 (en) 2003-12-19 2003-12-19 Diesel engine exhaust aftertreatment system

Country Status (5)

Country Link
US (1) US7322182B2 (en)
EP (1) EP1548257B1 (en)
JP (1) JP4075795B2 (en)
CN (1) CN100335757C (en)
DE (1) DE602004002843T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628010B2 (en) 2005-09-28 2009-12-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust purification system
JP2011111924A (en) * 2009-11-25 2011-06-09 Hino Motors Ltd Exhaust emission control device for engine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887291B1 (en) * 2005-06-21 2007-09-21 Renault Sas METHOD FOR CONTROLLING REGENERATION OF A PARTICLE FILTER
JP4270173B2 (en) * 2005-07-05 2009-05-27 日産自動車株式会社 Diesel engine exhaust aftertreatment system
US8011177B2 (en) * 2005-09-01 2011-09-06 GM Global Technology Operations LLC Exhaust particulate filter
JP4395120B2 (en) * 2005-10-19 2010-01-06 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2008083406A1 (en) * 2007-01-02 2008-07-10 Cummins, Inc Apparatus, system, and method for controlling soot filter regeneration using maximum soot filter temperature
JP4798508B2 (en) * 2007-06-05 2011-10-19 トヨタ自動車株式会社 Catalyst deterioration diagnosis device
US7987662B2 (en) * 2007-10-31 2011-08-02 Ford Global Technologies, Llc Composition and method for controlling excessive exhaust gas temperatures
US8131495B2 (en) * 2008-08-19 2012-03-06 Honeywell International Inc. Particulate matter sensor calibration
US8061129B2 (en) * 2009-01-30 2011-11-22 Thermo King Corporation and Donaldson Company, Inc. System and method to regenerate a diesel particulate filter
US8136351B2 (en) * 2009-03-31 2012-03-20 Woodward, Inc. System and method for filtering diesel engine exhaust particulates
US20120023903A1 (en) * 2010-07-28 2012-02-02 Gm Global Technology Opoerations, Inc. Apparatus and method for monitoring regeneration frequency of a vehicle particulate filter
SE536169C2 (en) * 2010-08-31 2013-06-11 Scania Cv Ab Procedure and systems for exhaust gas purification
US8942887B2 (en) * 2010-12-16 2015-01-27 Caterpillar Inc. Machine, exhaust particulate filter system, and method
US20130204508A1 (en) * 2012-02-08 2013-08-08 GM Global Technology Operations LLC System and method for controlling an engine
JP5863731B2 (en) * 2013-08-30 2016-02-17 日立建機株式会社 Construction machinery
US20160084184A1 (en) * 2014-09-19 2016-03-24 Progress Rail Services Corporation Exhaust system having aftertreatment regeneration cycle control
DE102019212174B3 (en) 2019-08-14 2020-11-05 Vitesco Technologies GmbH Method and device for controlling the operation of a particle filter of a motor vehicle

