JP2005113909A - Improved filter regenerating treatment technology for trapping particulate matter in engine exhaust gas - Google Patents

Improved filter regenerating treatment technology for trapping particulate matter in engine exhaust gas Download PDF

Info

Publication number
JP2005113909A
JP2005113909A JP2004269476A JP2004269476A JP2005113909A JP 2005113909 A JP2005113909 A JP 2005113909A JP 2004269476 A JP2004269476 A JP 2004269476A JP 2004269476 A JP2004269476 A JP 2004269476A JP 2005113909 A JP2005113909 A JP 2005113909A
Authority
JP
Japan
Prior art keywords
temperature
filter
engine
exhaust
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004269476A
Other languages
Japanese (ja)
Other versions
JP4432693B2 (en
Inventor
Shoichiro Ueno
昌一郎 上野
Junichi Kawashima
純一 川島
Makoto Otake
真 大竹
Mitsunori Kondo
光徳 近藤
Naoya Tsutsumoto
直哉 筒本
Takao Inoue
尊雄 井上
Toshimasa Koga
俊雅 古賀
Masahiko Nakano
雅彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004269476A priority Critical patent/JP4432693B2/en
Publication of JP2005113909A publication Critical patent/JP2005113909A/en
Application granted granted Critical
Publication of JP4432693B2 publication Critical patent/JP4432693B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/121
    • Y02T10/146
    • Y02T10/47

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device using a filter supporting an oxidation catalyst for trapping exhaust particulates, solving the problem that a computation result of a filter bed temperature produces an error with the reaction of unburnt components including HC, CO and others to possibly cause the deterioration of the filter due to overheat. <P>SOLUTION: In accordance with presumption from a temperature measurement result at the front and rear of the filter or the amount of unburnt components presumed from the operated condition of an engine, the bed temperature is corrected. An accurate bed temperature can be found by correcting the increment of the bed temperature due to the burning heat of the unburnt components which therefore avoids the deterioration of the filter due to overheat and improves the accuracy and efficiency of regenerating control. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

特許文献1に示されるように、ディーゼルエンジン等から排出される微粒子状物質(以下「排気微粒子」という。)を浄化処理するためにエンジン排気系統にフィルタを設け、捕捉した排気微粒子を所定のインターバルで酸化もしくは焼却することによりフィルタ再生するようにした装置が知られている。   As shown in Patent Document 1, a filter is provided in an engine exhaust system to purify particulate matter discharged from a diesel engine or the like (hereinafter referred to as “exhaust particulates”), and trapped exhaust particulates are collected at a predetermined interval. An apparatus is known in which the filter is regenerated by oxidation or incineration.

フィルタの再生は燃料噴射時期の遅角化や二次噴射などエンジン制御により排気温度を上昇させることで行われる。このとき、フィルタ入口側および出口側の排気温度に基づいて微粒子が接しているフィルタの表面温度(以下「ベッド温度」という。)を算出し、このベッド温度が目標値になるようにエンジン制御を行うことにより効率よく排気微粒子を燃焼させるようにしている。
特開平5−106427号公報
The regeneration of the filter is performed by increasing the exhaust temperature by engine control such as retarding the fuel injection timing or secondary injection. At this time, the surface temperature (hereinafter referred to as “bed temperature”) of the filter in contact with the fine particles is calculated based on the exhaust temperatures on the filter inlet side and the outlet side, and engine control is performed so that the bed temperature becomes a target value. By doing so, the exhaust particulates are burned efficiently.
JP-A-5-106427

エンジン排気中のHCやCO(以下「未燃焼成分」という。)を酸化させるための触媒を担持したCSFタイプのフィルタでは、再生時に排気微粒子の燃焼熱だけでなく、前記未燃焼成分が酸化するときの反応熱も発生している。この未燃焼成分による反応熱は前述したベッド温度の演算には考慮されていないため、再生制御にあたって必ずしも適切なベッド温度に制御できない。このため、目標温度に対して再生制御後のベッド温度が高くなりすぎ、あるいは未燃焼成分の排出量によってはフィルタに局所的な高温部分が生じてフィルタを劣化させるおそれがあった。   In a CSF type filter carrying a catalyst for oxidizing HC and CO (hereinafter referred to as “unburned components”) in engine exhaust, not only the combustion heat of exhaust particulates but also the unburned components are oxidized during regeneration. The heat of reaction is also generated. Since the reaction heat due to the unburned component is not taken into consideration in the calculation of the bed temperature described above, it cannot always be controlled to an appropriate bed temperature in the regeneration control. For this reason, the bed temperature after regeneration control becomes too high with respect to the target temperature, or depending on the discharge amount of unburned components, a local high temperature portion may be generated in the filter, which may deteriorate the filter.

本発明では、酸化触媒を担持したフィルタにて排気微粒子を捕集し、該フィルタのベッド温度を高めて燃焼させることによりフィルタ再生を行うエンジンの排気浄化装置を前提として、フィルタ前後の温度計測結果から推測しまたはエンジン運転状態から推測した未燃焼成分量に基づいてベッド温度を補正する。   In the present invention, the temperature measurement result before and after the filter is premised on the exhaust purification device of the engine that collects the exhaust particulates with the filter carrying the oxidation catalyst and regenerates the filter by raising the bed temperature of the filter and burning it. The bed temperature is corrected based on the unburned component amount estimated from the above or from the engine operating state.

