JP2005054634A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2005054634A
JP2005054634A JP2003285149A JP2003285149A JP2005054634A JP 2005054634 A JP2005054634 A JP 2005054634A JP 2003285149 A JP2003285149 A JP 2003285149A JP 2003285149 A JP2003285149 A JP 2003285149A JP 2005054634 A JP2005054634 A JP 2005054634A
Authority
JP
Japan
Prior art keywords
filter
forced regeneration
temperature
exhaust
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003285149A
Other languages
Japanese (ja)
Other versions
JP4008867B2 (en
Inventor
Takayuki Adachi
隆幸 足立
Akira Kawakami
彰 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2003285149A priority Critical patent/JP4008867B2/en
Publication of JP2005054634A publication Critical patent/JP2005054634A/en
Application granted granted Critical
Publication of JP4008867B2 publication Critical patent/JP4008867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for efficiently and accurately performing the forcible regeneration of a continuously regenerative filter device using catalytic action for burning PM contained in exhaust gas from an engine while trapping it to prevent the worsening of fuel consumption due to excessive forcible regeneration and the deterioration of a filter and a catalyst due to the abnormal combustion of the accumulated PM. <P>SOLUTION: This exhaust emission control device comprises a means S1 for estimating a PM accumulation amount for the filter, means S2-S8 for determining forcible regeneration timings of the filter in accordance with a plurality of different methods, a means S9 for setting a forcible regeneration temperature and a forcible regeneration temperature corresponding to the PM accumulation amount for the filter as forcible regeneration modes corresponding to the determining methods when receiving the determination of the forcible regeneration timings, a means S10 for performing temperature rise control to forcibly increase the temperature of the filter in accordance with the forcible regeneration modes when receiving the determination of the forcible regeneration timings, and means S11-S14 for cancelling the forcible temperature rise control of the filter when the condition of the temperature of the filter higher than the forcible regeneration temperature is continued until the forcible regeneration time is reached. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、ディーゼルエンジンの排気中に含まれるPM(Particulate Matter:粒子状物質)を除去処理するための排気浄化装置に関する。   The present invention relates to an exhaust emission control device for removing PM (particulate matter) contained in exhaust gas from a diesel engine.

近年、ディーゼルエンジンの排気中に含まれるPMの有望な低減手段のひとつとして、連続再生式フィルタ装置(CR-DPF:continuous Regeneratoin-Diesel Particulate Filter)の開発が注目される(特許文献1〜特許文献5、参照)。連続再生式フィルタ装置は、エンジンの排気中に含まれるPMをフィルタに捕集しつつ、その捕集PMを触媒作用により連続的に燃焼除去するものである。このようなフィルタ装置においても、触媒には活性温度領域があり、これを下回るような排気温度での運転状態が長く継続すると、フィルタの連続再生が十分に行われず、PM堆積量が過剰になり、エンジン性能に悪影響を及ぼしかねない。また、触媒の活性温度領域に入るような排気温度での運転状態へ移行すると、フィルタの過剰に堆積するPMが急激に燃焼する可能性があり、フィルタの溶損や亀裂を生じやすくなる。そのため、必要な時期に強制的な堆積PMの燃焼除去(フィルタの強制再生)が行われるのである。
特開2003−155915号 特開2003−155916号 特開2003−155919号 特開2003−129835号 特開2003−3833号
In recent years, development of a continuous regenerative filter device (CR-DPF: continuous Regeneratoin-Diesel Particulate Filter) has attracted attention as one of the promising means for reducing PM contained in the exhaust of diesel engines (Patent Document 1 to Patent Document) 5). The continuous regeneration type filter device collects PM contained in the exhaust of the engine in a filter and continuously burns and removes the collected PM by a catalytic action. Even in such a filter device, the catalyst has an active temperature region, and if the operation state at an exhaust temperature lower than this is continued for a long time, the filter cannot be continuously regenerated sufficiently, and the amount of accumulated PM becomes excessive. May adversely affect engine performance. In addition, when shifting to an operation state at an exhaust temperature that falls within the activation temperature region of the catalyst, PM that accumulates excessively in the filter may burn rapidly, and the filter is liable to be melted or cracked. For this reason, forced removal of the deposited PM (forced regeneration of the filter) is performed at a necessary time.
JP 2003-155915 A JP 2003-155916 A JP 2003-155919 A JP 2003-129835 A JP 2003-3833

強制再生の必要な時期(強制再生時期)を判定する方法については、エンジンの運転履歴から推定されるフィルタのPM堆積量から強制再生時期を判定する方法と、フィルタ上流の排気圧力またはフィルタ前後の差圧から強制再生時期を判定する方法と、が試行される。前者の場合、環境条件など外乱要因に影響され、フィルタのPM堆積量を正確に推定するのが難しく、PM堆積量の推定値と実際値とのズレが経時的に大きくなる可能性が考えられる。後者の場合、フィルタ上流の排気圧力(またはフィルタ前後の差圧)にPM堆積量は敏感に反映しづらく、フィルタの目詰まり状態がある程度以上に進行しないと検出しえないのである。そのため、両者の併用が想定されるが、強制再生時期の判定方法によりPM堆積量が大きく異なる可能性もあり、強制再生を一律のパターンに制御する場合、過剰な強制再生による燃費の悪化、堆積PMの異常燃焼によるフィルタおよび触媒の劣化、の誘発も懸念される。   Regarding the method for determining the time required for forced regeneration (forced regeneration time), the method for determining the forced regeneration time from the PM accumulation amount of the filter estimated from the engine operation history, the exhaust pressure upstream of the filter or the A method of determining the forced regeneration time from the differential pressure is tried. In the former case, it is difficult to accurately estimate the amount of PM deposited on the filter due to environmental factors such as environmental conditions, and the difference between the estimated amount of PM and the actual value may increase over time. . In the latter case, the amount of accumulated PM is not sensitively reflected in the exhaust pressure upstream of the filter (or the differential pressure before and after the filter), and cannot be detected unless the clogged state of the filter proceeds beyond a certain level. Therefore, the combined use of both is assumed, but the amount of PM accumulation may vary greatly depending on the method for determining the forced regeneration timing. When forced regeneration is controlled to a uniform pattern, fuel consumption deteriorates and accumulates due to excessive forced regeneration. There is also concern about the induction of filter and catalyst deterioration due to abnormal combustion of PM.

この発明は、このような不具合を未然に回避しつつ、強制再生を効率よく適確に処理しえる手段の提供を目的とする。   An object of the present invention is to provide means for efficiently and accurately processing forced regeneration while avoiding such problems.

第1の発明は、エンジンの排気中に含まれるPMを捕集しつつ触媒作用により燃焼させる排気浄化装置において、フィルタのPM堆積量を推定する手段と、複数の異なる方法に基づいてそれぞれフィルタの強制再生時期を判定する手段と、強制再生時期との判定を受けるとその判定方法に対応する強制再生モードとしてフィルタのPM堆積量に応じた強制再生温度および強制再生時間を設定する手段と、強制再生時期との判定を受けると強制再生モードに基づいてフィルタ温度を強制的に高める昇温制御を行う手段と、フィルタ温度が強制再生温度以上の継続状態が強制再生時間に達するとフィルタの強制的な昇温制御を解除する手段と、を備えることを特徴とする。   According to a first aspect of the present invention, there is provided an exhaust gas purification apparatus that collects PM contained in engine exhaust gas and combusts it by catalytic action, and means for estimating the PM accumulation amount of the filter, and a plurality of different methods, respectively. Means for determining forced regeneration time, means for setting forced regeneration temperature and forced regeneration time according to the PM accumulation amount of the filter as forced regeneration mode corresponding to the determination method upon receiving the judgment of forced regeneration time, When the regeneration time is received, a means for controlling the temperature rise to forcibly increase the filter temperature based on the forced regeneration mode, and forcing the filter when the continuation state where the filter temperature exceeds the forced regeneration temperature reaches the forced regeneration time And a means for canceling an appropriate temperature rise control.

第2の発明は、第1の発明に係る排気浄化装置において、複数の異なる方法に基づいてそれぞれフィルタの強制再生時期を判定する手段は、フィルタのPM堆積量が所定値以上のときに強制再生時期を判定する手段と、フィルタ上流の排気圧力またはフィルタ前後の差圧が所定値以上のときに強制再生時期を判定する手段と、を備えることを特徴とする。   According to a second aspect of the present invention, in the exhaust gas purification apparatus according to the first aspect, the means for determining the forced regeneration timing of the filter based on a plurality of different methods is the forced regeneration when the PM accumulation amount of the filter is a predetermined value or more. Means for determining the timing, and means for determining the forced regeneration timing when the exhaust pressure upstream of the filter or the differential pressure before and after the filter is greater than or equal to a predetermined value.

第3の発明は、第1の発明に係る排気浄化装置において、複数の異なる方法に基づいてそれぞれフィルタの強制再生時期を判定する手段は、フィルタのPM堆積量が所定値以上のときに強制再生時期を判定する手段と、フィルタの強制的な昇温制御の解除から計測される運転時間または運転距離が強制再生用に設定のインターバルに達するとその間にフィルタの強制的な昇温制御の履歴がないときに強制再生時期を判定する手段と、を備えることを特徴とする。   According to a third aspect of the present invention, in the exhaust purification apparatus according to the first aspect, the means for determining the forced regeneration timing of the filter based on a plurality of different methods is the forced regeneration when the PM accumulation amount of the filter is a predetermined value or more. Means to determine the timing and when the operating time or operating distance measured from the cancellation of the forced temperature rise control of the filter reaches the set interval for forced regeneration, the history of forced temperature rise control of the filter is Means for determining a forced regeneration time when there is not.

第4の発明は、第1の発明に係る排気浄化装置において、複数の異なる方法に基づいてそれぞれフィルタの強制再生時期を判定する手段は、フィルタのPM堆積量が所定値以上のときに強制再生時期を判定する手段と、運転時間または運転距離またはフィルタの強制的な昇温制御の回数がPM堆積量を定期的に初期化する0リセット強制再生用に設定のインターバルに達すると強制再生時期を判定する手段と、を備えることを特徴とする。   According to a fourth aspect of the present invention, in the exhaust emission control device according to the first aspect, the means for determining the forced regeneration timing of the filter based on a plurality of different methods is the forced regeneration when the PM accumulation amount of the filter is a predetermined value or more. Means to determine the timing, and the forced regeneration timing when the operating time or distance or the number of forced temperature rise control of the filter reaches the interval set for 0 reset forced regeneration that periodically initializes the PM accumulation amount And means for determining.