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2239407B (en) * 1989-12-27 1994-10-12 Nissan Motor Exhaust gas purifying device for an internal combustion engine
JPH03202609A (en) * 1989-12-28 1991-09-04 Nissan Motor Co Ltd Engine exhaust emission control device
JPH05222916A (en) * 1992-02-12 1993-08-31 Nissan Motor Co Ltd Regenerating device for exhaust filter
US5832721A (en) * 1996-10-15 1998-11-10 Ford Global Technologies, Inc. Method and system for estimating a midbed temperature of a catalytic converter in an exhaust system having a variable length exhaust pipe
JPH1061429A (en) 1996-05-17 1998-03-03 Denso Corp Exhaust emission control device for internal combustion engine
JP3653562B2 (en) 1997-05-28 2005-05-25 株式会社デンソー Exhaust gas purification device for internal combustion engine
JPH11107837A (en) 1997-09-30 1999-04-20 Toyota Motor Corp Reducing agent supply controller for internal combustion engine
DE19961164A1 (en) * 1999-12-17 2001-06-21 Volkswagen Ag Device and method for determining exhaust gas and catalyst temperature
US6568173B1 (en) * 2000-08-02 2003-05-27 Ford Global Technologies, Inc. Control method for turbocharged diesel engine aftertreatment system
US6405528B1 (en) * 2000-11-20 2002-06-18 Ford Global Technologies, Inc. Method for determining load on particulate filter for engine exhaust, including estimation of ash content
JP4161546B2 (en) * 2001-06-26 2008-10-08 いすゞ自動車株式会社 Regeneration control method for continuous regeneration type diesel particulate filter device
JP4092464B2 (en) * 2002-06-28 2008-05-28 日産自動車株式会社 Exhaust purification device
JP2004211638A (en) * 2003-01-07 2004-07-29 Nissan Motor Co Ltd Filter regeneration control system of diesel engine
US7062906B2 (en) * 2003-03-03 2006-06-20 Nissan Motor Co., Ltd. Regeneration of particulate filter
JP4385775B2 (en) * 2003-03-03 2009-12-16 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP4367176B2 (en) * 2003-05-16 2009-11-18 株式会社デンソー Exhaust gas purification device for internal combustion engine
EP1517028B1 (en) * 2003-09-17 2011-04-06 Nissan Motor Co., Ltd. Regeneration control device for a diesel particulate filter
US7047729B2 (en) * 2003-10-27 2006-05-23 Ford Global Technologies, Llc Control method and system for diesel particulate filter regeneration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628010B2 (en) 2005-09-28 2009-12-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust purification system
JP2011111924A (en) * 2009-11-25 2011-06-09 Hino Motors Ltd Exhaust emission control device for engine

Also Published As

Publication number Publication date
EP1548257A2 (en) 2005-06-29
EP1548257B1 (en) 2006-10-18
DE602004002843D1 (en) 2006-11-30
US7322182B2 (en) 2008-01-29
EP1548257A3 (en) 2005-07-06
JP4075795B2 (en) 2008-04-16
US20050143899A1 (en) 2005-06-30
DE602004002843T2 (en) 2007-03-15
CN1629459A (en) 2005-06-22
CN100335757C (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP4270173B2 (en) Diesel engine exhaust aftertreatment system
JP4075795B2 (en) Diesel engine exhaust aftertreatment system
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP2004076589A (en) Filter control method and device
JP2004197584A (en) Regenerative device for particulate filter and exhaust emission control device
JP2002303123A (en) Exhaust emission control device
JP2005320962A (en) Exhaust emission control device of internal combustion engine
JP2009138704A (en) Exhaust emission aftertreatment device
EP1517012B1 (en) Filter regeneration control
JP6131834B2 (en) Engine exhaust purification system
JP2016188604A (en) Exhaust emission control device
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP4185882B2 (en) Exhaust purification device
JP2005054634A (en) Exhaust emission control device
JP5903777B2 (en) Exhaust gas purification system and exhaust gas purification method
JP2006029156A (en) Pm combustion amount estimation device
WO2009084349A1 (en) Method for controlling exhaust emission control system and exhaust emission control system
JP2018044471A (en) Exhaust emission control device and exhaust emission control method
JP2006257996A (en) Particulate matter oxidative rate calculation device, particulate matter accumulation amount calculation device, and exhaust emission control device for internal combustion engine
JP2006274978A (en) Exhaust emission control device of internal combustion engine
JP2016223336A (en) Exhaust emission control device, control device and control method
JP2005113909A (en) Improved filter regenerating treatment technology for trapping particulate matter in engine exhaust gas
WO2017047678A1 (en) Catalyst deterioration degree estimation device
JP2005061296A (en) Exhaust emission control device
JP6777001B2 (en) Exhaust treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4075795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

EXPY Cancellation because of completion of term