本発明によれば、未燃焼成分の燃焼熱によるベッド温度の上昇分を補正して正確なベッド温度を知ることができるので、過熱によるフィルタの劣化を回避できると共に、再生制御の精度および効率を改善することができる。   According to the present invention, it is possible to know the exact bed temperature by correcting the increase in the bed temperature due to the combustion heat of the unburned components, so that the deterioration of the filter due to overheating can be avoided, and the accuracy and efficiency of the regeneration control can be improved. Can be improved.

以下本発明の実施形態を図面に基づいて説明する。図1は本発明を適用可能なエンジンシステムの一例を示している。図において、1はエンジンの本体、2は吸気通路、3は排気通路である。エンジン本体1には燃料噴射弁4と燃料噴射ポンプ5が取り付けられている。吸気通路2には、上流側からエアクリーナ6、エアフロメータ7、排気ターボチャージャ8のコンプレッサ9、インタークーラ10、スロットルバルブ11が介装されている。排気通路3には、上流側から排気ターボチャージャ8のタービン12、排気微粒子を捕集するフィルタ(DPF)13が介装されている。14と15はそれぞれフィルタ13の入口温度と出口温度を検出する温度計測手段である温度センサ、16はフィルタ12の前後圧力差を検出する圧力センサである。17は吸気通路2と排気通路3とを連通するEGR通路であり、その途中にEGRバルブ18とEGRクーラ19が介装されている。排気ターボチャージャ8はそのタービン12に流入する排気の流速を加減することができる可変ノズル20を備えている。21はエンジン回転数およびクランク位置を検出するクランク角センサである。23は外気温度を検出する手段としての外気温度センサ、24は外気の圧力を検出する手段としての圧力センサである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of an engine system to which the present invention can be applied. In the figure, reference numeral 1 denotes an engine body, 2 denotes an intake passage, and 3 denotes an exhaust passage. A fuel injection valve 4 and a fuel injection pump 5 are attached to the engine body 1. An air cleaner 6, an air flow meter 7, a compressor 9 of an exhaust turbocharger 8, an intercooler 10, and a throttle valve 11 are interposed in the intake passage 2 from the upstream side. A turbine 12 of an exhaust turbocharger 8 and a filter (DPF) 13 for collecting exhaust particulates are interposed in the exhaust passage 3 from the upstream side. Reference numerals 14 and 15 are temperature sensors which are temperature measuring means for detecting the inlet temperature and the outlet temperature of the filter 13, respectively, and 16 is a pressure sensor for detecting the pressure difference between the front and rear of the filter 12. Reference numeral 17 denotes an EGR passage that communicates the intake passage 2 and the exhaust passage 3, and an EGR valve 18 and an EGR cooler 19 are interposed in the middle thereof. The exhaust turbocharger 8 includes a variable nozzle 20 that can adjust the flow rate of the exhaust gas flowing into the turbine 12. A crank angle sensor 21 detects the engine speed and the crank position. Reference numeral 23 denotes an outside air temperature sensor as means for detecting the outside air temperature, and reference numeral 24 denotes a pressure sensor as means for detecting the pressure of the outside air.

22はコントロールユニットであり、CPUおよびその周辺装置からなるマイクロコンピュータにより構成されている。コントロールユニット22は、前記各種センサからの信号に基づき、燃料噴射時期、燃料噴射量、スロットルバルブ開度、EGR量、可変ノズル開度等を制御すると共に、エンジン制御により排気温度を上昇させる再生制御手段および各演算手段、各補正手段として機能する。   Reference numeral 22 denotes a control unit, which is composed of a microcomputer comprising a CPU and its peripheral devices. The control unit 22 controls the fuel injection timing, the fuel injection amount, the throttle valve opening, the EGR amount, the variable nozzle opening, and the like based on the signals from the various sensors, and the regeneration control for increasing the exhaust temperature by engine control. It functions as a means, each calculating means, and each correcting means.

コントロールユニット22により実行される再生制御の概要は次の通りである。まずエンジン運転状態としてバックグラウンドで常時的に検出している負荷Qと回転数Neとを用いて排気微粒子の捕集量(フィルタへの堆積量)を算出する。負荷Qはその代表値として燃料噴射量指令値を使用し、回転数Neはクランク角センサ21の信号を読み取っている。微粒子捕集量の算出手法は種々知られているが、例えば負荷Qおよび回転数Neに応じて一定時間内にエンジンから排出される排気微粒子量を割り当てたテーブルを予め実験的に作成しておき、その一定時間毎の読み取り値を積算し、または前記運転状態信号と差圧センサ16からの信号とに基づいて算出することにより求める。   The outline of the reproduction control executed by the control unit 22 is as follows. First, the trapped amount of exhaust particulates (the amount deposited on the filter) is calculated using the load Q constantly detected in the background as the engine operating state and the rotational speed Ne. The load Q uses the fuel injection amount command value as a representative value, and the rotation speed Ne reads the signal of the crank angle sensor 21. Various methods for calculating the amount of collected particulate matter are known.For example, a table in which the amount of particulate matter discharged from the engine within a certain period of time is assigned according to the load Q and the rotational speed Ne is experimentally created in advance. Then, it is obtained by integrating the reading values at regular intervals or by calculating based on the operation state signal and the signal from the differential pressure sensor 16.