第5の発明は、第1の発明に係る排気浄化装置において、複数の異なる方法に基づいてそれぞれフィルタの強制再生時期を判定する手段は、フィルタのPM堆積量が所定値以上のときに強制再生時期を判定する手段と、フィルタの強制的な昇温制御の解除から計測される運転時間または運転距離が強制再生用に設定のインターバルに達するとその間にフィルタの強制的な昇温制御の履歴がないときに強制再生時期を判定する手段と、運転時間または運転距離またはフィルタの強制的な昇温制御の回数がPM堆積量を定期的に初期化する0リセット強制再生用に設定のインターバルに達すると強制再生時期を判定する手段と、を備えることを特徴とする。   According to a fifth aspect of the present invention, in the exhaust purification apparatus according to the first aspect, the means for determining the forced regeneration timing of the filter based on a plurality of different methods is the forced regeneration when the PM accumulation amount of the filter is equal to or greater than a predetermined value. Means to determine the timing and when the operating time or operating distance measured from the cancellation of the forced temperature rise control of the filter reaches the set interval for forced regeneration, the history of forced temperature rise control of the filter is Means to determine the forced regeneration time when there is not, the operating time or operating distance or the number of forced temperature rise control of the filter reaches the interval set for 0 reset forced regeneration to initialize the PM accumulation amount periodically Then, means for determining the forced regeneration time is provided.

第6の発明は、第2の発明に係る排気浄化装置において、フィルタ上流の排気圧力またはフィルタ前後の差圧が所定値以上のときに強制再生時期を判定する手段は、強制再生時期の判定基準となる所定値として複数の異なるレベル値を設定する手段と、を備えることを特徴とする。   According to a sixth aspect of the present invention, in the exhaust purification apparatus according to the second aspect of the invention, the means for determining the forced regeneration time when the exhaust pressure upstream of the filter or the differential pressure before and after the filter is greater than or equal to a predetermined value is And a means for setting a plurality of different level values as predetermined values.

第7の発明は、第2の発明に係る排気浄化装置において、フィルタ上流の排気圧力またはフィルタ前後の差圧が所定値以上のときに強制再生時期を判定する手段は、フィルタ上流の排気圧力またはフィルタ前後の差圧に基づく判定を特定の運転条件に制限する手段と、を備えることを特徴とする。   According to a seventh aspect of the present invention, in the exhaust purification apparatus according to the second aspect of the invention, the means for determining the forced regeneration timing when the exhaust pressure upstream of the filter or the differential pressure before and after the filter is greater than or equal to a predetermined value is the exhaust pressure upstream of the filter or Means for limiting the determination based on the differential pressure before and after the filter to a specific operating condition.

第8の発明は、第2の発明に係る排気浄化装置において、フィルタ上流の排気圧力またはフィルタ前後の差圧が所定値以上のときに強制再生時期を判定する手段は、フィルタ上流の排気圧力またはフィルタ前後の差圧を排気温度により補正する手段と、を備えることを特徴とする。   According to an eighth aspect of the present invention, in the exhaust purification apparatus according to the second aspect of the invention, the means for determining the forced regeneration timing when the exhaust pressure upstream of the filter or the differential pressure before and after the filter is greater than or equal to a predetermined value is the exhaust pressure upstream of the filter or And means for correcting the differential pressure before and after the filter based on the exhaust gas temperature.

第9の発明は、第1の発明に係る排気浄化装置において、フィルタのPM堆積量を推定する手段は、エンジンの運転状態としての空気過剰率に基づいて単位時間あたりのPM排出量を求める手段と、フィルタの温度および空間速度に基づいて単位時間あたりのPM燃焼量を求める手段と、PM排出量からPM燃焼量を引く減算値の順次積算よりフィルタのPM堆積量を求める手段と、を備えることを特徴とする。   According to a ninth aspect of the present invention, in the exhaust emission control device according to the first aspect, the means for estimating the PM accumulation amount of the filter is a means for obtaining the PM emission amount per unit time based on the excess air ratio as the engine operating state And means for obtaining the PM combustion amount per unit time based on the temperature and space velocity of the filter, and means for obtaining the PM accumulation amount of the filter by sequentially integrating the subtraction value obtained by subtracting the PM combustion amount from the PM emission amount. It is characterized by that.

第10の発明は、第1の発明に係る排気浄化装置において、強制再生時期との判定を受けると強制再生モードに基づいてフィルタ温度を強制的に高める昇温制御を行う手段は、フィルタ温度が触媒の反応に必要な所定温度を下回るときは触媒を予熱するべくエンジンの排気温度を積極的に高める昇温制御1を行う手段と、フィルタ温度が触媒の反応に必要な所定温度以上のときは触媒の反応を促進すべく排気中に未燃燃料を添加する昇温制御2を行う手段と、を備えることを特徴とする。   According to a tenth aspect of the present invention, in the exhaust gas purification apparatus according to the first aspect of the present invention, the means for performing the temperature rise control for forcibly increasing the filter temperature based on the forced regeneration mode when the determination is made with the forced regeneration timing, When the temperature is below a predetermined temperature required for the catalyst reaction, means for performing a temperature increase control 1 that actively increases the exhaust temperature of the engine to preheat the catalyst, and when the filter temperature is equal to or higher than the predetermined temperature required for the catalyst reaction And means for performing temperature rise control 2 for adding unburned fuel to the exhaust gas so as to promote the reaction of the catalyst.

第11の発明は、第10の発明に係る排気浄化装置において、強制再生時期との判定を受けると強制再生モードに基づいてフィルタ温度を強制的に高める昇温制御を行う手段は、エンジンの排気温度またはエンジンの負荷が下限値を下回る運転状態のときは通常制御を行いつつ昇温制御1への移行に待機する手段と、を備えることを特徴とする。   According to an eleventh aspect of the present invention, in the exhaust gas purification apparatus according to the tenth aspect of the present invention, means for performing a temperature rise control for forcibly increasing the filter temperature based on the forced regeneration mode upon receiving the forced regeneration timing And a means for waiting for the transition to the temperature raising control 1 while performing normal control when the temperature or the engine load is lower than the lower limit value.

第12の発明は、第10の発明に係る排気浄化装置において、強制再生時期との判定を受けると強制再生モードに基づいてフィルタ温度を強制的に高める昇温制御を行う手段は、エンジンの排気温度が上限値を超えると昇温制御2を中止する手段と、を備えることを特徴とする。   According to a twelfth aspect of the present invention, in the exhaust gas purification apparatus according to the tenth aspect of the present invention, means for performing a temperature rise control for forcibly increasing the filter temperature based on the forced regeneration mode upon receiving the determination of the forced regeneration time is an engine exhaust Means for canceling the temperature rise control 2 when the temperature exceeds the upper limit value.

第13の発明は、第1の発明〜第5の発明、の何れかに係る排気浄化装置において、フィルタ下流の排気温度を上限値以下に抑えるべく排気中の酸素量を積極的に制御する手段と、を備えることを特徴とする。   In a thirteenth aspect of the present invention, in the exhaust gas purification apparatus according to any one of the first to fifth aspects of the present invention, means for actively controlling the amount of oxygen in the exhaust gas so as to keep the exhaust gas temperature downstream of the filter below the upper limit value. And.

第1の発明においては、強制再生時期の判定に複数の方法が併用されるので、複数のチェックが働くため、フィルタのPM堆積量が過剰に至るのを未然に回避しえる確率を高められる。複数の判定方法に対応する強制再生モードが選定され、そのときのPM堆積量に応じた強制再生温度および強制再生時間に基づく解除条件が成立するまでの間、フィルタの昇温制御が行われるのである。このため、フィルタの強制再生をそのときのPM堆積量に適合する燃焼形態(燃焼時間や燃焼温度)をもって効率よく適正に処理しえるようになり、過剰な強制再生による燃費の悪化や堆積PMの異常燃焼によるフィルタおよび触媒の劣化を有効に防止できる。   In the first invention, since a plurality of methods are used in combination for determining the forced regeneration time, a plurality of checks work, so that it is possible to increase the probability of avoiding an excessive amount of PM accumulation on the filter. Since the forced regeneration mode corresponding to multiple judgment methods is selected, and the release condition based on the forced regeneration temperature and the forced regeneration time according to the PM accumulation amount at that time is satisfied, the temperature rise control of the filter is performed. is there. For this reason, forced regeneration of the filter can be processed efficiently and appropriately with a combustion mode (combustion time and combustion temperature) that matches the amount of PM deposition at that time. The deterioration of the filter and catalyst due to abnormal combustion can be effectively prevented.

第2の発明においては、強制再生時期の判定にPM堆積量に基づく判定方法とフィルタ上流の排気圧力またはフィルタ前後の差圧に基づく判定方法とが併用され、これらのチェックが働くため、フィルタのPM堆積量が過剰に至るのを未然に回避しえる確率を高められる。これらの判定方法に対応する強制再生モードが選定され、そのときのPM堆積量に応じた強制再生温度および強制再生時間に基づく解除条件が成立するまでの間、フィルタの昇温制御が行われるのである。このため、フィルタの強制再生をそのときのPM堆積量に適合する燃焼形態(燃焼時間や燃焼温度)をもって効率よく適正に処理しえるようになり、過剰な強制再生による燃費の悪化や堆積PMの異常燃焼によるフィルタおよび触媒の劣化を防止できる。   In the second aspect of the invention, the determination method based on the PM accumulation amount and the determination method based on the exhaust pressure upstream of the filter or the differential pressure before and after the filter are used in combination to determine the forced regeneration timing. It is possible to increase the probability of avoiding excessive PM deposition. Since the forced regeneration mode corresponding to these judgment methods is selected, the temperature rise control of the filter is performed until the release condition based on the forced regeneration temperature and the forced regeneration time according to the PM accumulation amount at that time is satisfied. is there. For this reason, forced regeneration of the filter can be processed efficiently and appropriately with a combustion mode (combustion time and combustion temperature) that matches the amount of PM deposition at that time. Deterioration of the filter and catalyst due to abnormal combustion can be prevented.

第3の発明においては、強制再生時期の判定にPM堆積量に基づく判定方法と強制再生用のインターバルに基づく判定方法とが併用され、これらのチェックが働くため、フィルタのPM堆積量が過剰に至るのを未然に回避しえる確率を高められる。これらの判定方法に対応する強制再生モードが選定され、そのときのPM堆積量に応じた強制再生温度および強制再生時間に基づく解除条件が成立するまでの間、フィルタの昇温制御が行われるのである。このため、フィルタの強制再生をそのときのPM堆積量に適合する燃焼形態(燃焼時間や燃焼温度)をもって効率よく適正に処理しえるようになり、過剰な強制再生による燃費の悪化や堆積PMの異常燃焼によるフィルタおよび触媒の劣化を防止できる。強制再生用のインターバルに基づく判定方法については、PM堆積量に基づく強制再生の解除から計測される運転時間または運転距離が設定のインターバルに達するとその間にPM堆積量に基づく強制再生の履歴がないときに強制再生時期を判定するものであり、この再生処理によりPM堆積量の実際値と推定値とのズレを補正する効果も期待できる。   In the third aspect of the invention, the determination method based on the PM accumulation amount and the determination method based on the forced regeneration interval are used in combination for the determination of the forced regeneration timing, and these checks work, so the PM accumulation amount of the filter is excessive. Probability that can be avoided in advance. Since the forced regeneration mode corresponding to these judgment methods is selected, the temperature rise control of the filter is performed until the release condition based on the forced regeneration temperature and the forced regeneration time according to the PM accumulation amount at that time is satisfied. is there. For this reason, forced regeneration of the filter can be processed efficiently and appropriately with a combustion mode (combustion time and combustion temperature) that matches the amount of PM deposition at that time. Deterioration of the filter and catalyst due to abnormal combustion can be prevented. Regarding the judgment method based on the interval for forced regeneration, there is no history of forced regeneration based on the PM accumulation amount during the operation time or driving distance measured from the release of forced regeneration based on the PM accumulation amount reaches the set interval The forced regeneration time is sometimes determined, and this regeneration process can be expected to correct the deviation between the actual value and the estimated value of the PM accumulation amount.

