JP2010101205A - Dpf regeneration timing determination method and determination device - Google Patents

Dpf regeneration timing determination method and determination device Download PDF

Info

Publication number
JP2010101205A
JP2010101205A JP2008271363A JP2008271363A JP2010101205A JP 2010101205 A JP2010101205 A JP 2010101205A JP 2008271363 A JP2008271363 A JP 2008271363A JP 2008271363 A JP2008271363 A JP 2008271363A JP 2010101205 A JP2010101205 A JP 2010101205A
Authority
JP
Japan
Prior art keywords
sof
soot
amount
dpf
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008271363A
Other languages
Japanese (ja)
Inventor
Tomotsugu Masuda
具承 増田
Kazuki Nishizawa
和樹 西澤
Masaki Toda
正樹 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008271363A priority Critical patent/JP2010101205A/en
Publication of JP2010101205A publication Critical patent/JP2010101205A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DPF regeneration timing determination method and device, which accurately determines a DPF regeneration timing by accurately estimating a PM amount and a SOOT deposition amount of an important element to determine the DPF regeneration timing. <P>SOLUTION: The DPF regeneration timing determination device is provided with a DPF for collecting a PM, in an exhaust passage of an internal combustion engine, and determines the regeneration timing for burning and removing the PM deposited on the DPF, and also is provided with: a SOF exhaust amount map 23, a SOOT exhaust amount map 25; a SOF regeneration amount map 27; a SOOT regeneration amount map 29; and a SOF deposition amount correction means for calculating a SOF content and SOOT content deposited on the DPF from a difference between the discharge amount and regeneration amount of the SOF content and SOOT content calculated from each map, and for correcting a volatilization or oxidative combustion content of the SOF content with the delay of time by a temperature history of the DPF during engine operation, or an oxidative combustion content in the DOC. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ディーゼルエンジンの排ガス後処理装置として用いられるDPF(ディーゼルパティキュレートフィルター)に堆積するPM(粒子状物質)、特にPM中のSOOTの堆積量を精度よく推定してDPFの再生時期を判定する判定方法および判定装置に関する。   The present invention accurately estimates the amount of PM (particulate matter) deposited on a DPF (diesel particulate filter) used as an exhaust gas aftertreatment device of a diesel engine, in particular, the amount of SOOT deposited in the PM, and determines the regeneration timing of the DPF. The present invention relates to a determination method and a determination apparatus.

DPFは、一般的に、ディーゼルエンジンから排出されるPMを排気ガスから除去するために使用され、セラミック等をハニカム状モノリスに成形して構成される。運転中にこのDPFにPMが堆積していき、やがてその堆積量が許容値を上回ると、目詰まりが生じて排圧が上昇し運転性に悪影響を及ぼすため、DPFは一定量のPMを捕集した後にPMを燃焼除去するための再生操作(DPF強制再生)が必要である。
DPFの強制再生の実施にあたっては、DPFに流入するガス温度を高温に保つ必要があり、ガス温度上昇のために排ガス後処理装置(DOC(ディーゼル酸化触媒)+DPF)への燃料供給、すなわち、燃焼室内のへのポスト噴射、DOCの上流側の排気通路内への軽油添加等が行われている。
DPFの強制再生を指示する指標であるSOOT(PM中の黒煙分)の堆積量を正確に推定することは、PMの燃焼除去のタイミングを正確に判定する上で重要である。
The DPF is generally used for removing PM discharged from a diesel engine from exhaust gas, and is formed by molding ceramic or the like into a honeycomb monolith. When PM accumulates in this DPF during operation, and the accumulated amount eventually exceeds the allowable value, clogging occurs and the exhaust pressure rises, adversely affecting the drivability, so the DPF captures a certain amount of PM. A regeneration operation (DPF forced regeneration) for burning and removing PM after collection is necessary.
When performing forced regeneration of the DPF, it is necessary to keep the temperature of the gas flowing into the DPF high. Fuel supply to the exhaust gas after-treatment device (DOC (diesel oxidation catalyst) + DPF), that is, combustion, to increase the gas temperature Post injection into the room, addition of light oil into the exhaust passage upstream of the DOC, and the like are performed.
Accurate estimation of the accumulation amount of SOOT (black smoke in PM), which is an index for instructing forced regeneration of the DPF, is important in accurately determining the timing of PM combustion removal.

このPMまたはSOOTの堆積量推定については、稼働時間、燃料噴射量、圧損データ等による推定方法が知られているが、DPFの前後差圧による検出においては、図10のPM堆積量とDPFの前後差圧との関係に示すように、温度が変化すると同じPM堆積量であっても差圧が変化することから、精度よい堆積量の検出ができない問題がある。   For estimating the PM or SOOT accumulation amount, an estimation method based on operating time, fuel injection amount, pressure loss data, and the like is known. However, in the detection by the differential pressure across the DPF, the PM accumulation amount and the DPF in FIG. As shown in the relationship with the front-rear differential pressure, when the temperature changes, even if the PM deposition amount is the same, the differential pressure changes. Therefore, there is a problem that the deposition amount cannot be detected accurately.

一方、ディーゼルパティキュレートの捕集量を検出する手法として特許文献1(特開平7−310524号公報)が知られており、該特許文献1には、運転状態により同一の詰まり量でも、低負荷運転の場合はSOF(可燃性有機物分)の割合が大きく、PM捕集量としては小さくなり、高負荷運転の場合はドライスートの割合が大きくなるという関係に基づいて、運転状態によるPM成分補正係数を用いることが示され、さらに、パティキュレートの発熱量でフィルタの再生時期の判定を行うことが示されている。
また、特許文献2(特開2003−314249号公報)には、DPFをPM中のSOF分を除去可能な温度以上に昇温して所定時間保持した後、圧力差検出装置でDPFの前後差圧を検出してPM捕集量を算出するので、PM中のSOF分の影響を排除した状態で捕集量を算出できることが示されている。
On the other hand, Patent Document 1 (Japanese Patent Application Laid-Open No. 7-310524) is known as a technique for detecting the amount of diesel particulate trapped. The Patent Document 1 discloses a low load even when the amount of clogging is the same depending on the operating state. PM component correction based on operating conditions based on the relationship that the SOF (combustible organic matter) ratio is large in operation, the PM collection amount is small, and the dry soot ratio is large in high-load operation. It is shown that a coefficient is used, and further, it is shown that the regeneration timing of the filter is determined by the amount of heat generated by the particulates.
In Patent Document 2 (Japanese Patent Laid-Open No. 2003-314249), the DPF is heated to a temperature higher than the temperature at which the SOF content in the PM can be removed and held for a predetermined time, and then the difference between the front and back of the DPF is detected by the pressure difference detection device. Since the PM collection amount is calculated by detecting the pressure, it is shown that the collection amount can be calculated in a state where the influence of the SOF content in the PM is excluded.

特開平7−310524号公報JP-A-7-310524 特開2003−314249号公報JP 2003-314249 A

しかし、前記のようにDPFの前後差圧による検出においては、温度が変わると同じPM堆積量であっても差圧が変わってしまうため、精度よい堆積量の検出ができない。さらに、特許文献1には運転状態によるPM成分補正係数を用いること、さらにパティキュレートの発熱量でPM堆積量を推定することが示されているが、SOOT量に着目してPMを精度よく推定する手法としては十分ではなく、また、特許文献2のようなSOF分を除去可能な温度以上に昇温して所定時間保持した後、圧力差検出装置でDPFの前後差圧を検出してPM捕集量を算出する構成であるため、SOF分を除去のための加熱が必要となり、常に精度よいSOOT分を推定する手法としては十分ではなく、SOOT量、PM量の精度よい推定手法が望まれていた。   However, in the detection based on the differential pressure across the DPF as described above, since the differential pressure changes even if the PM deposition amount is the same when the temperature changes, it is impossible to accurately detect the deposition amount. Further, Patent Document 1 shows that the PM component correction coefficient according to the operating state is used and that the PM deposition amount is estimated by the amount of heat generated by the particulates, but the PM is accurately estimated by focusing on the SOOT amount. In addition, it is not sufficient as a technique for performing such a process, and after raising the temperature to a temperature at which the SOF component can be removed as in Patent Document 2 and holding it for a predetermined time, the pressure difference detection device detects the differential pressure across the DPF and PM. Since the configuration is such that the amount collected is calculated, heating for removing the SOF component is necessary, and this is not sufficient as a method for always estimating the SOOT component accurately, and a method for estimating the SOOT amount and the PM amount with high accuracy is desired. It was rare.

本発明はかかる従来技術の課題に鑑み、DPF再生時期の判定に重要な要素であるSOOT堆積量およびPM量を精度よく推定してDPF再生時期を精度よく判定するDPF再生時期判定方法および判定装置を提供することを目的とする。   In view of the problems of the prior art, the present invention provides a DPF regeneration timing determination method and a determination apparatus for accurately estimating the DPF regeneration timing by accurately estimating the SOOT accumulation amount and the PM amount, which are important elements for the determination of the DPF regeneration timing. The purpose is to provide.

本発明はかかる課題を解決するもので、第1発明はDPF再生時期判定装置に係る発明であり、内燃機関の排気通路にPM(粒子状物質)を捕集するDPF(ディーゼルパティキュレートフィルター)を設けたディーゼルエンジンの排ガス後処理装置を備え、前記DPFに堆積したPMを燃焼、除去する再生時期を判定するDPF再生時期判定装置において、PM中のオイルや未燃料からなるSOF分(可燃性有機物分)の排出量をエンジン運転状態に対して設定したSOF排出量マップと、PM中のSOOT分(黒煙分)の排出量をエンジン運転状態に対して設定したSOOT排出量マップと、DPFでの排気ガス温度におけるSOF分の再生量を設定したSOF再生量マップと、DPFでの排ガス温度におけるSOOT分の再生量を算出するSOOT再生量算出手段とを備え、前記各マップおよび算出手段により算出したSOF分およびSOOT分の排出量と再生量との差からDPFに堆積したSOF分およびSOOT分を算出し、該算出値の経時蓄積量を求めてSOF分およびSOOT分の堆積量を求めるSOF堆積量算出手段およびSOOT堆積量算出手段と、該SOF堆積量算出手段によって算出されたSOF分がエンジン運転中のDPFの温度履歴によって時間遅れを伴って揮発または酸化燃焼分を補正するSOF堆積量補正手段と、該補正されたSOF堆積量および前記算出されたSOOT堆積量に基づいてDPFの再生時期を判定する再生判定手段と、を備えたことを特徴とする。   The present invention solves such a problem, and the first invention relates to a DPF regeneration timing determination device, and a DPF (diesel particulate filter) that collects PM (particulate matter) in an exhaust passage of an internal combustion engine. In a DPF regeneration timing determination device that includes an exhaust gas aftertreatment device for a diesel engine and that determines a regeneration timing for burning and removing PM accumulated in the DPF, an SOF component (combustible organic matter) consisting of oil or unfueled fuel in the PM SOF emission map in which the amount of emissions for the engine operating state is set, the SOOT emission map in which the amount of SOOT in the PM (black smoke) is set for the engine operating state, and the DPF SOF regeneration amount map that sets the regeneration amount for SOF at the exhaust gas temperature of the exhaust gas, and the regeneration amount for SOOT at the exhaust gas temperature at the DPF SOOT regeneration amount calculating means for calculating SOF content and SOOT content deposited on the DPF from the difference between the SOF amount calculated by each map and the calculation means and the discharge amount of SOOT and the regeneration amount, and calculating the calculated value SOF deposit amount calculating means and SOOT deposit amount calculating means for determining the accumulated amount of SOF and SOOT, and the SOF calculated by the SOF deposit amount calculating means is the temperature of the DPF during engine operation. SOF accumulation amount correcting means for correcting volatilization or oxidative combustion with time delay according to the history, and regeneration determining means for determining the DPF regeneration timing based on the corrected SOF deposition amount and the calculated SOOT deposition amount And.

また、第2発明は第1発明に対応するDPF再生時期判定方法に係る発明であり、内燃機関の排気通路にPM(粒子状物質)を捕集するDPF(ディーゼルパティキュレートフィルター)を設けたディーゼルエンジンの排ガス後処理装置を備え、前記DPFに堆積したPMを燃焼、除去する再生時期を判定するDPF再生時期判定方法において、PM中のオイルや未燃料からなるSOF分(可燃性有機物分)の排出量をエンジン運転状態に対して設定されたSOF排出量マップによって算出し、PM中のSOOT分(黒煙分)の排出量をエンジン運転状態に対して設定されたSOOT排出量マップによって算出し、DPFでの排気ガス処理温度におけるSOF分の再生量をSOF再生量マップによって算出し、DPFでの排ガス処理温度におけるSOOT分の再生量をSOOT再生量算出手段によって算出し、前記算出したSOF分およびSOOT分の排出量と再生量との差からDPFに堆積したSOF分およびSOOT分を算出し、該算出値の経時蓄積量を求めてSOF分およびSOOT分の堆積量を算出し、該算出したSOF分のうちSOFがエンジン運転中のDPFの温度履歴に基づいて時間遅れを伴って揮発または酸化燃焼分を補正し、該補正したSOF分と前記算出したSOOT分とを用いて再生時期を判定することを特徴とする。   The second invention relates to a DPF regeneration timing determination method corresponding to the first invention, and is a diesel engine provided with a DPF (diesel particulate filter) for collecting PM (particulate matter) in an exhaust passage of an internal combustion engine. In a DPF regeneration timing determination method that includes an exhaust gas aftertreatment device for an engine and determines a regeneration timing for burning and removing PM accumulated in the DPF, an SOF component (combustible organic matter component) of oil or unfueled fuel in the PM is used. Emissions are calculated using the SOF emission map set for the engine operating state, and the SOOT (black smoke) emission amount in the PM is calculated using the SOOT emission map set for the engine operating state. The regeneration amount of the SOF at the exhaust gas treatment temperature in the DPF is calculated by the SOF regeneration amount map, and the exhaust gas treatment temperature in the DPF is calculated. The SOOT regeneration amount is calculated by the SOOT regeneration amount calculating means, and the SOF and SOOT components deposited on the DPF are calculated from the difference between the calculated SOF and SOOT emission and regeneration, and the calculated value The amount of SOF accumulated and the amount of SOOT accumulated is calculated to calculate the amount of volatile or oxidative combustion with a time delay based on the temperature history of the DPF during engine operation. The correction time is corrected, and the reproduction time is determined using the corrected SOF and the calculated SOOT.

係る第1発明、および第2発明によれば、PM中のSOOT分とSOF分とのエンジンからの排出量とDPFでの再生量とが、それぞれエンジンの運転状態および排気ガス温度においてマップによって予め設定され、または算出手段によって算出されるため、排出量と再生量との差から容易且つ確実にDPFに堆積されているSOOT量とSOF量とを算出でき、その算出値を経過時間蓄積してDPFでのSOOT堆積量およびSOF堆積量を算出できる。   According to the first and second aspects of the present invention, the SOOT and SOF emissions from the engine and the regeneration amount of the DPF in the PM are preliminarily represented by maps in the engine operating state and the exhaust gas temperature, respectively. Since it is set or calculated by the calculation means, the SOOT amount and SOF amount deposited on the DPF can be easily and reliably calculated from the difference between the discharge amount and the regeneration amount, and the calculated value is accumulated for the elapsed time. The SOOT deposition amount and the SOF deposition amount in the DPF can be calculated.

さらに、マップまたは算出手段によって算出されたSOF分の堆積量がエンジン運転中のDPFの温度履歴に基づいて時間遅れを伴って揮発または酸化燃焼分を補正することで、DPFの前後差圧にとして検出される圧力差の内のSOOTの量とSOFの量との堆積比率関係を正確に把握することが可能になる。
すなわち、DPFに堆積したSOOTおよびSOFのうちSOF分は主に可燃性有機物であるため、時間遅れを伴って徐々に揮発または酸化燃焼する現象が生じる。従って、DPFの温度履歴が温度上昇時には堆積量として算出したSOF分の量を減少補正する必要がある。また、一旦高い温度に上がった後の下降時には、時間経過と共に揮発するが、すでに一旦高い温度に上がった後であるため、前記の温度上昇時よりも減少の割合が多い。
このように、SOF分の揮発または酸化燃焼分を考慮して正確なSOF分の堆積量を算出できるため、該補正したSOF分と前記算出したSOOT分とを用いて再生時期を正確に判定することができるようになる。
Further, the amount of accumulated SOF calculated by the map or the calculation means is corrected to volatile or oxidative combustion with a time delay based on the temperature history of the DPF while the engine is operating, so that the differential pressure across the DPF is corrected. It becomes possible to accurately grasp the deposition ratio relationship between the amount of SOOT and the amount of SOF in the detected pressure difference.
That is, since the SOF component in the SOOT and SOF deposited on the DPF is mainly combustible organic matter, a phenomenon of gradual volatilization or oxidative combustion occurs with a time delay. Therefore, when the temperature history of the DPF rises, it is necessary to correct the decrease in the amount of SOF calculated as the deposition amount. In addition, when it descends after it has risen to a high temperature, it evaporates with time, but since it has already risen once to a high temperature, the rate of decrease is greater than that at the time of temperature rise.
As described above, since an accurate SOF deposition amount can be calculated in consideration of the SOF volatilization or oxidative combustion, the regeneration timing is accurately determined using the corrected SOF component and the calculated SOOT component. Will be able to.

また、前記第1発明において、好ましくは、前記補正SOF堆積量とSOOT堆積量との比を算出するSOOT/SOF比算出手段と、予め排ガス温度ごとにSOOT/SOF比をパラメータとしてDPFの前後差圧とSOOT堆積量との関係が設定されたSOOT/SOF比マップとを備え、前記DPFの前後の差圧を検出する差圧センサからの検出値と排ガス温度センサからの検出値と前記SOOT/SOF比算出手段によるSOOT/補正SOF比の算出値とによって、前記SOOT/SOF比マップを用いてSOOT分の堆積量を算出し、該SOOT分によって再生時期を判定するとよい。   In the first invention, preferably, a SOOT / SOF ratio calculating means for calculating a ratio between the corrected SOF accumulation amount and the SOOT accumulation amount, and a difference in front and back of the DPF with the SOOT / SOF ratio as a parameter for each exhaust gas temperature in advance. A SOOT / SOF ratio map in which the relationship between the pressure and the SOOT deposition amount is set, and a detected value from a differential pressure sensor that detects a differential pressure before and after the DPF, a detected value from an exhaust gas temperature sensor, and the SOOT / Based on the calculated value of the SOOT / corrected SOF ratio by the SOF ratio calculating means, the SOOT / SOF ratio map is used to calculate the deposition amount for the SOOT, and the regeneration timing is determined based on the SOOT.

また、前記第2発明において、好ましくは、前記SOOT分と補正SOF分との比を算出し、さらに予め排ガス温度ごとにSOOT/SOF比をパラメータとしてDPFの前後差圧とSOOT堆積量との関係が設定されたSOOT/SOF比マップを準備し、差圧センサからの検出値と排ガス温度センサからの検出値と前記SOOT/補正SOF比の算出値とに基づいて、前記SOOT/SOF比マップを用いてSOOT分の堆積量を算出し、該SOOT分によって再生時期を判定するとよい。   In the second invention, preferably, a ratio between the SOOT component and the corrected SOF component is calculated, and the relationship between the differential pressure before and after the DPF and the SOOT deposition amount with the SOOT / SOF ratio as a parameter for each exhaust gas temperature in advance. Is prepared, and based on the detected value from the differential pressure sensor, the detected value from the exhaust gas temperature sensor, and the calculated value of the SOOT / corrected SOF ratio, the SOOT / SOF ratio map is prepared. It is preferable to calculate the accumulation amount for SOOT and determine the regeneration time based on the SOOT amount.

かかるそれぞれの発明によれば、予め排ガス温度ごとにSOOT/SOF比をパラメータとしてDPFの前後差圧とSOOT堆積量との関係が設定されたSOOT/SOF比マップを予め設定して用いることで、DPFの差圧センサからの信号を利用してSOOT堆積量を精度よく推定できる。
さらに、前記したようにDPFの温度履歴に基づいて時間遅れを伴って揮発または酸化燃焼するSOF分を補正することで、DPFの前後差圧にとして検出される圧力差の内のSOOTの量とSOFの量との堆積比率関係を正確に算出することが可能になるので、その結果に基づいてSOOT/SOF比マップ用いて、正確なSOOT量の算出が可能になる。そしてより精度の高いPM堆積量の推定ができる。
According to each of the inventions, a SOOT / SOF ratio map in which the relationship between the differential pressure across the DPF and the SOOT deposition amount is set in advance using the SOOT / SOF ratio as a parameter for each exhaust gas temperature in advance is used. The SOOT deposition amount can be accurately estimated using a signal from the differential pressure sensor of the DPF.
Further, as described above, by correcting the SOF component that volatilizes or oxidizes and burns with a time delay based on the temperature history of the DPF, the amount of SOOT in the pressure difference detected as the differential pressure across the DPF Since it becomes possible to accurately calculate the deposition ratio relationship with the amount of SOF, it is possible to accurately calculate the amount of SOOT using the SOOT / SOF ratio map based on the result. Further, the PM deposition amount can be estimated with higher accuracy.

また、第1発明において、好ましくは、前記補正SOF堆積量はSOF堆積量に補正係数をかけてSOF分の揮発または酸化燃焼分を補正するとよく、前記補正係数は、DPFに温度上昇履歴がある場合と、温度下降履歴がある場合とで異ならせ、温度上昇履歴時の方が温度下降履歴時よりも小さい値に設定するとよい。   In the first aspect of the invention, preferably, the corrected SOF accumulation amount may be obtained by multiplying the SOF accumulation amount by a correction coefficient to correct the SOF volatilization or oxidation combustion, and the correction coefficient has a temperature rise history in the DPF. It is better to set the value at the time of the temperature rise history to a value smaller than that at the time of the temperature fall history.

例えば、各マップおよび算出手段により算出したSOF分およびSOOT分の排出量と再生量との差からDPFに堆積したSOF分を算出し、該算出値の経時蓄積量を求めてSOF分(Qs)を算出するが、その経時蓄積量を算出する経時時間(t)内のDPFの温度履歴(R)に応じて、補正係数(K(t、R))をかけて、補正後のSOF分(Qsf)=Qs(1−K(t、R))として算出する。
そして、補正係数(K(t、R))は、経時蓄積量を算出する経時時間(t)が長ければ大きくし、さらにDPFの温度履歴(R)の上昇時には下降時よりも小さく設定される。
For example, the SOF content accumulated in the DPF is calculated from the difference between the SOF and SOOT emission amounts calculated by the maps and the calculation means and the regeneration amount, and the accumulated value of the calculated value with time is obtained to obtain the SOF component (Qs). Is calculated by applying a correction coefficient (K (t, R)) according to the temperature history (R) of the DPF within the elapsed time (t) in which the accumulated amount is calculated. Qsf) = Qs (1−K (t, R)).
The correction coefficient (K (t, R)) is set to be larger when the elapsed time (t) for calculating the accumulated amount with time is longer, and is set to be smaller when the temperature history (R) of the DPF is increased than when it is decreased. .

このように、時間遅れによる揮発現象によるSOF分の減少量は、経過時間(t)が長くなるほど大きく影響するため、時間tをパラメータとして時間に応じて大きく減少するように設定され、さらに、温度履歴において一旦温度上昇があったときには揮発現象が大きく影響するため、温度上昇時度と下降時度とで異ならせて、温度上昇時の場合の度合いを小さく、揮発または酸化燃焼による減少量を小さくして補正している。
なお、経過時間(t)については、経時蓄積量を算出する時間に限らず任意に設定して判定してもよい。
Thus, the amount of decrease in the SOF due to the volatile phenomenon due to the time delay has a greater effect as the elapsed time (t) becomes longer. Therefore, the time t is set as a parameter so as to greatly decrease according to the time. Once the temperature rises in the history, the volatilization phenomenon has a large effect, so the degree of temperature rise is different from the degree of temperature rise and the degree of temperature rise is small, and the amount of decrease due to volatilization or oxidative combustion is small. To correct it.
Note that the elapsed time (t) is not limited to the time for calculating the accumulated amount with time, and may be determined arbitrarily.

次に、第3発明はDPF再生時期判定装置に係る発明であり、内燃機関の排気通路にPM(粒子状物質)を捕集するDPF(ディーゼルパティキュレートフィルター)を設けたディーゼルエンジンの排ガス後処理装置を備え、前記DPFに堆積したPMを燃焼、除去する再生時期を判定するDPF再生時期判定装置において、PM中のオイルや未燃料からなるSOF分(可燃性有機物分)の排出量をエンジン運転状態に対して設定したSOF排出量マップと、PM中のSOOT分(黒煙分)の排出量をエンジン運転状態に対して設定したSOOT排出量マップと、DPFでの排気ガス温度におけるSOF分の再生量を設定したSOF再生量マップと、DPFでの排ガス温度におけるSOOT分の再生量を算出するSOOT再生量算出手段とを備え、前記各マップおよび算出手段により算出したSOF分およびSOOT分の排出量と再生量との差からDPFに堆積したSOF分およびSOOT分を算出し、該算出値の経時蓄積量を求めてSOF分およびSOOT分の堆積量を求めるSOF堆積量算出手段およびSOOT堆積量算出手段と、該SOF堆積量算出手段によって算出されたSOF分がDPFの上流に設けられたDOC(ディーゼル酸化触媒)の触媒反応による酸化燃焼による浄化分を補正するSOF堆積量補正手段と、該補正されたSOF堆積量および前記算出されたSOOT堆積量に基づいてDPFの再生時期を判定する再生判定手段と、を備えたことを特徴とする。   Next, the third aspect of the invention relates to a DPF regeneration timing determination device, which is an exhaust gas post-treatment for a diesel engine provided with a DPF (diesel particulate filter) for collecting PM (particulate matter) in an exhaust passage of the internal combustion engine. In a DPF regeneration timing determination device for determining a regeneration timing for burning and removing PM accumulated in the DPF, an engine operation is performed for the amount of SOF (combustible organic matter) that is composed of oil and unfueled fuel in the PM. SOF emission map set for the state, SOOT emission map in which the amount of SOOT (black smoke) emission in the PM is set for the engine operating state, and the SOF amount at the exhaust gas temperature in the DPF An SOF regeneration amount map in which the regeneration amount is set, and SOOT regeneration amount calculation means for calculating the regeneration amount for SOOT at the exhaust gas temperature in the DPF. The SOF and SOOT components accumulated in the DPF are calculated from the difference between the SOF and SOOT emission amounts calculated by the respective maps and the calculation means and the regeneration amount, and the accumulated values of the calculated values with time are calculated to obtain the SOF. SOF deposit amount calculating means and SOOT deposit amount calculating means for determining the deposit amount and SOOT deposit amount, and a DOC (diesel oxidation catalyst) catalyst in which the SOF component calculated by the SOF deposit amount calculating means is provided upstream of the DPF SOF deposition amount correction means for correcting the purification amount due to oxidative combustion by reaction, and regeneration determination means for determining the regeneration timing of the DPF based on the corrected SOF deposition amount and the calculated SOOT deposition amount It is characterized by that.

また、第4発明は第3発明に対応するDPF再生時期判定方法に係る発明であり、内燃機関の排気通路にPM(粒子状物質)を捕集するDPF(ディーゼルパティキュレートフィルター)を設けたディーゼルエンジンの排ガス後処理装置を備え、前記DPFに堆積したPMを燃焼、除去する再生時期を判定するDPF再生時期判定方法において、PM中のオイルや未燃料からなるSOF分(可燃性有機物分)の排出量をエンジン運転状態に対して設定されたSOF排出量マップによって算出し、PM中のSOOT分(黒煙分)の排出量をエンジン運転状態に対して設定されたSOOT排出量マップによって算出し、DPFでの排気ガス処理温度におけるSOF分の再生量をSOF再生量マップによって算出し、DPFでの排ガス処理温度におけるSOOT分の再生量をSOOT再生量算出手段によって算出し、前記算出したSOF分およびSOOT分の排出量と再生量との差からDPFに堆積したSOF分およびSOO分を算出し、該算出値の経時蓄積量を求めてSOF分およびSOOT分の堆積量を算出し、該算出したSOF分のうちSOFが前記DPFの上流に設けられたDOC(ディーゼル酸化触媒)の触媒反応による酸化燃焼による浄化分を補正し、該補正したSOF分と前記算出したSOOT分によって再生時期を判定することを特徴とする。   The fourth invention relates to a DPF regeneration timing determination method corresponding to the third invention, and is a diesel engine provided with a DPF (diesel particulate filter) for collecting PM (particulate matter) in an exhaust passage of an internal combustion engine. In a DPF regeneration timing determination method that includes an exhaust gas aftertreatment device for an engine and determines a regeneration timing for burning and removing PM accumulated in the DPF, an SOF component (combustible organic matter component) of oil or unfueled fuel in the PM is used. Emissions are calculated using the SOF emission map set for the engine operating state, and the SOOT (black smoke) emission amount in the PM is calculated using the SOOT emission map set for the engine operating state. The regeneration amount of the SOF at the exhaust gas treatment temperature in the DPF is calculated by the SOF regeneration amount map, and the exhaust gas treatment temperature in the DPF is calculated. The SOOT regeneration amount calculation means calculates the SOOT regeneration amount by means of the SOOT regeneration amount calculation means, calculates the SOF component and SOO component deposited on the DPF from the difference between the calculated SOF component and the SOOT discharge amount and the regeneration component, and calculates the calculated value. The amount of SOF accumulated over time is calculated to calculate the amount of SOF and SOOT accumulated, and the SOF is purified by oxidative combustion by the catalytic reaction of a DOC (diesel oxidation catalyst) provided upstream of the DPF. The minute is corrected, and the regeneration timing is determined based on the corrected SOF and the calculated SOOT.

係る第3発明、および第4発明によれば、PM中のSOOT分とSOF分とのエンジンからの排出量とDPFでの再生量とが、それぞれエンジンの運転状態および排気ガス温度においてマップによって予め設定され、または算出手段によって算出されるため、排出量と再生量との差から容易且つ確実にDPFに堆積されているSOOT量とSOF量とを算出でき、その算出値を経過時間蓄積してDPFでのSOOT堆積量およびSOF堆積量を算出できる。   According to the third and fourth aspects of the present invention, the exhaust amount of the SOOT component and the SOF component in the PM and the regeneration amount in the DPF are preliminarily represented by a map in the engine operating state and the exhaust gas temperature, respectively. Since it is set or calculated by the calculation means, the SOOT amount and SOF amount deposited on the DPF can be easily and reliably calculated from the difference between the discharge amount and the regeneration amount, and the calculated value is accumulated for the elapsed time. The SOOT deposition amount and the SOF deposition amount in the DPF can be calculated.

さらに、マップまたは算出手段によって算出されたSOF分の堆積量から、DPFの上流に設けられたDOC(ディーゼル酸化触媒)の触媒反応による酸化燃焼による浄化分を補正して、補正したSOF分と前記算出したSOOT分によって再生時期を判定するので、再生時期を正確に判定することができるようになる。   Further, from the accumulated amount of SOF content calculated by the map or the calculation means, the purified SOF content by correcting the oxidative combustion due to the catalytic reaction of the DOC (diesel oxidation catalyst) provided upstream of the DPF is corrected. Since the reproduction time is determined based on the calculated SOOT, the reproduction time can be accurately determined.

さらに、第3発明、第4発明によれば、第1発明、第2発明のように差圧センサを用いてDPFの前後差圧を検出することなく正確にSOOT量またはPM堆積量を推定できるため、システムおよびロジックが簡単化される。   Further, according to the third and fourth inventions, the SOOT amount or the PM deposition amount can be accurately estimated without detecting the differential pressure across the DPF using the differential pressure sensor as in the first and second inventions. Therefore, the system and logic are simplified.

また、前記第3発明、第4発明において、好ましくは、前記DPFの上流に設けられたDOCの出口温度が予め設定した閾値以下の場合には、前記補正したSOF分とSOOT分との和によって、さらに前記閾値を超える場合には前記SOOT分によって再生時期を判定するとよい。   In the third and fourth inventions, preferably, when the outlet temperature of the DOC provided upstream of the DPF is equal to or lower than a preset threshold value, the sum of the corrected SOF component and the SOOT component is used. Further, when the threshold value is exceeded, the reproduction time may be determined based on the SOOT.

このように構成することによって、DOCにて十分なSOF酸化燃焼機能を有する略300℃を超える温度では、SOF分は大部分が酸化燃焼されDPFではパティキュレートは大部分SOOTとみなして、堆積量を推定できる。また、DOCにて十分なSOF酸化燃焼機能を有する温度(略300℃)以下では、マップおよび算出手段によって算出されたSOOT分と補正したSOF分との和によって再生時期を推定するので、精度よい再生時期の判定を行うことができる。   By configuring in this way, at a temperature exceeding about 300 ° C. having a sufficient SOF oxidative combustion function in DOC, most of the SOF content is oxidized and combusted, and in the DPF, the particulates are mostly regarded as SOOT, and the deposited amount Can be estimated. In addition, at a temperature having a sufficient SOF oxidation combustion function in DOC (approximately 300 ° C.) or less, the regeneration time is estimated by the sum of the SOOT amount calculated by the map and the calculation means and the corrected SOF amount, so that the accuracy is high. The reproduction time can be determined.

また、前記第1発明、第2発明、第3発明、第4発明における前記SOOT再生量算出手段が、DPF温度とDPFでの二酸化窒素(NO)濃度からSOOT再生量が求められるように設定されマップによって構成されていてもよく、また、DPF温度(T)とDPFへ流入する排ガス流量(Q)と排ガス中の二酸化窒素(NO)濃度と酸素(O)濃度とをパラメータとするSOOT燃焼速度式によって算出されるように構成されていてもよい。 Further, the SOOT regeneration amount calculation means in the first, second, third and fourth inventions is set so that the SOOT regeneration amount can be obtained from the DPF temperature and the nitrogen dioxide (NO 2 ) concentration at the DPF. The DPF temperature (T), the exhaust gas flow rate (Q) flowing into the DPF, the nitrogen dioxide (NO 2 ) concentration and the oxygen (O 2 ) concentration in the exhaust gas are used as parameters. You may be comprised so that it may calculate by a SOOT combustion rate type | formula.

かかる構成によれば、SOOTの再生量を算出手段として、二酸化窒素(NO)濃度を基に推定するので、すなわち、二酸化窒素(NO)はSOOT成分(ほとんどが炭素)を低温で燃焼させるので、SOOT堆積量と直接関連した指標として二酸化窒素(NO)濃度を基に推定することで精度の高いSOOT再生量を推定することができる。 According to such a configuration, the SOOT regeneration amount is estimated based on the nitrogen dioxide (NO 2 ) concentration using the calculation means, that is, nitrogen dioxide (NO 2 ) burns the SOOT component (mostly carbon) at a low temperature. Therefore, it is possible to estimate the SOOT regeneration amount with high accuracy by estimating based on the nitrogen dioxide (NO 2 ) concentration as an index directly related to the SOOT deposition amount.

本発明によれば、PMを構成するSOFの揮発および酸化燃焼による堆積量の減少を補正することによって、DPF再生時期の判定に重要な要素であるSOOT堆積量およびPM量を精度よく推定してDPF再生時期を精度よく判定するDPF再生時期判定方法および判定装置を提供することができる。   According to the present invention, it is possible to accurately estimate the SOOT deposition amount and the PM amount, which are important factors for the determination of the DPF regeneration timing, by correcting the decrease in the deposition amount due to the volatilization and oxidation combustion of the SOF constituting the PM. It is possible to provide a DPF regeneration timing determination method and determination apparatus that accurately determine the DPF regeneration timing.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

(第1実施形態)
図1はディーゼルエンジンの排気通路1に設置された排ガス後処理装置3の全体構成図を示し、DOC(ディーゼルエンジン酸化触媒)5が排ガス流の上流側に設置され、DPF(ディーゼルパティキュレートフィルター)7が排ガス流の下流側に設置されている。
そして、排ガス中のPMはDPF7に捕集されて堆積され、所定量堆積したときに燃焼、除去される。このDPF7に堆積された排ガス中のPMを再生する際には、排気通路への軽油添加や燃焼室内へのポスト燃料噴射等が行われ、排ガス流の上流側に設置された前記DOC5にて排ガス中の燃料が酸化される際に発生する酸化熱によって排ガスが昇温され、該昇温された排ガスによって、DPF7に送り込まれる排ガス温度を、PMが燃焼するのに十分な約600℃まで上昇せしめて処理する。さらに、DOC5の触媒活性温度に達しない場合には、吸気弁の絞り、排気弁の絞り、アーリーポスト噴射量などの制御操作が行われる。
また、DPF7の入口、出口には、それぞれDPF入口温度センサ9、DPF出口温度センサ11、前後差圧を検出する差圧センサ13が設置されている。また、DOC5の入口部にはDOC入口温度センサ17が設置されている。
(First embodiment)
FIG. 1 shows an overall configuration diagram of an exhaust gas aftertreatment device 3 installed in an exhaust passage 1 of a diesel engine. A DOC (diesel engine oxidation catalyst) 5 is installed upstream of an exhaust gas flow, and a DPF (diesel particulate filter). 7 is installed downstream of the exhaust gas flow.
Then, PM in the exhaust gas is collected and accumulated in the DPF 7, and is combusted and removed when a predetermined amount is accumulated. When the PM in the exhaust gas accumulated in the DPF 7 is regenerated, the light oil is added to the exhaust passage, the post fuel is injected into the combustion chamber, etc., and the exhaust gas is discharged from the DOC 5 installed upstream of the exhaust gas flow. The exhaust gas is heated by oxidation heat generated when the fuel inside is oxidized, and the heated exhaust gas raises the exhaust gas temperature fed to the DPF 7 to about 600 ° C. sufficient for PM to burn. To process. Furthermore, when the catalyst activation temperature of the DOC 5 is not reached, control operations such as throttle of the intake valve, throttle of the exhaust valve, and early post injection amount are performed.
A DPF inlet temperature sensor 9, a DPF outlet temperature sensor 11, and a differential pressure sensor 13 for detecting front-rear differential pressure are installed at the inlet and outlet of the DPF 7, respectively. A DOC inlet temperature sensor 17 is installed at the inlet of the DOC 5.

DPF7に堆積したPMの再生処理は、図示しない再生制御装置によって行われ、該再生制御装置には、PMの堆積量が、再生を必要とする規定量まで堆積したかどうかを判定して、その結果によって再生を開始する再生時期判定装置21が設けられている。この再生時期判定装置21について図2を参照して説明する。   The regeneration process of the PM deposited on the DPF 7 is performed by a regeneration control device (not shown). In the regeneration control device, it is determined whether or not the PM deposition amount has accumulated to a specified amount that requires regeneration. A reproduction time determination device 21 that starts reproduction according to the result is provided. The regeneration timing determination device 21 will be described with reference to FIG.

再生時期判定装置2には、PM中のオイルや未燃料からなるSOF分(可燃性有機物分)の排出量をエンジン運転状態に対して設定したSOF排出量マップ23と、PM中のSOOT分(黒煙分)の排出量をエンジン運転状態に対して設定したSOOT排出量マップ25と、DPFでの排気ガス温度におけるSOF分の再生量を設定したSOF再生量マップ27と、DPFでの排ガス温度におけるSOOT分の再生量を設定したSOOT再生量マップ29とが設けられている。   The regeneration timing determination device 2 includes an SOF emission map 23 in which the emission amount of SOF (combustible organic matter) consisting of oil and unfueled fuel in the PM is set with respect to the engine operating state, and the SOOT emission amount in the PM ( The SOOT emission amount map 25 in which the amount of emission of black smoke) is set with respect to the engine operating state, the SOF regeneration amount map 27 in which the regeneration amount of the SOF at the exhaust gas temperature in the DPF is set, and the exhaust gas temperature in the DPF And a SOOT playback amount map 29 in which the playback amount for SOOT is set.

SOF排出量マップ23は、エンジン運転状態を示すエンジン回転数と燃焼室への燃料供給量とに対して、SOFの排出量が設定されている3次元マップである。また、SOOT排出量マップ25も同様に、エンジン運転状態を示すエンジン回転数と燃焼室への燃料供給量とに対して、SOOTの排出量が設定されている3次元マップである。
SOF再生量マップ27は、DPF入口温度センサ9によるDPF7の入口温度と、DPF7に流入する排ガス流量(図示しない吸気流量センサ(エアフローセンサ)による吸気流量と燃料噴射量とによって算出される排ガス流量)とに対して、SOFの再生量(蒸発量または酸化燃焼)が設定されている3次元マップである。また、SOOT再生量マップ29も同様に、DPF入口温度センサ9によるDPF7の入口温度と、DPF7を流れる排ガス流量とに対して、SOOTの再生量が設定されている3次元マップである。
The SOF emission map 23 is a three-dimensional map in which the SOF emission amount is set with respect to the engine speed indicating the engine operating state and the fuel supply amount to the combustion chamber. Similarly, the SOOT emission amount map 25 is a three-dimensional map in which the SOOT emission amount is set with respect to the engine speed indicating the engine operating state and the fuel supply amount to the combustion chamber.
The SOF regeneration amount map 27 indicates the inlet temperature of the DPF 7 by the DPF inlet temperature sensor 9 and the exhaust gas flow rate flowing into the DPF 7 (the exhaust gas flow rate calculated by the intake flow rate and the fuel injection amount by an unillustrated intake flow rate sensor (air flow sensor)). Is a three-dimensional map in which the regeneration amount (evaporation amount or oxidation combustion) of SOF is set. Similarly, the SOOT regeneration amount map 29 is also a three-dimensional map in which the regeneration amount of SOOT is set with respect to the inlet temperature of the DPF 7 by the DPF inlet temperature sensor 9 and the exhaust gas flow rate flowing through the DPF 7.

また、SOF排出量マップ23およびSOF再生量マップ27から算出したSOF分の排出量と再生量との差からDPF7に堆積したSOF分を算出し、該算出値の経時蓄積量を求めてSOF分の堆積量を求めるSOF堆積量算出手段31が設けられ、さらにSOOTに対しても、SOOT排出量マップ25およびSOOT再生量マップ29から算出したSOOT分の排出量と再生量との差からDPF7に堆積したSOOT分を算出し、該算出値の経時蓄積量を求めてSOOT分の堆積量を求めるSOOT堆積量算出手段33が設けられている。   Also, the SOF amount accumulated in the DPF 7 is calculated from the difference between the SOF emission amount calculated from the SOF emission map 23 and the SOF regeneration amount map 27 and the regeneration amount, and the accumulated amount of the calculated value with time is obtained to obtain the SOF component. SOF accumulation amount calculating means 31 for obtaining the accumulation amount is provided. Further, for the SOOT, the DPF 7 is provided with a difference between the SOOT emission amount calculated from the SOOT emission amount map 25 and the SOOT regeneration amount map 29 and the regeneration amount. SOOT deposition amount calculation means 33 is provided for calculating the accumulated SOOT amount, obtaining the accumulated amount of the calculated value with time, and obtaining the accumulated amount of SOOT.

そして、SOF堆積量算出手段31によって算出されたSOF分の堆積量がエンジン運転中のDPFの温度履歴によって時間遅れを伴って揮発または酸化燃焼する分を補正するSOF堆積量補正手段35、さらには、補正されたSOF堆積量および前記SOOT堆積量算出手段33によって算出されたSOOT堆積量に基づいてDPF7のPMの再生時期を判定する再生判定手段37を備えている。   Then, the SOF accumulation amount correction means 35 for correcting the amount of the SOF accumulation amount calculated by the SOF accumulation amount calculation means 31 that volatilizes or oxidizes and burns with a time delay according to the temperature history of the DPF during engine operation. The regeneration determination means 37 for determining the regeneration timing of the PM of the DPF 7 based on the corrected SOF accumulation amount and the SOOT accumulation amount calculated by the SOOT accumulation amount calculation means 33 is provided.

この再生時期の判定は、補正SOF堆積量とSOOT堆積量との比をSOOT/SOF比算出手段39によって算出し、さらに、予め排ガス温度ごとにSOOT/SOF比をパラメータとしてDPFの前後差圧とSOOT堆積量との関係が設定されたSOOT/SOF比マップ41を備え、差圧センサ13からの検出値と、DPF入口温度センサ9からの検出値と、前記SOOT/SOF比算出手段によって算出された補正後のSOF分に基にSOOT/補正SOF比の算出値とに基づいて、前記SOOT/SOF比マップ41を用いてSOOT分の堆積量38を算出し、該SOOT分の堆積量によって再生時期を判定する。   This regeneration timing is determined by calculating the ratio between the corrected SOF accumulation amount and the SOOT accumulation amount by the SOOT / SOF ratio calculating means 39, and by using the SOOT / SOF ratio as a parameter for each exhaust gas temperature in advance and the differential pressure across the DPF. A SOOT / SOF ratio map 41 in which a relationship with the SOOT deposition amount is set is provided, and is calculated by the detected value from the differential pressure sensor 13, the detected value from the DPF inlet temperature sensor 9, and the SOOT / SOF ratio calculating means. On the basis of the corrected SOF value, the SOOT / SOF ratio map 41 is used to calculate the SOOT deposit amount 38 based on the calculated value of the SOOT / corrected SOF ratio. Determine the time.

SOOT/SOF比マップ41はDPF7の入口温度ごと(例えば、200℃。300℃、400℃等ごと)に作成されており、それぞれの温度において、SOOT/SOF比をパラメータに、縦軸にDPF7の前後差圧をとり、横軸にSOOT量をとり、その関係が設定されている。そして、差圧センサ13、DPF入口温度センサ9、SOOT/SOF比算出手段39によって算出したSOOT/補正SOFの比がそれぞれ入力されて、差圧センサ13の検出値における正確なSOOT堆積量が算出される。   The SOOT / SOF ratio map 41 is created for each inlet temperature of the DPF 7 (for example, 200 ° C., 300 ° C., 400 ° C., etc.). At each temperature, the SOOT / SOF ratio is a parameter, and the vertical axis of the DPF 7 The pressure difference between the front and rear is taken, the amount of SOOT is taken on the horizontal axis, and the relationship is set. Then, the SOOT / corrected SOF ratio calculated by the differential pressure sensor 13, the DPF inlet temperature sensor 9, and the SOOT / SOF ratio calculating means 39 is inputted, and an accurate SOT accumulation amount in the detected value of the differential pressure sensor 13 is calculated. Is done.

以上のように構成された第1実施形態における再生時期判定装置21における判定方法について図3のフローチャートを参照して説明する。
図3において、まず、スタートすると、ステップS2で、エンジンのある運転時におけるSOOT、SOFの排出量を、SOOT排出量マップ25およびSOF排出量マップ23によって算出し、ステップS3でSOOT、SOFの再生量を、SOOT再生量マップ29およびSOF再生量マップ27によって算出し、次に、ステップS4で、SOF分およびSOOT分の排出量と再生量との差からDPFに堆積したSOF分およびSOOT分を算出し、該算出値の経時蓄積量を求めてSOF分およびSOOT分の堆積量を求める。
A determination method in the regeneration timing determination apparatus 21 according to the first embodiment configured as described above will be described with reference to the flowchart of FIG.
In FIG. 3, when starting, first, in step S2, the SOOT and SOF emissions during operation of the engine are calculated from the SOOT emission map 25 and the SOF emission map 23, and the SOOT and SOF regeneration in step S3. The amount is calculated by the SOOT regeneration amount map 29 and the SOF regeneration amount map 27. Next, in step S4, the SOF amount and SOOT portion accumulated in the DPF are calculated from the difference between the SOF amount and the SOOT emission amount and the regeneration amount. Then, the accumulated amount of the calculated value with time is obtained, and the accumulation amount for SOF and SOOT is obtained.

PM中のSOOT分とSOF分とのエンジンからの排出量とDPF7での再生量とが、それぞれマップによって予め設定されたデータに基づいて算出されるため、排出量と再生量との差から容易且つ確実にDPFに算出でき、さらにその算出値を経過時間蓄積してDPFでのSOOT堆積量およびSOF堆積量を算出できるので、SOOT堆積量およびSOF堆積量の堆積量を確実かつ簡単に推定できるようになる。   Emissions from the engine for SOOT and SOF in the PM and the regeneration amount in the DPF 7 are calculated based on data set in advance by a map, so it is easy from the difference between the emission amount and the regeneration amount. In addition, the DPF can be calculated with certainty, and the calculated values can be accumulated over time to calculate the SOOT deposition amount and the SOF deposition amount in the DPF, so that the SOOT deposition amount and the SOF deposition amount can be reliably and easily estimated. It becomes like this.

次に、ステップS5で、SOF堆積量補正手段35によって、SOF堆積量算出手段31によって算出したSOF堆積量に補正係数を乗算してSOF分の揮発または酸化燃焼による低下を補正する。
マップ値の経時蓄積量を求めてSOF分(Qs)を算出するが、その経時蓄積量を算出する経時時間(t)内のDPFの温度履歴(R)に応じて、補正係数(K(t、R))をかけて、補正後のSOF分(Qsf)=Qs(1−K(t、R))として算出する。
そして、補正係数(K(t、R))は、図4(a)のように経時蓄積量を算出する経時時間(t)が長ければ大きくし、さらに図4(b)のようにDPF7の温度履歴(R)が上昇時の場合には下降時の場合よりも小さく設定する。
経時時間(t)は、ステップS4にて堆積量を算出するための経過時間であり、任意の時間間隔に設定して、その時間長さと、その時間間隔内における温度履歴とに応じて補正係数を設定する。
Next, in step S5, the SOF deposition amount correction means 35 multiplies the SOF deposition amount calculated by the SOF deposition amount calculation means 31 by a correction coefficient to correct the decrease due to volatilization or oxidation combustion of the SOF.
The SOF component (Qs) is calculated by obtaining the map value accumulated amount over time. The correction coefficient (K (t (t)) is determined according to the temperature history (R) of the DPF within the elapsed time (t) for calculating the accumulated value over time. , R)) to calculate the corrected SOF component (Qsf) = Qs (1−K (t, R)).
Then, the correction coefficient (K (t, R)) is increased if the elapsed time (t) for calculating the accumulated amount over time is long as shown in FIG. 4A, and further, the correction coefficient (K (t, R)) is further increased as shown in FIG. When the temperature history (R) is increasing, it is set smaller than when it is decreasing.
The elapsed time (t) is an elapsed time for calculating the deposition amount in step S4, set to an arbitrary time interval, and a correction coefficient according to the time length and the temperature history within the time interval. Set.

DPFに堆積したSOOTおよびSOFのうちSOF分は主に可燃性有機物であるため、時間遅れを伴って徐々に揮発または酸化燃焼する現象が生じる。従って、時間遅れによる揮発または酸化燃焼によるSOF分の減少量が、経過時間(t)が長くなるほど大きく影響するため、時間tをパラメータとして時間に応じて大きく低下するように設定する。
また、DPFの温度履歴に応じて、算出したSOF分の量を減少補正する必要があるが、温度履歴において一旦高い温度に上がった後は揮発または酸化燃焼による減少の割合が多く影響するため、温度上昇時の補正係数の度合いと下降時の補正係数の度合いとを異ならせて、温度上昇時の場合を小さく、温度下降時の場合を大きくして、揮発または酸化燃焼による減少を補正している。
従って、時間遅れによる揮発または酸化燃焼によるSOF分の低下量までを考慮して正確なSOF量を算出できる。その結果DPF7の前後差圧にとして検出される圧力差の内のSOOTの量とSOFの量との堆積比率関係を正確に把握することが可能になる。
Of SOOT and SOF deposited on the DPF, the SOF content is mainly combustible organic matter, and therefore, a phenomenon of volatile or oxidative combustion gradually occurs with a time delay. Therefore, since the amount of decrease in SOF due to volatilization due to time delay or oxidative combustion has a greater effect as the elapsed time (t) becomes longer, the time t is set as a parameter so as to greatly decrease with time.
In addition, it is necessary to correct the calculated amount of SOF in accordance with the temperature history of the DPF, but once the temperature history has risen to a high temperature, the rate of decrease due to volatilization or oxidative combustion has a large effect. The degree of correction factor at the time of temperature rise is different from the degree of correction factor at the time of fall to reduce the case when the temperature rises and increase the case when the temperature falls to compensate for the decrease due to volatilization or oxidative combustion. Yes.
Therefore, an accurate SOF amount can be calculated in consideration of the amount of decrease in SOF due to volatilization due to time delay or oxidation combustion. As a result, it becomes possible to accurately grasp the deposition ratio relationship between the SOOT amount and the SOF amount in the pressure difference detected as the differential pressure across the DPF 7.

次に、ステップ6に進み、SOOT/SOF比算出手段39によってDPF7に堆積したSOOT/補正後のSOF比を算出し、差圧センサ13からの検出値と、DPF入口温度センサ9からの検出値と、予め排ガス温度ごとにSOOT/SOF比をパラメータとして、DPFの前後差圧とSOOT堆積量との関係が設定されたSOOT/SOF比マップ41とより、SOOT分の堆積量を算出する。
以上の第1実施形態によるSOOT堆積量の推測値と、SOOT堆積実測値との比較結果は、図5(a)の従来の差圧だけによる手法に比べて、(b)の本実施形態のようにSOF分の揮発または酸化燃焼分を考慮してSOOT/SOF比マップを用いることで実測値に対して略±30%の誤差範囲内に収まり精度が向上したことが確認できた。
Next, the process proceeds to step 6 where the SOOT / SOF ratio calculating means 39 calculates the SOT / corrected SOF ratio deposited on the DPF 7, and the detected value from the differential pressure sensor 13 and the detected value from the DPF inlet temperature sensor 9. Then, using the SOOT / SOF ratio for each exhaust gas temperature as a parameter, the SOOT / SOF ratio map 41 in which the relationship between the differential pressure before and after the DPF and the SOOT deposition amount is set is calculated.
The comparison result between the estimated value of the SOOT deposition amount according to the first embodiment and the actual measured value of SOOT deposition is compared with the conventional method using only the differential pressure in FIG. Thus, it was confirmed that using the SOOT / SOF ratio map in consideration of volatilization of SOF or oxidation combustion, the accuracy was improved within an error range of about ± 30% with respect to the actual measurement value.

(第2実施形態)
次に、図6、7を参照して、第2実施形態について説明する。
第1実施形態は、DPF7の温度履歴によって時間遅れを伴って揮発または酸化燃焼する分を補正したのに対して、第2実施形態は、DPF7の上流側に配置されるDOC5の活性状態によって該DOC5を通過するSOF分が酸化燃焼する分を補正する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS.
In the first embodiment, the amount of volatilization or oxidation combustion with a time delay is corrected by the temperature history of the DPF 7, whereas in the second embodiment, the activation state of the DOC 5 arranged on the upstream side of the DPF 7 The amount of oxidative combustion of the SOF that passes through the DOC 5 is corrected.

第1実施形態と同一構成には同一符号を付して説明を省略する。
図6において、SOF堆積量算出手段50によるSOF分の堆積量、SOOT堆積量算出手段52によるSOOT分の堆積量の算出までは前記第1実施形態と同様である。第2実施形態において、DPFの上流に設けられたDOC(ディーゼル酸化触媒)の触媒反応による酸化燃焼による浄化分を補正するSOF堆積量補正手段54が設けられている。
The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
In FIG. 6, the processing up to the calculation of the SOF deposition amount by the SOF deposition amount calculation means 50 and the calculation of the SOT deposition amount by the SOOT deposition amount calculation means 52 are the same as in the first embodiment. In the second embodiment, there is provided SOF deposition amount correction means 54 for correcting the amount of purification due to oxidative combustion due to the catalytic reaction of DOC (diesel oxidation catalyst) provided upstream of the DPF.

図6のSOF堆積量補正手段54に示すように、DOC5を通過した排ガス温度を、DOC5の出口、すなわちDPF7の入口温度をDPF入口温度センサ9によって検出し、該温度が略200℃〜300℃の場合には、DOC5によるSOF酸化燃焼率は0から80〜100%の間を変化するため、SOF堆積量補正手段54で、その補正係数JをDOC5を通過した排ガス温度の関数として設定して、補正後のSOF分(Qsg)をQsg=Qs×J(T)(0〜0.2≦J≦1)として算出して、SOF堆積量の一部がDOC5を通過する過程で酸化燃焼して低下するように補正する。   As shown in the SOF accumulation amount correction means 54 in FIG. 6, the exhaust gas temperature that has passed through the DOC 5 is detected by the DPF inlet temperature sensor 9 at the outlet of the DOC 5, that is, the inlet temperature of the DPF 7, and the temperature is approximately 200 ° C. to 300 ° C. In this case, since the SOF oxidation combustion rate by DOC5 varies between 0 and 80 to 100%, the SOF accumulation amount correction means 54 sets the correction coefficient J as a function of the exhaust gas temperature that has passed through DOC5. Then, the corrected SOF component (Qsg) is calculated as Qsg = Qs × J (T) (0 to 0.2 ≦ J ≦ 1), and oxidative combustion occurs in the process in which a part of the SOF deposition amount passes through the DOC5. Correct so that it decreases.

DOC5を通過する排ガス温度Tが200℃以下ではJ=1となり、DOC5での揮発はなくSOF堆積量算出手段50によるSOF堆積量がそのまま出力される。また、300℃を超えるとJ=0となり、SOF分は全て揮発してゼロとなるため、全堆積量はSOOT分のみとなる。   When the exhaust gas temperature T passing through the DOC 5 is 200 ° C. or lower, J = 1, and there is no volatilization in the DOC 5 and the SOF deposition amount by the SOF deposition amount calculation means 50 is output as it is. Further, when it exceeds 300 ° C., J = 0 and all SOF components are volatilized to zero, so that the total deposition amount is only SOOT components.

従って、SOF堆積量補正手段54において、DOC5の出口温度が300℃を超えた場合には、SOF分がすべてDOC5を通過する際に大部分酸化燃焼して、全てSOOTとして堆積量を推定できる。また、DOC5にて十分なSOF酸化燃焼機能を有する温度(略300℃)以下では、SOF堆積量算出手段50によるSOF堆積量の一部がDOC5を通過す際に揮発して減少して通過するため、SOOT分と補正したSOF分との和の全堆積量56を算出して再生判定手段58で再生時期を推定するので、精度よい再生時期の判定を行うことができる。   Therefore, when the outlet temperature of the DOC 5 exceeds 300 ° C. in the SOF deposition amount correction means 54, most of the SOF component is oxidized and burned when passing through the DOC 5, and the deposition amount can be estimated as all SOOT. Also, below the temperature at which the DOC 5 has a sufficient SOF oxidation combustion function (approximately 300 ° C.), a part of the SOF deposition amount by the SOF deposition amount calculating means 50 volatilizes and decreases when passing through the DOC 5 and passes. Therefore, since the total accumulation amount 56 of the sum of the SOOT and the corrected SOF is calculated and the regeneration timing is estimated by the regeneration determining means 58, the regeneration timing can be accurately determined.

次に、第2実施形態における再生時期判定装置60における判定方法について図7のフローチャートを参照して説明する。
図7において、まず、スタートすると、ステップS2で、DOC5の出口温度、すなわちDPF7の入口温度(T)が、T(300℃)を超えているかを判定する。超えていれば、SOFは大部分DOC5で酸化燃焼されて、SOOT分のみとなっているため、ステップS3で、SOOT排出量マップ25からSOOT排出量を算出する。次に、ステップS4で、SOOT再生量マップ29からSOOT再生量を算出する。そしてステップS5で、SOOT分の排出量と再生量との差からDPFに堆積したSOOT分を算出し、該算出値の経時蓄積量を求めてSOOT分の堆積量を求める。次にステップS6で、算出したSOOT分とSOF分との堆積量の和Qが、基準値のQBを超えているかを判定し、超えている場合にはステップS7でDPF7の再生処理を開始してステップS7で終了し、基準値のQBを超えていない場合には、ステップS2に戻って最初から繰り返す。
Next, a determination method in the regeneration timing determination device 60 in the second embodiment will be described with reference to the flowchart of FIG.
In FIG. 7, first, when starting, it is determined in step S2 whether the outlet temperature of the DOC 5, that is, the inlet temperature (T) of the DPF 7, exceeds T B (300 ° C.). If it exceeds, the SOF is mostly oxidized and burned in the DOC 5 and is only for SOOT, so the SOOT emission amount is calculated from the SOOT emission map 25 in step S3. Next, in step S4, the SOOT playback amount is calculated from the SOOT playback amount map 29. In step S5, the SOOT amount deposited on the DPF is calculated from the difference between the discharge amount and the regeneration amount for the SOOT, and the accumulated amount of the calculated value with time is obtained to obtain the deposit amount for the SOOT. Next, in step S6, it is determined whether or not the sum Q of the calculated deposition amount of SOOT and SOF exceeds the reference value QB, and if so, regeneration processing of the DPF 7 is started in step S7. In step S7, if the reference value QB is not exceeded, the process returns to step S2 and is repeated from the beginning.

一方、ステップS2で、DOC5の出口温度、すなわちDPF7の入口温度(T)が、T(300℃)を超えていない場合には、ステップS9で、エンジンのある運転時におけるSOOT、SOFの排出量を、SOOT排出量マップ25およびSOF排出量マップ23によって算出し、ステップS10でSOOT、SOFの再生量を、SOOT再生量マップ29およびSOF再生量マップ27によって算出し、次に、ステップ11で、SOF分およびSOOT分の排出量と再生量との差からDPFに堆積したSOF分およびSOOT分を算出し、該算出値の経時蓄積量を求めてSOF分およびSOOT分の堆積量を求める。 On the other hand, in step S2, the outlet temperature of DOC5, i.e. DPF7 inlet temperature (T) is, if not exceed T B (300 ℃), in step S9, SOOT during operation with an engine, the discharge of SOF The amount is calculated by the SOOT emission amount map 25 and the SOF emission amount map 23, the SOOT and SOF regeneration amounts are calculated by the SOOT regeneration amount map 29 and the SOF regeneration amount map 27 in step S10, and then in step 11. Then, the SOF and SOOT components deposited on the DPF are calculated from the difference between the discharge amount and the regeneration amount of the SOF component and the SOOT component, and the accumulated amount of the calculated value with time is obtained to obtain the deposit amount of the SOF component and the SOOT component.

次に、ステップS12で、ステップS11で算出したSOF堆積量をDOC5の出口温度Tに基づいて補正する。この補正はすでに説明したように、SOF堆積量補正手段54で、その補正係数JをDOC5を通過した排ガス温度の関数として設定して、補正後のSOF分(Qsg)をQsg=Qs×J(T)(0〜0.2≦J≦1)として算出して、SOF堆積量の一部がDOC5を通過する過程で酸化燃焼して低下するように補正する。 Next, in step S12, it is corrected on the basis of the SOF deposition amount calculated in step S11 to the outlet temperature T B of DOC5. As described above, this correction is performed by the SOF accumulation amount correction means 54 by setting the correction coefficient J as a function of the exhaust gas temperature that has passed through the DOC 5, and the corrected SOF component (Qsg) is Qsg = Qs × J ( T) (0 to 0.2 ≦ J ≦ 1) is calculated and corrected so that a part of the SOF deposition amount is reduced by oxidation combustion in the process of passing through the DOC 5.

次に、ステップS13で、DPF7の出口温度が基準値Tを超えているか判定し、超えている場合にはさらにステップS14に進み、超えていない場合にはステップS6に進む。なお、DPF7の出口温度はDPF出口温度センサ11によって検出する。 Next, in step S13, it is determined whether the outlet temperature of DPF7 exceeds the reference value T C, the flow proceeds further to step S14 if it does, if not exceeded, the process proceeds to step S6. The outlet temperature of the DPF 7 is detected by the DPF outlet temperature sensor 11.

ステップS14では、ステップS13の条件であるDPF7の出口温度が基準値Tを超えている状態の時間Ttimeが、TtimeDを超えているかを判定して、超えている場合にはステップS15に進んで、ステップS12で算出した補正後のSOF堆積量をゼロにリセットして、ステップS6に進む。すなわち、SOOTと補正後のSOFとの堆積量の和によって、全堆積量を算出して判定している場合でも、DPF7の出口温度がSOF分が揮発する温度、例えば略300℃以上になり、その状態が一定時間保持されている場合には、揮発または酸化燃焼してゼロになったものとして、ステップS15で補正後のSOF堆積量をゼロにリセットしてSOOT分だけで全堆積量を判定する。 In step S14, the time T time in a state where the outlet temperature of DPF7 a condition in step S13 is greater than the reference value T C is, to determine exceeds T Timed, if it exceeds the step S15 Then, the corrected SOF deposition amount calculated in step S12 is reset to zero, and the process proceeds to step S6. That is, even when the total accumulation amount is calculated and determined by the sum of the accumulation amounts of SOOT and corrected SOF, the outlet temperature of the DPF 7 becomes a temperature at which the SOF component volatilizes, for example, approximately 300 ° C. or more, If this state is maintained for a certain period of time, it is assumed that it has become zero after volatilization or oxidation combustion, and the corrected SOF deposition amount is reset to zero in step S15, and the total deposition amount is determined only by the amount of SOOT. To do.

次に、ステップS6で、算出したSOOT分とSOF分との堆積量の和Qが、基準値のQAを超えているかを判定し、超えている場合にはステップS7でDPF7の再生処理を開始してステップS7で終了し、基準値のQAを超えていない場合には、ステップS2に戻って最初から繰り返す。   Next, in step S6, it is determined whether or not the sum Q of the calculated amount of SOOT and SOF exceeds the reference value QA. If so, the regeneration process of the DPF 7 is started in step S7. In step S7, if the reference value QA is not exceeded, the process returns to step S2 and is repeated from the beginning.

以上のような第2実施形態によれば、マップまたは算出手段によって算出されたSOF分の堆積量から、DPFの上流に設けられたDOC(ディーゼル酸化触媒)の触媒反応による酸化燃焼による浄化分を補正して、補正したSOF分と算出したSOOT分によって再生時期を判定するので、再生時期を正確に判定することができる。
さらに、第1実施形態のように差圧センサ13を用いてDPF7の前後差圧を検出することなく正確にSOOT量またはPM堆積量を推定できるため、システムおよびロジックが簡単化される。
According to the second embodiment as described above, the purification amount due to oxidative combustion by the catalytic reaction of the DOC (diesel oxidation catalyst) provided upstream of the DPF is calculated from the accumulated amount of SOF calculated by the map or calculating means. Since the reproduction time is determined based on the corrected SOF and the calculated SOOT, the reproduction time can be accurately determined.
Furthermore, since the SOOT amount or the PM deposition amount can be accurately estimated using the differential pressure sensor 13 without detecting the differential pressure across the DPF 7 as in the first embodiment, the system and logic are simplified.

また、DOC5にて十分なSOF酸化燃焼機能を有する略300℃を超える温度では、SOF分は大部分揮発または酸化燃焼してDPF7ではパティキュレートは全てSOOTとみなして、堆積量を推定できる。また、DOC5にて十分なSOF酸化燃焼機能を有する温度(略300℃)以下では、マップおよび算出手段によって算出されたSOOT分と補正したSOF分との和によって再生時期を推定するので、DOC5での揮発分を考慮した精度よい再生時期の判定を行うことができる。
なお、第1実施形態と第2実施形態とを組み合わせて、精度の高い再生時期判定装置を構成してもよい。
Further, at a temperature exceeding about 300 ° C. at which the DOC 5 has a sufficient SOF oxidation combustion function, the SOF content is mostly volatilized or oxidized combustion, and the DPF 7 assumes that all the particulates are SOOT, and the deposition amount can be estimated. In addition, at a temperature having a sufficient SOF oxidation combustion function in DOC5 (approximately 300 ° C.) or less, the regeneration time is estimated by the sum of the SOOT amount calculated by the map and the calculating means and the corrected SOF amount. Therefore, it is possible to accurately determine the reproduction time in consideration of the volatile matter.
Note that a highly accurate reproduction time determination device may be configured by combining the first embodiment and the second embodiment.

(第3実施形態)
次に、前記第1実施形態および第2実施形態におけるSOOT再生量マップ29は、DPF7の入口温度と、DPF7を流れる排ガス流量とに対して、SOOTの再生量が設定されている3次元マップであったが、第3実施形態では、DPF7の入口温度と、DPF7での二酸化窒素(NO)濃度とに対して、SOOT再生量が求められるように設定されSOOT再生量マップ61によって構成されている。
(Third embodiment)
Next, the SOOT regeneration amount map 29 in the first and second embodiments is a three-dimensional map in which the regeneration amount of SOOT is set with respect to the inlet temperature of the DPF 7 and the exhaust gas flow rate flowing through the DPF 7. However, in the third embodiment, the SOOT regeneration amount map 61 is set so that the SOOT regeneration amount is obtained for the inlet temperature of the DPF 7 and the nitrogen dioxide (NO 2 ) concentration in the DPF 7. Yes.

図8に示すように、排ガス流量二酸化窒素(NO)濃度は、NO転化率マップ63によって、DPF7を流れる排ガス流量と、DOC入口温度センサ17からのDOC入口温度に基づいて、DOCでのNO転化率が算出される。
一方、NO排出量マップ65を用いてエンジン運転状態の回転数及び負荷の信号に基づいてNOx濃度が算出され、前記NOx濃度と前記NO転化率とによって、二酸化窒素(NO)濃度を算出する。
As shown in FIG. 8, the exhaust gas flow rate nitrogen dioxide (NO 2 ) concentration is determined based on the NO 2 conversion rate map 63 based on the exhaust gas flow rate flowing through the DPF 7 and the DOC inlet temperature from the DOC inlet temperature sensor 17. The NO 2 conversion rate is calculated.
On the other hand, with NO x emissions amount map 65 NOx concentration is calculated based on the rotational speed and the load signal of the engine operating condition, by said NOx concentration and the NO 2 conversion, the nitrogen dioxide (NO 2) concentration calculate.

本実施形態においては、SOOT再生量の算出手段として、二酸化窒素(NO)濃度を基に推定するので、すなわち、二酸化窒素(NO)はSOOT成分(ほとんどが炭素)を低温で燃焼させるので、SOOT堆積量と直接関連した指標として二酸化窒素(NO)濃度を基に推定することで精度の高いSOOT再生量を推定することができる。
また、エンジンが変わった場合には、NO排出量マップ65を変更するだけでよいため、エンジンの変更への対応が容易である。
In the present embodiment, since the SOOT regeneration amount is calculated based on the nitrogen dioxide (NO 2 ) concentration, that is, nitrogen dioxide (NO 2 ) burns the SOOT component (mostly carbon) at a low temperature. In addition, a high-precision SOOT regeneration amount can be estimated by estimating based on the nitrogen dioxide (NO 2 ) concentration as an index directly related to the SOOT deposition amount.
Further, when the engine is changed, it is only necessary to change the NO x emission map 65, so that the engine can be easily changed.

(第4実施形態)
次に、第3実施形態においては、SOOT再生量マップ61は、DPF7の入口温度と、DPF7を流れる排ガス流量とに対して、SOOTの再生量が設定されている3次元マップであったが、第4実施形態ではマップを用いずにSOOT再生用の関係式S=f(NO+O+排ガス流速(LV)+DPF温度(T))を用いて、直接SOOT再生量を算出するものである。
(Fourth embodiment)
Next, in the third embodiment, the SOOT regeneration amount map 61 is a three-dimensional map in which the regeneration amount of SOOT is set with respect to the inlet temperature of the DPF 7 and the exhaust gas flow rate flowing through the DPF 7. In the fourth embodiment, the SOOT regeneration amount is directly calculated using the relational expression S = f (NO 2 + O 2 + exhaust gas flow rate (LV) + DPF temperature (T)) for SOOT regeneration without using a map. .

すなわち、図9に示すように、排ガス流速(LV)と、DOC入口温度センサ17からのDOC入口温度(T)と、排ガス中の二酸化窒素(NO)濃度と、酸素(O)濃度とをパラメータとするSOOT燃焼速度式によって算出する。
二酸化窒素(NO)濃度の算出は、前記第3実施形態と同様であり、酸素(O)濃度の算出は、O排出量マップ67を用いてエンジン運転状態の回転数及び負荷の信号に基づいて算出される。
That is, as shown in FIG. 9, the exhaust gas flow velocity (LV), the DOC inlet temperature (T) from the DOC inlet temperature sensor 17, the nitrogen dioxide (NO 2 ) concentration, and the oxygen (O 2 ) concentration in the exhaust gas It is calculated by a SOOT combustion rate equation using as a parameter.
The calculation of the nitrogen dioxide (NO 2 ) concentration is the same as that in the third embodiment, and the calculation of the oxygen (O 2 ) concentration is performed by using the O 2 emission map 67 and the engine speed and load signals. Is calculated based on

本実施形態によれば、SOOTの再生量を算出手段として、二酸化窒素(NO)濃度を基に推定するので、すなわち、二酸化窒素(NO)はSOOT成分(ほとんどが炭素)を低温で燃焼させるので、SOOT堆積量と直接関連した指標として二酸化窒素(NO)濃度を基に推定することで精度の高いSOOT再生量を推定することができる。
また、第3実施形態のようにマップの作成が不要で、直接関係式より算出するため、マップよりもきめ細かい算出ができる。
According to this embodiment, as a calculation means for regeneration amount of SOOT, since estimates based on nitrogen dioxide (NO 2) concentration, i.e., nitrogen dioxide (NO 2) is SOOT component (mostly carbon) burning at low temperature Therefore, a highly accurate SOOT regeneration amount can be estimated by estimating based on the nitrogen dioxide (NO 2 ) concentration as an index directly related to the SOOT deposition amount.
Further, unlike the third embodiment, a map is not required to be created, and the calculation is performed directly from the relational expression, so that a more detailed calculation than the map can be performed.

本発明によれば、PMを構成するSOFの揮発及び酸化燃焼による堆積量の減少を補正することによって、DPF再生時期の判定に重要な要素であるSOOT堆積量およびPM量を精度よく推定できるので、DPFの再生時期を精度よく判定でき、DPFの再生時期判定方法および判定装置に適する。   According to the present invention, it is possible to accurately estimate the SOOT deposition amount and the PM amount, which are important factors in determining the DPF regeneration timing, by correcting the decrease in the deposition amount due to the volatilization and oxidation combustion of the SOF constituting the PM. Therefore, the DPF regeneration timing can be determined with high accuracy, which is suitable for a DPF regeneration timing determination method and apparatus.

ディーゼルエンジンの排気通路に設置された排ガス後処理装置の全体構成図である。1 is an overall configuration diagram of an exhaust gas aftertreatment device installed in an exhaust passage of a diesel engine. 第1実施形態に係る再生時期判定装置の構成ブロック図である。1 is a block diagram illustrating a configuration of a regeneration time determination device according to a first embodiment. FIG. 第1実施形態に係る再生時期判定方法のフローチャートである。3 is a flowchart of a regeneration time determination method according to the first embodiment. 第1実施形態に係る補正係数の説明図である。It is explanatory drawing of the correction coefficient which concerns on 1st Embodiment. 第1実施形態の効果を説明する説明図である。It is explanatory drawing explaining the effect of 1st Embodiment. 第2実施形態に係る再生時期判定装置の構成ブロック図である。It is a block diagram of the configuration of the regeneration time determination device according to the second embodiment. 第2実施形態に係る再生時期判定方法のフローチャートである。It is a flowchart of the reproduction | regeneration time determination method which concerns on 2nd Embodiment. 第3実施形態に係る再生時期判定装置の構成ブロック図である。It is a block diagram of the configuration of a regeneration time determination device according to a third embodiment. 第4実施形態に係る再生時期判定装置の構成ブロック図である。It is a block diagram of the configuration of the regeneration time determination device according to the fourth embodiment. DPFの前後差圧による堆積量検出の従来技術を示す説明図である。It is explanatory drawing which shows the prior art of the deposition amount detection by the differential pressure before and behind DPF.

符号の説明Explanation of symbols

1 排気通路
3 排ガス後処理装置
5 DOC(ディーゼル酸化触媒)
7 DPF(ディーゼルパティキュレートフィルター)
9 DPF入口温度センサ
11 DPF出口温度センサ
13 差圧センサ
21、60 再生時期判定装置
23 SOF排出量マップ
25 SOOT排出量マップ
27 SOF再生量マップ
29、61 SOOT再生量マップ
31、50 SOF堆積量算出手段
33、52 SOOT堆積量算出手段
35、54 SOF堆積量補正手段
39 SOOT/SOF比算出手段
41 SOOT/SOF比マップ
63 NO転化率マップ
65 NO排出量マップ
67 O排出量マップ
1 Exhaust passage 3 Exhaust gas aftertreatment device 5 DOC (diesel oxidation catalyst)
7 DPF (diesel particulate filter)
9 DPF inlet temperature sensor 11 DPF outlet temperature sensor 13 Differential pressure sensor 21, 60 Regeneration time determination device 23 SOF discharge map 25 SOOT discharge map 27 SOF regeneration map 29, 61 SOOT regeneration map 31, 50 Calculation of SOF accumulation means
33, 52 SOOT deposition amount calculation means 35, 54 SOF deposition amount correction means 39 SOOT / SOF ratio calculation means 41 SOOT / SOF ratio map 63 NO 2 conversion rate map 65 NO x emission amount map 67 O 2 emission amount map

Claims (12)

内燃機関の排気通路にPM(粒子状物質)を捕集するDPF(ディーゼルパティキュレートフィルター)を設けたディーゼルエンジンの排ガス後処理装置を備え、前記DPFに堆積したPMを燃焼、除去する再生時期を判定するDPF再生時期判定装置において、
PM中のオイルや未燃料からなるSOF分(可燃性有機物分)の排出量をエンジン運転状態に対して設定したSOF排出量マップと、PM中のSOOT分(黒煙分)の排出量をエンジン運転状態に対して設定したSOOT排出量マップと、DPFでの排気ガス温度におけるSOF分の再生量を設定したSOF再生量マップと、DPFでの排ガス温度におけるSOOT分の再生量を算出するSOOT再生量算出手段とを備え、
前記各マップおよび算出手段により算出したSOF分およびSOOT分の排出量と再生量との差からDPFに堆積したSOF分およびSOOT分を算出し、該算出値の経時蓄積量を求めてSOF分およびSOOT分の堆積量を求めるSOF堆積量算出手段およびSOOT堆積量算出手段と、該SOF堆積量算出手段によって算出されたSOF分がエンジン運転中のDPFの温度履歴によって時間遅れを伴って揮発または酸化燃焼する分を補正するSOF堆積量補正手段と、該補正されたSOF堆積量および前記算出されたSOOT堆積量に基づいてDPFの再生時期を判定する再生判定手段と、を備えたことを特徴とするDPF再生時期判定装置。
An exhaust gas aftertreatment device for a diesel engine provided with a DPF (diesel particulate filter) for collecting PM (particulate matter) in an exhaust passage of the internal combustion engine is provided, and a regeneration timing for burning and removing the PM deposited on the DPF is provided. In the DPF regeneration timing determination device for determining,
The SOF emission map that sets the amount of SOF (flammable organic matter) consisting of oil and unfueled fuel in PM with respect to the engine operating state, and the amount of SOOT (black smoke) in PM SOOT emission amount map set for the operating state, SOF regeneration amount map in which the regeneration amount for the SOF at the exhaust gas temperature in the DPF is set, and SOOT regeneration for calculating the regeneration amount for the SOOT in the exhaust gas temperature at the DPF A quantity calculating means,
The SOF and SOOT components accumulated in the DPF are calculated from the difference between the SOF and SOOT emission amounts calculated by the respective maps and the calculation means and the regeneration amount, and the accumulated amount of the calculated values over time is obtained to obtain the SOF component and the SOT component. SOF deposition amount calculation means and SOOT deposition amount calculation means for obtaining a deposition amount for the SOT, and the SOF calculated by the SOF deposition amount calculation means is volatilized or oxidized with a time delay depending on the temperature history of the DPF during engine operation. SOF deposition amount correction means for correcting the amount of combustion, and regeneration determination means for determining the regeneration timing of the DPF based on the corrected SOF deposition amount and the calculated SOOT deposition amount DPF regeneration time determination device.
前記補正SOF堆積量とSOOT堆積量との比を算出するSOOT/SOF比算出手段と、予め排ガス温度ごとにSOOT/SOF比をパラメータとしてDPFの前後差圧とSOOT堆積量との関係が設定されたSOOT/SOF比マップとを備え、前記DPFの前後の差圧を検出する差圧センサからの検出値と排ガス温度センサからの検出値と前記SOOT/SOF比算出手段によるSOOT/補正SOF比の算出値とによって、前記SOOT/SOF比マップを用いてSOOT分の堆積量を算出し、該SOOT分によって再生時期を判定することを特徴とする請求項1記載のDPF再生時期判定装置。   The relationship between the SOOT / SOF ratio calculating means for calculating the ratio between the corrected SOF deposition amount and the SOOT deposition amount, and the relationship between the differential pressure before and after the DPF and the SOOT deposition amount with the SOOT / SOF ratio as a parameter for each exhaust gas temperature is set in advance. And a detected value from a differential pressure sensor that detects a differential pressure before and after the DPF, a detected value from an exhaust gas temperature sensor, and a SOOT / corrected SOF ratio by the SOOT / SOF ratio calculating means. 2. The DPF regeneration timing determination apparatus according to claim 1, wherein a deposit amount for SOOT is calculated using the SOOT / SOF ratio map based on the calculated value, and the regeneration timing is determined based on the SOOT component. 前記補正SOF堆積量はSOF堆積量に補正係数をかけてSOF分の揮発または酸化燃焼分を補正することを特徴とする請求項2記載のDPF再生時期判定装置。   3. The DPF regeneration timing determination device according to claim 2, wherein the corrected SOF accumulation amount is obtained by multiplying the SOF accumulation amount by a correction coefficient to correct the volatile or oxidative combustion amount of the SOF. 前記補正係数は、DPFに温度上昇履歴がある場合と、温度下降履歴がある場合とで異ならせ、温度上昇履歴時の方が温度下降履歴時よりも小さい値に設定されることを特徴とする請求項3記載のDPF再生時期判定装置。   The correction coefficient is different depending on whether the DPF has a temperature increase history or a temperature decrease history, and the correction coefficient is set to a smaller value than the temperature decrease history. The DPF regeneration time determination device according to claim 3. 内燃機関の排気通路にPM(粒子状物質)を捕集するDPF(ディーゼルパティキュレートフィルター)を設けたディーゼルエンジンの排ガス後処理装置を備え、前記DPFに堆積したPMを燃焼、除去する再生時期を判定するDPF再生時期判定装置において、
PM中のオイルや未燃料からなるSOF分(可燃性有機物分)の排出量をエンジン運転状態に対して設定したSOF排出量マップと、PM中のSOOT分(黒煙分)の排出量をエンジン運転状態に対して設定したSOOT排出量マップと、DPFでの排気ガス温度におけるSOF分の再生量を設定したSOF再生量マップと、DPFでの排ガス温度におけるSOOT分の再生量を算出するSOOT再生量算出手段とを備え、
前記各マップおよび算出手段により算出したSOF分およびSOOT分の排出量と再生量との差からDPFに堆積したSOF分およびSOOT分を算出し、該算出値の経時蓄積量を求めてSOF分およびSOOT分の堆積量を求めるSOF堆積量算出手段およびSOOT堆積量算出手段と、該SOF堆積量算出手段によって算出されたSOF分がDPFの上流に設けられたDOC(ディーゼル酸化触媒)の触媒反応による酸化燃焼による浄化分を補正するSOF堆積量補正手段と、該補正されたSOF堆積量および前記算出されたSOOT堆積量に基づいてDPFの再生時期を判定する再生判定手段と、を備えたことを特徴とするDPF再生時期判定装置。
An exhaust gas aftertreatment device for a diesel engine provided with a DPF (diesel particulate filter) for collecting PM (particulate matter) in an exhaust passage of the internal combustion engine is provided, and a regeneration timing for burning and removing the PM deposited on the DPF is provided. In the DPF regeneration timing determination device for determining,
The SOF emission map that sets the amount of SOF (flammable organic matter) consisting of oil and unfueled fuel in PM with respect to the engine operating state, and the amount of SOOT (black smoke) in PM SOOT emission amount map set for the operating state, SOF regeneration amount map in which the regeneration amount for the SOF at the exhaust gas temperature in the DPF is set, and SOOT regeneration for calculating the regeneration amount for the SOOT in the exhaust gas temperature at the DPF A quantity calculating means,
The SOF and SOOT components accumulated in the DPF are calculated from the difference between the SOF and SOOT emission amounts calculated by the respective maps and the calculation means and the regeneration amount, and the accumulated amount of the calculated values over time is obtained to obtain the SOF component and the SOT component. SOF deposition amount calculation means and SOOT deposition amount calculation means for determining the deposition amount for SOT, and the SOF calculated by the SOF deposition amount calculation means is based on a catalytic reaction of a DOC (diesel oxidation catalyst) provided upstream of the DPF. SOF deposition amount correction means for correcting the purification amount due to oxidative combustion, and regeneration determination means for determining the regeneration timing of the DPF based on the corrected SOF deposition amount and the calculated SOOT deposition amount. A DPF regeneration time determination device as a feature.
前記DPFの上流に設けられたDOCの出口温度が予め設定した閾値以下の場合には、前記補正SOF分とSOOT分との和によって、さらに前記閾値を超える場合には前記SOOT分によって再生時期を判定することを特徴とする請求項5記載のDPF再生時期判定装置。   When the outlet temperature of the DOC provided upstream of the DPF is equal to or lower than a preset threshold value, the regeneration time is determined by the sum of the corrected SOF and SOOT, and when the threshold is exceeded, the regeneration time is determined by the SOOT. 6. The DPF regeneration timing determination device according to claim 5, wherein the determination is performed. 前記SOOT再生量算出手段が、DPF温度とDPFでの二酸化窒素(NO)濃度からSOOT再生量が求められるように設定されマップによって構成されてなることを特徴とする請求項1または5記載のDPF再生時期判定装置。 The SOOT regeneration amount calculating means, nitrogen dioxide at DPF temperature and DPF (NO 2) concentration of the claims 1 or 5, wherein the composed is constituted by a set map to SOOT regeneration amount is calculated DPF regeneration time determination device. 前記SOOT再生量算出手段が、DPF温度(T)とDPFへ流入する排ガス流量(Q)と排ガス中の二酸化窒素(NO)濃度と酸素(O)濃度とをパラメータとするSOOT燃焼速度式によって算出することを特徴とする請求項1または5記載のDPF再生時期判定装置。 The SOOT regeneration rate calculation means uses a DOT temperature (T), an exhaust gas flow rate (Q) flowing into the DPF, a nitrogen dioxide (NO 2 ) concentration and an oxygen (O 2 ) concentration in the exhaust gas as parameters. 6. The DPF regeneration time determination device according to claim 1, wherein the DPF regeneration time determination device is calculated by: 内燃機関の排気通路にPM(粒子状物質)を捕集するDPF(ディーゼルパティキュレートフィルター)を設けたディーゼルエンジンの排ガス後処理装置を備え、前記DPFに堆積したPMを燃焼、除去する再生時期を判定するDPF再生時期判定方法において、
PM中のオイルや未燃料からなるSOF分(可燃性有機物分)の排出量をエンジン運転状態に対して設定されたSOF排出量マップによって算出し、PM中のSOOT分(黒煙分)の排出量をエンジン運転状態に対して設定されたSOOT排出量マップによって算出し、DPFでの排気ガス処理温度におけるSOF分の再生量をSOF再生量マップによって算出し、DPFでの排ガス処理温度におけるSOOT分の再生量をSOOT再生量算出手段によって算出し、前記算出したSOF分およびSOOT分の排出量と再生量との差からDPFに堆積したSOF分およびSOOT分を算出し、該算出値の経時蓄積量を求めてSOF分およびSOOT分の堆積量を算出し、該算出したSOF分のうちSOFがエンジン運転中のDPFの温度履歴に基づいて時間遅れを伴って揮発または酸化燃焼する分を補正し、該補正したSOF分と前記算出したSOOT分とを用いて再生時期を判定することを特徴とするDPF再生時期判定方法。
An exhaust gas aftertreatment device for a diesel engine provided with a DPF (diesel particulate filter) for collecting PM (particulate matter) in an exhaust passage of the internal combustion engine is provided, and a regeneration timing for burning and removing the PM deposited on the DPF is provided. In the DPF regeneration timing determination method for determining,
Emission amount of SOF (combustible organic matter) consisting of oil and unfueled fuel in PM is calculated by SOF emission map set for engine operating condition, and SOOT (black smoke) emission in PM The amount is calculated by the SOOT emission map set for the engine operating state, the regeneration amount of the SOF at the exhaust gas processing temperature in the DPF is calculated by the SOF regeneration map, and the SOOT component at the exhaust gas processing temperature in the DPF is calculated. Is calculated by the SOOT regeneration amount calculation means, and the SOF and SOOT components deposited on the DPF are calculated from the difference between the calculated SOF and SOOT emissions and the regeneration amount, and the calculated values are accumulated over time. The amount of SOF and SOOT is calculated by calculating the amount of SOF, and the SOF of the calculated SOF is added to the temperature history of the DPF during engine operation. Zui corrects the amount of volatilization or oxidative combustion with a time lag, DPF regeneration timing judging method characterized by determining the regeneration timing by using the SOOT worth of the calculated and SOF component was the correction.
前記SOOT分と補正SOF分との比を算出し、さらに予め排ガス温度ごとにSOOT/SOF比をパラメータとしてDPFの前後差圧とSOOT堆積量との関係が設定されたSOOT/SOF比マップを準備し、差圧センサからの検出値と排ガス温度センサからの検出値と前記SOOT/補正SOF比の算出値とに基づいて、前記SOOT/SOF比マップを用いてSOOT分の堆積量を算出し、該SOOT分によって再生時期を判定することを特徴とする請求項9記載のDPF再生時期判定方法。   The ratio between the SOOT component and the corrected SOF component is calculated, and a SOOT / SOF ratio map in which the relationship between the differential pressure across the DPF and the SOOT deposition amount is set in advance for each exhaust gas temperature using the SOOT / SOF ratio as a parameter is prepared. Then, based on the detected value from the differential pressure sensor, the detected value from the exhaust gas temperature sensor, and the calculated value of the SOOT / corrected SOF ratio, the deposition amount of SOOT is calculated using the SOOT / SOF ratio map, 10. The DPF regeneration timing determination method according to claim 9, wherein the regeneration timing is determined based on the SOOT amount. 内燃機関の排気通路にPM(粒子状物質)を捕集するDPF(ディーゼルパティキュレートフィルター)を設けたディーゼルエンジンの排ガス後処理装置を備え、前記DPFに堆積したPMを燃焼、除去する再生時期を判定するDPF再生時期判定方法において、
PM中のオイルや未燃料からなるSOF分(可燃性有機物分)の排出量をエンジン運転状態に対して設定されたSOF排出量マップによって算出し、PM中のSOOT分(黒煙分)の排出量をエンジン運転状態に対して設定されたSOOT排出量マップによって算出し、DPFでの排気ガス処理温度におけるSOF分の再生量をSOF再生量マップによって算出し、DPFでの排ガス処理温度におけるSOOT分の再生量をSOOT再生量算出手段によって算出し、前記算出したSOF分およびSOOT分の排出量と再生量との差からDPFに堆積したSOF分およびSOO分を算出し、該算出値の経時蓄積量を求めてSOF分およびSOOT分の堆積量を算出し、該算出したSOF分のうちSOFが前記DPFの上流に設けられたDOC(ディーゼル酸化触媒)の触媒反応によって酸化燃焼する分を補正し、該補正したSOF分と前記算出したSOOT分によって再生時期を判定することを特徴とするDPF再生時期判定方法。
An exhaust gas aftertreatment device for a diesel engine provided with a DPF (diesel particulate filter) for collecting PM (particulate matter) in an exhaust passage of the internal combustion engine is provided, and a regeneration timing for burning and removing the PM deposited on the DPF is provided. In the DPF regeneration timing determination method for determining,
Emission amount of SOF (combustible organic matter) consisting of oil and unfueled fuel in PM is calculated by SOF emission map set for engine operating condition, and SOOT (black smoke) emission in PM The amount is calculated by the SOOT emission map set for the engine operating state, the regeneration amount of the SOF at the exhaust gas processing temperature in the DPF is calculated by the SOF regeneration map, and the SOOT component at the exhaust gas processing temperature in the DPF is calculated. Is calculated by the SOOT regeneration amount calculation means, and the SOF and SOO components deposited on the DPF are calculated from the difference between the calculated SOF and SOOT emissions and the regeneration amount, and the calculated values are accumulated over time. The amount of accumulation is calculated by calculating the amount of SOF and SOOT, and among the calculated SOF, the SOF is a DOC provided upstream of the DPF ( The amount of oxidative combustion corrected by diesel catalysis of the oxidation catalyst), DPF regeneration timing judging method characterized by determining the regeneration timing by SOOT worth of the calculated and SOF component was the correction.
前記DPFの上流に設けられたDOCの出口温度が予め設定した閾値以下の場合には、前記補正したSOF分とSOOT分との和によって、さらに前記閾値を超える場合には前記SOOT分によって再生時期判定することを特徴とする請求項11記載のDPF再生時期判定方法。   When the outlet temperature of the DOC provided upstream of the DPF is equal to or lower than a preset threshold value, the regeneration time is determined by the sum of the corrected SOF component and the SOOT component. The DPF regeneration timing determination method according to claim 11, wherein the determination is performed.
JP2008271363A 2008-10-21 2008-10-21 Dpf regeneration timing determination method and determination device Withdrawn JP2010101205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271363A JP2010101205A (en) 2008-10-21 2008-10-21 Dpf regeneration timing determination method and determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271363A JP2010101205A (en) 2008-10-21 2008-10-21 Dpf regeneration timing determination method and determination device

Publications (1)

Publication Number Publication Date
JP2010101205A true JP2010101205A (en) 2010-05-06

Family

ID=42292067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271363A Withdrawn JP2010101205A (en) 2008-10-21 2008-10-21 Dpf regeneration timing determination method and determination device

Country Status (1)

Country Link
JP (1) JP2010101205A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104416A (en) * 2011-11-16 2013-05-30 Mitsubishi Heavy Ind Ltd Device for estimating pm accumulation quantity in dpf
JP2014194165A (en) * 2013-03-28 2014-10-09 Yanmar Co Ltd Exhaust emission control system and engine equipped with the same
EP2826969A1 (en) * 2013-07-16 2015-01-21 MAN Truck & Bus AG Method for regenerating a particle filter and internal combustion engine with a particle filter
JP2015527514A (en) * 2012-06-21 2015-09-17 マック トラックス インコーポレイテッド Method, engine, exhaust aftertreatment system, warning system, and method for detecting abnormally frequent diesel particulate filter regeneration
JP2017048798A (en) * 2016-12-12 2017-03-09 三菱重工業株式会社 Method for estimating amount of pm accumulated in dpf
JP2017180272A (en) * 2016-03-30 2017-10-05 三菱自動車工業株式会社 Exhaust emission control device
US10184379B2 (en) 2014-08-27 2019-01-22 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
JP2021071092A (en) * 2019-10-31 2021-05-06 栗田工業株式会社 Maintenance proposal method for catalytic exhaust gas post treatment device for vehicle mounted with internal combustion engine
CN114382579A (en) * 2022-01-28 2022-04-22 无锡威孚力达催化净化器有限责任公司 Control method for prolonging non-road DPF parking regeneration interval time
CN115355078A (en) * 2022-09-14 2022-11-18 潍柴动力股份有限公司 DOC SOF deposition amount calculation and diagnosis method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857886A (en) * 2011-11-16 2014-06-11 三菱重工业株式会社 Dpf pm accumulation quantity estimation device
JP2013104416A (en) * 2011-11-16 2013-05-30 Mitsubishi Heavy Ind Ltd Device for estimating pm accumulation quantity in dpf
JP2015527514A (en) * 2012-06-21 2015-09-17 マック トラックス インコーポレイテッド Method, engine, exhaust aftertreatment system, warning system, and method for detecting abnormally frequent diesel particulate filter regeneration
US9482124B2 (en) 2012-06-21 2016-11-01 Mack Trucks, Inc. Method for detecting abnormally frequent diesel particulate filter regeneration, engine and exhaust aftertreatment system, and warning system and method
JP2014194165A (en) * 2013-03-28 2014-10-09 Yanmar Co Ltd Exhaust emission control system and engine equipped with the same
RU2647938C2 (en) * 2013-07-16 2018-03-21 Ман Трак Унд Бас Аг Method of regenerating particle filter and internal combustion engine with particulate filter
EP2826969A1 (en) * 2013-07-16 2015-01-21 MAN Truck & Bus AG Method for regenerating a particle filter and internal combustion engine with a particle filter
CN104295351A (en) * 2013-07-16 2015-01-21 曼卡车和巴士股份公司 Method for regenerating a particle filter and internal combustion engine with a particle filter
US9797290B2 (en) 2013-07-16 2017-10-24 Man Truck & Bus Ag Method for the regeneration of a particle filter, and internal combustion engine with particle filter
US10184379B2 (en) 2014-08-27 2019-01-22 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
JP2017180272A (en) * 2016-03-30 2017-10-05 三菱自動車工業株式会社 Exhaust emission control device
JP2017048798A (en) * 2016-12-12 2017-03-09 三菱重工業株式会社 Method for estimating amount of pm accumulated in dpf
JP2021071092A (en) * 2019-10-31 2021-05-06 栗田工業株式会社 Maintenance proposal method for catalytic exhaust gas post treatment device for vehicle mounted with internal combustion engine
CN114382579A (en) * 2022-01-28 2022-04-22 无锡威孚力达催化净化器有限责任公司 Control method for prolonging non-road DPF parking regeneration interval time
CN115355078A (en) * 2022-09-14 2022-11-18 潍柴动力股份有限公司 DOC SOF deposition amount calculation and diagnosis method
CN115355078B (en) * 2022-09-14 2024-02-20 潍柴动力股份有限公司 DOC SOF deposition amount calculation and diagnosis method

Similar Documents

Publication Publication Date Title
JP2010101205A (en) Dpf regeneration timing determination method and determination device
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP6582409B2 (en) Exhaust purification system
JP2006226119A (en) Exhaust emission control device for internal combustion engine
JP2006090153A (en) Exhaust emission control device for internal combustion engine
JP6492854B2 (en) Exhaust purification equipment
JP4008867B2 (en) Exhaust purification equipment
JP2016061145A (en) Exhaust emission control system
JP6439334B2 (en) Exhaust purification system
JP5493268B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP6432411B2 (en) Exhaust purification system
JP6447097B2 (en) Exhaust purification system
WO2016190315A1 (en) Exhaust purification device, control device, and control method
WO2016143902A1 (en) Exhaust purification system, and control method for exhaust purification system
JP2016118135A (en) Exhaust emission control system
JP6604034B2 (en) Exhaust purification device
JP6468005B2 (en) Exhaust purification system
JP2016180383A (en) Catalyst temperature estimation device
JP2016166540A (en) Exhaust emission control system
JP2003049633A (en) Estimating method of collection amount by particulate filter
JP2016125375A (en) Exhaust emission control system
JP6471854B2 (en) Exhaust purification system
JP2016125374A (en) Exhaust emission control system
JP2016061144A (en) Exhaust emission control system and control method for the same
WO2017047702A1 (en) Exhaust purification system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110