次いで、前記排気微粒子堆積量が再生を開始すべき基準値以上であるときには、運転状態を判定し、エンジンが再生可能域で運転をしているときには再生を開始する。前記再生可能域は、再生に必要な排気温度が効率よく得られる運転域がエンジンの特性に応じて設定されている。再生は、図1に示したエンジンシステムにおいては、例えばスロットルバルブ11による吸気絞り、燃料噴射時期の遅角化、二次噴射、EGR量減、可変ノズル20の開度制御の何れかを実施し、微粒子再生に必要な300℃以上の排気温度を確保するようにする。   Next, when the exhaust particulate accumulation amount is equal to or greater than a reference value at which regeneration is to be started, the operating state is determined, and regeneration is started when the engine is operating in a recyclable region. In the reproducible region, an operating region where the exhaust temperature necessary for regeneration can be efficiently obtained is set according to the characteristics of the engine. In the engine system shown in FIG. 1, for example, regeneration is performed by any one of intake throttle by the throttle valve 11, retardation of the fuel injection timing, secondary injection, EGR amount reduction, and opening control of the variable nozzle 20. Then, an exhaust temperature of 300 ° C. or higher necessary for fine particle regeneration is ensured.

前記再生制御中にはフィルタ13のベッド温度を演算し、再生が効率よく行われかつ過熱を起こさない所定のベッド温度になるように前述のエンジン制御が行われる。   During the regeneration control, the bed temperature of the filter 13 is calculated, and the engine control described above is performed so that the regeneration is performed efficiently and the predetermined bed temperature does not cause overheating.

図2に、前記コントロールユニット22により実行されるベッド温度演算に関する第1の実施形態に係るフローを示す。このフローは一定時間ごとに周期的に実行される。以下の説明およびフロー中で符号Sを付して示した数字は処理ステップ番号である。   FIG. 2 shows a flow according to the first embodiment regarding the bed temperature calculation executed by the control unit 22. This flow is executed periodically at regular intervals. In the following description and the flow, the numbers indicated with the symbol S are processing step numbers.

図において、まずS101にて温度センサ14からの信号に基づきフィルタ入口側の排気温度Tdpf_in_meaを計測する。次いでS102にて前記計測入口温度Tdpf_in_meaを用いてフィルタ出口側の排気温度Tdpf_out_calを演算する。出口温度Tdpf_out_calはエンジンの運転状態と入口温度Tdpf_in_meaとから推定できるので、例えばエンジン運転状態を表す燃料噴射量Qおよびエンジン回転数Neと入口温度Tdpf_in_meaとをパラメータとして出口温度Tdpf_out_calを付与するように予め設定しておいたマップを検索することで求めるようにする。   In the figure, first, the exhaust temperature Tdpf_in_mea on the filter inlet side is measured based on the signal from the temperature sensor 14 in S101. Next, in S102, the exhaust temperature Tdpf_out_cal on the filter outlet side is calculated using the measured inlet temperature Tdpf_in_mea. Since the outlet temperature Tdpf_out_cal can be estimated from the engine operating state and the inlet temperature Tdpf_in_mea, for example, the outlet temperature Tdpf_out_cal is set in advance so that the fuel injection amount Q representing the engine operating state, the engine speed Ne, and the inlet temperature Tdpf_in_mea are used as parameters. The search is made by searching the set map.

S103では前記演算出口温度Tdpf_out_calを用いてフィルタのベッド温度Tbed_calを演算する。この演算ベッド温度Tbed_calも前記エンジン運転状態と演算出口温度Tdpf_out_calとから予め設定しておいたマップを検索して求めることができる。   In S103, the filter bed temperature Tbed_cal is calculated using the calculation outlet temperature Tdpf_out_cal. The calculated bed temperature Tbed_cal can also be obtained by searching a map set in advance from the engine operating state and the calculated outlet temperature Tdpf_out_cal.

S104では、温度センサ15からの信号に基づきフィルタ出口側の実排気温度Tdpf_out_meaを求め、次いでS105にて前記計測出口温度Tdpf_out_mea からS103での演算出口温度Tdpf_out_calを減じて、未燃焼成分の反応による温度上昇分ΔThc1を求める。   In S104, the actual exhaust temperature Tdpf_out_mea on the filter outlet side is obtained based on the signal from the temperature sensor 15, and then in S105, the calculated outlet temperature Tdpf_out_cal in S103 is subtracted from the measured outlet temperature Tdpf_out_mea, and the temperature due to the reaction of the unburned components. Calculate the increase ΔThc1.