第4の発明においては、強制再生時期の判定にPM堆積量に基づく判定方法と0リセット強制再生用のインターバルに基づく判定方法とが併用され、これらのチェックが働くため、フィルタのPM堆積量が過剰に至るのを未然に回避しえる確率を高められる。これら判定方法に対応する強制再生モードが選定され、そのときのPM堆積量に応じた強制再生温度および強制再生時間に基づく解除条件が成立するまでの間、フィルタの昇温制御が行われるのである。このため、フィルタの強制再生をそのときのPM堆積量に適合する燃焼形態(燃焼時間や燃焼温度)をもって効率よく適正に処理しえるようになり、過剰な強制再生による燃費の悪化や堆積PMの異常燃焼によるフィルタおよび触媒の劣化を防止できる。0リセット強制再生用のインターバルに基づく判定方法については、運転時間または運転距離またはPM堆積量に基づく強制再生の回数が設定のインターバルに達すると強制再生時期を判定するものであり、この定期的な強制再生によりフィルタのPM堆積量が完全に燃焼処理されるようになり、PM堆積量の推定値を初期化しえる(実際値と推定値とのズレを0に補正できる)効果が得られる。   In the fourth aspect of the invention, the determination method based on the PM accumulation amount and the determination method based on the zero reset forced regeneration interval are used in combination for the determination of the forced regeneration timing, and these checks work, so the PM accumulation amount of the filter is reduced. It is possible to increase the probability of avoiding excess. The forced regeneration mode corresponding to these determination methods is selected, and the temperature rise control of the filter is performed until the release condition based on the forced regeneration temperature and the forced regeneration time according to the PM accumulation amount at that time is satisfied. . For this reason, forced regeneration of the filter can be processed efficiently and appropriately with a combustion mode (combustion time and combustion temperature) that matches the amount of PM deposition at that time. Deterioration of the filter and catalyst due to abnormal combustion can be prevented. The determination method based on the interval for 0 reset forced regeneration is to determine the forced regeneration timing when the number of forced regenerations based on the operating time, the operating distance, or the PM accumulation amount reaches the set interval. By the forced regeneration, the PM accumulation amount of the filter is completely combusted, and the estimated value of the PM accumulation amount can be initialized (the deviation between the actual value and the estimated value can be corrected to 0).

第5の発明においては、強制再生時期の判定にPM堆積量に基づく判定方法と強制再生用のインターバルに基づく判定方法と0リセット強制再生用のインターバルに基づく判定方法とが併用され、これらのチェックが働くため、フィルタのPM堆積量が過剰に至るのを未然に回避しえる確率を高められる。これら判定方法に対応する強制再生モードが選定され、そのときのPM堆積量に応じた強制再生温度および強制再生時間に基づく解除条件が成立するまでの間、フィルタの昇温制御が行われるのである。このため、フィルタの強制再生をそのときのPM堆積量に適合する燃焼形態(燃焼時間や燃焼温度)をもって効率よく適正に処理しえるようになり、過剰な強制再生による燃費の悪化や堆積PMの異常燃焼によるフィルタおよび触媒の劣化を防止できる。強制再生用のインターバルに基づく再生処理および0リセット強制再生用のインターバルに基づく再生処理により、PM堆積量の実際値と推定値とのズレが補正され、PM堆積量の推定精度を高度に維持しえるのである。   In the fifth invention, the judgment method based on the PM accumulation amount, the judgment method based on the forced regeneration interval, and the judgment method based on the zero reset forced regeneration interval are used in combination for the judgment of the forced regeneration timing. Therefore, it is possible to increase the probability that the amount of PM accumulated on the filter can be avoided in advance. The forced regeneration mode corresponding to these determination methods is selected, and the temperature rise control of the filter is performed until the release condition based on the forced regeneration temperature and the forced regeneration time according to the PM accumulation amount at that time is satisfied. . For this reason, forced regeneration of the filter can be processed efficiently and appropriately with a combustion mode (combustion time and combustion temperature) that matches the amount of PM deposition at that time. Deterioration of the filter and catalyst due to abnormal combustion can be prevented. The regeneration process based on the forced regeneration interval and the regeneration process based on the zero reset forced regeneration interval correct the deviation between the actual value and estimated value of the PM deposition amount, and maintain a high level of accuracy in estimating the PM deposition amount. It is.

第6の発明においては、フィルタ上流の排気圧力またはフィルタ前後の差圧に基づく強制再生時期の判定が複数の異なるレベルで行えるようになり、これら判定に対応する強制再生モードを設定することにより、そのときのPM堆積量に適合する燃焼形態(燃焼時間や燃焼温度)をもって効率よく適正に処理しえるようになり、過剰な強制再生による燃費の悪化や堆積PMの異常燃焼によるフィルタおよび触媒の劣化を防止できる。   In the sixth invention, the forced regeneration timing can be determined based on the exhaust pressure upstream of the filter or the differential pressure before and after the filter at a plurality of different levels, and by setting the forced regeneration mode corresponding to these determinations, The combustion form (combustion time and combustion temperature) that matches the PM accumulation amount at that time can be processed efficiently and appropriately, and fuel and fuel deterioration due to excessive forced regeneration and filter and catalyst deterioration due to abnormal combustion of accumulated PM Can be prevented.

第7の発明においては、フィルタ上流の排気圧力またはフィルタ前後の差圧に基づく強制再生時期の判定を特定の運転条件に制限することにより、強制再生時期の判定に用いられる検出値(排気圧力または差圧)も安定するため、強制再生時期の判定が正確に行える。   In the seventh invention, the detection value (exhaust pressure or exhaust pressure) used for the determination of the forced regeneration timing is limited by limiting the determination of the forced regeneration timing based on the exhaust pressure upstream of the filter or the differential pressure before and after the filter to a specific operating condition. Since the differential pressure is also stable, the forced regeneration time can be accurately determined.

第8の発明においては、フィルタ上流の排気圧力またはフィルタ前後の差圧をエンジンの排気温度に応じて補正(温度補償)することにより、同一の目詰まり状態においても、排気温度によって変化してしまう排気圧力や差圧のバラツキが抑制されるので、強制再生時期の判定が正確に行える。   In the eighth aspect of the invention, the exhaust pressure upstream of the filter or the differential pressure before and after the filter is corrected (temperature compensated) according to the exhaust temperature of the engine, so that it changes depending on the exhaust temperature even in the same clogged state. Since variations in exhaust pressure and differential pressure are suppressed, forced regeneration timing can be accurately determined.

第9の発明においては、スモーク濃度に密接な対応関係にある空気過剰率から正確なPM排出量が求められ、フィルタの温度と空間速度とからPMの正確な燃焼速度が求められ、PM排出量からPM燃焼量(PM燃焼速度×単位時間)を引く減算処理により、PM堆積量の高度な推定値が得られる。   In the ninth aspect of the invention, an accurate PM emission amount is obtained from the excess air ratio closely corresponding to the smoke concentration, and an accurate PM combustion rate is obtained from the temperature and space velocity of the filter. By subtracting the PM combustion amount (PM combustion rate x unit time) from the value, a high estimate of the PM deposition amount can be obtained.

第10の発明においては、強制再生へ移行すると、フィルタ温度が所定温度を下回るときは、昇温制御1により排気温度が高められ、触媒を予熱する。フィルタ温度が所定温度以上のときは、昇温制御2により排気中に未燃燃料が添加され、触媒上で反応するため、その反応熱を排気昇温の熱源に堆積PMの燃焼が促進される。   In the tenth aspect of the invention, when shifting to forced regeneration, when the filter temperature falls below a predetermined temperature, the exhaust temperature is raised by the temperature raising control 1 to preheat the catalyst. When the filter temperature is equal to or higher than the predetermined temperature, unburned fuel is added to the exhaust gas by the temperature raising control 2 and reacts on the catalyst, so that the combustion of the deposited PM is promoted by using the reaction heat as a heat source for raising the temperature of the exhaust gas. .

第11の発明においては、エンジンの排気温度またはエンジンの負荷が下限値を下回る運転状態のときは、昇温制御1へ移行せず、通常制御のまま待機するのである。このような排気温度の低い運転状態においては、排気昇温が困難であり、昇温に時間が要するため、強制再生時期の判定に拘わらず、通常制御のまま待機することにより、燃焼効率の悪い昇温制御1が回避される。   In the eleventh aspect of the invention, when the engine exhaust temperature or the engine load is in an operating state below the lower limit value, the routine does not shift to the temperature raising control 1 but stands by with the normal control. In such an operating state where the exhaust temperature is low, it is difficult to raise the exhaust gas, and it takes time to raise the temperature. Therefore, the combustion efficiency is poor by waiting in the normal control regardless of the determination of the forced regeneration timing. The temperature increase control 1 is avoided.

第12の発明においては、フィルタ下流の排気温度が上限値を超えると、昇温制御2の中止により、堆積PMの異常燃焼に伴うフィルタの許容範囲を超える昇温が抑えられるため、フィルタ劣化や触媒劣化の防止に寄与できる。   In the twelfth aspect of the invention, when the exhaust gas temperature downstream of the filter exceeds the upper limit value, the temperature rise exceeding the allowable range of the filter due to abnormal combustion of the accumulated PM can be suppressed by stopping the temperature rise control 2. It can contribute to prevention of catalyst deterioration.

第13の発明においては、フィルタ下流の排気温度を上限値以下に抑えるべく排気中の酸素濃度を積極的に制御することにより、急激な昇温を招く堆積PMの異常燃焼が抑えられるため、フィルタ劣化や触媒劣化の防止に寄与できる。   In the thirteenth aspect of the invention, since the oxygen concentration in the exhaust gas is actively controlled so as to keep the exhaust gas temperature downstream of the filter below the upper limit value, abnormal combustion of the deposited PM that causes a rapid temperature rise can be suppressed. It can contribute to prevention of deterioration and catalyst deterioration.

図1において、10はディーゼルエンジンであり、コモンレール式燃料噴射装置(図示せず)を備える。エンジン10の吸気通路11にターボ過給機12のコンプレッサ12a,インタクーラ13,吸気絞り弁14が介装される。エンジン10の排気通路15にターボ過給機12のタービン12b,排気絞り弁16,連続再生式フィルタ装置(CR-DPF)17、が介装される。コモンレール式燃料噴射装置は、コモンレールに燃料を蓄圧する高圧ポンプと、コモンレールに各気筒の噴射ノズルを接続する燃料供給管と、を備える。燃料噴射装置および後述の予熱手段を制御するのがコントロールユニット20であり、通常の制御マップのほか、強制再生用の昇温制御マップが格納される。21はEGR(排気還流)装置のEGRバルブ、22はターボ過給機12のタービン12bを迂回するターボバイパスの開閉バルブである。   In FIG. 1, reference numeral 10 denotes a diesel engine, which includes a common rail fuel injection device (not shown). A compressor 12 a, an intercooler 13, and an intake throttle valve 14 of a turbocharger 12 are interposed in the intake passage 11 of the engine 10. A turbine 12 b of the turbocharger 12, an exhaust throttle valve 16, and a continuous regenerative filter device (CR-DPF) 17 are interposed in the exhaust passage 15 of the engine 10. The common rail fuel injection device includes a high-pressure pump that accumulates fuel in the common rail, and a fuel supply pipe that connects the injection nozzle of each cylinder to the common rail. The control unit 20 controls the fuel injection device and the preheating means described later, and stores a temperature increase control map for forced regeneration in addition to a normal control map. Reference numeral 21 denotes an EGR valve of an EGR (exhaust gas recirculation) device, and reference numeral 22 denotes a turbo bypass opening / closing valve that bypasses the turbine 12 b of the turbocharger 12.

CR-DPF17は、DPF(Diesel Particulate Filter)25と酸化触媒26(DOC:Diesel Oxidation Catalyst )とから構成される。DPF25は、ハニカム構造体に形成され、その格子状に区画される流路(セル)の入口と出口が交互に目封じされる。つまり、入口の目封じされる流路と出口の目封じされる流路とが交互に隣接され、これらを区画する多孔質の隔壁が排気の通過を許容するようになっている。この例においては、隔壁に捕集されるPMの燃焼可能な着火温度を低めに設定するため、触媒(アルミナなど)付きフィルタ(CSF:Catalyzed Soot Filter)が採用される。DOC26は、触媒を担持するハニカム構造体に形成され、ハニカム構造体の格子状に区画される流路を通過する排気に含まれる主にHC(炭化水素)を酸化処理するものであり、その反応熱により触媒温度が上昇して堆積PMの燃焼を促進するのである。   The CR-DPF 17 includes a DPF (Diesel Particulate Filter) 25 and an oxidation catalyst 26 (DOC: Diesel Oxidation Catalyst). The DPF 25 is formed in a honeycomb structure, and the inlets and outlets of flow paths (cells) partitioned in a lattice shape are alternately sealed. That is, the flow path sealed at the inlet and the flow path sealed at the outlet are alternately adjacent to each other, and the porous partition walls that partition these allow passage of the exhaust gas. In this example, a filter with a catalyst (alumina or the like) (CSF: Catalyst Soot Filter) is employed in order to set a combustible ignition temperature of PM collected in the partition walls. DOC26 is formed in a honeycomb structure carrying a catalyst, and mainly oxidizes HC (hydrocarbon) contained in exhaust gas that passes through the flow path partitioned in a lattice shape of the honeycomb structure. Heat increases the catalyst temperature and promotes the combustion of the deposited PM.

コントロールユニット20の制御に必要な検出手段として、エンジン回転数Neを検出する回転センサ(クランク角センサを兼ねる)およびエンジン負荷q(例えば、燃料噴射量)を検出する負荷センサのほか、CR-DPF17の入口圧力と出口圧力との差圧を検出する差圧センサ30、DPF25の入口温度を検出する温度センサ31aとDPF25の出口温度を検出する温度センサ31b、吸気流量を検出するエアフローセンサ32、等が設けられる。   As detection means necessary for control of the control unit 20, in addition to a rotation sensor (also serving as a crank angle sensor) for detecting the engine speed Ne and a load sensor for detecting an engine load q (for example, fuel injection amount), the CR-DPF 17 A differential pressure sensor 30 for detecting the differential pressure between the inlet pressure and the outlet pressure of the DPF 25, a temperature sensor 31a for detecting the inlet temperature of the DPF 25, a temperature sensor 31b for detecting the outlet temperature of the DPF 25, an airflow sensor 32 for detecting the intake flow rate, etc. Is provided.

図15は、PM堆積量と排気温度との関係を表す例示するものであり、PM排出量=PM燃焼量となる基準温度を上回る排気温度の運転状態のときは、PM燃料量>PM排出量となり、PM堆積量(またはDPF前後の差圧が減少する一方、基準温度を下回る排気温度の運転状態のときは、PM燃焼量<PM排出量となり、PM堆積量が増加する。そのため、基準温度を下回る排気温度の運転状態が継続することにより、PM堆積量が所定値を超えると、エンジン性能の低下を回避するため、強制再生が必要となるのである。DPF前後の差圧または排気圧力と排気温度との関係ついても、PM堆積量と排気温度との関係と同様である。   FIG. 15 exemplifies the relationship between the PM accumulation amount and the exhaust gas temperature. When the exhaust gas temperature exceeds the reference temperature at which the PM emission amount = the PM combustion amount, the PM fuel amount> the PM emission amount. PM accumulation amount (or differential pressure before and after DPF decreases, but when the exhaust gas temperature is lower than the reference temperature, the PM combustion amount <PM emission amount and the PM accumulation amount increases. If the PM accumulation amount exceeds a predetermined value due to continued operation at an exhaust temperature lower than the required value, forced regeneration is required to avoid deterioration in engine performance. The relationship with the exhaust temperature is the same as the relationship between the PM deposition amount and the exhaust temperature.

コントロールユニット20は、エンジン回転数Neとエンジン負荷qとから通常の制御マップに基づいて噴射ノズルへの燃料噴射信号(噴射量の指令および噴射時期の指令)を決定する。DPF25の強制再生が必要な時期を判定すると、通常の制御マップから強制再生用の昇温マップに切り替わり、CR-DPF17の雰囲気温度が所定値(例えば、230℃)を下回るときは、触媒の予熱手段を駆動するほか、必要があれば昇温マップ1に基づいて燃料のメイン噴射に続いて燃焼可能なタイミングでアフタ噴射を行うような燃料噴射信号を決定する一方、CR-DPFの雰囲気温度が所定値以上のときは、昇温マップ2に基づいてメイン噴射から大幅に遅れるタイミングでポスト噴射を行うような燃料噴射信号を決定するのである。   The control unit 20 determines a fuel injection signal (injection amount command and injection timing command) to the injection nozzle based on the normal control map from the engine speed Ne and the engine load q. When it is determined when the forced regeneration of the DPF 25 is necessary, the normal control map is switched to the forced regeneration temperature increase map. When the atmospheric temperature of the CR-DPF 17 falls below a predetermined value (for example, 230 ° C.), the catalyst preheating is performed. In addition to driving means, if necessary, a fuel injection signal for performing after injection at a combustible timing subsequent to the main injection of fuel is determined based on the temperature rise map 1, while the atmospheric temperature of the CR-DPF is When the value is equal to or greater than the predetermined value, a fuel injection signal for performing post-injection is determined based on the temperature increase map 2 at a timing significantly delayed from the main injection.

触媒の予熱手段については、EGRバルブ21,吸気絞り弁14または排気絞り弁16,ターボバイパスの開閉バルブ22、がエンジン10の排気温度を積極的に高める制御に利用される。ターボ過給機12が可変ノズル式の場合、ターボバイパスの開閉バルブ22に代えて可変ノズルを触媒の予熱手段として制御することも考えられる。   As for the catalyst preheating means, the EGR valve 21, the intake throttle valve 14 or the exhaust throttle valve 16, and the turbo bypass opening / closing valve 22 are used for the control of positively increasing the exhaust temperature of the engine 10. When the turbocharger 12 is a variable nozzle type, it is conceivable to control the variable nozzle as catalyst preheating means instead of the turbo bypass opening / closing valve 22.

DPF25の強制再生が必要な時期の判定については、DPF25のPM堆積量(推定値)が所定値以上のときに強制再生時期を判定する手段(図2のS2)と、CR-DPF17前後の差圧(またはCR-DPF17の入口圧力)が所定値以上のときに強制再生時期を判定する手段(図2のS4)と、PM堆積量に基づく強制再生の完了から計測される運転時間(または運転距離)が強制再生用に設定のインターバルに達するとその間に強制再生の履歴がないときに強制再生時期を判定する手段(図2のS6)と、運転時間(または運転距離または強制再生の回数)がPM堆積量を定期的に初期化する0リセット強制再生用のインターバルに達すると強制再生を判定する手段(図2のS8)と、が設定される。   Regarding the determination of the time when forced regeneration of the DPF 25 is necessary, the difference between the means for determining the forced regeneration time when the PM accumulation amount (estimated value) of the DPF 25 is equal to or greater than a predetermined value (S2 in FIG. 2) and the CR-DPF 17 Means (S4 in FIG. 2) for determining the forced regeneration timing when the pressure (or inlet pressure of the CR-DPF 17) is equal to or higher than a predetermined value, and the operation time (or operation) measured from the completion of the forced regeneration based on the PM accumulation amount When the distance) reaches the interval set for forced regeneration, means for determining the forced regeneration time when there is no forced regeneration history (S6 in FIG. 2) and operation time (or driving distance or number of forced regenerations) Means for determining forced regeneration when an interval for 0 reset forced regeneration for periodically initializing the PM accumulation amount is reached (S8 in FIG. 2).

図12において、Tは強制再生用のインターバル、T0intは0リセット再生用のインターバルであり、☆はT0int毎の0リセット強制再生、○はPM堆積量に基づく強制再生、◇は強制再生用のインターバルTに基づく強制再生、の実行を例示する。T1<T,T3<T,T2=T,T4=T,T5<Tである。   In FIG. 12, T is an interval for forced regeneration, T0int is an interval for 0 reset regeneration, ☆ is 0 reset forced regeneration for each T0int, ○ is forced regeneration based on the PM accumulation amount, and ◇ is an interval for forced regeneration The execution of forced regeneration based on T is illustrated. T1 <T, T3 <T, T2 = T, T4 = T, T5 <T.

DPF25の強制再生時期は、このような複数の異なる方法に基づいて判定され、これら何れかの判定を受けると、そのときの判定方法に対応する強制再生モードとしてPM堆積量に応じた強制再生温度および強制再生時間を設定する手段(図2のS9)が設定される。CR-DPF17前後の差圧から強制再生時期を判定する手段においては、強制再生時期の判定基準となる所定値としてレベル1とこれより高いレベル2が設定され、これらレベル1,レベル2に基づく強制再生時期の判定毎に異なる強制再生モードとしてPM堆積量に応じた強制再生温度および強制再生温度が設定されるのである。   The forced regeneration time of the DPF 25 is determined based on a plurality of such different methods. When any one of these determinations is received, the forced regeneration temperature corresponding to the PM deposition amount is set as a forced regeneration mode corresponding to the determination method at that time. And means for setting the forced regeneration time (S9 in FIG. 2) is set. In the means for determining the forced regeneration time from the differential pressure before and after the CR-DPF 17, level 1 and a higher level 2 are set as predetermined values as criteria for determining the forced regeneration time. The forced regeneration temperature and the forced regeneration temperature corresponding to the PM accumulation amount are set as different forced regeneration modes for each regeneration time determination.

強制再生モードは、PM堆積量の超過に基づく強制再生時期の判定,差圧レベル1の超過に基づく強制再生時期の判定,差圧レベル2の超過に基づく強制再生時期の判定,強制再生用のインターバルに基づく強制再生時期の判定,0リセット強制再生用のインターバルに基づく強制再生時期の判定、から選定される(図11、参照)。これらモードに対応する強制再生温度Treg1〜Treg5は、マップ2に基づく昇温制御の目標温度であり、PM堆積量に応じて設定される(図13、参照)。強制再生時間T1〜T5については、PM堆積および強制再生温度Treg1〜Treg5に応じて設定される(図14、参照)。そして、DPFの出口温度が強制再生温度Treg1〜Treg5以上の継続状態が強制再生時間T1〜T5に達すると、昇温マップ2に基づく燃料噴射制御を解除する手段(図3のS11およびS12、参照)が設定される。   The forced regeneration mode is for determining the forced regeneration time based on excess PM accumulation, determining the forced regeneration time based on exceeding differential pressure level 1, determining the forced regeneration time based on exceeding differential pressure level 2, and for forced regeneration. It is selected from the determination of the forced regeneration time based on the interval and the determination of the forced regeneration time based on the interval for 0 reset forced regeneration (see FIG. 11). The forced regeneration temperatures Treg1 to Treg5 corresponding to these modes are target temperatures for the temperature rise control based on the map 2, and are set according to the PM accumulation amount (see FIG. 13). The forced regeneration times T1 to T5 are set according to the PM deposition and the forced regeneration temperatures Treg1 to Treg5 (see FIG. 14). When the DPF outlet temperature reaches the forced regeneration temperature Treg1 to T5 and reaches the forced regeneration time T1 to T5, means for canceling the fuel injection control based on the temperature rise map 2 (see S11 and S12 in FIG. 3). ) Is set.

PM堆積量の算出(図2のS1)については、吸気流量(エアフローセンサ32の検出信号)と燃料流量(エンジン負荷qの検出信号)とから空気過剰率を求め、空気過剰率からスモーク濃度を求め、スモーク濃度と吸気流量とから単位時間あたりのPM排出量を求める。その一方、DPFのPM燃焼特性マップに基づいて、触媒の酸化作用により堆積PMの燃焼が開始される排気条件において、単位時間あたりのPM燃焼量を求める。具体的には、触媒による酸化反応の効率に影響を与える空間速度を求め、DPF25の触媒温度(DPF25の出口温度または入口温度と出口温度との平均値)と空間速度とからPM燃焼速度を求め、単位時間あたりのPM燃焼量に変換する。そして、PM排出量からPM燃焼量を引く減算値を順次に積算することにより、DPFのPM堆積量を求めるのである。減算値は、負になる可能性があるので、負の減算値=0に修正する処理が設定される。   Regarding the calculation of the PM accumulation amount (S1 in FIG. 2), the excess air ratio is obtained from the intake flow rate (detection signal of the air flow sensor 32) and the fuel flow rate (detection signal of the engine load q), and the smoke concentration is calculated from the excess air ratio. The PM emission amount per unit time is obtained from the smoke concentration and the intake flow rate. On the other hand, based on the PM combustion characteristic map of the DPF, the PM combustion amount per unit time is obtained under the exhaust conditions where the combustion of the deposited PM is started by the oxidation action of the catalyst. Specifically, the space velocity that affects the efficiency of the oxidation reaction by the catalyst is obtained, and the PM combustion rate is obtained from the catalyst temperature of the DPF 25 (the outlet temperature of the DPF 25 or the average value of the inlet temperature and the outlet temperature) and the space velocity. Convert to PM combustion amount per unit time. Then, the PM accumulation amount of the DPF is obtained by sequentially integrating the subtraction value obtained by subtracting the PM combustion amount from the PM emission amount. Since the subtraction value may be negative, processing for correcting the negative subtraction value = 0 is set.

図2,図3は、コントロールユニット20の制御内容を説明するフローチャートであり、S1においては、DPF25のPM堆積量を算出する。S2においては、PM堆積量の算出値(推定量)が所定値(しきい値)以上かどうかを判定する。S3においては、CR-DPF17前後の差圧を読み込む。S4においては、差圧がレベル1またはレベル2を超過かどうかを判定する。S5においては、運転時間(または運転距離)のカウント値を読み込む。S6においては、運転時間(または運転距離)のカウント値が強制再生用のインターバルに達したかどうか、かつその間に強制再生の履歴がないかどうか、を判定する。S7においては、運転時間(または運転距離または強制再生回数)のカウント値を読み込む。S8においては、運転時間(または運転距離または強制再生回数)のカウント値が0リセット強制再生用のインターバルに達したかどうかを判定する。   2 and 3 are flowcharts for explaining the control contents of the control unit 20. In S1, the PM accumulation amount of the DPF 25 is calculated. In S2, it is determined whether the calculated value (estimated amount) of the PM accumulation amount is equal to or greater than a predetermined value (threshold value). In S3, the differential pressure before and after CR-DPF 17 is read. In S4, it is determined whether the differential pressure exceeds level 1 or level 2. In S5, the count value of driving time (or driving distance) is read. In S6, it is determined whether the count value of the driving time (or driving distance) has reached the forced regeneration interval and whether there is no forced regeneration history during that time. In S7, the count value of the driving time (or driving distance or forced regeneration count) is read. In S8, it is determined whether or not the count value of the driving time (or driving distance or the number of forced regenerations) has reached the zero reset forced regeneration interval.

S2の判定がnoかつS4の判定がnoかつS6の判定がnoかつS8の判定がnoのときは、S1へ戻る。S2の判定がyesまたはS4の判定がyesまたはS6の判定がyesまたはS8の判定がyesのときは、S9へ進む。S9においては、強制再生時期の判定(yes)がS2の判定〜S8の判定の何れかに拠るのかに応じて強制再生モードを選定する。S2の判定に拠る場合、PM堆積量の超過に対応する強制再生モードにより、強制再生温度Treg1および強制再生時間T1をPM堆積量に応じて設定する。S4の判定に拠る場合、差圧レベル1の超過に対応する強制再生モードまたは差圧レベル2の超過に対応する強制再生モードにより、強制再生温度Treg2またはTreg3および強制再生時間T2またはT3をPM堆積量に応じて設定する。S6の判定に拠る場合、強制再生用のインターバルに対応する強制再生モードにより、強制再生温度Treg4および強制再生時間T4をPM堆積量に応じて設定する。S8の判定に拠る場合、0リセット強制再生用のインターバルに対応する強制再生モードにより、強制再生温度Treg5および強制再生時間T5をPM堆積量に応じて設定する。   If the determination of S2 is no, the determination of S4 is no, the determination of S6 is no, and the determination of S8 is no, the process returns to S1. If the determination of S2 is yes or the determination of S4 is yes or the determination of S6 is yes or the determination of S8 is yes, the process proceeds to S9. In S9, the forced regeneration mode is selected depending on whether the forced regeneration timing determination (yes) depends on any of the determinations in S2 to S8. When based on the determination of S2, the forced regeneration temperature Treg1 and the forced regeneration time T1 are set according to the PM deposition amount in the forced regeneration mode corresponding to the excess of the PM deposition amount. Based on the determination of S4, the forced regeneration temperature Treg2 or Treg3 and the forced regeneration time T2 or T3 are deposited in the forced regeneration mode corresponding to the differential pressure level 1 excess or the forced regeneration mode corresponding to the differential pressure level 2 excess. Set according to the amount. When based on the determination of S6, the forced regeneration temperature Treg4 and the forced regeneration time T4 are set according to the PM accumulation amount by the forced regeneration mode corresponding to the forced regeneration interval. When based on the determination of S8, the forced regeneration temperature Treg5 and the forced regeneration time T5 are set according to the PM accumulation amount in the forced regeneration mode corresponding to the zero reset forced regeneration interval.

S10においては、選定の強制再生モードに基づいて強制再生を実行する。触媒の酸化反応に十分な排気温度の運転状態のときは、DPF25の出口温度を監視しながら、昇温マップ2に基づいてメイン噴射から大幅に遅れるタイミングでポスト噴射を行うように燃料噴射装置を制御する(昇温制御2)。触媒の酸化反応に必要な排気温度を下回る運転状態のときは、CR-DPF17の雰囲気温度を監視しながら、触媒の予熱手段を制御するほか、必要があれば昇温マップ1に基づいてメイン噴射に続いて燃焼可能なタイミングでアフタ噴射を行うように燃料噴射装置を制御する(昇温制御1)。アフタ噴射においては、燃料の発熱量のうちの動力に使用されない熱量が増えて排気温度が上昇するため、DPF25の触媒も堆積PMの酸化処理に必要な温度へ高められるのである。触媒温度が酸化処理に必要な温度に至ると昇温マップ1から昇温マップ2へ切り替わり、ポスト噴射により、排気中に添加される未燃燃料が触媒上で酸化反応され、その反応熱により触媒温度を上昇させるため、堆積PMの燃焼処理が促進される(図10、参照)。   In S10, forced regeneration is executed based on the selected forced regeneration mode. When the exhaust gas temperature is sufficient for the oxidation reaction of the catalyst, the fuel injection device is set so that the post-injection is performed at a timing significantly delayed from the main injection based on the temperature increase map 2 while monitoring the outlet temperature of the DPF 25. Control (temperature increase control 2). When operating below the exhaust temperature required for the oxidation reaction of the catalyst, the pre-heating means of the catalyst is controlled while monitoring the ambient temperature of the CR-DPF 17, and if necessary, the main injection is performed based on the temperature rise map 1 Subsequently, the fuel injection device is controlled to perform after injection at a combustible timing (temperature increase control 1). In the after-injection, the amount of heat that is not used for power in the calorific value of the fuel increases and the exhaust temperature rises, so the catalyst of the DPF 25 is also raised to the temperature required for the oxidation treatment of the deposited PM. When the catalyst temperature reaches the temperature required for the oxidation treatment, the temperature rise map 1 is switched to the temperature rise map 2, and post-injection causes the unburned fuel added to the exhaust gas to undergo an oxidation reaction on the catalyst, and the reaction heat causes the catalyst to react. In order to raise temperature, the combustion process of deposition PM is accelerated | stimulated (refer FIG. 10).

S11においては、DPFの出口温度が強制再生温度(しきい値)に達するかどうか、を判定する。S11の判定がyesになると、S12へ進む一方、S11の判定がnoのときは、yesになるまで判定を繰り返す。S12においては、DPFの出口温度が強制再生温度以上の継続時間が強制再生時間(しきい値)に達したかどうかを判定する。S12の判定がyesになると、S13へ進む一方、S12の判定がnoのときは、yesになるまで判定を繰り返す。S13においては、強制再生モードをリセットする。S14においては、強制再生の昇温制御を解除すると共に通常の燃料噴射へ復帰するのである。   In S11, it is determined whether or not the outlet temperature of the DPF reaches the forced regeneration temperature (threshold value). If the determination in S11 is yes, the process proceeds to S12. If the determination in S11 is no, the determination is repeated until yes. In S12, it is determined whether or not the duration of the DPF outlet temperature equal to or greater than the forced regeneration temperature has reached the forced regeneration time (threshold value). If the determination in S12 is yes, the process proceeds to S13. If the determination in S12 is no, the determination is repeated until yes. In S13, the forced regeneration mode is reset. In S14, the temperature increase control for forced regeneration is canceled and the routine returns to normal fuel injection.

図4は、S1(図2、参照)の処理を説明するフローチャートであり、S1.1においては、吸気流量と燃料流量とから空気過剰率を算出する。S1.2においては、空気過剰率からマップに基づいてスモーク濃度を求める。S1.3においては、スモーク濃度と吸気流量とからPM排出量を算出する。スモーク濃度−空気過剰率との関係は、エンジン回転数Neも影響するため、空気過剰率とエンジン回転数Neとから、3次元マップに基づいて、スモーク濃度を求めると良い。   FIG. 4 is a flowchart for explaining the processing of S1 (see FIG. 2). In S1.1, the excess air ratio is calculated from the intake flow rate and the fuel flow rate. In S1.2, the smoke concentration is obtained from the excess air ratio based on the map. In S1.3, the PM discharge amount is calculated from the smoke concentration and the intake flow rate. Since the relationship between the smoke concentration and the excess air ratio also affects the engine speed Ne, it is preferable to obtain the smoke density from the excess air ratio and the engine speed Ne based on a three-dimensional map.

S1.4においては、吸気流量と排気の密度とから排気流量=吸気流量/排気の密度を算出する。排気の密度は、空気の密度と同等であるとの仮定に基づいて、排気温度(DPF25の入口温度と出口温度との平均値)とCR-DPF17前後の差圧とから求める。S1.5においては、排気流量とDPF25のフィルタ容量とから空間速度=排気流量/フィルタ容量を算出する。S1.6においては、空間速度とDPF25の雰囲気温度(DPF25の出口温度または入口温度または出口温度と入口温度との平均値)とからマップに基づいてPM燃焼速度を求め、単位時間あたりのPM燃焼量に変換する。   In S1.4, the exhaust flow rate = the intake flow rate / the exhaust density is calculated from the intake flow rate and the exhaust density. The exhaust density is determined from the exhaust temperature (average value of the inlet temperature and outlet temperature of the DPF 25) and the differential pressure before and after the CR-DPF 17 based on the assumption that it is equivalent to the air density. In S1.5, space velocity = exhaust flow rate / filter capacity is calculated from the exhaust flow rate and the filter capacity of the DPF 25. In S1.6, the PM combustion speed is obtained based on the map from the space velocity and the ambient temperature of the DPF 25 (the outlet temperature or the inlet temperature of the DPF 25 or the average value of the outlet temperature and the inlet temperature), and the PM combustion per unit time is obtained. Convert to quantity.

S1.7においては、PM排出量からPM燃焼量を引く減算値を順次に積算することにより、DPF25のPM堆積量を算出する。減算値=PM排出量−PM燃焼量が負となる可能性があり、このようなの場合、減算値=0に修正するのである。   In S1.7, the PM accumulation amount of the DPF 25 is calculated by sequentially integrating the subtraction value obtained by subtracting the PM combustion amount from the PM emission amount. The subtraction value = PM emission amount−PM combustion amount may be negative. In such a case, the subtraction value = 0 is corrected.

図5は、S3(図2、参照)の処理を説明するフローチャートであり、S3.1においては、差圧センサ30の検出信号および温度センサ31a,31bの検出信号を読み込む。S3.2においては、DPF25の入口温度および出口温度に基づいて、強制再生時期の判定基準値と対比される、CR-DPF17前後の差圧を補正する。   FIG. 5 is a flowchart for explaining the processing of S3 (see FIG. 2). In S3.1, the detection signal of the differential pressure sensor 30 and the detection signals of the temperature sensors 31a and 31b are read. In S3.2, based on the inlet temperature and outlet temperature of the DPF 25, the differential pressure before and after the CR-DPF 17, which is compared with the judgment reference value of the forced regeneration timing, is corrected.

CR-DPF17前後の差圧は、DPF25のPM堆積量が同一の場合においても、運転条件に応じて大きく変化するので、差圧の検出を特定の運転条件に制限することが考えられる。図6は、その具体的な処理を説明するフローチャートであり、S3.01においては、エンジンの運転状態が差圧検出の許可条件を満たすかどうかを判定する。S3.01の判定がyesのときは、S3.02およびS3.03へ進み、図5のS3.1およびS3.2と同様の処理を行う一方、S3.01の判定がnoのときは、差圧検出の許可条件が成立するかどうかの判定を繰り返すのである。これにより、強制再生時期の判定に用いられる検出値(排気圧力または差圧)も安定するため、強制再生時期の判定が正確に行えるようになる。   Since the differential pressure before and after the CR-DPF 17 varies greatly depending on the operating conditions even when the PM accumulation amount of the DPF 25 is the same, the detection of the differential pressure may be limited to specific operating conditions. FIG. 6 is a flowchart for explaining the specific processing. In S3.01, it is determined whether or not the operating state of the engine satisfies the permission condition for detecting the differential pressure. When the determination of S3.01 is yes, the process proceeds to S3.02 and S3.03, and the same processing as S3.1 and S3.2 of FIG. 5 is performed, while when the determination of S3.01 is no, The determination as to whether or not the permission condition for detecting the differential pressure is satisfied is repeated. As a result, the detection value (exhaust pressure or differential pressure) used to determine the forced regeneration time is also stabilized, so that the forced regeneration time can be accurately determined.

図7は、S5(図2、参照)の処理を説明するフローチャートであり、S5.1においては、強制再生の完了かどうかを判定する。S5.1の判定がyesのときは、S5.2において、運転時間(または運転距離)のカウントを0から開始する。S5.3においては、運転時間(または運転距離)のカウント(計測)を処理する。S5.4においては、強制再生の開始かどうかを判定する。S5.4の判定がyesのときは、S5.5において、運転時間(または運転距離)のカウント値を0にリセットする。S5.1の判定がnoのときは、強制再生の完了かどうかの判定を繰り返す。S5.4の判定がnoのときは、S5.3へ戻り、運転時間(または運転距離)のカウント処理を継続する。   FIG. 7 is a flowchart for explaining the processing of S5 (see FIG. 2). In S5.1, it is determined whether or not forced regeneration is completed. When the determination in S5.1 is yes, in S5.2, the operation time (or operation distance) is counted from 0. In S5.3, the counting (measurement) of the driving time (or driving distance) is processed. In S5.4, it is determined whether or not forced regeneration is started. If the determination in S5.4 is yes, the count value of the driving time (or driving distance) is reset to 0 in S5.5. If the determination in S5.1 is no, repeat the determination of whether forced regeneration is complete. If the determination in S5.4 is no, the process returns to S5.3, and the operation time (or operation distance) counting process is continued.

図8は、S7(図2、参照)の処理を説明するフローチャートであり、S7.1においては、0リセット強制再生の完了かどうかを判定する。S7.1の判定がyesのときは、S7.2において、運転時間(または運転距離または強制再生回数)のカウントを0から開始する。S7.3においては、運転時間(または運転距離または強制再生回数)のカウント(計測)を処理する。S7.4においては、0リセット強制再生の開始かどうかを判定する。S7.4の判定がyesのときは、S7.5において、運転時間(または運転距離または強制再生回数)のカウント値を0にリセットする。S7.1の判定がnoのときは、0リセット強制再生の完了かどうかの判定を繰り返す。S7.4の判定がnoのときは、S7.3へ戻り、運転時間(または運転距離または強制再生回数)のカウント処理を継続する。   FIG. 8 is a flowchart for explaining the processing of S7 (see FIG. 2). In S7.1, it is determined whether or not the zero reset forced regeneration is completed. When the determination in S7.1 is yes, in S7.2, the counting of the driving time (or driving distance or the number of forced regenerations) starts from 0. In S7.3, the counting (measurement) of the driving time (or driving distance or forced regeneration count) is processed. In S7.4, it is determined whether or not zero reset forced regeneration is started. If the determination in S7.4 is yes, the count value of the driving time (or driving distance or the number of forced regenerations) is reset to 0 in S7.5. If the determination in S7.1 is no, the determination whether or not the zero reset forced regeneration is complete is repeated. If the determination in S7.4 is no, the process returns to S7.3 and continues the counting process of the driving time (or driving distance or the number of forced regenerations).

図9は、S10(図2、参照)の処理を説明するフローチャートであり、S10.1においては、昇温制御1が有効な下限値を下回る排気温度の運転状態かどうか判定する。S10.1の判定がyesのときは、S10.2へ進む一方、S10.1の判定がnoのときは、S10.5において、通常の制御マップに基づく燃料噴射を継続しつつ、昇温制御1への移行に待機する。   FIG. 9 is a flowchart for explaining the processing of S10 (see FIG. 2). In S10.1, it is determined whether or not the temperature raising control 1 is in the operating state of the exhaust temperature below the effective lower limit value. If the determination in S10.1 is yes, the process proceeds to S10.2. If the determination in S10.1 is no, in S10.5, while continuing fuel injection based on the normal control map, temperature increase control Wait for transition to 1.

S10.2においては、触媒の酸化反応に十分な排気温度の運転状態かどうかを判定する。S10.2の判定がyesのときは、S10.3において、通常の制御マップを昇温マップ2へ切り替えることにより、メイン噴射から大幅に遅れるタイミングでポスト噴射を行うように燃料噴射装置を制御する(昇温制御2)。その一方、S10.2の判定がnoのときは、S10.4において、触媒の予熱手段を制御するほか、必要があればメイン噴射に続いて燃焼可能なタイミングでアフタ噴射を行うように燃料噴射装置を制御する(昇温制御1)。   In S10.2, it is determined whether the exhaust gas temperature is sufficient for the catalyst oxidation reaction. When the determination in S10.2 is yes, in S10.3, the normal control map is switched to the temperature increase map 2 to control the fuel injection device so that post injection is performed at a timing significantly delayed from the main injection. (Temperature rise control 2). On the other hand, when the determination of S10.2 is no, in S10.4, the fuel pre-heating means is controlled, and if necessary, the fuel injection is performed so that after-injection is performed at a combustible timing following the main injection. The apparatus is controlled (temperature increase control 1).

昇温制御2(S10.3)においては、堆積PMの異常燃焼によりDPF25の雰囲気温度が急激に上昇する可能性が全くないわけでないため、DPFの出口温度が許容範囲の上限値に達すると、燃料のポスト噴射を中止するように設定すると良い。   In the temperature rise control 2 (S10.3), there is no possibility that the ambient temperature of the DPF 25 suddenly rises due to abnormal combustion of the accumulated PM, so when the DPF outlet temperature reaches the upper limit of the allowable range, It is better to set to stop the fuel post-injection.

DPF25の強制再生時期の判定については、PM堆積量の推定に基づく判定方法と、差圧レベルに基づく判定方法と、強制再生用のインターバルに基づく判定方法と、0リセット強制再生用のインターバルに基づく判定方法と、が併用されるのであり、これらのチェックが働くため、PM堆積量が過剰に至るのを未然に回避しえる確率が高められる。これら判定方法に対応する強制再生モードが選定され、PM堆積量に応じた強制再生温度および強制再生時間に基づく解除条件が成立するまでの間、CR-DPF17の昇温制御が行われるのである。このため、強制再生時期の判定方法によりPM堆積量の判定レベルが異なっても、強制再生をそのときのPM堆積量に適合する燃焼形態(燃焼時間や燃焼温度)をもって効率よく適正に処理しえるようになり、過剰な強制再生による燃費の悪化や堆積PMの異常燃焼によるフィルタおよび触媒の劣化を防止できる。   The determination of the forced regeneration timing of the DPF 25 is based on the determination method based on the estimation of the PM accumulation amount, the determination method based on the differential pressure level, the determination method based on the forced regeneration interval, and the zero reset forced regeneration interval. The determination method is used in combination, and since these checks work, the probability of avoiding an excessive amount of PM deposition can be increased. The temperature increase control of the CR-DPF 17 is performed until the forced regeneration mode corresponding to these determination methods is selected and the release condition based on the forced regeneration temperature and the forced regeneration time corresponding to the PM accumulation amount is satisfied. For this reason, even if the judgment level of the PM accumulation amount differs depending on the judgment method of the forced regeneration timing, the forced regeneration can be processed efficiently and appropriately with a combustion mode (combustion time and combustion temperature) that matches the PM accumulation amount at that time. Thus, it is possible to prevent deterioration of the fuel efficiency due to excessive forced regeneration and deterioration of the filter and catalyst due to abnormal combustion of the accumulated PM.

具体的には、想定されるPM堆積量が大きくなる程、昇温制御2の目標温度(強制再生温度)が低く設定される(図13、参照)ので、堆積PMの異常燃焼が防止され、強制再生を効率よく適正に制御できるのである。また、強制再生用のインターバルに基づく再生処理および0リセット強制再生用のインターバルに基づく再生処理により、PM堆積量の実際値と推定値とのズレが補正されるので、PM堆積量の推定精度も高度に維持しえるのである。   Specifically, as the assumed PM accumulation amount increases, the target temperature (forced regeneration temperature) of the temperature raising control 2 is set lower (see FIG. 13), so that abnormal combustion of the accumulated PM is prevented, Forced regeneration can be controlled efficiently and appropriately. In addition, the deviation between the actual value and the estimated value of the PM accumulation amount is corrected by the regeneration process based on the forced regeneration interval and the regeneration process based on the zero reset forced regeneration interval. It can be maintained at a high level.

堆積PMの異常燃焼を回避する手段として、DPF25の出口温度または入口温度またはこれらの平均値に応じて排気中の酸素濃度を制御することにより、DPF25の雰囲気温度を許容範囲の上限値以下に抑えることも考えられる。その場合、コントロールユニット20において、EGR弁21,吸気絞り弁14または排気絞り弁15,ターボバイパスの開閉バルブ22または可変ノズル式ターボ過給機の可変ノズル、などを対象に排気中の酸素濃度をDPF25の昇温に応じて減少させるような制御機能が設定されることになる。   As means for avoiding abnormal combustion of accumulated PM, by controlling the oxygen concentration in the exhaust gas according to the outlet temperature or inlet temperature of the DPF 25 or the average value thereof, the atmospheric temperature of the DPF 25 is kept below the upper limit of the allowable range. It is also possible. In that case, in the control unit 20, the oxygen concentration in the exhaust gas is controlled for the EGR valve 21, the intake throttle valve 14 or the exhaust throttle valve 15, the turbo bypass opening / closing valve 22, or the variable nozzle of the variable nozzle turbocharger. A control function for decreasing the temperature of the DPF 25 according to the temperature rise is set.

昇温制御2の対象は、燃料のポスト噴射に限定されるものでなく、CR-DPF17上流の排気通路15への燃料を添加する装置を設定することもできる。昇温制御1の対象は、既述の予熱手段のほか、エンジンの負荷を強制的に高める装置(リターダブレーキなど)の利用も考えられる。   The target of the temperature rise control 2 is not limited to fuel post-injection, and a device for adding fuel to the exhaust passage 15 upstream of the CR-DPF 17 can be set. The target of the temperature raising control 1 may be the use of a device (for example, a retarder brake) for forcibly increasing the engine load in addition to the preheating means described above.

システムの構成を説明する概要図である。It is a schematic diagram explaining the structure of a system. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容を説明する特性図である。It is a characteristic view explaining the control content of a control unit. コントロールユニットの制御内容に係る強制再生モード設定例である。It is an example of forced regeneration mode setting which concerns on the control content of a control unit. コントロールユニットの制御内容を説明する特性図である。It is a characteristic view explaining the control content of a control unit. コントロールユニットの制御内容を説明する特性図である。It is a characteristic view explaining the control content of a control unit. コントロールユニットの制御内容を説明する特性図である。It is a characteristic view explaining the control content of a control unit. コントロールユニットの制御内容を説明する特性図である。It is a characteristic view explaining the control content of a control unit.

符号の説明Explanation of symbols

10 ディーゼルエンジン
11 吸気通路
12 ターボ過給機
14 吸気絞り弁
15 排気通路
16 排気絞り弁
17 CR-DPF(連続再生式フィルタ装置)
20 コントロールユニット
21 EGRバルブ
22 ターボバイパスの開閉バルブ
25 DPF(CSF)
26 DOC(酸化触媒)
30 差圧センサ
31a,31b 温度センサ
32 エアフローセンサ
10 Diesel Engine 11 Intake Passage 12 Turbocharger 14 Intake Throttle Valve 15 Exhaust Passage 16 Exhaust Throttle Valve 17 CR-DPF (Continuous Regenerative Filter Device)
20 Control unit 21 EGR valve 22 Turbo bypass opening / closing valve 25 DPF (CSF)
26 DOC (oxidation catalyst)
30 Differential pressure sensor 31a, 31b Temperature sensor 32 Air flow sensor

Claims (13)

エンジンの排気中に含まれるPMを捕集しつつ触媒作用により燃焼させる排気浄化装置において、フィルタのPM堆積量を推定する手段と、複数の異なる方法に基づいてそれぞれフィルタの強制再生時期を判定する手段と、強制再生時期との判定を受けるとその判定方法に対応する強制再生モードとしてフィルタのPM堆積量に応じた強制再生温度および強制再生時間を設定する手段と、強制再生時期との判定を受けると強制再生モードに基づいてフィルタ温度を強制的に高める昇温制御を行う手段と、フィルタ温度が強制再生温度以上の継続状態が強制再生時間に達するとフィルタの強制的な昇温制御を解除する手段と、を備えることを特徴とする排気浄化装置。   In an exhaust purification device that collects PM contained in engine exhaust and burns by catalytic action, a means for estimating the amount of PM accumulated on the filter and a forced regeneration time for each filter are determined based on a plurality of different methods. When a determination is made on the means and the forced regeneration time, the forced regeneration temperature and forced regeneration time corresponding to the PM accumulation amount of the filter are set as the forced regeneration mode corresponding to the judgment method, and the forced regeneration time is determined. When this is received, the temperature rise control is forcibly raised based on the forced regeneration mode, and the forced temperature rise control of the filter is canceled when the continuation state where the filter temperature is higher than the forced regeneration temperature reaches the forced regeneration time. And an exhaust gas purifying device. 複数の異なる方法に基づいてそれぞれフィルタの強制再生時期を判定する手段は、フィルタのPM堆積量が所定値以上のときに強制再生時期を判定する手段と、フィルタ上流の排気圧力またはフィルタ前後の差圧が所定値以上のときに強制再生時期を判定する手段と、を備えることを特徴とする請求項1に記載の排気浄化装置。   The means for determining the forced regeneration timing of the filter based on a plurality of different methods is different from the means for determining the forced regeneration timing when the PM accumulation amount of the filter is a predetermined value or more, and the difference between the exhaust pressure upstream of the filter or the difference between before and after the filter. The exhaust emission control device according to claim 1, further comprising means for determining a forced regeneration timing when the pressure is equal to or greater than a predetermined value. 複数の異なる方法に基づいてそれぞれフィルタの強制再生時期を判定する手段は、フィルタのPM堆積量が所定値以上のときに強制再生時期を判定する手段と、フィルタの強制的な昇温制御の解除から計測される運転時間または運転距離が強制再生用に設定のインターバルに達するとその間にフィルタの強制的な昇温制御の履歴がないときに強制再生時期を判定する手段と、を備えることを特徴とする請求項1に記載の排気浄化装置。   The means for determining the forced regeneration time of the filter based on a plurality of different methods is the means for determining the forced regeneration time when the PM accumulation amount of the filter is equal to or greater than a predetermined value, and the cancellation of the forced temperature rise control of the filter Means for determining the forced regeneration time when the operating time or the driving distance measured from the time reaches the set interval for forced regeneration when there is no forced temperature increase control history of the filter during that time. The exhaust emission control device according to claim 1. 複数の異なる方法に基づいてそれぞれフィルタの強制再生時期を判定する手段は、フィルタのPM堆積量が所定値以上のときに強制再生時期を判定する手段と、運転時間または運転距離またはフィルタの強制的な昇温制御の回数がPM堆積量を定期的に初期化する0リセット強制再生用に設定のインターバルに達すると強制再生時期を判定する手段と、を備えることを特徴とする請求項1に記載の排気浄化装置。   The means for determining the forced regeneration time of the filter based on a plurality of different methods is the means for determining the forced regeneration time when the PM accumulation amount of the filter is equal to or greater than a predetermined value, and the forced time of the filter. 2. Means for determining the forced regeneration timing when the number of times of temperature rise control reaches the set interval for 0 reset forced regeneration for periodically initializing the PM accumulation amount. Exhaust purification equipment. 複数の異なる方法に基づいてそれぞれフィルタの強制再生時期を判定する手段は、フィルタのPM堆積量が所定値以上のときに強制再生時期を判定する手段と、フィルタの強制的な昇温制御の解除から計測される運転時間または運転距離が強制再生用に設定のインターバルに達するとその間にフィルタの強制的な昇温制御の履歴がないときに強制再生時期を判定する手段と、運転時間または運転距離またはフィルタの強制的な昇温制御の回数がPM堆積量を定期的に初期化する0リセット強制再生用に設定のインターバルに達すると強制再生時期を判定する手段と、を備えることを特徴とする請求項1に記載の排気浄化装置。   The means for determining the forced regeneration time of the filter based on a plurality of different methods is the means for determining the forced regeneration time when the PM accumulation amount of the filter is equal to or greater than a predetermined value, and the cancellation of the forced temperature rise control of the filter Means for determining the forced regeneration time when the operating time or driving distance measured from the time reaches the set interval for forced regeneration and there is no forced temperature rise control history during that time, and the operating time or driving distance Or a means for determining a forced regeneration timing when the number of times of forced temperature increase control of the filter reaches an interval set for zero reset forced regeneration that periodically initializes the PM accumulation amount. The exhaust emission control device according to claim 1. フィルタ上流の排気圧力またはフィルタ前後の差圧が所定値以上のときに強制再生時期を判定する手段は、強制再生時期の判定基準となる所定値として複数の異なるレベル値を設定する手段と、を備えることを特徴とする請求項2に記載の排気浄化装置。   The means for determining the forced regeneration timing when the exhaust pressure upstream of the filter or the differential pressure before and after the filter is equal to or greater than a predetermined value includes a means for setting a plurality of different level values as predetermined values that serve as criteria for determining the forced regeneration timing. The exhaust emission control device according to claim 2, wherein the exhaust purification device is provided. フィルタ上流の排気圧力またはフィルタ前後の差圧が所定値以上のときに強制再生時期を判定する手段は、フィルタ上流の排気圧力またはフィルタ前後の差圧に基づく判定を特定の運転条件に制限する手段と、を備えることを特徴とする請求項2に記載の排気浄化装置。   The means for determining the forced regeneration timing when the exhaust pressure upstream of the filter or the differential pressure before and after the filter is equal to or greater than a predetermined value is a means for limiting the determination based on the exhaust pressure upstream of the filter or the differential pressure before and after the filter to a specific operating condition. The exhaust emission control device according to claim 2, further comprising: フィルタ上流の排気圧力またはフィルタ前後の差圧が所定値以上のときに強制再生時期を判定する手段は、フィルタ上流の排気圧力またはフィルタ前後の差圧を排気温度により補正する手段と、を備えることを特徴とする請求項2に記載の排気浄化装置。   The means for determining the forced regeneration timing when the exhaust pressure upstream of the filter or the differential pressure before and after the filter is greater than or equal to a predetermined value includes means for correcting the exhaust pressure upstream of the filter or the differential pressure before and after the filter by the exhaust temperature. The exhaust emission control device according to claim 2. フィルタのPM堆積量を推定する手段は、エンジンの運転状態としての空気過剰率に基づいて単位時間あたりのPM排出量を求める手段と、フィルタの温度および空間速度に基づいて単位時間あたりのPM燃焼量を求める手段と、PM排出量からPM燃焼量を引く減算値の順次積算よりフィルタのPM堆積量を求める手段と、を備えることを特徴とする請求項1に記載の排気浄化装置。   The means for estimating the PM accumulation amount of the filter is a means for obtaining the PM emission amount per unit time based on the excess air ratio as the engine operating state, and the PM combustion per unit time based on the filter temperature and space velocity. The exhaust emission control device according to claim 1, further comprising: means for obtaining an amount; and means for obtaining a PM accumulation amount of the filter by sequentially integrating a subtraction value obtained by subtracting the PM combustion amount from the PM emission amount. 強制再生時期との判定を受けると強制再生モードに基づいてフィルタ温度を強制的に高める昇温制御を行う手段は、フィルタ温度が触媒の反応に必要な所定温度を下回るときは触媒を予熱するべくエンジンの排気温度を積極的に高める昇温制御1を行う手段と、フィルタ温度が触媒の反応に必要な所定温度以上のときは触媒の反応を促進すべく排気中に未燃燃料を添加する昇温制御2を行う手段と、を備えることを特徴とする請求項1に記載の排気浄化装置。   When the forced regeneration timing is received, the temperature increase control means for forcibly increasing the filter temperature based on the forced regeneration mode is to preheat the catalyst when the filter temperature falls below a predetermined temperature required for the reaction of the catalyst. Means for performing temperature rise control 1 that actively increases the exhaust temperature of the engine, and a rise in which unburned fuel is added to the exhaust to promote the reaction of the catalyst when the filter temperature is higher than a predetermined temperature required for the reaction of the catalyst. The exhaust emission control device according to claim 1, comprising means for performing temperature control 2. 強制再生時期との判定を受けると強制再生モードに基づいてフィルタ温度を強制的に高める昇温制御を行う手段は、エンジンの排気温度またはエンジンの負荷が下限値を下回る運転状態のときは通常制御を行いつつ昇温制御1への移行に待機する手段と、を備えることを特徴とする請求項10に記載の排気浄化装置。   When the forced regeneration timing is received, the means to perform temperature rise control that forcibly increases the filter temperature based on the forced regeneration mode is the normal control when the engine exhaust temperature or engine load is below the lower limit. The exhaust emission control device according to claim 10, further comprising: a unit that waits for the transition to the temperature rise control 1 while performing the operation. 強制再生時期との判定を受けると強制再生モードに基づいてフィルタ温度を強制的に高める昇温制御を行う手段は、エンジンの排気温度が上限値を超えると昇温制御2を中止する手段と、を備えることを特徴とする請求項10に記載の排気浄化装置。   The means for performing the temperature raising control to forcibly increase the filter temperature based on the forced regeneration mode when receiving the determination of the forced regeneration time, means for stopping the temperature raising control 2 when the exhaust temperature of the engine exceeds the upper limit value, The exhaust emission control device according to claim 10, comprising: フィルタ下流の排気温度を上限値以下に抑えるべく排気中の酸素量を積極的に制御する手段と、を備えることを特徴とする請求項1〜請求項5の何れかに記載の排気浄化装置。   An exhaust emission control device according to any one of claims 1 to 5, further comprising means for positively controlling the amount of oxygen in the exhaust gas so as to keep the exhaust gas temperature downstream of the filter below an upper limit value.
JP2003285149A 2003-08-01 2003-08-01 Exhaust purification equipment Expired - Fee Related JP4008867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285149A JP4008867B2 (en) 2003-08-01 2003-08-01 Exhaust purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285149A JP4008867B2 (en) 2003-08-01 2003-08-01 Exhaust purification equipment

Publications (2)

Publication Number Publication Date
JP2005054634A true JP2005054634A (en) 2005-03-03
JP4008867B2 JP4008867B2 (en) 2007-11-14

Family

ID=34364879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285149A Expired - Fee Related JP4008867B2 (en) 2003-08-01 2003-08-01 Exhaust purification equipment

Country Status (1)

Country Link
JP (1) JP4008867B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023959A (en) * 2005-07-20 2007-02-01 Nissan Motor Co Ltd Pm accumulation-quantity estimation device
WO2007145045A1 (en) * 2006-06-12 2007-12-21 Isuzu Motors Limited Exhaust gas cleaning method, and exhaust gas cleaning system
JP2011032921A (en) * 2009-07-31 2011-02-17 Yanmar Co Ltd Exhaust emission control device in diesel engine
JP2011231736A (en) * 2010-04-30 2011-11-17 Yanmar Co Ltd Exhaust emission control system for engine-driven machine
JP2014001740A (en) * 2013-09-06 2014-01-09 Mitsubishi Heavy Ind Ltd Exhaust emission control device and method for engine
CN105264189A (en) * 2013-06-05 2016-01-20 天纳克汽车经营有限公司 Exhaust treatment regeneration control system
US9416744B2 (en) 2012-11-07 2016-08-16 Mitsubishi Heavy Industries, Ltd. Exhaust gas purification device for an internal combustion engine
KR101669290B1 (en) * 2010-12-24 2016-10-25 두산인프라코어 주식회사 Dpf regeneration apparatus for construction machinery and dpf regenation method for the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404460B2 (en) 2010-02-09 2014-01-29 三菱重工業株式会社 Engine exhaust purification apparatus and method, and filter regeneration system for engine exhaust purification apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023959A (en) * 2005-07-20 2007-02-01 Nissan Motor Co Ltd Pm accumulation-quantity estimation device
JP4622719B2 (en) * 2005-07-20 2011-02-02 日産自動車株式会社 PM deposition amount estimation device
WO2007145045A1 (en) * 2006-06-12 2007-12-21 Isuzu Motors Limited Exhaust gas cleaning method, and exhaust gas cleaning system
CN101466921B (en) * 2006-06-12 2012-05-16 五十铃自动车株式会社 Exhaust gas cleaning method, and exhaust gas cleaning system
US8522533B2 (en) 2006-06-12 2013-09-03 Isuzu Motors Limited Method of purifying exhaust gas and exhaust gas purification system
JP2011032921A (en) * 2009-07-31 2011-02-17 Yanmar Co Ltd Exhaust emission control device in diesel engine
JP2011231736A (en) * 2010-04-30 2011-11-17 Yanmar Co Ltd Exhaust emission control system for engine-driven machine
KR101669290B1 (en) * 2010-12-24 2016-10-25 두산인프라코어 주식회사 Dpf regeneration apparatus for construction machinery and dpf regenation method for the same
US9416744B2 (en) 2012-11-07 2016-08-16 Mitsubishi Heavy Industries, Ltd. Exhaust gas purification device for an internal combustion engine
CN105264189A (en) * 2013-06-05 2016-01-20 天纳克汽车经营有限公司 Exhaust treatment regeneration control system
JP2016530425A (en) * 2013-06-05 2016-09-29 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッドTenneco Automotive Operating Company Inc. Exhaust treatment regeneration control system
JP2014001740A (en) * 2013-09-06 2014-01-09 Mitsubishi Heavy Ind Ltd Exhaust emission control device and method for engine

Also Published As

Publication number Publication date
JP4008867B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP2010101205A (en) Dpf regeneration timing determination method and determination device
JP4150308B2 (en) Exhaust purification device
JP4008867B2 (en) Exhaust purification equipment
JP2011069323A (en) Exhaust emission control device for diesel engine
JP2007211788A (en) Exhaust emission control device for internal combustion engine
JP2016061145A (en) Exhaust emission control system
JP2005307745A (en) Exhaust emission control device
JP4986667B2 (en) Exhaust purification device
JP4185882B2 (en) Exhaust purification device
JP4008866B2 (en) Exhaust purification equipment
JP2006274906A (en) Exhaust emission control device
JP4365724B2 (en) Exhaust purification equipment
JP5912494B2 (en) Diesel engine exhaust purification system
JP2005307746A (en) Exhaust emission control device
JP4070687B2 (en) Exhaust purification device
JP4052268B2 (en) Exhaust gas purification device for internal combustion engine
JP6455237B2 (en) Exhaust purification system
JP6183659B2 (en) Exhaust gas purification device
JP4070681B2 (en) Exhaust purification device
JP2005307744A (en) Exhaust emission control device
JP2009156172A (en) Exhaust emission control system and method for controlling exhaust emission control system
JP2006029156A (en) Pm combustion amount estimation device
JP4081419B2 (en) Exhaust purification device
JP2006257996A (en) Particulate matter oxidative rate calculation device, particulate matter accumulation amount calculation device, and exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070830

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees