JP2016125374A - Exhaust emission control system - Google Patents

Exhaust emission control system Download PDF

Info

Publication number
JP2016125374A
JP2016125374A JP2014264966A JP2014264966A JP2016125374A JP 2016125374 A JP2016125374 A JP 2016125374A JP 2014264966 A JP2014264966 A JP 2014264966A JP 2014264966 A JP2014264966 A JP 2014264966A JP 2016125374 A JP2016125374 A JP 2016125374A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
amount
exhaust
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014264966A
Other languages
Japanese (ja)
Other versions
JP6424618B2 (en
Inventor
輝男 中田
Teruo Nakada
輝男 中田
隆行 坂本
Takayuki Sakamoto
隆行 坂本
長岡 大治
Taiji Nagaoka
大治 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014264966A priority Critical patent/JP6424618B2/en
Publication of JP2016125374A publication Critical patent/JP2016125374A/en
Application granted granted Critical
Publication of JP6424618B2 publication Critical patent/JP6424618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively improve the temperature feedback controllability of catalyst regeneration processing.SOLUTION: An exhaust emission control system includes an exhaust gas post-processing device 30 in which an oxidation catalyst 31 and a NOx reduction catalyst 32 are arranged, a first catalyst temperature estimating part 77 for estimating a temperature of the oxidation catalyst 31 on the basis of an operating condition of an internal combustion engine 10, a second catalyst temperature estimating part 78 for estimating a temperature of the NOx reduction catalyst 32 on the basis of the operating condition of the internal combustion engine 10, and a catalyst regeneration control part 60 for executing catalyst regeneration processing while using air system control which reduces an intake air amount and injection system control which increases a fuel injection amount, in common, for switching an exhaust air-fuel ratio from a lean state to a rich state to restore an NOx eliminating ability of the NOx reduction catalyst 32, the catalyst regeneration control part 60 using a higher temperature out of temperatures input from the first and second catalyst temperature estimating parts 77, 78, as a reference temperature, for feedback controlling an exhaust rich injection amount during the catalyst regeneration processing.SELECTED DRAWING: Figure 1

Description

本発明は、排気浄化システムに関する。   The present invention relates to an exhaust purification system.

従来、内燃機関から排出される排気中の窒素化合物(NOx)を還元浄化する触媒として、NOx吸蔵還元型触媒が知られている。NOx吸蔵還元型触媒は、排気がリーン雰囲気のときに排気中に含まれるNOxを吸蔵すると共に、排気がリッチ雰囲気のときに排気中に含まれる炭化水素で吸蔵していたNOxを還元浄化により無害化して放出する。   Conventionally, a NOx occlusion reduction type catalyst is known as a catalyst for reducing and purifying nitrogen compounds (NOx) in exhaust gas discharged from an internal combustion engine. The NOx occlusion reduction catalyst occludes NOx contained in the exhaust when the exhaust is in a lean atmosphere, and harmless NOx occluded by hydrocarbons contained in the exhaust when the exhaust is in a rich atmosphere. And release.

また、NOx吸蔵還元型触媒には、排気中に含まれる硫黄酸化物(以下、SOxという)も吸蔵される。SOx吸蔵量が増加すると、NOx吸蔵還元型触媒のNOx浄化能力を低下させる課題がある。このため、SOx吸蔵量が所定量に達した場合は、NOx吸蔵還元型触媒からSOxを離脱させてS被毒から回復させるべく、ポスト噴射や排気管噴射によって上流側の酸化触媒に未燃燃料を供給して排気温度をSOx離脱温度まで上昇させる所謂SOxパージを定期的に行う必要がある(例えば、特許文献1参照)。   The NOx occlusion reduction type catalyst also occludes sulfur oxide (hereinafter referred to as SOx) contained in the exhaust gas. When the SOx occlusion amount increases, there is a problem that the NOx purification ability of the NOx occlusion reduction type catalyst is lowered. Therefore, when the SOx occlusion amount reaches a predetermined amount, unburned fuel is added to the upstream oxidation catalyst by post injection or exhaust pipe injection so that SOx is released from the NOx occlusion reduction type catalyst and recovered from S poisoning. So as to raise the exhaust temperature to the SOx separation temperature, so-called SOx purge must be performed periodically (see, for example, Patent Document 1).

特開2009−47086号公報JP 2009-47086 A

この種の装置では、SOxパージ等の触媒再生処理を実施する際に、排気管噴射やポスト噴射の燃料噴射量を目標温度とNOx吸蔵還元型触媒の推定温度との偏差に基づいたフィードバック制御等によって調整している。しかしながら、酸化触媒とNOx吸蔵還元型触媒とでは、触媒特性によって発熱量の分担比率が異なってくるため、温度フィードバック制御の参照信号としては分担比率が高い方の触媒推定温度を用いる方が制御性を向上するうえで好ましい。   In this type of apparatus, when performing catalyst regeneration processing such as SOx purge, feedback control based on the deviation between the target temperature and the estimated temperature of the NOx occlusion reduction catalyst is used for the fuel injection amount of exhaust pipe injection and post injection, etc. It is adjusted by. However, since the calorific value sharing ratio varies depending on the catalyst characteristics between the oxidation catalyst and the NOx storage-reduction catalyst, it is more controllable to use the estimated catalyst temperature with the higher sharing ratio as the reference signal for temperature feedback control. It is preferable when improving.

開示のシステムは、触媒再生処理の温度フィードバック制御性を効果的に向上にすることを目的とする。   The disclosed system aims to effectively improve the temperature feedback controllability of the catalyst regeneration process.

開示のシステムは、内燃機関の排気通路に上流側から順に酸化触媒及びNOx還元型触媒を配置した排気後処理装置と、前記内燃機関の運転状態に基づいて、前記酸化触媒の温度を推定する第1触媒温度推定手段と、前記内燃機関の運転状態に基づいて、前記NOx還元型触媒の温度を推定する第2触媒温度推定手段と、吸入空気量を減少させる空気系制御と燃料噴射量を増加させる噴射系制御とを併用して排気空燃比をリーン状態からリッチ状態に切り替えることで前記NOx還元型触媒のNOx浄化能力を回復させる触媒再生処理を実行する触媒再生手段と、を備え、前記触媒再生手段は、前記第1及び第2触媒温度推定手段から入力される温度のうち、高い方の温度を参照温度として前記触媒再生処理時の排気リッチ噴射量をフィードバック制御する。   In the disclosed system, an exhaust aftertreatment device in which an oxidation catalyst and a NOx reduction catalyst are arranged in order from the upstream side in an exhaust passage of an internal combustion engine, and a temperature of the oxidation catalyst is estimated based on an operating state of the internal combustion engine. 1 catalyst temperature estimating means, second catalyst temperature estimating means for estimating the temperature of the NOx reduction catalyst based on the operating state of the internal combustion engine, air system control for reducing the intake air amount, and increasing the fuel injection amount And a catalyst regeneration means for performing a catalyst regeneration process for recovering the NOx purification ability of the NOx reduction catalyst by switching the exhaust air-fuel ratio from the lean state to the rich state in combination with the injection system control. The regeneration unit feeds the exhaust rich injection amount at the time of the catalyst regeneration process using the higher one of the temperatures input from the first and second catalyst temperature estimation units as a reference temperature. -Clicking control.

開示のシステムによれば、触媒再生処理の温度フィードバック制御性を効果的に向上にすることができる。   According to the disclosed system, the temperature feedback controllability of the catalyst regeneration process can be effectively improved.

本実施形態に係る排気浄化システムを示す全体構成図である。1 is an overall configuration diagram showing an exhaust purification system according to an embodiment. 本実施形態に係るSOxパージ制御を説明するタイミングチャート図である。It is a timing chart explaining SOx purge control concerning this embodiment. 本実施形態に係るSOxパージリーン制御時のMAF目標値の設定処理を示すブロック図である。It is a block diagram which shows the setting process of the MAF target value at the time of SOx purge lean control which concerns on this embodiment. 本実施形態に係るSOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。It is a block diagram which shows the setting process of the target injection amount at the time of SOx purge rich control which concerns on this embodiment. 本実施形態に係るSOxパージ制御の触媒温度調整制御を説明するタイミングチャート図である。It is a timing chart explaining catalyst temperature adjustment control of SOx purge control concerning this embodiment. 本実施形態に係る触媒温度の推定処理を示すブロック図である。It is a block diagram which shows the estimation process of the catalyst temperature which concerns on this embodiment. 本実施形態に係る診断処理を示すブロック図である。It is a block diagram which shows the diagnostic process which concerns on this embodiment. 本実施形態に係るインジェクタの噴射量学習補正の処理を示すブロック図である。It is a block diagram which shows the process of the injection amount learning correction | amendment of the injector which concerns on this embodiment. 本実施形態に係る学習補正係数の演算処理を説明するフロー図である。It is a flowchart explaining the calculation process of the learning correction coefficient which concerns on this embodiment. 本実施形態に係るMAF補正係数の設定処理を示すブロック図である。It is a block diagram which shows the setting process of the MAF correction coefficient which concerns on this embodiment.

以下、添付図面に基づいて、本発明の一実施形態に係る排気浄化システムを説明する。   Hereinafter, an exhaust purification system according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10の各気筒には、図示しないコモンレールに畜圧された高圧燃料を各気筒内に直接噴射する筒内インジェクタ11がそれぞれ設けられている。これら各筒内インジェクタ11の燃料噴射量や燃料噴射タイミングは、電子制御ユニット(以下、ECUという)50から入力される指示信号に応じてコントロールされる。   As shown in FIG. 1, each cylinder of a diesel engine (hereinafter simply referred to as “engine”) 10 is provided with an in-cylinder injector 11 that directly injects high-pressure fuel that is stored in a common rail (not shown) into each cylinder. Yes. The fuel injection amount and fuel injection timing of each in-cylinder injector 11 are controlled according to an instruction signal input from an electronic control unit (hereinafter referred to as ECU) 50.

エンジン10の吸気マニホールド10Aには新気を導入する吸気通路12が接続され、排気マニホールド10Bには排気を外部に導出する排気通路13が接続されている。吸気通路12には、吸気上流側から順にエアクリーナ14、吸入空気量センサ(以下、MAFセンサという)40、吸気温度センサ48、可変容量型過給機20のコンプレッサ20A、インタークーラ15、吸気スロットルバルブ16等が設けられている。排気通路13には、排気上流側から順に可変容量型過給機20のタービン20B、排気後処理装置30等が設けられている。なお、図1中において、符号41はエンジン回転数センサ、符号42はアクセル開度センサ、符号46はブースト圧センサ、符号47は外気温度センサをそれぞれ示している。   An intake passage 12 for introducing fresh air is connected to the intake manifold 10A of the engine 10, and an exhaust passage 13 for leading the exhaust to the outside is connected to the exhaust manifold 10B. In the intake passage 12, an air cleaner 14, an intake air amount sensor (hereinafter referred to as MAF sensor) 40, an intake air temperature sensor 48, a compressor 20A of the variable displacement supercharger 20, an intercooler 15, an intake throttle valve are sequentially provided from the upstream side of the intake air. 16 etc. are provided. The exhaust passage 13 is provided with a turbine 20B of the variable displacement supercharger 20, an exhaust aftertreatment device 30 and the like in order from the exhaust upstream side. In FIG. 1, reference numeral 41 denotes an engine speed sensor, reference numeral 42 denotes an accelerator opening sensor, reference numeral 46 denotes a boost pressure sensor, and reference numeral 47 denotes an outside air temperature sensor.

EGR装置21は、排気マニホールド10Bと吸気マニホールド10Aとを接続するEGR通路22と、EGRガスを冷却するEGRクーラ23と、EGR量を調整するEGRバルブ24とを備えている。   The EGR device 21 includes an EGR passage 22 that connects the exhaust manifold 10B and the intake manifold 10A, an EGR cooler 23 that cools EGR gas, and an EGR valve 24 that adjusts the EGR amount.

排気後処理装置30は、ケース30A内に排気上流側から順に酸化触媒31、NOx吸蔵還元型触媒32、パティキュレートフィルタ(以下、単にフィルタという)33を配置して構成されている。また、酸化触媒31よりも上流側の排気通路13には、ECU50から入力される指示信号に応じて、排気通路13内に未燃燃料(主にHC)を噴射する排気インジェクタ34が設けられている。   The exhaust aftertreatment device 30 is configured by arranging an oxidation catalyst 31, a NOx occlusion reduction type catalyst 32, and a particulate filter (hereinafter simply referred to as a filter) 33 in order from the exhaust upstream side in a case 30A. The exhaust passage 13 upstream of the oxidation catalyst 31 is provided with an exhaust injector 34 that injects unburned fuel (mainly HC) into the exhaust passage 13 in accordance with an instruction signal input from the ECU 50. Yes.

酸化触媒31は、例えば、ハニカム構造体等のセラミック製担体表面に酸化触媒成分を担持して形成されている。酸化触媒31は、排気インジェクタ34又は筒内インジェクタ11のポスト噴射によって未燃燃料が供給されると、これを酸化して排気温度を上昇させる。   The oxidation catalyst 31 is formed, for example, by carrying an oxidation catalyst component on the surface of a ceramic carrier such as a honeycomb structure. When the unburnt fuel is supplied by the post-injection of the exhaust injector 34 or the in-cylinder injector 11, the oxidation catalyst 31 oxidizes this and raises the exhaust temperature.

NOx吸蔵還元型触媒32は、例えば、ハニカム構造体等のセラミック製担体表面にアルカリ金属等を担持して形成されている。このNOx吸蔵還元型触媒32は、排気空燃比がリーン状態のときに排気中のNOxを吸蔵すると共に、排気空燃比がリッチ状態のときに排気中に含まれる還元剤(HC等)で吸蔵したNOxを還元浄化する。   The NOx storage reduction catalyst 32 is formed, for example, by supporting an alkali metal or the like on the surface of a ceramic carrier such as a honeycomb structure. The NOx occlusion reduction type catalyst 32 occludes NOx in the exhaust when the exhaust air-fuel ratio is in a lean state, and occludes with a reducing agent (HC or the like) contained in the exhaust when the exhaust air-fuel ratio is in a rich state. NOx is reduced and purified.

フィルタ33は、例えば、多孔質性の隔壁で区画された多数のセルを排気の流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。フィルタ33は、排気中のPMを隔壁の細孔や表面に捕集すると共に、PM堆積推定量が所定量に達すると、これを燃焼除去するいわゆるフィルタ強制再生が実行される。フィルタ強制再生は、排気管噴射又はポスト噴射によって上流側の酸化触媒31に未燃燃料を供給し、フィルタ33に流入する排気温度をPM燃焼温度まで昇温することで行われる。   The filter 33 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells. . The filter 33 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the estimated amount of PM deposition reaches a predetermined amount, so-called filter forced regeneration is performed in which the PM is burned and removed. Filter forced regeneration is performed by supplying unburned fuel to the upstream side oxidation catalyst 31 by exhaust pipe injection or post injection, and raising the exhaust temperature flowing into the filter 33 to the PM combustion temperature.

第1排気温度センサ43は、酸化触媒31よりも上流側に設けられており、酸化触媒31に流入する排気温度を検出する。第2排気温度センサ44は、酸化触媒31とNOx吸蔵還元型触媒32との間に設けられており、NOx吸蔵還元型触媒32に流入する排気温度を検出する。NOx/ラムダセンサ45は、フィルタ33よりも下流側に設けられており、NOx吸蔵還元型触媒32を通過した排気のNOx値及びラムダ値(以下、空気過剰率ともいう)を検出する。   The first exhaust temperature sensor 43 is provided on the upstream side of the oxidation catalyst 31 and detects the exhaust temperature flowing into the oxidation catalyst 31. The second exhaust temperature sensor 44 is provided between the oxidation catalyst 31 and the NOx storage reduction catalyst 32 and detects the exhaust temperature flowing into the NOx storage reduction catalyst 32. The NOx / lambda sensor 45 is provided on the downstream side of the filter 33, and detects the NOx value and lambda value (hereinafter also referred to as excess air ratio) of the exhaust gas that has passed through the NOx storage reduction catalyst 32.

ECU50は、エンジン10等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。これら各種制御を行うため、ECU50にはセンサ類40〜48のセンサ値が入力される。また、ECU50は、フィルタ再生制御部51と、SOxパージ制御部60と、触媒温度推定部70と、異常診断部80と、MAF追従制御部85と、噴射量学習補正部90と、MAF補正係数演算部95とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。   The ECU 50 performs various controls of the engine 10 and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, sensor values of the sensors 40 to 48 are input to the ECU 50. Further, the ECU 50 includes a filter regeneration control unit 51, a SOx purge control unit 60, a catalyst temperature estimation unit 70, an abnormality diagnosis unit 80, a MAF follow-up control unit 85, an injection amount learning correction unit 90, and a MAF correction coefficient. The arithmetic unit 95 is included as a part of functional elements. Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.

[フィルタ再生制御]
フィルタ再生制御部51は、車両の走行距離、あるいは図示しない差圧センサで検出されるフィルタ前後差圧からフィルタ33のPM堆積量を推定すると共に、このPM堆積推定量が所定の上限閾値を超えると強制再生フラグFDPFをオンにする(図2の時刻t参照)。強制再生フラグFDPFがオンにされると、排気インジェクタ34に排気管噴射を実行させる指示信号が送信されるか、あるいは、各筒内インジェクタ11にポスト噴射を実行させる指示信号が送信されて、排気温度をPM燃焼温度(例えば、約550℃)まで昇温させる。この強制再生フラグFDPFは、PM堆積推定量が燃焼除去を示す所定の下限閾値(判定閾値)まで低下するとオフにされる(図2の時刻t参照)。強制再生フラグFDPFをオフにする判定閾値は、例えば、フィルタ強制再生開始(FDPF=1)からの上限経過時間や上限累積噴射量を基準にしてもよい。
[Filter regeneration control]
The filter regeneration control unit 51 estimates the PM accumulation amount of the filter 33 from the travel distance of the vehicle or the differential pressure across the filter detected by a differential pressure sensor (not shown), and the estimated PM accumulation amount exceeds a predetermined upper limit threshold. And the forced regeneration flag F DPF is turned on (see time t 1 in FIG. 2). When the forced regeneration flag F DPF is turned on, an instruction signal for executing exhaust pipe injection is transmitted to the exhaust injector 34, or an instruction signal for executing post injection is transmitted to each in-cylinder injector 11, The exhaust temperature is raised to the PM combustion temperature (for example, about 550 ° C.). The forced regeneration flag F DPF is, PM deposition estimation amount is turned off drops to a predetermined lower limit threshold indicating the burn off (determination threshold value) (see time t 2 in FIG. 2). The determination threshold value for turning off the forced regeneration flag F DPF may be based on, for example, the upper limit elapsed time from the filter forced regeneration start (F DPF = 1) or the upper limit cumulative injection amount.

本実施形態において、フィルタ強制再生時の燃料噴射量は、詳細を後述する参照温度選択部79(図6参照)によって適宜選択される酸化触媒温度又は、NOx触媒温度の何れかに基づいてフィードバック制御されるようになっている。   In the present embodiment, the fuel injection amount at the time of forced regeneration of the filter is feedback controlled based on either the oxidation catalyst temperature or the NOx catalyst temperature that is appropriately selected by a reference temperature selection unit 79 (see FIG. 6), which will be described in detail later. It has come to be.

[SOxパージ制御]
SOxパージ制御部60は、排気をリッチ状態にして排気温度を硫黄離脱温度(例えば、約600℃)まで上昇させて、NOx吸蔵還元型触媒32をSOx被毒から回復させる制御(以下、この制御をSOxパージ制御という)を実行する。
[SOx purge control]
The SOx purge control unit 60 makes the exhaust rich and raises the exhaust temperature to a sulfur desorption temperature (for example, about 600 ° C.) to recover the NOx occlusion reduction type catalyst 32 from SOx poisoning (hereinafter, this control). (Referred to as SOx purge control).

図2は、本実施形態のSOxパージ制御のタイミングチャートを示している。図2に示すように、SOxパージ制御を開始するSOxパージフラグFSPは、強制再生フラグFDPFのオフと同時にオンにされる(図2の時刻t参照)。これにより、フィルタ33の強制再生によって排気温度を上昇させた状態からSOxパージ制御に効率よく移行することが可能となり、燃料消費量を効果的に低減することができる。 FIG. 2 shows a timing chart of the SOx purge control of this embodiment. As shown in FIG. 2, SOx purge flag F SP to start SOx purge control is turned off and on at the same time forced regeneration flag F DPF (see time t 2 in FIG. 2). As a result, it is possible to efficiently shift to the SOx purge control from the state in which the exhaust gas temperature has been raised by the forced regeneration of the filter 33, and the fuel consumption can be effectively reduced.

本実施形態において、SOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第1目標空気過剰率(例えば、約1.3)まで低下させるSOxパージリーン制御と、噴射系制御によって空気過剰率を第1目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるSOxパージリッチ制御とを併用することで実現される。以下、SOxパージリーン制御及び、SOxパージリッチ制御の詳細について説明する。   In the present embodiment, the enrichment by the SOx purge control is performed by adjusting the excess air ratio to the lean side from the theoretical air-fuel ratio equivalent value (about 1.0) from the steady operation (for example, about 1.5) by the air system control. SOx purge lean control for reducing to 1 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the first target excess air ratio to the second target excess air ratio on the rich side (for example, about 0) This is realized by using together with the SOx purge rich control that lowers to .9). Details of the SOx purge lean control and the SOx purge rich control will be described below.

[SOxパージリーン制御の空気系制御]
図3は、SOxパージリーン制御時のMAF目標値MAFSPL_Trgtの設定処理を示すブロック図である。第1目標空気過剰率設定マップ61は、エンジン回転数Ne及びアクセル開度Q(エンジン10の燃料噴射量)に基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリーン制御時の空気過剰率目標値λSPL_Trgt(第1目標空気過剰率)が予め実験等に基づいて設定されている。
[Air system control for SOx purge lean control]
FIG. 3 is a block diagram illustrating a process for setting the MAF target value MAF SPL_Trgt during the SOx purge lean control. The first target excess air ratio setting map 61 is a map that is referred to based on the engine speed Ne and the accelerator opening Q (the fuel injection amount of the engine 10), and the engine speed Ne, the accelerator opening Q, The excess air ratio target value λ SPL_Trgt (first target excess air ratio) at the time of SOx purge lean control corresponding to is preset based on experiments or the like.

まず、第1目標空気過剰率設定マップ61から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリーン制御時の空気過剰率目標値λSPL_Trgtが読み取られて、MAF目標値演算部62に入力される。さらに、MAF目標値演算部62では、以下の数式(1)に基づいてSOxパージリーン制御時のMAF目標値MAFSPL_Trgtが演算される。 First, the excess air ratio target value λ SPL_Trgt at the time of SOx purge lean control is read from the first target excess air ratio setting map 61 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 62. Entered. Further, the MAF target value calculation unit 62 calculates the MAF target value MAF SPL_Trgt during the SOx purge lean control based on the following formula (1).

Figure 2016125374
Figure 2016125374

数式(1)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。 In Equation (1), Q fnl_cord represents a learning-corrected fuel injection amount (excluding post-injection) described later, Ro Fuel represents fuel specific gravity, AFR sto represents a theoretical air-fuel ratio, and Maf_corr represents a MAF correction coefficient described later. Yes.

MAF目標値演算部62によって演算されたMAF目標値MAFSPL_Trgtは、SOxパージフラグFSPがオン(図2の時刻t参照)になるとランプ処理部63に入力される。ランプ処理部63は、各ランプ係数マップ63A,Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFSPL_Trgt_Rampをバルブ制御部64に入力する。 MAF target value MAF SPL_Trgt calculated by the MAF target value calculation unit 62, when the SOx purge flag F SP is turned on (see time t 2 in FIG. 2) is input to the lamp unit 63. The ramp processing unit 63 reads the ramp coefficient from each of the ramp coefficient maps 63A and 63B using the engine speed Ne and the accelerator opening Q as input signals, and uses the MAF target ramp value MAF SPL_Trgt_Ramp to which the ramp coefficient is added as the valve control unit 64. To enter.

バルブ制御部64は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFSPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。 The valve control unit 64 throttles the intake throttle valve 16 to the close side and opens the EGR valve 24 to the open side so that the actual MAF value MAF Act input from the MAF sensor 40 becomes the MAF target ramp value MAF SPL_Trgt_Ramp. Execute control.

このように、本実施形態では、第1目標空気過剰率設定マップ61から読み取られる空気過剰率目標値λSPL_Trgtと、各筒内インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFSPL_Trgtを設定し、このMAF目標値MAFSPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 Thus, in this embodiment, the MAF target value MAF SPL_Trgt is set based on the excess air ratio target value λ SPL_Trgt read from the first target excess air ratio setting map 61 and the fuel injection amount of each in-cylinder injector 11. The air system operation is feedback-controlled based on the MAF target value MAF SPL_Trgt . Thus, without providing a lambda sensor upstream of the NOx storage reduction catalyst 32, or even when a lambda sensor is provided upstream of the NOx storage reduction catalyst 32, the sensor value of the lambda sensor is not used. The exhaust can be effectively reduced to a desired excess air ratio required for SOx purge lean control.

また、各筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFSPL_Trgtをフィードフォワード制御で設定することが可能となり、各筒内インジェクタ11の経年劣化や特性変化、個体差等の影響を効果的に排除することができる。 Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of each in-cylinder injector 11, the MAF target value MAF SPL_Trgt can be set by feedforward control. It is possible to effectively eliminate influences such as deterioration, characteristic changes, and individual differences.

また、MAF目標値MAFSPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。 Further, by adding a ramp coefficient that is set according to the operating state of the engine 10 to the MAF target value MAF SPL_Trgt , it is possible to prevent misfire of the engine 10 due to a sudden change in the intake air amount, deterioration of drivability due to torque fluctuation, and the like. It can be effectively prevented.

[SOxパージリッチ制御の燃料噴射量設定]
図4は、SOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QSPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第2目標空気過剰率設定マップ65は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgt(第2目標空気過剰率)が予め実験等に基づいて設定されている。
[Fuel injection amount setting for SOx purge rich control]
FIG. 4 is a block diagram showing processing for setting the target injection amount Q SPR_Trgt (injection amount per unit time) of exhaust pipe injection or post injection in SOx purge rich control. The second target excess air ratio setting map 65 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and at the time of SOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q. Of the excess air ratio target value λ SPR_Trgt (second target excess air ratio) is set in advance based on experiments or the like.

まず、第2目標空気過剰率設定マップ65から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgtが読み取られて、噴射量目標値演算部66に入力される。さらに、噴射量目標値演算部66では、以下の数式(2)に基づいてSOxパージリッチ制御時の目標噴射量QSPR_Trgtが演算される。 First, the excess air ratio target value λ SPR_Trgt at the time of SOx purge rich control is read from the second target excess air ratio setting map 65 using the engine speed Ne and the accelerator opening Q as input signals, and an injection quantity target value calculation unit 66. Further, the injection amount target value calculation unit 66 calculates the target injection amount Q SPR_Trgt during the SOx purge rich control based on the following formula (2).

Figure 2016125374
Figure 2016125374

数式(2)において、MAFSPL_TrgtはSOxパージリーン時のMAF目標値であって、前述のMAF目標値演算部62から入力される。また、QfnlRaw_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。 In Expression (2), MAF SPL_Trgt is the MAF target value at the SOx purge lean, and is input from the above-described MAF target value calculation unit 62. Q fnlRaw_cord is a fuel injection amount (excluding post-injection) after application of learning corrected MAF tracking control described later, Ro Fuel is fuel specific gravity, AFR sto is a theoretical air-fuel ratio, and Maf_corr is a MAF correction coefficient described later. Show.

噴射量目標値演算部66によって演算された目標噴射量QSPR_Trgtは、後述するSOxパージリッチフラグFSPRがオンになると、排気インジェクタ34又は、各筒内インジェクタ11に噴射指示信号として送信される。 The target injection amount Q SPR_Trgt calculated by the injection amount target value calculation unit 66 is transmitted as an injection instruction signal to the exhaust injector 34 or each in-cylinder injector 11 when a SOx purge rich flag F SPR described later is turned on.

このように、本実施形態では、第2目標空気過剰率設定マップ65から読み取られる空気過剰率目標値λSPR_Trgtと、各筒内インジェクタ11の燃料噴射量とに基づいて目標噴射量QSPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 Thus, in the present embodiment, the target injection amount Q SPR_Trgt is set based on the air excess rate target value λ SPR_Trgt read from the second target air excess rate setting map 65 and the fuel injection amount of each in-cylinder injector 11. It is supposed to be. Thus, without providing a lambda sensor upstream of the NOx storage reduction catalyst 32, or even when a lambda sensor is provided upstream of the NOx storage reduction catalyst 32, the sensor value of the lambda sensor is not used. The exhaust can be effectively reduced to a desired excess air ratio required for SOx purge rich control.

また、各筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QSPR_Trgtをフィードフォワード制御で設定することが可能となり、各筒内インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。 Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of each in-cylinder injector 11, the target injection amount Q SPR_Trgt can be set by feedforward control. Effects such as deterioration and characteristic changes can be effectively eliminated.

[SOxパージ制御の触媒温度調整制御]
SOxパージ制御中にNOx吸蔵還元型触媒32に流入する排気温度(以下、触媒温度ともいう)は、図2の時刻t〜tに示すように、排気管噴射又はポスト噴射を実行するSOxパージリッチフラグFSPRのオン・オフ(リッチ・リーン)を交互に切り替えることで制御される。SOxパージリッチフラグFSPRがオン(FSPR=1)にされると、排気管噴射又はポスト噴射によって触媒温度は上昇する(以下、この期間を噴射期間TF_INJという)。一方、SOxパージリッチフラグFSPRがオフにされると、排気管噴射又はポスト噴射の停止によって触媒温度は低下する(以下、この期間をインターバルTF_INTという)。
[Catalyst temperature adjustment control for SOx purge control]
The exhaust temperature (hereinafter also referred to as catalyst temperature) flowing into the NOx occlusion reduction type catalyst 32 during the SOx purge control is the SOx that performs exhaust pipe injection or post injection as shown at times t 2 to t 4 in FIG. The purge rich flag F SPR is controlled by alternately switching on / off (rich / lean). When the SOx purge rich flag F SPR is turned on (F SPR = 1), the catalyst temperature rises by exhaust pipe injection or post injection (hereinafter, this period is referred to as an injection period TF_INJ ). On the other hand, when the SOx purge rich flag FSPR is turned off, the catalyst temperature is lowered by stopping the exhaust pipe injection or the post injection (hereinafter, this period is referred to as an interval TF_INT ).

本実施形態において、噴射期間TF_INJは、予め実験等により作成した噴射期間設定マップ(不図示)からエンジン回転数Ne及びアクセル開度Qに対応する値を読み取ることで設定される。この噴射時間設定マップには、予め実験等によって求めた排気の空気過剰率を第2目標空気過剰率まで確実に低下させるのに必要となる噴射期間が、エンジン10の運転状態に応じて設定されている。 In the present embodiment, the injection period TF_INJ is set by reading values corresponding to the engine speed Ne and the accelerator opening Q from an injection period setting map (not shown) created in advance by experiments or the like. In this injection time setting map, an injection period required to reliably reduce the excess air ratio of exhaust gas obtained in advance through experiments or the like to the second target excess air ratio is set according to the operating state of the engine 10. ing.

インターバルTF_INTは、触媒温度が最も高くなるSOxパージリッチフラグFSPRがオンからオフに切り替えられた際に、フィードバック制御によって設定される。具体的には、SOxパージリッチフラグFSPRがオフされた際の触媒目標温度と触媒推定温度との偏差ΔTに比例して入力信号を変化させる比例制御と、偏差ΔTの時間積分値に比例して入力信号を変化させる積分制御と、偏差ΔTの時間微分値に比例して入力信号を変化させる微分制御とで構成されるPID制御によって処理される。触媒目標温度は、NOx吸蔵還元型触媒32からSOxを離脱可能な温度で設定され、触媒推定温度は、詳細を後述する参照温度選択部79(図6参照)によって適宜選択される酸化触媒温度又は、NOx触媒温度の何れかで設定されるようになっている。 The interval T F_INT is set by feedback control when the SOx purge rich flag F SPR at which the catalyst temperature is highest is switched from on to off. Specifically, the proportional control for changing the input signal in proportion to the deviation ΔT between the target catalyst temperature and the estimated catalyst temperature when the SOx purge rich flag F SPR is turned off, and the time integral value of the deviation ΔT are proportional. This is processed by PID control constituted by integral control for changing the input signal and differential control for changing the input signal in proportion to the time differential value of the deviation ΔT. The target catalyst temperature is set to a temperature at which SOx can be removed from the NOx storage reduction catalyst 32, and the estimated catalyst temperature is an oxidation catalyst temperature appropriately selected by a reference temperature selection unit 79 (see FIG. 6) described later in detail. , The NOx catalyst temperature is set.

図5の時刻tに示すように、フィルタ強制再生の終了(FDPF=0)によってSOxパージフラグFSPがオンされると、SOxパージリッチフラグFSPRもオンにされ、さらに前回のSOxパージ制御時にフィードバック計算されたインターバルTF_INTも一旦リセットされる。すなわち、フィルタ強制再生直後の初回は、噴射期間設定マップで設定した噴射期間TF_INJ_1に応じて排気管噴射又はポスト噴射が実行される(図5の時刻t〜t参照)。このように、SOxパージリーン制御を行うことなくSOxパージリッチ制御からSOxパージ制御を開始するので、フィルタ強制再生で上昇した排気温度を低下させることなく、速やかにSOxパージ制御に移行され、燃料消費量を低減することができる。 As shown at time t 1 in FIG. 5, when the SOx purge flag F SP by ends (F DPF = 0) of the filter forced regeneration is turned on, SOx purge rich flag F SPR also turned on, further previous SOx purge control The interval TF_INT that is sometimes feedback calculated is also reset. That is, for the first time immediately after the forced filter regeneration, exhaust pipe injection or post injection is executed according to the injection period TF_INJ_1 set in the injection period setting map (see times t 1 to t 2 in FIG. 5). As described above, since the SOx purge control is started from the SOx purge rich control without performing the SOx purge lean control, the fuel gas consumption is promptly shifted to the SOx purge control without lowering the exhaust temperature that has been raised by the forced filter regeneration. Can be reduced.

次いで、噴射期間TF_INJ_1の経過によってSOxパージリッチフラグFSPRがオフになると、PID制御によって設定されたインターバルTF_INT_1が経過するまで、SOxパージリッチフラグFSPRはオフとされる(図5の時刻t〜t参照)。さらに、インターバルTF_INT_1の経過によってSOxパージリッチフラグFSPRがオンにされると、再び噴射期間TF_INJ_2に応じた排気管噴射又はポスト噴射が実行される(図5の時刻t〜t参照)。その後、これらSOxパージリッチフラグFSPRのオン・オフの切り替えは、後述するSOxパージ制御の終了判定によってSOxパージフラグFSPがオフ(図5の時刻t参照)にされるまで繰り返し実行される。 Then, when the SOx purge rich flag F SPR is turned off with the passage of the injection period T F_INJ_1, until interval T F_INT_1 set by PID control has elapsed, SOx purge rich flag F SPR is turned off (time in FIG. 5 t see 2 ~t 3). Further, when the SOx purge rich flag F SPR is turned on by the lapse of the interval T F_INT_1, injection period T F_INJ_2 exhaust pipe injection or post injection according to is performed again (see time t 3 ~t 4 of 5 ). Thereafter, the switching on and off of these SOx purge rich flag F SPR is repeatedly executed until the SOx the purge flag F SP is turned off (see time t n in FIG. 5) by the completion judgment of the SOx purge control described later.

このように、本実施形態では、触媒温度を上昇させると共に空気過剰率を第2目標空気過剰率まで低下させる噴射期間TF_INJをエンジン10の運転状態に基づいて参照されるマップから設定すると共に、触媒温度を降下させるインターバルTF_INTをPID制御によって処理するようになっている。これにより、SOxパージ制御中の触媒温度をパージに必要な所望の温度範囲に効果的に維持しつつ、空気過剰率を目標過剰率まで確実に低下させることが可能になる。 As described above, in the present embodiment, the injection period TF_INJ for raising the catalyst temperature and lowering the excess air ratio to the second target excess air ratio is set from the map referred to based on the operating state of the engine 10, The interval TF_INT for lowering the catalyst temperature is processed by PID control. This makes it possible to reliably reduce the excess air ratio to the target excess ratio while effectively maintaining the catalyst temperature during the SOx purge control within a desired temperature range necessary for the purge.

[触媒温度推定]
図6は、触媒温度推定部70による酸化触媒温度及び、NOx触媒温度の推定処理を示すブロック図である。
[Catalyst temperature estimation]
FIG. 6 is a block diagram showing an estimation process of the oxidation catalyst temperature and the NOx catalyst temperature by the catalyst temperature estimation unit 70.

リーン時HCマップ71は、エンジン10の運転状態に基づいて参照されるマップであって、リーン運転時にエンジン10から排出されるHC量(以下、リーン時HC排出量という)が予め実験等により設定されている。SOxパージフラグFSP及び、強制再生フラグFDPFがオフ(FSP=0,FDPF=0)の場合は、リーン時HCマップ71からエンジン回転数Ne及びアクセル開度Qに基づいて読み取られたリーン時HC排出量に、MAFセンサ40のセンサ値に応じた所定の係数が乗じられて、各温度推定部77,78に送信されるようになっている。 The lean HC map 71 is a map that is referred to based on the operating state of the engine 10, and the amount of HC discharged from the engine 10 during lean operation (hereinafter referred to as lean HC discharge amount) is set in advance through experiments or the like. Has been. When the SOx purge flag F SP and the forced regeneration flag F DPF are off (F SP = 0, F DPF = 0), the lean read from the lean HC map 71 based on the engine speed Ne and the accelerator opening Q The hourly HC discharge amount is multiplied by a predetermined coefficient corresponding to the sensor value of the MAF sensor 40 and transmitted to the temperature estimation units 77 and 78.

リーン時COマップ72は、エンジン10の運転状態に基づいて参照されるマップであって、リーン運転時にエンジン10から排出されるCO量(以下、リーン時CO排出量という)が予め実験等により設定されている。SOxパージフラグFSP及び、強制再生フラグFDPFがオフ(FSP=0,FDPF=0)の場合は、リーン時COマップ72からエンジン回転数Ne及びアクセル開度Qに基づいて読み取られたリーン時CO排出量に、MAFセンサ40のセンサ値に応じた所定の係数が乗じられて、各温度推定部77,78に送信されるようになっている。 The lean CO map 72 is a map that is referred to based on the operating state of the engine 10, and the amount of CO discharged from the engine 10 during lean operation (hereinafter referred to as lean CO emission) is set in advance through experiments or the like. Has been. When the SOx purge flag F SP and the forced regeneration flag F DPF are off (F SP = 0, F DPF = 0), the lean read from the lean CO map 72 based on the engine speed Ne and the accelerator opening Q The hourly CO emission amount is multiplied by a predetermined coefficient corresponding to the sensor value of the MAF sensor 40 and transmitted to the temperature estimation units 77 and 78.

第1SOxパージ時HCマップ73Aは、エンジン10の運転状態に基づいて参照されるマップであって、筒内インジェクタ11の噴射パターンにアフタ噴射が含まれる状態でSOxパージ制御を実施した際にエンジン10から排出されるHC量(以下、第1SOxパージ時HC排出量という)が予め実験等により設定されている。SOxパージフラグFSPがオン(FSP=1)且つ、筒内インジェクタ11の噴射パターンがアフタ噴射を含む場合は、第1SOxパージ時HCマップ73Aからエンジン回転数Ne及びアクセル開度Qに基づいて読み取られた第1SOxパージ時HC排出量に、MAFセンサ40のセンサ値に応じた所定の係数が乗じられて、各温度推定部77,78に送信されるようになっている。 The first SOx purge-time HC map 73A is a map that is referred to based on the operating state of the engine 10, and when the SOx purge control is performed in a state where the injection pattern of the in-cylinder injector 11 includes after-injection. The amount of HC discharged from the exhaust gas (hereinafter referred to as the HC discharge amount during the first SOx purge) is set in advance by experiments or the like. When the SOx purge flag F SP is ON (F SP = 1) and the injection pattern of the in-cylinder injector 11 includes after injection, reading is performed based on the engine speed Ne and the accelerator opening Q from the first SOx purge HC map 73A. The first SOx purge HC discharge amount is multiplied by a predetermined coefficient corresponding to the sensor value of the MAF sensor 40 and transmitted to the temperature estimation units 77 and 78.

第2SOxパージ時HCマップ73Bは、エンジン10の運転状態に基づいて参照されるマップであって、筒内インジェクタ11の噴射パターンにアフタ噴射が含まれない状態でSOxパージ制御を実施した際にエンジン10から排出されるHC量(以下、第2SOxパージ時HC排出量という)が予め実験等により設定されている。SOxパージフラグFSPがオン(FSP=1)且つ、筒内インジェクタ11の噴射パターンがアフタ噴射を含まない場合は、第2SOxパージ時HCマップ73Bからエンジン回転数Ne及びアクセル開度Qに基づいて読み取られた第2SOxパージ時HC排出量に、MAFセンサ40のセンサ値に応じた所定の係数が乗じられて、各温度推定部77,78に送信されるようになっている。 The second SOx purge time HC map 73B is a map that is referred to based on the operating state of the engine 10, and the engine when the SOx purge control is performed in a state in which the after-injection is not included in the injection pattern of the in-cylinder injector 11. The amount of HC discharged from 10 (hereinafter referred to as the HC discharge amount during the second SOx purge) is set in advance by experiments or the like. When the SOx purge flag F SP is on (F SP = 1) and the injection pattern of the in-cylinder injector 11 does not include after injection, the second SOx purge time HC map 73B is used based on the engine speed Ne and the accelerator opening Q. The read second HC purge HC discharge amount is multiplied by a predetermined coefficient corresponding to the sensor value of the MAF sensor 40 and transmitted to the temperature estimation units 77 and 78.

第1SOxパージ時COマップ74Aは、エンジン10の運転状態に基づいて参照されるマップであって、筒内インジェクタ11の噴射パターンにアフタ噴射が含まれる状態でSOxパージ制御を実施した際にエンジン10から排出されるCO量(以下、第1SOxパージ時CO排出量という)が予め実験等により設定されている。SOxパージフラグFSPがオン(FSP=1)且つ、筒内インジェクタ11の噴射パターンがアフタ噴射を含む場合は、第1SOxパージ時COマップ74Aからエンジン回転数Ne及びアクセル開度Qに基づいて読み取られた第1SOxパージ時CO排出量に、MAFセンサ40のセンサ値に応じた所定の係数が乗じられて、各温度推定部77,78に送信されるようになっている。 The first SOx purge-time CO map 74A is a map that is referred to based on the operating state of the engine 10, and when the SOx purge control is performed in a state in which the after-injection is included in the injection pattern of the in-cylinder injector 11, the engine 10 The amount of CO discharged from the exhaust gas (hereinafter referred to as the first SOx purge CO emission amount) is set in advance through experiments or the like. When the SOx purge flag F SP is ON (F SP = 1) and the injection pattern of the in-cylinder injector 11 includes after injection, reading is performed from the first SOx purge CO map 74A based on the engine speed Ne and the accelerator opening Q. The first SOx purge CO emission amount is multiplied by a predetermined coefficient corresponding to the sensor value of the MAF sensor 40 and transmitted to the temperature estimation units 77 and 78.

第2SOxパージ時COマップ74Bは、エンジン10の運転状態に基づいて参照されるマップであって、筒内インジェクタ11の噴射パターンにアフタ噴射が含まれない状態でSOxパージ制御を実施した際にエンジン10から排出されるCO量(以下、第2SOxパージ時CO排出量という)が予め実験等により設定されている。SOxパージフラグFSPがオン(FSP=1)且つ、筒内インジェクタ11の噴射パターンがアフタ噴射を含まない場合は、第2SOxパージ時COマップ74Bからエンジン回転数Ne及びアクセル開度Qに基づいて読み取られた第2SOxパージ時CO排出量に、MAFセンサ40のセンサ値に応じた所定の係数が乗じられて、各温度推定部77,78に送信されるようになっている。 The second SOx purge-time CO map 74B is a map that is referred to based on the operating state of the engine 10, and is the engine when the SOx purge control is performed in a state in which the after-injection is not included in the injection pattern of the in-cylinder injector 11. The amount of CO discharged from 10 (hereinafter referred to as the second SOx purge CO emission amount) is set in advance by experiments or the like. When the SOx purge flag F SP is ON (F SP = 1) and the injection pattern of the in-cylinder injector 11 does not include after injection, the second SOx purge CO map 74B is used based on the engine speed Ne and the accelerator opening Q. The read CO emission amount at the time of the second SOx purge is multiplied by a predetermined coefficient corresponding to the sensor value of the MAF sensor 40 and is transmitted to the temperature estimation units 77 and 78.

フィルタ強制再生時HCマップ75は、エンジン10の運転状態に基づいて参照されるマップであって、フィルタ強制再生制御を実施した際にエンジン10から排出されるHC量(以下、フィルタ再生時HC排出量という)が予め実験等により設定されている。強制再生フラグFDPFがオン(FDPF=1)の場合は、フィルタ強制再生時HCマップ75からエンジン回転数Ne及びアクセル開度Qに基づいて読み取られたフィルタ再生時HC排出量に、MAFセンサ40のセンサ値に応じた所定の係数が乗じられて、各温度推定部77,78に送信されるようになっている。 The HC map 75 at the time of forced regeneration of the filter is a map that is referred to based on the operating state of the engine 10, and the amount of HC discharged from the engine 10 when the forced regeneration control of the filter is performed (hereinafter referred to as HC exhaust at the time of filter regeneration). (Referred to as “quantity”) is set in advance by experiments or the like. When the forced regeneration flag F DPF is on (F DPF = 1), the MAF sensor indicates the HC discharge amount during filter regeneration read from the HC map 75 during forced filter regeneration based on the engine speed Ne and the accelerator opening Q. A predetermined coefficient corresponding to 40 sensor values is multiplied and transmitted to each temperature estimation unit 77, 78.

フィルタ強制再生時COマップ76、エンジン10の運転状態に基づいて参照されるマップであって、フィルタ強制再生制御を実施した際にエンジン10から排出されるCO量(以下、フィルタ再生時CO排出量という)が予め実験等により設定されている。強制再生フラグFDPFがオン(FDPF=1)の場合は、フィルタ強制再生時COマップ76からエンジン回転数Ne及びアクセル開度Qに基づいて読み取られたフィルタ再生時CO排出量に、MAFセンサ40のセンサ値に応じた所定の係数が乗じられて、各温度推定部77,78に送信されるようになっている。 CO map 76 at the time of forced regeneration of the filter, a map that is referred to based on the operating state of the engine 10, and the amount of CO discharged from the engine 10 when filter forced regeneration control is performed (hereinafter referred to as CO emission at the time of filter regeneration) Is set in advance by experiments or the like. When the forced regeneration flag F DPF is on (F DPF = 1), the MAF sensor indicates the filter regeneration CO emission amount read from the filter forced regeneration CO map 76 based on the engine speed Ne and the accelerator opening Q. A predetermined coefficient corresponding to 40 sensor values is multiplied and transmitted to each temperature estimation unit 77, 78.

酸化触媒温度推定部77は、第1排気温度センサ43で検出される酸化触媒入口温度、酸化触媒31内部でのHC・CO発熱量、MAFセンサ40のセンサ値、外気温度センサ47又は吸気温度センサ48のセンサ値から推定される外気への放熱量等を入力値として含むモデル式やマップ等に基づいて、酸化触媒31の触媒温度を推定演算する。   The oxidation catalyst temperature estimation unit 77 includes an oxidation catalyst inlet temperature detected by the first exhaust temperature sensor 43, an HC / CO heating value inside the oxidation catalyst 31, a sensor value of the MAF sensor 40, an outside air temperature sensor 47 or an intake air temperature sensor. The catalyst temperature of the oxidation catalyst 31 is estimated and calculated on the basis of a model formula, map, or the like that includes the amount of heat released to the outside air estimated from the 48 sensor values as an input value.

酸化触媒31の内部におけるHC・CO発熱量は、SOxパージフラグFSPや強制再生フラグFDPFのオン/オフに応じて各マップ71〜76から入力されるHC・CO排出量を入力値として含むモデル式やマップ等に基づいて演算される。演算されたHC・CO発熱量には、詳細を後述する劣化補正係数演算部83(図7参照)から入力される劣化補正係数D_corrが乗算されるようになっている。 HC · CO calorific value inside the oxidation catalyst 31, a model that includes a HC · CO emissions inputted from the map 71-76 depending on the SOx purge flag F SP and forced regeneration flag F DPF on / off as an input value It is calculated based on an expression, a map, etc. The calculated HC / CO calorific value is multiplied by a deterioration correction coefficient D_corr input from a deterioration correction coefficient calculator 83 (see FIG. 7), which will be described in detail later.

NOx触媒温度推定部78は、酸化触媒温度推定部77から入力される酸化触媒温度、NOx吸蔵還元型触媒32内部でのHC・CO発熱量、外気温度センサ47又は吸気温度センサ48のセンサ値から推定される外気への放熱量等を入力値として含むモデル式やマップ等に基づいて、NOx吸蔵還元型触媒32の触媒温度を推定演算する。   The NOx catalyst temperature estimation unit 78 is based on the oxidation catalyst temperature input from the oxidation catalyst temperature estimation unit 77, the amount of HC / CO generated in the NOx storage reduction catalyst 32, and the sensor value of the outside air temperature sensor 47 or the intake air temperature sensor 48. The catalyst temperature of the NOx occlusion reduction type catalyst 32 is estimated and calculated based on a model formula or map that includes the estimated amount of heat release to the outside air as an input value.

NOx吸蔵還元型触媒32内部のHC・CO発熱量は、SOxパージフラグFSPや強制再生フラグFDPFのオン/オフに応じて各マップ71〜76から入力されるHC・CO排出量を入力値として含むモデル式やマップ等に基づいて演算される。演算されたHC・CO発熱量には、詳細を後述する劣化補正係数演算部83(図7参照)から入力される劣化補正係数D_corrが乗算されるようになっている。 HC · CO calorific value of the internal NOx occlusion-reduction catalyst 32, the HC · CO emissions inputted from the map 71-76 depending on the SOx purge flag F SP and forced regeneration flag F DPF on / off as an input value Calculation is performed based on the model formula, map, and the like. The calculated HC / CO calorific value is multiplied by a deterioration correction coefficient D_corr input from a deterioration correction coefficient calculator 83 (see FIG. 7), which will be described in detail later.

このように、本実施形態では、HC・CO排出量がそれぞれ異なるリーン運転時、SOxパージ時、フィルタ強制再生時等の状況に応じて各種マップ71〜76を適宜切り替えることで、触媒内部におけるHC・CO発熱量を精度よく演算することが可能となり、各触媒31,32の温度推定精度を効果的に向上することができる。   As described above, in the present embodiment, the various maps 71 to 76 are appropriately switched according to the situation such as the lean operation, the SOx purge, the filter forced regeneration, and the like with different HC / CO emissions, so that the HC inside the catalyst is changed. It becomes possible to calculate the CO heat generation amount with high accuracy, and the temperature estimation accuracy of each catalyst 31 and 32 can be effectively improved.

[FB制御参照温度選択]
図6に示す参照温度選択部79は、上述したフィルタ強制再生やSOxパージの温度フィードバック制御に用いる参照温度を選択する。
[FB control reference temperature selection]
A reference temperature selection unit 79 shown in FIG. 6 selects a reference temperature used for the above-described filter forced regeneration and SOx purge temperature feedback control.

酸化触媒31とNOx吸蔵還元型触媒32とを備える排気浄化システムにおいては、触媒の発熱特性等に応じて各触媒31,32におけるHC・CO発熱量が異なってくる。このため、温度フィードバック制御の参照温度としては、発熱量が多い方の触媒温度を選択することが制御性を向上するうえで好ましい。   In the exhaust gas purification system including the oxidation catalyst 31 and the NOx occlusion reduction type catalyst 32, the HC / CO heat generation amount in each of the catalysts 31, 32 varies depending on the heat generation characteristics of the catalyst. For this reason, it is preferable to select the catalyst temperature with the larger calorific value as the reference temperature for the temperature feedback control in order to improve the controllability.

参照温度選択部79は、酸化触媒温度及び、NOx触媒温度のうち、そのときのエンジン10の運転状態から推定される発熱量が多い方の触媒温度を一つ選択して、フィルタ再生制御部51及びSOxパージ制御部60に温度フィードバック制御の参照温度として送信するように構成されている。より詳しくは、排気中の酸素濃度が比較的高く、酸化触媒31のHC・CO発熱量が増加するフィルタ強制再生時は、酸化触媒温度推定部77から入力される酸化触媒温度が温度フィードバック制御の参照温度として選択される一方、排気中の酸素濃度の低下によりNOx吸蔵還元型触媒32におけるHC・CO発熱量が増加するSOxパージリッチ制御時は、NOx触媒温度推定部78から入力されるNOx触媒温度が温度フィードバック制御の参照温度として選択されるようになっている。   The reference temperature selection unit 79 selects one of the oxidation catalyst temperature and the NOx catalyst temperature that has a larger calorific value estimated from the operating state of the engine 10 at that time, and the filter regeneration control unit 51. And the SOx purge control unit 60 is configured to transmit the reference temperature for temperature feedback control. More specifically, during the forced regeneration of the filter in which the oxygen concentration in the exhaust gas is relatively high and the HC / CO heat generation amount of the oxidation catalyst 31 increases, the oxidation catalyst temperature input from the oxidation catalyst temperature estimation unit 77 is the temperature feedback control. The NOx catalyst input from the NOx catalyst temperature estimation unit 78 is selected during the SOx purge rich control in which the HC / CO heat generation amount in the NOx occlusion reduction type catalyst 32 increases due to the decrease in the oxygen concentration in the exhaust while being selected as the reference temperature. The temperature is selected as a reference temperature for temperature feedback control.

このように、本実施形態では、HC・CO発熱量が多くなる方の触媒温度を温度フィードバック制御の参照温度として選択することで、制御性を効果的に向上することが可能になる。   As described above, in this embodiment, the controllability can be effectively improved by selecting the catalyst temperature with the larger HC / CO heat generation amount as the reference temperature for the temperature feedback control.

[異常診断]
図7は、異常診断部80による診断処理を示すブロック図である。
[Abnormal diagnosis]
FIG. 7 is a block diagram illustrating a diagnosis process performed by the abnormality diagnosis unit 80.

温度センサ値推定部81は、NOx触媒温度推定部78から入力されるNOx触媒温度等に基づいて、第2排気温度センサ44の推定センサ値Tent_estをリアルタイムに演算する。より詳しくは、推定センサ値Tent_estは、NOx触媒温度、MAFセンサ40のセンサ値、各触媒31,32の発熱量及び、外気への放熱量等を入力値として含むモデル式等に基づいて、第2排気温度センサ44のセンサ部周囲の排気温度を推定すると共に、このセンサ部周囲の排気温度に所定のフィルタ係数を乗算することで演算される。 The temperature sensor value estimation unit 81 calculates the estimated sensor value T ent_est of the second exhaust temperature sensor 44 in real time based on the NOx catalyst temperature and the like input from the NOx catalyst temperature estimation unit 78. More specifically, the estimated sensor value T ent — est is based on a NOx catalyst temperature, a sensor value of the MAF sensor 40, a heat generation amount of each catalyst 31, 32, a heat release amount to the outside air, etc. The exhaust temperature around the sensor part of the second exhaust temperature sensor 44 is estimated and calculated by multiplying the exhaust temperature around the sensor part by a predetermined filter coefficient.

異常判定部82は、温度センサ値推定部81から入力される推定センサ値Tent_estと、第2排気温度センサ44の実センサ値Tactとに基づいて、システム異常の発生有無を判定する。より詳しくは、実センサ値Tactと推定センサ値Tent_estとの差の絶対値が所定の上限閾値Tthrよりも大きくなる状態(|Tact−Tent_est|>Tthr)が所定時間以上継続すると、異常判定部82は、排気インジェクタ34や筒内インジェクタ11の故障、各触媒31,32の故障或は、制御不良等によって引き起こされるシステム異常が発生したと判定する。システム異常と判定された場合は、SOxパージ制御の実施を禁止するようになっている。 The abnormality determination unit 82 determines whether or not a system abnormality has occurred based on the estimated sensor value T ent_est input from the temperature sensor value estimation unit 81 and the actual sensor value T act of the second exhaust temperature sensor 44. More specifically, a state in which the absolute value of the difference between the actual sensor value T act and the estimated sensor value T ent_est is larger than a predetermined upper limit threshold T thr (| T act −T ent_est |> T thr ) continues for a predetermined time or more. Then, the abnormality determination unit 82 determines that a system abnormality caused by a failure of the exhaust injector 34 or the in-cylinder injector 11, a failure of each of the catalysts 31 and 32, a control failure, or the like has occurred. When it is determined that the system is abnormal, the execution of the SOx purge control is prohibited.

一方、システム異常は発生していないが、実センサ値Tactと推定センサ値Tent_estとに所定の温度差がある場合(0<|Tact−Tent_est|≦Tthr)、異常判定部82は、各触媒31,32の劣化に伴い発熱量変化が生じたものと判定する。発熱量変化が生じたと判定された場合は、劣化補正係数演算部83による劣化補正係数D_corrの演算が実行される。 On the other hand, when the system abnormality does not occur but there is a predetermined temperature difference between the actual sensor value T act and the estimated sensor value T ent_est (0 <| T act −T ent_est | ≦ T thr ), the abnormality determination unit 82 Is determined as a change in the amount of heat generated as the catalysts 31 and 32 are deteriorated. When it is determined that the amount of generated heat has changed, the deterioration correction coefficient calculation unit 83 calculates the deterioration correction coefficient D_corr .

劣化補正係数演算部83は、実センサ値Tactと推定センサ値Tent_estとの温度差に所定の係数Cを乗じて積分する以下の数式(3)に基づいて、各触媒31,32の劣化度合である劣化補正係数D_corrを演算する。 The deterioration correction coefficient calculation unit 83 multiplies the temperature difference between the actual sensor value T act and the estimated sensor value T ent_est by a predetermined coefficient C and integrates the deterioration, based on the following formula (3). A deterioration correction coefficient D_corr that is a degree is calculated.

Figure 2016125374
Figure 2016125374

数式(3)から求められた劣化補正係数D_corrは、各触媒31,32の発熱特性として、上述の酸化触媒温度推定部77及び、NOx触媒温度推定部78にそれぞれ入力され、これら推定部77,78で演算される触媒内部のHC・CO発熱量に乗算されるようになっている。 The deterioration correction coefficient D_corr obtained from Expression (3) is input to the above-described oxidation catalyst temperature estimation unit 77 and NOx catalyst temperature estimation unit 78 as the heat generation characteristics of the catalysts 31 and 32, respectively. , 78 is multiplied by the HC / CO heat generation amount inside the catalyst.

このように、本実施形態では、第2排気温度センサ44の実センサ値Tactと推定センサ値Tent_estとの差に基づいて、システム異常の発生有無を判定すると共に、システム異常が発生した場合はSOxパージを禁止するようになっている。これにより、システム異常が発生した状態でSOxパージを実施することにより引き起こされる排気過昇温や、燃費の悪化等を効果的に防止することが可能になる。 As described above, in the present embodiment, whether or not a system abnormality has occurred is determined based on the difference between the actual sensor value T act of the second exhaust temperature sensor 44 and the estimated sensor value T ent_est, and when a system abnormality has occurred. Does not allow SOx purge. As a result, it is possible to effectively prevent exhaust gas overheating, fuel consumption deterioration, and the like caused by performing the SOx purge in a state where a system abnormality has occurred.

また、システム異常が発生していない場合であっても、実センサ値Tactと推定センサ値Tent_estとに温度差があれば、当該温度差に基づいて各触媒31,32の劣化補正係数D_corrを演算すると共に、触媒内部のHC・CO発熱量推定に反映させるようになっている。これにより、各触媒31,32の劣化に伴い変化する発熱特性に応じたHC・CO発熱量を精度よく演算が可能となり、触媒内部温度の推定精度も効果的に向上することができる。 Further, the system abnormality is a case where not occurred, if there is a temperature difference between the actual sensor value T act and the estimated sensor value T Ent_est, deterioration correction coefficient of each catalyst 31, 32 based on the temperature difference D _Corr is calculated and reflected in the estimation of the HC / CO heat generation amount inside the catalyst. As a result, it is possible to accurately calculate the HC / CO heat generation amount corresponding to the heat generation characteristics that change with the deterioration of the catalysts 31 and 32, and the estimation accuracy of the catalyst internal temperature can be effectively improved.

[SOxパージ制御の終了判定]
SOxパージ制御は、(1)SOxパージフラグFSPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)SOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のSOx吸着量がSOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、SOxパージフラグFSPをオフにして終了される(図2の時刻t、図5の時刻t参照)。
[Determining completion of SOx purge control]
SOx purge control, (1) SOx purge flag F from on the SP injection quantity of the exhaust pipe injection or post injection accumulated, when the amount of the cumulative injected has reached the predetermined upper limit threshold amount, of (2) SOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the engine 10 and the sensor value of the NOx / lambda sensor 45 as input signals. If any of the conditions in the case of SOx adsorption amount of NOx occlusion-reduction catalyst 32 has decreased to a predetermined threshold value indicating a SOx removal success is established, SOx purge flag F SP is terminated by turning off the (time t 4 in FIG. 2 , reference time t n in FIG. 5).

このように、本実施形態では、SOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、SOxパージが排気温度の低下等によって進捗しなかった場合に、燃料消費量が過剰になることを効果的に防止することができる。   As described above, in this embodiment, when the SOx purge control end condition is provided with the upper limit of the cumulative injection amount and the elapsed time, the fuel consumption amount when the SOx purge does not progress due to a decrease in the exhaust temperature or the like. Can be effectively prevented from becoming excessive.

[MAF追従制御]
MAF追従制御部85は、(1)通常運転のリーン状態からSOxパージ制御によるリッチ状態への切り替え期間及び、(2)SOxパージ制御によるリッチ状態から通常運転のリーン状態への切り替え期間に、各筒内インジェクタ11の燃料噴射タイミング及び燃料噴射量をMAF変化に応じて補正する制御(MAF追従制御という)を実行する。
[MAF tracking control]
The MAF follow-up control unit 85 has (1) a switching period from the lean state of the normal operation to the rich state by the SOx purge control, and (2) a switching period from the rich state to the lean state of the normal operation by the SOx purge control. Control for correcting the fuel injection timing and the fuel injection amount of the in-cylinder injector 11 in accordance with the MAF change (referred to as MAF follow-up control) is executed.

[噴射量学習補正]
図8に示すように、噴射量学習補正部90は、学習補正係数演算部91と、噴射量補正部92とを有する。
[Injection amount learning correction]
As shown in FIG. 8, the injection amount learning correction unit 90 includes a learning correction coefficient calculation unit 91 and an injection amount correction unit 92.

学習補正係数演算部91は、エンジン10のリーン運転時にNOx/ラムダセンサ45で検出される実ラムダ値λActと、推定ラムダ値λEstとの誤差Δλに基づいて燃料噴射量の学習補正係数FCorrを演算する。排気がリーン状態のときは、排気中のHC濃度が非常に低いので、酸化触媒33でHCの酸化反応による排気ラムダ値の変化は無視できるほど小さい。このため、酸化触媒31を通過して下流側のNOx/ラムダセンサ45で検出される排気中の実ラムダ値λActと、エンジン10から排出された排気中の推定ラムダ値λEstとは一致すると考えられる。このため、これら実ラムダ値λActと推定ラムダ値λEstとに誤差Δλが生じた場合は、各筒内インジェクタ11に対する指示噴射量と実噴射量との差によるものと仮定することができる。以下、この誤差Δλを用いた学習補正係数演算部91による学習補正係数の演算処理を図9のフローに基づいて説明する。 The learning correction coefficient calculation unit 91 is based on the error Δλ between the actual lambda value λ Act detected by the NOx / lambda sensor 45 during the lean operation of the engine 10 and the estimated lambda value λ Est, and the learning correction coefficient F for the fuel injection amount. Calculate Corr . When the exhaust is in a lean state, the HC concentration in the exhaust is very low, so that the change in the exhaust lambda value due to the oxidation reaction of HC at the oxidation catalyst 33 is negligibly small. Therefore, the actual lambda value λ Act in the exhaust gas that passes through the oxidation catalyst 31 and is detected by the downstream NOx / lambda sensor 45 matches the estimated lambda value λ Est in the exhaust gas discharged from the engine 10. Conceivable. Therefore, when an error Δλ occurs between the actual lambda value λ Act and the estimated lambda value λ Est , it can be assumed that the difference is between the commanded injection amount for each in-cylinder injector 11 and the actual injection amount. Hereinafter, the learning correction coefficient calculation processing by the learning correction coefficient calculation unit 91 using the error Δλ will be described with reference to the flowchart of FIG. 9.

ステップS300では、エンジン回転数Ne及びアクセル開度Qに基づいて、エンジン10がリーン運転状態にあるか否かが判定される。リーン運転状態にあれば、学習補正係数の演算を開始すべく、ステップS310に進む。   In step S300, based on the engine speed Ne and the accelerator opening Q, it is determined whether or not the engine 10 is in a lean operation state. If it is in the lean operation state, the process proceeds to step S310 to start the calculation of the learning correction coefficient.

ステップS310では、推定ラムダ値λEstからNOx/ラムダセンサ45で検出される実ラムダ値λActを減算した誤差Δλに、学習値ゲインK及び補正感度係数Kを乗じることで、学習値FCorrAdptが演算される(FCorrAdpt=(λEst−λAct)×K×K)。推定ラムダ値λEstは、エンジン回転数Neやアクセル開度Qに応じたエンジン10の運転状態から推定演算される。また、補正感度係数Kは、図8に示す補正感度係数マップ91AからNOx/ラムダセンサ45で検出される実ラムダ値λActを入力信号として読み取られる。 In step S310, an error Δλ obtained by subtracting the actual lambda value λ Act detected by the NOx / lambda sensor 45 from the estimated lambda value λ Est is multiplied by the learning value gain K 1 and the correction sensitivity coefficient K 2 to thereby obtain the learning value F CorrAdpt is calculated (F CorrAdpt = (λ Est −λ Act ) × K 1 × K 2 ). The estimated lambda value λ Est is estimated and calculated from the operating state of the engine 10 according to the engine speed Ne and the accelerator opening Q. Further, the correction sensitivity coefficient K 2 is read the actual lambda value lambda Act detected by the NOx / lambda sensor 45 from the correction sensitivity coefficient map 91A shown in FIG. 8 as an input signal.

ステップS320では、学習値FCorrAdptの絶対値|FCorrAdpt|が所定の補正限界値Aの範囲内にあるか否かが判定される。絶対値|FCorrAdpt|が補正限界値Aを超えている場合、本制御はリターンされて今回の学習を中止する。 In step S320, it is determined whether or not the absolute value | F CorrAdpt | of the learning value F CorrAdpt is within the range of the predetermined correction limit value A. If the absolute value | F CorrAdpt | exceeds the correction limit value A, the present control is returned to stop the current learning.

ステップS330では、学習禁止フラグFProがオフか否かが判定される。学習禁止フラグFProとしては、例えば、エンジン10の過渡運転時、SOxパージ制御時(FSP=1)、NOxパージ制御時(FNP=1)等が該当する。これらの条件が成立する状態では、実ラムダ値λActの変化によって誤差Δλが大きくなり、正確な学習を行えないためである。エンジン10が過渡運転状態にあるか否かは、例えば、NOx/ラムダセンサ45で検出される実ラムダ値λActの時間変化量に基づいて、当該時間変化量が所定の閾値よりも大きい場合に過渡運転状態と判定すればよい。 In step S330, it is determined whether the learning prohibition flag FPro is off. The learning prohibition flag F Pro corresponds to, for example, transient operation of the engine 10, SOx purge control (F SP = 1), NOx purge control (F NP = 1), and the like. This is because when these conditions are satisfied, the error Δλ increases due to a change in the actual lambda value λ Act , and accurate learning cannot be performed. Whether or not the engine 10 is in a transient operation state is determined based on, for example, the time change amount of the actual lambda value λ Act detected by the NOx / lambda sensor 45 when the time change amount is larger than a predetermined threshold value. What is necessary is just to determine with a transient operation state.

ステップS340では、エンジン回転数Ne及びアクセル開度Qに基づいて参照される学習値マップ91B(図8参照)が、ステップS310で演算された学習値FCorrAdptに更新される。より詳しくは、この学習値マップ91B上には、エンジン回転数Ne及びアクセル開度Qに応じて区画された複数の学習領域が設定されている。これら学習領域は、好ましくは、使用頻度が多い領域ほどその範囲が狭く設定され、使用頻度が少ない領域ほどその範囲が広く設定されている。これにより、使用頻度が多い領域では学習精度が向上され、使用頻度が少ない領域では未学習を効果的に防止することが可能になる。 In step S340, the learning value map 91B (see FIG. 8) referred to based on the engine speed Ne and the accelerator opening Q is updated to the learning value F CorrAdpt calculated in step S310. More specifically, on the learning value map 91B, a plurality of learning areas divided according to the engine speed Ne and the accelerator opening Q are set. These learning regions are preferably set to have a narrower range as the region is used more frequently and to be wider as a region is used less frequently. As a result, learning accuracy is improved in regions where the usage frequency is high, and unlearning can be effectively prevented in regions where the usage frequency is low.

ステップS350では、エンジン回転数Ne及びアクセル開度Qを入力信号として学習値マップ91Bから読み取った学習値に「1」を加算することで、学習補正係数FCorrが演算される(FCorr=1+FCorrAdpt)。この学習補正係数FCorrは、図8に示す噴射量補正部92に入力される。 In step S350, the learning correction coefficient F Corr is calculated by adding “1” to the learned value read from the learned value map 91B using the engine speed Ne and the accelerator opening Q as input signals (F Corr = 1 + F). CorrAdpt ). The learning correction coefficient F Corr is input to the injection amount correction unit 92 shown in FIG.

噴射量補正部92は、パイロット噴射QPilot、プレ噴射QPre、メイン噴射QMain、アフタ噴射QAfter、ポスト噴射QPostの各基本噴射量に学習補正係数FCorrを乗算することで、これら燃料噴射量の補正を実行する。 The injection amount correction unit 92 multiplies each basic injection amount of pilot injection Q Pilot , pre-injection Q Pre , main injection Q Main , after-injection Q After , and post-injection Q Post by a learning correction coefficient F Corr. The injection amount is corrected.

このように、推定ラムダ値λEstと実ラムダ値λActとの誤差Δλに応じた学習値で各筒内インジェクタ11に燃料噴射量を補正することで、各筒内インジェクタ11の経年劣化や特性変化、個体差等のバラツキを効果的に排除することが可能になる。 In this way, by correcting the fuel injection amount to each in-cylinder injector 11 with a learning value corresponding to the error Δλ between the estimated lambda value λ Est and the actual lambda value λ Act , the aging deterioration and characteristics of each in-cylinder injector 11 are corrected. Variations such as changes and individual differences can be effectively eliminated.

[MAF補正係数]
MAF補正係数演算部95は、SOxパージ制御時のMAF目標値MAFSPL_Trgtや目標噴射量QSPR_Trgtの設定に用いられるMAF補正係数Maf_corrを演算する。
[MAF correction coefficient]
MAF correction coefficient calculating unit 95 calculates the MAF correction coefficient Maf _Corr used to set the MAF target value MAF SPL_Trgt and the target injection amount Q SPR_Trgt during SOx purge control.

本実施形態において、各筒内インジェクタ11の燃料噴射量は、NOx/ラムダセンサ45で検出される実ラムダ値λActと推定ラムダ値λEstとの誤差Δλに基づいて補正される。しかしながら、ラムダは空気と燃料の比であるため、誤差Δλの要因が必ずしも各筒内インジェクタ11に対する指示噴射量と実噴射量との差の影響のみとは限らない。すなわち、ラムダの誤差Δλには、各筒内インジェクタ11のみならずMAFセンサ40の誤差も影響している可能性がある。 In the present embodiment, the fuel injection amount of each in-cylinder injector 11 is corrected based on the error Δλ between the actual lambda value λ Act detected by the NOx / lambda sensor 45 and the estimated lambda value λ Est . However, since lambda is the ratio of air and fuel, the factor of error Δλ is not necessarily the only effect of the difference between the commanded injection amount and the actual injection amount for each in-cylinder injector 11. That is, there is a possibility that the error of the MAF sensor 40 as well as the in-cylinder injectors 11 affects the lambda error Δλ.

図10は、MAF補正係数演算部95によるMAF補正係数Maf_corrの設定処理を示すブロック図である。補正係数設定マップ96は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したMAFセンサ40のセンサ特性を示すMAF補正係数Maf_corrが予め実験等に基づいて設定されている。 FIG. 10 is a block diagram showing the setting process of the MAF correction coefficient Maf_corr by the MAF correction coefficient calculation unit 95. The correction coefficient setting map 96 is a map that is referred to based on the engine speed Ne and the accelerator opening Q. The MAF indicating the sensor characteristics of the MAF sensor 40 corresponding to the engine speed Ne and the accelerator opening Q is shown in FIG. The correction coefficient Maf_corr is set in advance based on experiments or the like.

MAF補正係数演算部95は、エンジン回転数Ne及びアクセル開度Qを入力信号として補正係数設定マップ96からMAF補正係数Maf_corrを読み取ると共に、このMAF補正係数Maf_corrをMAF目標値演算部62及び噴射量目標値演算部66に送信する。これにより、SOxパージ制御時のMAF目標値MAFSPL_Trgtや目標噴射量QSPR_Trgtの設定に、MAFセンサ40のセンサ特性を効果的に反映することが可能になる。 The MAF correction coefficient calculation unit 95 reads the MAF correction coefficient Maf_corr from the correction coefficient setting map 96 using the engine speed Ne and the accelerator opening Q as input signals, and uses the MAF correction coefficient Maf_corr as the MAF target value calculation unit 62 and It transmits to the injection quantity target value calculating part 66. As a result, the sensor characteristics of the MAF sensor 40 can be effectively reflected in the settings of the MAF target value MAF SPL_Trgt and the target injection amount Q SPR_Trgt during the SOx purge control.

[その他]
なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
[Others]
In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

10 エンジン
11 筒内インジェクタ
12 吸気通路
13 排気通路
16 吸気スロットルバルブ
24 EGRバルブ
31 酸化触媒
32 NOx吸蔵還元型触媒
33 フィルタ
34 排気インジェクタ
40 MAFセンサ
45 NOx/ラムダセンサ
50 ECU
DESCRIPTION OF SYMBOLS 10 Engine 11 In-cylinder injector 12 Intake passage 13 Exhaust passage 16 Intake throttle valve 24 EGR valve 31 Oxidation catalyst 32 NOx occlusion reduction type catalyst 33 Filter 34 Exhaust injector 40 MAF sensor 45 NOx / lambda sensor 50 ECU

Claims (3)

内燃機関の排気通路に上流側から順に酸化触媒及びNOx還元型触媒を配置した排気後処理装置と、
前記内燃機関の運転状態に基づいて、前記酸化触媒の温度を推定する第1触媒温度推定手段と、
前記内燃機関の運転状態に基づいて、前記NOx還元型触媒の温度を推定する第2触媒温度推定手段と、
吸入空気量を減少させる空気系制御と燃料噴射量を増加させる噴射系制御とを併用して排気空燃比をリーン状態からリッチ状態に切り替えることで前記NOx還元型触媒のNOx浄化能力を回復させる触媒再生処理を実行する触媒再生手段と、を備え、
前記触媒再生手段は、前記第1及び第2触媒温度推定手段から入力される温度のうち、高い方の温度を参照温度として前記触媒再生処理時の排気リッチ噴射量をフィードバック制御する
排気浄化システム。
An exhaust aftertreatment device in which an oxidation catalyst and a NOx reduction catalyst are arranged in order from the upstream side in the exhaust passage of the internal combustion engine;
First catalyst temperature estimating means for estimating a temperature of the oxidation catalyst based on an operating state of the internal combustion engine;
Second catalyst temperature estimating means for estimating the temperature of the NOx reduction catalyst based on the operating state of the internal combustion engine;
A catalyst that restores the NOx purification ability of the NOx reduction catalyst by switching the exhaust air-fuel ratio from the lean state to the rich state by using both the air system control for reducing the intake air amount and the injection system control for increasing the fuel injection amount. A catalyst regeneration means for performing regeneration treatment,
The exhaust gas purification system, wherein the catalyst regeneration means feedback-controls the exhaust rich injection amount at the time of the catalyst regeneration process using a higher temperature of the temperatures input from the first and second catalyst temperature estimation means as a reference temperature.
前記NOx還元型触媒よりも下流側の排気通路に設けられて排気中の粒子状物質を捕集するフィルタと、
ポスト噴射及び排気管噴射の少なくとも一方を実施する排気リッチ噴射によって前記フィルタの粒子状物質捕集能力を回復させるフィルタ再生処理を実行するフィルタ再生手段と、をさらに備え、
前記フィルタ再生手段は、前記第1及び第2触媒温度推定手段から入力される温度のうち、高い方の温度を参照温度として前記フィルタ再生処理時の排気リッチ噴射量をフィードバック制御する
請求項1に記載の排気浄化システム。
A filter provided in an exhaust passage downstream of the NOx reduction catalyst to collect particulate matter in the exhaust;
Filter regeneration means for executing filter regeneration processing for recovering the particulate matter collection ability of the filter by exhaust rich injection that performs at least one of post injection and exhaust pipe injection;
The filter regeneration means feedback-controls the exhaust rich injection amount at the time of the filter regeneration processing, using a higher temperature among the temperatures input from the first and second catalyst temperature estimation means as a reference temperature. The described exhaust purification system.
前記触媒再生処理時に前記内燃機関から排出される炭化水素量及び一酸化炭素量を予め設定した第1排出量マップと、
前記フィルタ再生処理時に前記内燃機関から排出される炭化水素量及び一酸化炭素量を予め設定した第2排出量マップと、をさらに備え、
前記第1触媒温度推定手段は、前記触媒再生処理の実行中は前記第1排出量マップから入力される炭化水素量及び一酸化炭素量に基づいて前記酸化触媒の温度を推定すると共に、前記フィルタ再生処理の実行中は前記第2排出量マップから入力される炭化水素量及び一酸化炭素量に基づいて前記酸化触媒の温度を推定し、 前記第2触媒温度推定手段は、前記触媒再生処理の実行中は前記第1排出量マップから入力される炭化水素量及び一酸化炭素量に基づいて前記NOx還元型触媒の温度を推定すると共に、前記フィルタ再生処理の実行中は前記第2排出量マップから入力される炭化水素量及び一酸化炭素量に基づいて前記NOx還元型触媒の温度を推定する
請求項2に記載の排気浄化システム。
A first emission amount map in which a hydrocarbon amount and a carbon monoxide amount discharged from the internal combustion engine during the catalyst regeneration process are set in advance;
A second emission map in which a hydrocarbon amount and a carbon monoxide amount discharged from the internal combustion engine during the filter regeneration process are set in advance;
The first catalyst temperature estimation means estimates the temperature of the oxidation catalyst based on the amount of hydrocarbons and the amount of carbon monoxide input from the first emission map during execution of the catalyst regeneration process, and the filter During execution of the regeneration process, the temperature of the oxidation catalyst is estimated based on the amount of hydrocarbons and the amount of carbon monoxide input from the second emission map, and the second catalyst temperature estimation means During execution, the temperature of the NOx reduction catalyst is estimated based on the amount of hydrocarbons and the amount of carbon monoxide input from the first emission map, and the second emission map during execution of the filter regeneration process. The exhaust purification system according to claim 2, wherein the temperature of the NOx reduction catalyst is estimated based on the amount of hydrocarbons and the amount of carbon monoxide input from.
JP2014264966A 2014-12-26 2014-12-26 Exhaust purification system Active JP6424618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014264966A JP6424618B2 (en) 2014-12-26 2014-12-26 Exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014264966A JP6424618B2 (en) 2014-12-26 2014-12-26 Exhaust purification system

Publications (2)

Publication Number Publication Date
JP2016125374A true JP2016125374A (en) 2016-07-11
JP6424618B2 JP6424618B2 (en) 2018-11-21

Family

ID=56356727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014264966A Active JP6424618B2 (en) 2014-12-26 2014-12-26 Exhaust purification system

Country Status (1)

Country Link
JP (1) JP6424618B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114763772A (en) * 2021-01-11 2022-07-19 长城汽车股份有限公司 Method and device for protecting particle catcher

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003833A (en) * 2001-06-26 2003-01-08 Isuzu Motors Ltd Regeneration control method for continuous regeneration type diesel particulate filter device
JP2007071102A (en) * 2005-09-07 2007-03-22 Isuzu Motors Ltd Desulfurization control method of exhaust emission control system and exhaust emission control system
JP2011106326A (en) * 2009-11-17 2011-06-02 Mitsubishi Motors Corp Exhaust emission control device
WO2012081460A1 (en) * 2010-12-16 2012-06-21 いすゞ自動車株式会社 Dpf system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003833A (en) * 2001-06-26 2003-01-08 Isuzu Motors Ltd Regeneration control method for continuous regeneration type diesel particulate filter device
JP2007071102A (en) * 2005-09-07 2007-03-22 Isuzu Motors Ltd Desulfurization control method of exhaust emission control system and exhaust emission control system
JP2011106326A (en) * 2009-11-17 2011-06-02 Mitsubishi Motors Corp Exhaust emission control device
WO2012081460A1 (en) * 2010-12-16 2012-06-21 いすゞ自動車株式会社 Dpf system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114763772A (en) * 2021-01-11 2022-07-19 长城汽车股份有限公司 Method and device for protecting particle catcher
CN114763772B (en) * 2021-01-11 2024-04-26 长城汽车股份有限公司 Method and device for protecting particle catcher

Also Published As

Publication number Publication date
JP6424618B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP6582409B2 (en) Exhaust purification system
JP6471857B2 (en) Exhaust purification system
JP6492854B2 (en) Exhaust purification equipment
WO2016140211A1 (en) Internal combustion engine control device
WO2016039452A1 (en) Exhaust gas purification system
JP2016133064A (en) Exhaust emission control system
JP2016153629A (en) Exhaust emission control system
JP6432411B2 (en) Exhaust purification system
JP2016061143A (en) Exhaust emission control system
JP2016118135A (en) Exhaust emission control system
JP6424618B2 (en) Exhaust purification system
JP6604034B2 (en) Exhaust purification device
JP6405816B2 (en) Exhaust purification system
WO2016039450A1 (en) Exhaust-gas-cleaning system and method of controlling same
WO2016104802A1 (en) Exhaust-gas purification system and exhaust-gas-purification-system controlling method
WO2016039453A1 (en) Exhaust-gas-cleaning system and method for controlling the same
JP2016180383A (en) Catalyst temperature estimation device
JP2016166540A (en) Exhaust emission control system
JP6435730B2 (en) Control device for internal combustion engine
WO2017047702A1 (en) Exhaust purification system
JP2016153619A (en) Exhaust emission control system
JP2016084753A (en) Exhaust emission control system
JP2016084752A (en) Exhaust emission control system
JP2016183565A (en) Storage amount estimation device
JP2016153638A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181008

R150 Certificate of patent or registration of utility model

Ref document number: 6424618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150