S106では、前述の温度上昇分Thc1をS103での演算ベッド温度Tbed_cal に加えて補正ベッド温度Tbed_corを算出する。   In S106, the corrected bed temperature Tbed_cor is calculated by adding the above-mentioned temperature rise Thc1 to the calculated bed temperature Tbed_cal in S103.

図3はフィルタ再生時の計算による各部の推定温度と実温度との関係を示している。図示したように計算上の出口温度とベッド温度に対して実際の出口温度とベッド温度は未燃焼成分の反応による発熱分だけそれぞれΔT1、ΔT2の温度差を生じている。本実施形態によれば、補正ベッド温度Tbed_corとして、前記未燃焼成分によるベッド温度の上昇分を含む実ベッド温度に近い値が得られる。このことから、Tbed_corを用いて前述したフィルタ再生制御を行うことにより、フィルタ再生を効率よく行えると共に、フィルタの過熱を防止してその保護を図ることが可能となる。   FIG. 3 shows the relationship between the estimated temperature of each part and the actual temperature calculated by the filter regeneration. As shown in the figure, the actual outlet temperature and bed temperature have a difference of ΔT1 and ΔT2 by the amount of heat generated by the reaction of the unburned components with respect to the calculated outlet temperature and bed temperature. According to this embodiment, as the corrected bed temperature Tbed_cor, a value close to the actual bed temperature including the increase in the bed temperature due to the unburned component is obtained. Thus, by performing the above-described filter regeneration control using Tbed_cor, it is possible to efficiently perform filter regeneration and to prevent overheating of the filter and to protect it.

図5は、ベッド温度演算に関する第2の実施形態に係るフローである。S101〜S102の処理は図2と同一の処理であり、S404〜S407の処理は図2のS103〜S106と同一である。   FIG. 5 is a flow according to the second embodiment regarding the bed temperature calculation. The processes in S101 to S102 are the same as those in FIG. 2, and the processes in S404 to S407 are the same as those in S103 to S106 in FIG.

この実施形態では、DPF出口温度Tdpf_out_calに基づいてDPFベッド温度Tbed_calを算出する際に、S401〜S403で外気温度、圧力に応じてDPF出口温度Tdpf_out_calを補正する点で図2と異なる。   This embodiment is different from FIG. 2 in that when calculating the DPF bed temperature Tbed_cal based on the DPF outlet temperature Tdpf_out_cal, the DPF outlet temperature Tdpf_out_cal is corrected according to the outside air temperature and pressure in S401 to S403.

S401で外気温度センサ23、圧力センサ24の検出値を読込む。   In S401, the detected values of the outside air temperature sensor 23 and the pressure sensor 24 are read.

S402ではS401で読込んだ外気温度、圧力に基づいて、DPF出口温度補正係数をマップ検索する。具体的には、例えば外気温度ごとに補正係数を設定したマップと、圧力ごとに補正係数を設定したマップを予め設定しておき、これを検索して外気温度に基づく補正係数、圧力に基づく補正係数をそれぞれ求めるようにする。   In S402, a map search is performed for the DPF outlet temperature correction coefficient based on the outside air temperature and pressure read in S401. Specifically, for example, a map in which a correction coefficient is set for each outside air temperature and a map in which a correction coefficient is set for each pressure are set in advance, and the correction coefficient based on the outside air temperature and the correction based on the pressure are searched. Each coefficient is obtained.

S403ではS402で求めた補正係数を用いてDPF出口温度Tdpf_out_calの補正を行う。   In S403, the DPF outlet temperature Tdpf_out_cal is corrected using the correction coefficient obtained in S402.

本実施形態によれば、外気温度、圧力等の環境要因が変化に応じてDPF出口温度Tdpf_out_calを補正するので、例えば、外気温が極低温の場合、DPF再生時の着火遅れ時間が拡大して未燃成分が過剰供給され、この未燃焼成分の酸化反応に起因したDPFの過昇温を防止してその保護を図ることができる。   According to the present embodiment, the DPF outlet temperature Tdpf_out_cal is corrected according to changes in environmental factors such as outside air temperature and pressure. For example, when the outside air temperature is extremely low, the ignition delay time during DPF regeneration is increased. The unburned component is excessively supplied, and it is possible to protect the DPF by preventing the excessive temperature rise of the DPF due to the oxidation reaction of the unburned component.

図4はベッド温度演算に関する第3の実施形態に係るフローである。S101〜S103の処理は図2と同一であり、計測した入口温度Tdpf_in_meaに基づいて出口温度Tdpf_out_calおよびベッド温度Tbed_calを算出する。この実施形態では、未燃焼成分の反応による温度上昇分ΔTch2を、未燃焼成分量から算出するようにした点で図2の処理と異なる。   FIG. 4 is a flow according to the third embodiment regarding bed temperature calculation. The processing of S101 to S103 is the same as that in FIG. 2, and the outlet temperature Tdpf_out_cal and the bed temperature Tbed_cal are calculated based on the measured inlet temperature Tdpf_in_mea. This embodiment differs from the process of FIG. 2 in that the temperature increase ΔTch2 due to the reaction of the unburned components is calculated from the amount of unburned components.

まずS204にて未燃焼成分であるHCとCOの排出量をマップ検索する。未燃焼成分の排出量はエンジン特性によって決まるので、予めエンジン運転状態、例えば前述した燃料噴射量Qと回転数Neをパラメータとして未燃焼成分の排出量を与えるマップを設定しておき、これを検索することで求めるようにする。   First, in S204, the map is searched for the emission amounts of HC and CO which are unburned components. Since the unburned component emission amount is determined by the engine characteristics, a map that gives the unburned component emission amount in advance using the engine operating state, for example, the fuel injection amount Q and the rotational speed Ne described above as parameters, is searched. To ask for it.

次いでS205にて前記未燃焼成分量からその反応時の発熱量、転化効率およびフィルタの熱容量から、未燃焼成分の反応によるベッド温度上昇分ΔTch2を算出する。   Next, in S205, the bed temperature increase ΔTch2 due to the reaction of the unburned component is calculated from the amount of the unburned component, the calorific value at the time of reaction, the conversion efficiency, and the heat capacity of the filter.

S206では、前述のようにして算出したベッド温度上昇分ΔTch2をS103にて算出したベッド温度Tbed_calに加えて補正ベッド温度Tbed_corを算出する。   In S206, the corrected bed temperature Tbed_cor is calculated by adding the bed temperature increase ΔTch2 calculated as described above to the bed temperature Tbed_cal calculated in S103.

この実施形態によれば、実際の未燃焼成分の排出量に基づいて補正ベッド温度Tbed_corを算出しているので、より高い精度を期待することができる。   According to this embodiment, since the corrected bed temperature Tbed_cor is calculated based on the actual discharge amount of unburned components, higher accuracy can be expected.

図6はベッド温度演算に関する第4の実施形態に係るフローである。S101〜S103、S204の処理は図4と同一であり、計測した入口温度Tdpf_in_meaに基づいて出口温度Tdpf_out_calおよびベッド温度Tbed_calを算出する。この実施形態では、未燃焼成分の反応による温度上昇分ΔTch3を算出する際に、吸気の温度、圧力に応じて未燃焼成分排出量の補正を行う点で図4と異なる。   FIG. 6 is a flow according to the fourth embodiment regarding the bed temperature calculation. The processing of S101 to S103 and S204 is the same as that in FIG. 4, and the outlet temperature Tdpf_out_cal and the bed temperature Tbed_cal are calculated based on the measured inlet temperature Tdpf_in_mea. This embodiment differs from FIG. 4 in that when calculating the temperature increase ΔTch3 due to the reaction of the unburned components, the unburned component discharge amount is corrected according to the intake air temperature and pressure.

S301で外気温度センサ23、圧力センサ24の検出値を読込む。   In S301, the detected values of the outside air temperature sensor 23 and the pressure sensor 24 are read.

S302ではS301で読込んだ外気温度、圧力に基づいて、排出量補正係数をマップ検索する。具体的には、例えば外気温度をパラメータとして補正係数を与えるマップと、圧力をパラメータとして補正係数を与えるマップをそれぞれ設定しておき、これを検索して外気温度に基づく補正係数、圧力に基づく補正係数をそれぞれ求めるようにする。   In S302, the map is searched for the discharge amount correction coefficient based on the outside air temperature and pressure read in S301. Specifically, for example, a map that gives a correction coefficient using the outside air temperature as a parameter and a map that gives a correction coefficient using the pressure as a parameter are set in advance, and these are searched and the correction coefficient based on the outside air temperature and the correction based on the pressure Each coefficient is obtained.

S303では、S204で求めた未燃焼成分排出量に、S302で求めた外気温度、圧力に基づく補正係数をそれぞれ乗じて未燃焼成分の排出量の補正を行う。外気温度、圧力によってDPF再生時の着火遅れ時間は変化し、これに伴い未燃焼成分排出量も変化するが、この補正により、未燃焼成分排出量を精度良く算出することができる。   In S303, the unburned component discharge amount is corrected by multiplying the unburned component discharge amount obtained in S204 by the correction coefficient based on the outside air temperature and pressure obtained in S302. The ignition delay time during DPF regeneration changes depending on the outside air temperature and pressure, and the unburned component discharge amount also changes accordingly. With this correction, the unburned component discharge amount can be calculated with high accuracy.

S304、S305では、S303で求めた補正後の未燃焼成分排出量を用いて図4のS205、S206と同様の処理を行い、未燃焼成分の反応によるベッド温度上昇分ΔTch3を算出し、これをS103にて算出したベッド温度Tbed_calに加えて補正ベッド温度Tbed_corを算出する。   In S304 and S305, processing similar to S205 and S206 in FIG. 4 is performed using the corrected unburned component discharge amount obtained in S303, and a bed temperature increase ΔTch3 due to the reaction of unburned components is calculated. In addition to the bed temperature Tbed_cal calculated in S103, a corrected bed temperature Tbed_cor is calculated.

本実施形態によれば、外気温度、圧力に基づいて着火遅れ時間の変化分だけ未燃焼成分の排出量を補正しているので、環境要件に応じて高い精度で補正ベッド温度Tbed_corを算出することができ、これにより、着火遅れ時間が拡大して未燃成分が過剰供給されることによる酸化反応に起因したDPFの過昇温を防止して、その保護を図ることができる。   According to the present embodiment, the emission amount of the unburned component is corrected by the change in the ignition delay time based on the outside air temperature and pressure, so that the corrected bed temperature Tbed_cor is calculated with high accuracy according to the environmental requirements. As a result, the ignition delay time is expanded and the unburned component is excessively supplied, thereby preventing the excessive temperature rise of the DPF caused by the oxidation reaction and protecting it.

なお、S304では、未燃焼成分の排出量とDPF入口温度Tdpf_in_meaをパラメータとして未燃焼成分の反応によるベッド温度上昇分ΔTch3を与えるマップを用意しておき、これを検索してもよい。   In S304, a map that provides the bed temperature increase ΔTch3 due to the reaction of the unburned component using the discharge amount of the unburned component and the DPF inlet temperature Tdpf_in_mea as parameters may be prepared and searched.

また、S301〜S303で補正を行う代わりに、S204で検索するマップを外気温度、圧力ごとに用意しておき、S301で外気温度、圧力を読込んでから検索してもよい。   Instead of performing corrections in S301 to S303, a map to be searched in S204 may be prepared for each outside temperature and pressure, and the search may be performed after reading the outside temperature and pressure in S301.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

本発明は、エンジン排気中の微粒子状物質を捕集するフィルタの再生処理制御装置に適用可能である。   The present invention is applicable to a filter regeneration processing control device that collects particulate matter in engine exhaust.

本発明を適用可能なエンジンシステムの概略図。1 is a schematic diagram of an engine system to which the present invention can be applied. 本発明のベッド温度演算の第1の実施形態に係る処理手順を示した流れ図。The flowchart which showed the process sequence which concerns on 1st Embodiment of the bed temperature calculation of this invention. 再生時のベッド温度の特性を推定値との関係において示した特性線図。The characteristic diagram which showed the characteristic of the bed temperature at the time of reproduction | regeneration in relation to the estimated value. 本発明のベッド温度演算の第3の実施形態に係る処理手順を示した流れ図。The flowchart which showed the process sequence which concerns on 3rd Embodiment of the bed temperature calculation of this invention. 本発明のベッド温度演算の第2の実施形態に係る処理手順を示した流れ図。The flowchart which showed the process sequence which concerns on 2nd Embodiment of the bed temperature calculation of this invention. 本発明のベッド温度演算の第4の実施形態に係る処理手順を示した流れ図。The flowchart which showed the process sequence which concerns on 4th Embodiment of the bed temperature calculation of this invention.

符号の説明Explanation of symbols

1 エンジン本体
2 吸気通路
3 排気通路
4 燃料噴射弁
5 燃料噴射ポンプ
7 エアフロメータ
8 排気ターボチャージャ
9 コンプレッサ
11 スロットルバルブ
12 タービン
13 フィルタ
17 EGR通路
18 EGRバルブ
20 ターボチャージャの可変ノズル
21 クランク角センサ
22 コントロールユニット
DESCRIPTION OF SYMBOLS 1 Engine main body 2 Intake passage 3 Exhaust passage 4 Fuel injection valve 5 Fuel injection pump 7 Air flow meter 8 Exhaust turbocharger 9 Compressor 11 Throttle valve 12 Turbine 13 Filter 17 EGR passage 18 EGR valve 20 Variable nozzle 21 of turbocharger 21 Crank angle sensor 22 control unit

Claims (10)

エンジン排気中の未燃焼成分を酸化する触媒を担持した微粒子状物質捕集フィルタと、
前記フィルタに捕捉した微粒子状物質を該フィルタのベッド温度を高めて燃焼させることにより前記フィルタの再生をする再生制御手段とを備えたエンジンの排気浄化装置において、
前記フィルタ入口側の排気温度を検出する入口温度計測手段と、
前記計測した入口温度に基づいてフィルタ出口側の排気温度を演算する出口温度演算手段と、
前記計測した入口温度と演算した出口温度とに基づいて前記フィルタのベッド温度を演算するベッド温度演算手段と、
前記未燃焼成分の反応による温度上昇分を演算する反応温度演算手段と、
前記演算した反応による温度上昇分に基づいて前記ベッド温度を補正するベッド温度補正手段と、を備え、
前記再生制御手段は、前記補正したベッド温度が所定の再生温度となるように再生制御を行うことを特徴とするエンジンの排気浄化装置。
A particulate matter collection filter carrying a catalyst for oxidizing unburned components in the engine exhaust;
In an engine exhaust purification device comprising regeneration control means for regenerating the filter by raising the bed temperature of the filter and burning the particulate matter trapped in the filter,
Inlet temperature measuring means for detecting the exhaust temperature on the filter inlet side;
Outlet temperature calculating means for calculating the exhaust temperature on the filter outlet side based on the measured inlet temperature;
Bed temperature calculation means for calculating the bed temperature of the filter based on the measured inlet temperature and the calculated outlet temperature;
Reaction temperature calculation means for calculating a temperature rise due to the reaction of the unburned component;
Bed temperature correcting means for correcting the bed temperature based on the calculated temperature rise due to the reaction,
The exhaust emission control device for an engine, wherein the regeneration control means performs regeneration control so that the corrected bed temperature becomes a predetermined regeneration temperature.
前記フィルタ出口側の排気温度を検出する出口温度計測手段を備え、
前記反応温度演算手段は、前記計測した出口温度と演算した出口温度とに基づいて前記未燃焼成分の反応による温度上昇分を演算する請求項1に記載のエンジンの排気浄化装置。
Comprising outlet temperature measuring means for detecting the exhaust temperature on the filter outlet side,
2. The engine exhaust gas purification apparatus according to claim 1, wherein the reaction temperature calculation unit calculates a temperature increase due to a reaction of the unburned component based on the measured outlet temperature and the calculated outlet temperature.
外気温度を検出する手段と、
外気の圧力を検出する手段と、
前記演算した出口温度を、外気温度または圧力のいずれか一方もしくは両方に応じて補正する出口温度補正手段を備え、
前記反応温度演算手段は、前記計測した出口温度と補正後の前記演算した出口温度とに基づいて前記未燃焼成分の反応による温度上昇分を演算する請求項2に記載のエンジンの排気浄化装置。
Means for detecting the outside air temperature;
Means for detecting the pressure of the outside air;
An outlet temperature correcting means for correcting the calculated outlet temperature according to one or both of the outside air temperature and pressure;
3. The engine exhaust gas purification apparatus according to claim 2, wherein the reaction temperature calculation means calculates a temperature rise due to a reaction of the unburned component based on the measured outlet temperature and the corrected outlet temperature after correction.
エンジン状態に基づいて未燃焼成分の排出量を演算する未燃焼成分排出量演算手段を備え、
前記反応温度演算手段は、前記演算した未燃焼成分排出量に基づいて該未燃焼成分の反応による温度上昇分を演算する請求項1に記載のエンジンの排気浄化装置。
Comprising unburned component emission calculating means for calculating the amount of unburned component emission based on the engine state;
2. The exhaust emission control device for an engine according to claim 1, wherein the reaction temperature calculation means calculates a temperature increase due to a reaction of the unburned component based on the calculated unburned component emission amount.
外気温度を検出する手段と、
外気の圧力を検出する手段と、
前記演算した未燃焼成分排出量を、外気温度または圧力のいずれか一方もしくは両方に応じて補正する未燃焼成分排出量補正手段を備え、
前記反応温度演算手段は、補正後の前記演算した未燃焼成分排出量に基づいて該未燃焼成分の反応による温度上昇分を演算する請求項4に記載のエンジンの排気浄化装置。
Means for detecting the outside air temperature;
Means for detecting the pressure of the outside air;
An unburned component discharge amount correcting means for correcting the calculated unburned component discharge amount according to either or both of the outside air temperature and the pressure;
The engine exhaust gas purification apparatus according to claim 4, wherein the reaction temperature calculation means calculates a temperature rise due to a reaction of the unburned component based on the corrected unburned component emission amount after correction.
前記出口温度演算手段は、
フィルタ入口側の排気温度とエンジン運転状態とに基づいてフィルタ出口側の排気温度を付与するように予め形成されたマップを検索して出口温度を演算するように構成した請求項1から請求項5の何れかに記載のエンジンの排気浄化装置。
The outlet temperature calculating means includes
6. The outlet temperature is calculated by searching a map formed in advance so as to give the exhaust temperature on the filter outlet side based on the exhaust temperature on the filter inlet side and the engine operating state. An exhaust purification device for an engine according to any one of the above.
前記ベッド温度演算手段は、
フィルタ入口側の排気温度とエンジン運転状態とに基づいてベッド温度を付与するように予め形成されたマップを検索してベッド温度を演算するように構成した請求項1から請求項5の何れかに記載のエンジンの排気浄化装置。
The bed temperature calculating means includes
6. The structure according to claim 1, wherein the bed temperature is calculated by searching a map formed in advance so as to apply the bed temperature based on the exhaust gas temperature on the filter inlet side and the engine operating state. The engine exhaust gas purification apparatus as described.
前記エンジン運転状態は、エンジンの回転数と負荷代表値としての燃料噴射量とを含む請求項1から請求項5の何れかに記載のエンジンの排気浄化装置。   The engine exhaust purification device according to any one of claims 1 to 5, wherein the engine operating state includes an engine speed and a fuel injection amount as a load representative value. 前記再生制御手段は、
前記フィルタの再生時には、前記補正したベッド温度に基づき、当該ベッド温度が所定の再生温度となるようにエンジン排気温度を制御してフィルタの再生を行う請求項1から請求項5の何れかに記載のエンジンの排気浄化装置。
The reproduction control means includes
The filter is regenerated by controlling the engine exhaust temperature so that the bed temperature becomes a predetermined regeneration temperature based on the corrected bed temperature when the filter is regenerated. Engine exhaust purification system.
前記再生制御手段は、
燃料噴射時期制御、燃料噴射量制御、可変ノズル排気ターボチャージャのノズル開度制御、EGR制御、吸気量制御、補機類負荷制御、
の少なくともいずれか一つを適用してエンジン排気温度を上昇させる請求項9に記載のエンジンの排気浄化装置。
The reproduction control means includes
Fuel injection timing control, fuel injection amount control, nozzle opening control of variable nozzle exhaust turbocharger, EGR control, intake air amount control, auxiliary equipment load control,
The engine exhaust gas purification device according to claim 9, wherein the engine exhaust temperature is increased by applying at least one of the above.
JP2004269476A 2003-09-19 2004-09-16 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine exhaust purification device, and more particularly to an improvement in a filter regeneration processing technique for collecting particulate matter in engine exhaust. Expired - Fee Related JP4432693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004269476A JP4432693B2 (en) 2003-09-19 2004-09-16 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine exhaust purification device, and more particularly to an improvement in a filter regeneration processing technique for collecting particulate matter in engine exhaust.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003328666 2003-09-19
JP2004269476A JP4432693B2 (en) 2003-09-19 2004-09-16 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine exhaust purification device, and more particularly to an improvement in a filter regeneration processing technique for collecting particulate matter in engine exhaust.

Publications (2)

Publication Number Publication Date
JP2005113909A true JP2005113909A (en) 2005-04-28
JP4432693B2 JP4432693B2 (en) 2010-03-17

Family

ID=34554660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269476A Expired - Fee Related JP4432693B2 (en) 2003-09-19 2004-09-16 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine exhaust purification device, and more particularly to an improvement in a filter regeneration processing technique for collecting particulate matter in engine exhaust.

Country Status (1)

Country Link
JP (1) JP4432693B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316732A (en) * 2005-05-13 2006-11-24 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2008038822A (en) * 2006-08-09 2008-02-21 Denso Corp Unburned fuel estimating device for engine, and temperature estimating device of exhaust emission control device
JP2013142432A (en) * 2012-01-10 2013-07-22 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control system and control method of the same
JP2019190306A (en) * 2018-04-20 2019-10-31 トヨタ自動車株式会社 Mechanical learning device of unburnt fuel quantity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101713743B1 (en) 2015-12-08 2017-03-08 현대자동차 주식회사 Method of regenerating selective catalytic reduction catalyst on diesel particulate filter and exhaust purification system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316732A (en) * 2005-05-13 2006-11-24 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP4512519B2 (en) * 2005-05-13 2010-07-28 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP2008038822A (en) * 2006-08-09 2008-02-21 Denso Corp Unburned fuel estimating device for engine, and temperature estimating device of exhaust emission control device
JP4591423B2 (en) * 2006-08-09 2010-12-01 株式会社デンソー Engine unburned fuel estimation device, exhaust purification device temperature estimation device
JP2013142432A (en) * 2012-01-10 2013-07-22 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control system and control method of the same
JP2019190306A (en) * 2018-04-20 2019-10-31 トヨタ自動車株式会社 Mechanical learning device of unburnt fuel quantity
US10991174B2 (en) 2018-04-20 2021-04-27 Toyota Jidosha Kabushiki Kaisha Machine learning device of amount of unburned fuel, machine learning method, learned model, electronic control unit, method of production of electronic control unit, and machine learning system

Also Published As

Publication number Publication date
JP4432693B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP4103720B2 (en) ENGINE EXHAUST PURIFYING APPARATUS AND PARTICLE DEPOSITION STATE JUDGMENT METHOD
JP2006226119A (en) Exhaust emission control device for internal combustion engine
JP2004019524A (en) Exhaust emission control device of internal combustion engine
KR20030022042A (en) Exhaust emission control device for engine
US7065959B2 (en) Filter regeneration control
JP2007016619A (en) Exhaust gas after-treatment device for diesel engine
JP2005090458A (en) Engine exhaust emission control device
JP2006037742A (en) Exhaust emission control device for internal combustion engine
JP2006090153A (en) Exhaust emission control device for internal combustion engine
JP2005180322A (en) Exhaust gas after-treatment device for diesel engine
JP4506060B2 (en) Particulate filter regeneration control device
JP4308702B2 (en) Exhaust purification equipment
JP4320586B2 (en) Exhaust gas purification device for internal combustion engine
JP2005090276A (en) Catalyst control device of internal combustion engine
JP4150308B2 (en) Exhaust purification device
JP2006242098A (en) Exhaust emission control device for internal combustion engine
JP4432693B2 (en) BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine exhaust purification device, and more particularly to an improvement in a filter regeneration processing technique for collecting particulate matter in engine exhaust.
JP4008867B2 (en) Exhaust purification equipment
JP2008232073A (en) Exhaust emission purifier
JP4185882B2 (en) Exhaust purification device
JP2007132236A (en) Exhaust emission control device for internal combustion engine
JP2005090454A (en) Exhaust emission control device of engine
JP4070687B2 (en) Exhaust purification device
JP2003020933A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees