JP2005179695A - Wiring substrate and method for forming electric wiring - Google Patents

Wiring substrate and method for forming electric wiring Download PDF

Info

Publication number
JP2005179695A
JP2005179695A JP2003417707A JP2003417707A JP2005179695A JP 2005179695 A JP2005179695 A JP 2005179695A JP 2003417707 A JP2003417707 A JP 2003417707A JP 2003417707 A JP2003417707 A JP 2003417707A JP 2005179695 A JP2005179695 A JP 2005179695A
Authority
JP
Japan
Prior art keywords
plating film
cobalt
electroless nickel
electroless
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003417707A
Other languages
Japanese (ja)
Inventor
Satoshi Kawashima
敏 川島
Takaharu Hashimoto
貴治 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meltex Inc
Original Assignee
Meltex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meltex Inc filed Critical Meltex Inc
Priority to JP2003417707A priority Critical patent/JP2005179695A/en
Publication of JP2005179695A publication Critical patent/JP2005179695A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring substrate provided with electric wiring having adequate adhesiveness to the substrate and low resistance, and to provide a method for forming the electric wiring for simply forming the electric wiring having adequate adhesiveness to an article to have the electric wiring thereon. <P>SOLUTION: The wiring substrate has the electrical wiring with a layered structure obtained by layering the first layer consisting of an electroless nickel-cobalt-phosphor-plated film containing cobalt in a range of 0.1 to 20 wt.%, and the second layer consisting of an electroless copper-plated film from the substrate side in this order. The method for forming the electrical wiring comprises the steps of: forming the electroless nickel-cobalt-phosphor-plated film as the first layer containing cobalt in a range of 0.1 to 20 wt.% into an electrode wiring pattern; heat-treating the electroless nickel-cobalt-phosphor-plated film for increasing the adhesive strength; and forming the electroless copper-plated film as the second layer on the electroless nickel-cobalt-phosphor-plated film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、配線基板と電気配線の形成方法に係り、特に各種フラットディスプレイ、各種電気回路基板等に使用される配線基板と、この配線基板の電気配線形成等に利用できる電気配線の形成方法に関する。   The present invention relates to a wiring board and a method for forming an electric wiring, and more particularly, to a wiring board used for various flat displays, various electric circuit boards, and the like, and a method for forming an electric wiring that can be used for the electric wiring formation of the wiring board. .

液晶表示装置(LCD)、プラズマ表示装置(PDP)、エレクトロクロミック表示装置(ECD)、エレクトロルミネッセント表示装置(FLD)等のフラットディスプレイは、通常、液晶や放電ガス等の表示材料が一対のガラス基板間に保持され、この表示材料に電圧を印加する構成となっている。この際、少なくとも一方の基板には導電材料で電気配線が形成されている。近年、フラットディスプレイの大型化に伴い、製造工程で使用されるガラス基板は年々大きくなり、1辺の長さが1m程度、面積が1m2程度の大面積基板上に電気配線を形成することが要求されている。従来、電気配線は、スパッタリング法、CVD法等の真空成膜法によりガラス基板の全面にTa、Al、Mo等の金属薄膜を形成し、この上にエッチングレジストを設け、不用部位をエッチング除去して形成されていた。 Flat displays such as liquid crystal display devices (LCD), plasma display devices (PDP), electrochromic display devices (ECD), and electroluminescent display devices (FLD) usually have a pair of display materials such as liquid crystal and discharge gas. It is held between the glass substrates, and a voltage is applied to the display material. At this time, electrical wiring is formed of a conductive material on at least one of the substrates. In recent years, with the increase in the size of flat displays, glass substrates used in the manufacturing process have become larger year by year, and electrical wiring can be formed on a large area substrate having a side length of about 1 m and an area of about 1 m 2. It is requested. Conventionally, electrical wiring has been formed by forming a metal thin film of Ta, Al, Mo, etc. on the entire surface of a glass substrate by a vacuum film formation method such as sputtering or CVD, and providing an etching resist on this to remove unnecessary portions by etching. Was formed.

しかし、従来の大面積基板上への電気配線形成では、金属薄膜の膜厚、膜質を均一にすることが困難であり、また、真空成膜装置の大型化に莫大な設備投資が必要になり、製造コストの増大を来すという問題があった。さらに、真空成膜装置の大型化は、真空ポンプの駆動、基板加熱、プラズマ発生等に多大の電力を必要とし、この面からも製造コストの増大を来すとともに、このような消費エネルギーの増大は地球温暖化防止のための二酸化炭素排出削減という環境的な課題に逆行するものであった。
このような問題を解消するために、湿式成膜法を用いた電気配線の形成方法が提案されている。例えば、特許文献1では、酸化インジウムスズ(ITO)等からなる透明電極を下地膜に使用し、この下地膜上に銅、ニッケル等の金属膜をめっき法により成膜する方法が開示されている。この電気配線形成方法では、金属膜の形成に真空成膜装置を使用しないため、上記のような問題が解消される。
However, in conventional electrical wiring formation on a large area substrate, it is difficult to make the film thickness and quality of the metal thin film uniform, and enormous capital investment is required to increase the size of the vacuum film forming apparatus. There is a problem that the manufacturing cost increases. Furthermore, the increase in the size of the vacuum film forming apparatus requires a large amount of electric power for driving the vacuum pump, heating the substrate, generating plasma, etc. This also increases the manufacturing cost and increases the energy consumption. Was against the environmental challenge of reducing carbon dioxide emissions to prevent global warming.
In order to solve such a problem, a method of forming an electrical wiring using a wet film forming method has been proposed. For example, Patent Document 1 discloses a method in which a transparent electrode made of indium tin oxide (ITO) or the like is used as a base film, and a metal film such as copper or nickel is formed on the base film by a plating method. . In this electric wiring forming method, since the vacuum film forming apparatus is not used for forming the metal film, the above problems are solved.

また、上記の湿式成膜法では、ITO等の下地膜の形成は、依然としてスパッタリング法や蒸着法等の真空成膜法を使用するものであったが、特許文献2に開示されるように、下地膜となるITO等の薄膜も湿式成膜法で形成する方法が見出され、全てを湿式成膜工程で行う電気配線の形成方法が提案されている。   Further, in the above wet film formation method, the formation of the base film such as ITO still uses a vacuum film formation method such as a sputtering method or a vapor deposition method, but as disclosed in Patent Document 2, A method of forming a thin film such as ITO as a base film by a wet film forming method has been found, and a method of forming an electrical wiring in which all are performed by a wet film forming process has been proposed.

一方、真空成膜法による電気配線形成は、フラットディスプレイ以外にもLSIの製造に幅広く用いられている。従来、LSIは数ミリ角の1個のチップに機能を集約し、そのチップから外部配線を金属製の導通フレームや樹脂基板に形成していたが、近年、複数のチップを組み合わせたMCM(Multi Tip Module)や、SIP(System In Package)が登場し始めている。このようなLSIの高機能化に伴って動作時の発熱も増加し、MCMやSIP用の基板として、熱膨張係数がLSIチップよりも大きな樹脂系基板に代えて、LSIチップと同等の熱膨張係数をもつシリコン系基板が好適に使用されるようになっている。そして、近年、LSIの製造方法にも、無電解ニッケルめっきによる第1層と、無電解銅めっきによる第2層を積層した多層構造の配線形成が取り入れられている。
特開平4−232922号公報 特開2001−32086号公報
On the other hand, the formation of electrical wiring by a vacuum film forming method is widely used in the manufacture of LSIs in addition to flat displays. Conventionally, LSIs consolidate functions on a single chip of several millimeters square, and external wiring is formed on a metal conductive frame or resin substrate from that chip. Recently, however, MCM (Multi Tip Module) and SIP (System In Package) are beginning to appear. As LSIs become more sophisticated, heat generation during operation also increases, and as a substrate for MCM or SIP, instead of a resin-based substrate having a larger thermal expansion coefficient than that of the LSI chip, thermal expansion equivalent to that of the LSI chip is achieved. A silicon-based substrate having a coefficient is preferably used. In recent years, a method for manufacturing an LSI has also adopted the formation of a multilayer structure in which a first layer by electroless nickel plating and a second layer by electroless copper plating are laminated.
JP-A-4-232922 JP 2001-32086 A

しかしながら、無電解ニッケルめっきを第1層とした多層構造の膜を形成する際に、直接第2層の無電解銅めっきを施した場合、ニッケルの無電解銅めっきに対する触媒活性が十分でなく、めっきの析出が起こり難いという問題があった。また、水洗条件によっては、無電解ニッケルめっき膜が水中で酸化されて不活性な状態になる可能性があり、工業的に量産する際の歩留り低下の原因となっていた。
さらに、無電解ニッケルめっき直後では、無電解ニッケルめっき膜とITOやガラス基板との密着性が低く、無電解銅めっき処理中に、ITOやガラス基板と無電解ニッケルめっき膜間で剥離が生じてしまう場合がある。この剥離防止のために、無電解ニッケルめっき後に150〜250℃で30〜60分間程度の熱処理を行って、無電解ニッケルめっき膜とITOやガラス基板との密着性を向上させる必要がある。しかし、この熱処理は、同時に無電解ニッケルめっき膜の酸化と、それによる無電解銅めっき反応の触媒能劣化を来たすという問題があった。
However, when the electroless copper plating of the second layer is directly applied when forming the multilayer structure film having the electroless nickel plating as the first layer, the catalytic activity for the electroless copper plating of nickel is not sufficient, There was a problem that precipitation of plating hardly occurred. In addition, depending on the washing conditions, the electroless nickel plating film may be oxidized in water and become an inactive state, which causes a decrease in yield in mass production industrially.
Furthermore, immediately after the electroless nickel plating, the adhesion between the electroless nickel plating film and the ITO or glass substrate is low, and peeling occurs between the ITO or glass substrate and the electroless nickel plating film during the electroless copper plating process. May end up. In order to prevent this peeling, it is necessary to improve the adhesion between the electroless nickel plating film and the ITO or glass substrate by performing a heat treatment at 150 to 250 ° C. for about 30 to 60 minutes after the electroless nickel plating. However, this heat treatment has a problem of simultaneously oxidizing the electroless nickel plating film and degrading the catalytic ability of the electroless copper plating reaction.

上記の熱処理を真空炉や窒素置換炉、還元ガス雰囲気下で熱処理を行う還元炉等で行うことにより、無電解ニッケルめっき膜の酸化や、無電解銅めっき反応の触媒能劣化を防止することができる。しかし、これらの炉はいずれも製造コストの増大をもたらし、また、熱処理前後の水洗工程での無電解ニッケルめっき膜の酸化防止には効果のないものであった。
また、無電解ニッケルめっき膜の無電解銅めっき反応に対する反応活性を高める方法として、金やパラジウムを無電解ニッケルめっき膜上に置換析出させる方法があるが、このような貴金属の使用は、製造コストの大幅な増大を来すという問題があった。
本発明は上述のような実情に鑑みてなされたものであり、基板に対する良好な密着性と低抵抗を有する電気配線を備えた配線基板と、電気配線被形成物に対して良好な密着性で、かつ、簡便に電気配線を形成できる電気配線の形成方法を提供することを目的とする。
By performing the above heat treatment in a vacuum furnace, a nitrogen substitution furnace, a reduction furnace that performs heat treatment in a reducing gas atmosphere, etc., it is possible to prevent oxidation of the electroless nickel plating film and deterioration of the catalytic performance of the electroless copper plating reaction. it can. However, these furnaces all increase the manufacturing cost and are ineffective in preventing the electroless nickel plating film from being oxidized in the water washing step before and after the heat treatment.
In addition, as a method for enhancing the reaction activity of the electroless nickel plating film to the electroless copper plating reaction, there is a method in which gold or palladium is substituted and deposited on the electroless nickel plating film. There was a problem of causing a significant increase in
The present invention has been made in view of the above situation, and has good adhesion to a substrate and a wiring substrate provided with electric wiring having low resistance, and good adhesion to an electric wiring formed article. And it aims at providing the formation method of the electrical wiring which can form an electrical wiring simply.

このような目的を達成するために、本発明は、基板上に所望の電気配線を有する配線基板において、電気配線は、コバルト含有量が0.1〜20重量%の範囲内である無電解ニッケル−コバルト−リンめっき膜からなる第1層と、無電解銅めっき膜からなる第2層とを、この順に基板側から積層した積層構造であるような構成とした。
本発明の好ましい態様として、前記無電解銅めっき膜は、厚みが0.1〜2.0μmの範囲内であるような構成とした。
本発明の好ましい態様として、第2層である前記無電解銅めっき膜上に、無電解ニッケルめっき膜を有するような構成、さらに、前記無電解ニッケルめっき膜上に、置換金めっき膜を有するような構成とした。
In order to achieve such an object, according to the present invention, there is provided a wiring board having a desired electrical wiring on a substrate, wherein the electrical wiring has an electroless nickel content within a range of 0.1 to 20% by weight of cobalt. -It was set as the structure which was the laminated structure which laminated | stacked the 1st layer which consists of a cobalt- phosphorus plating film | membrane and the 2nd layer which consists of an electroless copper plating film | membrane from the board | substrate side in this order.
As a preferred embodiment of the present invention, the electroless copper plating film has a thickness in the range of 0.1 to 2.0 μm.
As a preferred embodiment of the present invention, a configuration in which an electroless nickel plating film is provided on the electroless copper plating film as the second layer, and a substitution gold plating film is provided on the electroless nickel plating film. The configuration was

本発明の好ましい態様として、第2層である前記無電解銅めっき膜上に、置換スズめっき膜を有するような構成とした。
本発明の好ましい態様として、第2層である前記無電解銅めっき膜上に、置換銀めっき膜を有するような構成とした。
本発明は、無電解めっき法による電気配線の形成方法において、電気配線被形成物上に、コバルト含有量が0.1〜20重量%の範囲内である無電解ニッケル−コバルト−リンめっき膜を電極配線パターン形状に第1層として形成する工程と、該無電解ニッケル−コバルト−リンめっき膜に密着増強のための熱処理を施す工程と、前記無電解ニッケル−コバルト−リンめっき膜上に無電解銅めっき膜を第2層として形成する工程と、を有するような構成とした。
本発明の好ましい態様として、前記熱処理は、150〜290℃、20〜50分間の範囲で行われるような構成とした。
As a preferred aspect of the present invention, a configuration is adopted in which a substituted tin plating film is provided on the electroless copper plating film as the second layer.
As a preferred embodiment of the present invention, a configuration is adopted in which a substitution silver plating film is provided on the electroless copper plating film as the second layer.
The present invention relates to a method for forming an electrical wiring by an electroless plating method, wherein an electroless nickel-cobalt-phosphorous plating film having a cobalt content within a range of 0.1 to 20% by weight is formed on an electrical wiring formed object. A step of forming an electrode wiring pattern shape as a first layer, a step of applying a heat treatment for adhesion enhancement to the electroless nickel-cobalt-phosphorous plating film, and electroless formation on the electroless nickel-cobalt-phosphorous plating film And a step of forming a copper plating film as the second layer.
As a preferred embodiment of the present invention, the heat treatment is performed at 150 to 290 ° C. for 20 to 50 minutes.

本発明によれば、基板上の積層構造の電気配線を構成する第1層が、コバルト含有量0.1〜20重量%の範囲内である無電解ニッケル−コバルト−リンめっき膜であるため、基板との密着性が極めて高く、また、第2層が無電解銅めっき膜であるため、電気配線の電気抵抗は充分に低いものとなる。
また、本発明では、電気配線被形成物上に第1層として、コバルト含有量が0.1〜20重量%の範囲内である無電解ニッケル−コバルト−リンめっき膜を形成するので、後工程で施される密着増強のための熱処理や、水洗工程においても、第1層の酸化が防止され、無電解銅めっき反応を起こすのに十分な触媒活性を第1層が発現し、この第1層上に無電解銅めっき膜を第2層として良好な状態で形成可能となり、積層構造の電気配線を形成することができる。
According to the present invention, the first layer constituting the electrical wiring of the laminated structure on the substrate is an electroless nickel-cobalt-phosphorus plating film having a cobalt content in the range of 0.1 to 20% by weight. Since the adhesion to the substrate is extremely high and the second layer is an electroless copper plating film, the electrical resistance of the electrical wiring is sufficiently low.
In the present invention, since the electroless nickel-cobalt-phosphorous plating film having a cobalt content in the range of 0.1 to 20% by weight is formed as the first layer on the electrical wiring formed article, the post-process In the heat treatment for enhancing adhesion and the water washing step performed in step 1, the first layer is prevented from being oxidized, and the first layer exhibits sufficient catalytic activity to cause an electroless copper plating reaction. An electroless copper plating film can be formed as a second layer in a good state on the layer, and an electric wiring having a laminated structure can be formed.

次に、本発明の最適な実施形態について説明する。
[配線基板]
まず、本発明の配線基板について説明する。
図1は、本発明の配線基板の構成例を説明するための断面図である。図1において、配線基板1は、所望のパターンで電気配線3を基板2の一方の面に備えるものである。電気配線3は、基板2側から、無電解ニッケル−コバルト−リンめっき膜4からなる第1層と、無電解銅めっき膜5からなる第2層とを積層した積層構造を有するものである。
Next, an optimal embodiment of the present invention will be described.
[Wiring board]
First, the wiring board of the present invention will be described.
FIG. 1 is a cross-sectional view for explaining a configuration example of a wiring board according to the present invention. In FIG. 1, a wiring board 1 is provided with electrical wiring 3 on one surface of a board 2 in a desired pattern. The electrical wiring 3 has a laminated structure in which a first layer made of an electroless nickel-cobalt-phosphorous plating film 4 and a second layer made of an electroless copper plating film 5 are laminated from the substrate 2 side.

第1層である無電解ニッケル−コバルト−リンめっき膜4は、コバルト含有量が0.1〜20重量%、好ましくは0.5〜10重量%の範囲内である薄膜であり、基板2に対して高い密着強度を示すものである。コバルト含有量が0.1重量%未満であると、第2層である無電解銅めっき膜5の形成が困難となり好ましくない。また、コバルト含有量が20重量%を超えると、基板2との密着強度が不十分であり、基板2から電気配線3が剥離、脱落することがあり好ましくない。このような無電解ニッケル−コバルト−リンめっき膜4は、厚みが0.1〜2.0μm、好ましくは0.2〜0.5μm程度が望ましい。
また、電気配線を構成する第2層の無電解銅めっき層5は、厚みが0.1〜2.0μm、好ましくは0.2〜0.5μm程度が望ましい。
The electroless nickel-cobalt-phosphorus plating film 4 as the first layer is a thin film having a cobalt content in the range of 0.1 to 20% by weight, preferably 0.5 to 10% by weight. On the other hand, it shows high adhesion strength. If the cobalt content is less than 0.1% by weight, formation of the electroless copper plating film 5 as the second layer becomes difficult, which is not preferable. On the other hand, when the cobalt content exceeds 20% by weight, the adhesion strength with the substrate 2 is insufficient, and the electric wiring 3 may be peeled off from the substrate 2 and is not preferable. Such an electroless nickel-cobalt-phosphorus plating film 4 has a thickness of 0.1 to 2.0 μm, preferably about 0.2 to 0.5 μm.
The second layer of electroless copper plating layer 5 constituting the electric wiring has a thickness of 0.1 to 2.0 μm, preferably about 0.2 to 0.5 μm.

上記のような本発明の配線基板1は、第1層が基板2との密着性が極めて高いとともに、無電解銅めっき反応への触媒活性を有する無電解ニッケル−コバルト−リンめっき膜4であり、第2層が無電解銅めっき膜5であるため、電気配線3の電気抵抗は充分に低いものとなり、かつ、基板2に対する電気配線3の密着性が良好なものとなる。
配線基板を構成する基板2としては、例えば、シリコン基板、ガラス基板、樹脂基板や、これらの基板上に酸化インジウムスズ(ITO)等の透明導電膜をパターニングした基板等であってよく、その厚みは配線基板1の用途に応じて適宜設定することができる。
The wiring board 1 of the present invention as described above is an electroless nickel-cobalt-phosphorous plating film 4 in which the first layer has extremely high adhesion to the substrate 2 and has catalytic activity for the electroless copper plating reaction. Since the second layer is the electroless copper plating film 5, the electrical resistance of the electrical wiring 3 is sufficiently low, and the adhesion of the electrical wiring 3 to the substrate 2 is good.
The substrate 2 constituting the wiring board may be, for example, a silicon substrate, a glass substrate, a resin substrate, a substrate obtained by patterning a transparent conductive film such as indium tin oxide (ITO) on these substrates, and the thickness thereof. Can be appropriately set according to the use of the wiring board 1.

本発明の配線基板は、上述の実施形態に限定されるものではなく、例えば、第2層である無電解銅めっき膜5上に更に他の層を備えた多層構造であってもよい。このような例として、無電解銅めっき膜5の酸化防止を目的として無電解ニッケルめっき膜を備えることができる。この無電解ニッケルめっき膜は、厚みが0.1〜0.2μm程度とすることができる。さらに、上記の無電解ニッケルめっき膜上に、はんだ濡れ性改善を目的として置換金めっき膜を0.03〜0.05μm程度の厚みで設けてもよい。また、無電解銅めっき膜5の酸化防止と、はんだ濡れ性改善とを目的として、置換スズめっき膜を0.1〜1.0μm程度の厚みで設けてもよく、あるいは、置換銀めっき膜を0.1〜0.2μm程度の厚みで設けてもよい。
上述のような本発明の配線基板は、例えば、液晶表示装置(LCD)、プラズマ表示装置(PDP)、エレクトロクロミック表示装置(ECD)、エレクトロルミネッセント表示装置(FLD)等のフラットディスプレイ、各種の電気回路基板に使用することができる。
The wiring board of the present invention is not limited to the above-described embodiment, and may be, for example, a multilayer structure in which another layer is further provided on the electroless copper plating film 5 as the second layer. As such an example, an electroless nickel plating film can be provided for the purpose of preventing oxidation of the electroless copper plating film 5. The electroless nickel plating film can have a thickness of about 0.1 to 0.2 μm. Furthermore, a displacement gold plating film may be provided on the electroless nickel plating film with a thickness of about 0.03 to 0.05 μm for the purpose of improving solder wettability. Further, for the purpose of preventing oxidation of electroless copper plating film 5 and improving solder wettability, a substituted tin plating film may be provided with a thickness of about 0.1 to 1.0 μm, or a substituted silver plating film may be provided. You may provide by the thickness of about 0.1-0.2 micrometer.
The wiring board of the present invention as described above includes, for example, flat displays such as a liquid crystal display (LCD), a plasma display (PDP), an electrochromic display (ECD), an electroluminescent display (FLD), and the like. It can be used for an electric circuit board.

[電気配線の形成方法]
次に、本発明の電気配線の形成方法について説明する。
本発明の電気配線の形成方法は無電解めっき法を利用したものであり、図2は、本発明の一例を示す工程図である。
[Method of forming electrical wiring]
Next, the method for forming electrical wiring according to the present invention will be described.
The electrical wiring forming method of the present invention utilizes an electroless plating method, and FIG. 2 is a process diagram showing an example of the present invention.

図2において、まず、電気配線被形成物11上に電極配線パターン形状に無電解ニッケル−コバルト−リンめっき膜14′を第1層として形成する(図2(A))。この無電解ニッケル−コバルト−リンめっき膜14′の形成は、還元剤として、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸ニッケル等を用いて行うことができる。また、無電解ニッケル−コバルト−リンめっき膜14′を所望のパターンとするためには、無電解ニッケル−コバルト−リンめっき膜14′上にレジストを逆パターン状に形成し、剥離液、例えば、ニッケルめっき膜用の剥離液(メルテックス(株)製 メルストリップMN−958等)を用いて、露出している無電解ニッケル−コバルト−リンめっき膜14′を溶解・除去した後、レジストを剥離する方法が挙げられる。   In FIG. 2, first, an electroless nickel-cobalt-phosphorous plating film 14 'is formed as a first layer in the shape of an electrode wiring pattern on the electrical wiring forming object 11 (FIG. 2A). The electroless nickel-cobalt-phosphorus plating film 14 'can be formed using hypophosphorous acid, sodium hypophosphite, nickel hypophosphite or the like as a reducing agent. In order to make the electroless nickel-cobalt-phosphorous plating film 14 'into a desired pattern, a resist is formed on the electroless nickel-cobalt-phosphorous plating film 14' in a reverse pattern, and a stripping solution, for example, The exposed electroless nickel-cobalt-phosphorus plating film 14 'is dissolved and removed using a stripping solution for nickel plating film (Meltex MN-958, etc. manufactured by Meltex Co., Ltd.), and then the resist is stripped. The method of doing is mentioned.

形成する無電解ニッケル−コバルト−リンめっき膜14′におけるコバルト含有量は、0.1〜20重量%、好ましくは0.5〜10重量%の範囲内とし、厚みは、0.1〜2.0μm、好ましくは0.2〜0.5μmの範囲とすることができる。コバルト含有量が0.1重量%未満であると、次の工程での熱処理において、無電解ニッケル−コバルト−リンめっき膜14′の酸化が生じ、無電解銅めっき反応の触媒能が低下するので好ましくない。また、コバルト含有量が20重量%を超えると、電気配線被形成物11基板2との密着強度が不十分であり、後述する無電解銅めっき処理中に無電解ニッケル−コバルト−リンめっき膜14に膨れが生じることがあり好ましくない。   In the electroless nickel-cobalt-phosphorus plating film 14 ′ to be formed, the cobalt content is 0.1 to 20% by weight, preferably 0.5 to 10% by weight, and the thickness is 0.1 to 2%. It can be in the range of 0 μm, preferably 0.2 to 0.5 μm. When the cobalt content is less than 0.1% by weight, the electroless nickel-cobalt-phosphorous plating film 14 'is oxidized in the heat treatment in the next step, and the catalytic ability of the electroless copper plating reaction is reduced. It is not preferable. Moreover, when cobalt content exceeds 20 weight%, the adhesive strength with the electrical wiring formed object 11 board | substrate 2 will be inadequate, and the electroless nickel-cobalt-phosphorus plating film 14 will be mentioned during the electroless copper plating process mentioned later. Swelling may occur, which is not preferable.

尚、電気配線被形成物11としては、シリコン基板、ガラス基板、樹脂基板や、これらの基板上にITO等の透明導電膜をパターニングした基板等であってよく、電気配線を形成した電気配線被形成物11の用途に応じて適宜決定することができる。
次の工程として、上記の無電解ニッケル−コバルト−リンめっき膜14′に、電気配線被形成物11に対する密着性を向上させるための熱処理を施して、無電解ニッケル−コバルト−リンめっき膜14とする(図2(B))。この熱処理により得られた無電解ニッケル−コバルト−リンめっき膜14は、めっき反応中に被膜に共析した水素が除去され、電気配線被形成物11に対する密着性が高いものとなる。熱処理は、例えば、150〜290℃、20〜50分間の範囲で行うことができ、この熱処理において、無電解ニッケル−コバルト−リンめっき膜14′は含有するコバルトの作用によりニッケルの酸化が防止される。
The electrical wiring formation 11 may be a silicon substrate, a glass substrate, a resin substrate, a substrate obtained by patterning a transparent conductive film such as ITO on these substrates, and the like. It can be determined appropriately according to the use of the formed article 11.
As the next step, the electroless nickel-cobalt-phosphorous plating film 14 ′ is subjected to a heat treatment for improving the adhesion to the electrical wiring formed object 11, so that the electroless nickel-cobalt-phosphorous plating film 14 and (FIG. 2B). In the electroless nickel-cobalt-phosphorus plating film 14 obtained by this heat treatment, the hydrogen eutectoid in the coating during the plating reaction is removed, and the adhesion to the electrical wiring formed object 11 becomes high. The heat treatment can be performed, for example, in the range of 150 to 290 ° C. and 20 to 50 minutes. In this heat treatment, the electroless nickel-cobalt-phosphorous plating film 14 ′ prevents nickel from being oxidized by the action of cobalt contained therein. The

次いで、上記の無電解ニッケル−コバルト−リンめっき膜14上に無電解銅めっき膜15を第2層として形成して、積層構造の電気配線13とする(図2(C))。この無電解銅めっき膜15の形成は、無電解ニッケル−コバルト−リンめっき膜14のニッケルを触媒として使用し、還元剤として、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸ニッケル等を用いて行うことができる。上述のように、熱処理工程において、無電解ニッケル−コバルト−リンめっき膜14′の酸化が防止されるため、無電解ニッケル−コバルト−リンめっき膜14は充分な触媒能を有する。無電解銅めっき層15の厚みは、0.1〜2.0μm、好ましくは0.2〜0.5μmの範囲とすることができる。
このような本発明の電気配線の形成方法は、液晶表示装置(LCD)、プラズマ表示装置(PDP)、エレクトロクロミック表示装置(ECD)、エレクトロルミネッセント表示装置(FLD)等のフラットディスプレイや各種電気回路基板の電気配線形成に用いることができる。
Next, an electroless copper plating film 15 is formed as a second layer on the electroless nickel-cobalt-phosphorus plating film 14 to form an electric wiring 13 having a laminated structure (FIG. 2C). The electroless copper plating film 15 is formed by using nickel of the electroless nickel-cobalt-phosphorous plating film 14 as a catalyst, and as a reducing agent, hypophosphorous acid, sodium hypophosphite, nickel hypophosphite, etc. Can be used. As described above, since the electroless nickel-cobalt-phosphorous plating film 14 'is prevented from being oxidized in the heat treatment step, the electroless nickel-cobalt-phosphorous plating film 14 has sufficient catalytic ability. The thickness of the electroless copper plating layer 15 can be in the range of 0.1 to 2.0 μm, preferably 0.2 to 0.5 μm.
Such a method for forming electrical wiring according to the present invention includes flat displays such as a liquid crystal display (LCD), a plasma display (PDP), an electrochromic display (ECD), and an electroluminescent display (FLD). It can be used for forming electric wiring on an electric circuit board.

次に、実施例を示して本発明を更に詳細に説明する。
[実施例1]
液晶表示装置用ソーダガラス基板に以下に示す前処理を施した。
<脱脂処理>
メルテックス(株)製メルクリーナーITO−170を純水に15g/L含有させた脱脂液(液温60℃)に10分間浸漬した。尚、超音波洗浄を併用した。
<脱脂処理>
上記の脱脂処理後、水洗したガラス基板を、水酸化カリウムを純水に75g/L含有させた脱脂液(液温60℃)に10分間浸漬した。この場合も超音波洗浄を併用した。
Next, an Example is shown and this invention is demonstrated further in detail.
[Example 1]
A soda glass substrate for a liquid crystal display device was subjected to the following pretreatment.
<Degreasing treatment>
It was immersed for 10 minutes in a degreasing solution (liquid temperature 60 ° C.) containing Melg Cleaner ITO-170 manufactured by Meltex Co., Ltd. in pure water at 15 g / L. In addition, ultrasonic cleaning was used in combination.
<Degreasing treatment>
After the degreasing treatment, the glass substrate washed with water was immersed in a degreasing solution (liquid temperature 60 ° C.) containing 75 g / L of potassium hydroxide in pure water for 10 minutes. In this case, ultrasonic cleaning was also used.

<エッチング処理>
メルテックス(株)製メルプレートITO−コンディショナー480Aを20g/L、メルテックス(株)製メルプレートITO−コンディショナー480Bを200mL/L、それぞれ純水に含有させたエッチング液(液温25℃)に、上記の脱脂処理を施し水洗したガラス基板を10分間浸漬した。
<コンディショニング処理>
メルテックス(株)製メルプレート コンディショナー1101を純水に10mL/L含有させた液(液温25℃)に、上記のエッチング処理を施し水洗したガラス基板を5分間浸漬した。
<Etching treatment>
Meltex ITO-conditioner 480A manufactured by Meltex Co., Ltd. 20 g / L, Melplate ITO-conditioner 480B manufactured by Meltex Co., Ltd. 200 mL / L, respectively, in an etching solution (liquid temperature 25 ° C.) contained in pure water. The glass substrate subjected to the above degreasing treatment and washed with water was immersed for 10 minutes.
<Conditioning process>
The glass substrate subjected to the above etching treatment and washed with water was immersed for 5 minutes in a solution (solution temperature 25 ° C.) containing Melplate Conditioner 1101 manufactured by Meltex Co., Ltd. in pure water at 10 mL / L.

<触媒付与>
メルテックス(株)製メルプレート アクチベーター7331を30mL/L、0.1モル/L水酸化カリウム溶液を1.5mL/L、それぞれ純水に含有させた触媒付与液(液温25℃、pH6.0)に、上記のコンディショニング処理を施し水洗したガラス基板を5分間浸漬した。
<ポストアクチベーター処理>
メルテックス(株)製メルプレートPA7340を10mL/L純水に含有させた溶液(液温25℃)に、上記の触媒付与を施し水洗したガラス基板を5分間浸漬した。
<Catalyst application>
Melt plate manufactured by Meltex Co., Ltd. Activator 7331 30 mL / L, 0.1 mol / L potassium hydroxide solution 1.5 mL / L, each containing a catalyst application liquid (liquid temperature 25 ° C., pH 6 0.0), the glass substrate subjected to the above conditioning treatment and washed with water was immersed for 5 minutes.
<Post-activator processing>
The glass substrate subjected to the above-mentioned catalyst application and washed with water was immersed for 5 minutes in a solution (liquid temperature 25 ° C.) containing Melplate PA7340 manufactured by Meltex Co., Ltd. in 10 mL / L pure water.

上述のような前処理を施したガラス基板を、下記組成の無電解ニッケルめっき液(液温70℃、pH4.5)に5分間浸漬して、無電解ニッケル−コバルト−リンめっき膜(厚み0.3μm)を形成した。
(無電解ニッケルめっき液の組成)
・硫酸ニッケル … 0.1モル/L
・硫酸コバルト … 0.1モル/L
・次亜リン酸ナトリウム … 0.3モル/L
・リンゴ酸 … 0.1モル/L
・コハク酸 … 0.1モル/L
・鉛 … 0.5mg/L
・チオ硫酸ナトリウム … 1mg/L
The glass substrate subjected to the pretreatment as described above is immersed in an electroless nickel plating solution (solution temperature: 70 ° C., pH 4.5) having the following composition for 5 minutes to form an electroless nickel-cobalt-phosphorus plating film (thickness 0). .3 μm) was formed.
(Composition of electroless nickel plating solution)
・ Nickel sulfate 0.1 mol / L
・ Cobalt sulfate: 0.1 mol / L
・ Sodium hypophosphite: 0.3 mol / L
・ Malic acid: 0.1 mol / L
・ Succinic acid: 0.1 mol / L
・ Lead: 0.5mg / L
・ Sodium thiosulfate: 1mg / L

上記の無電解ニッケル−コバルト−リンめっき膜の組成を誘導結合プラズマ発光分光分析装置(ICP−AES)により分析した結果、コバルト含有率が0.8重量%、リン含有率が10.5重量%であった。
次に、ガラス基板上の無電解ニッケル−コバルト−リンめっき膜に対して、260℃、30分間の熱処理を施した。この熱処理の前後の無電解ニッケル−コバルト−リンめっき膜について、下記条件でクロスカット後のテープ剥離試験を行った。その結果、熱処理前は、めっき膜が全て剥離したが、熱処理後は、めっき膜の剥離が認められず、熱処理によりガラス基板に対する高い密着性が無電解ニッケル−コバルト−リンめっき膜に付与されたことが確認された。
(クロスカット後のテープ剥離試験の条件)
JIS K 5400に従い、すきま間隔を2mmとし、碁盤目状の切り傷をつけ
(ます目の数:25)、碁盤目テープ法(8.5.2)にて評価した。
The composition of the electroless nickel-cobalt-phosphorus plating film was analyzed by an inductively coupled plasma emission spectrometer (ICP-AES). As a result, the cobalt content was 0.8% by weight and the phosphorus content was 10.5% by weight. Met.
Next, the electroless nickel-cobalt-phosphorus plating film on the glass substrate was subjected to heat treatment at 260 ° C. for 30 minutes. About the electroless nickel-cobalt-phosphorus plating film before and after this heat treatment, a tape peeling test after cross-cutting was performed under the following conditions. As a result, all of the plating film was peeled off before the heat treatment, but peeling of the plating film was not observed after the heat treatment, and high adhesion to the glass substrate was imparted to the electroless nickel-cobalt-phosphorous plating film by the heat treatment. It was confirmed.
(Conditions for tape peel test after cross-cutting)
According to JIS K 5400, the clearance interval was set to 2 mm, a grid-like cut was made (number of squares: 25), and evaluation was performed by a grid tape method (8.5.2).

次いで、熱処理後の無電解ニッケル−コバルト−リンめっき膜を、無電解銅めっき液(メルテックス(株)製メルプレートCU−5100、液温50℃)に浸漬(10分間)して、無電解ニッケル−コバルト−リンめっき膜上に無電解銅めっき膜(厚み0.3μm)を形成した。
上述のように形成した2層構造の金属膜の比抵抗を四探針式抵抗率計(三菱化学(株)製 MCP−T350)により測定した結果、2.7μΩcmであり、抵抗が極めて低いことが確認された。また、上記の無電解銅めっき工程において、ガラス基板からの無電解ニッケル−コバルト−リンめっき膜の剥離はみられなかった。
Next, the electroless nickel-cobalt-phosphorous plating film after the heat treatment is immersed in an electroless copper plating solution (Melplate CU-5100 manufactured by Meltex Co., Ltd., liquid temperature 50 ° C.) (10 minutes), and electroless An electroless copper plating film (thickness 0.3 μm) was formed on the nickel-cobalt-phosphorus plating film.
As a result of measuring the specific resistance of the metal film having the two-layer structure formed as described above with a four-point probe resistivity meter (MCP-T350 manufactured by Mitsubishi Chemical Corporation), it is 2.7 μΩcm and the resistance is extremely low. Was confirmed. Further, in the above electroless copper plating step, no peeling of the electroless nickel-cobalt-phosphorous plating film from the glass substrate was observed.

[実施例2]
実施例1において使用した無電解ニッケルめっき液の硫酸コバルトを0.2モル/Lとした組成の無電解ニッケルめっき液を使用した他は、実施例1と同様にして、無電解ニッケル−コバルト−リンめっき膜の形成までを行った。この無電解ニッケル−コバルト−リンめっき膜の組成を実施例1と同様にして分析した結果、コバルト含有率が2.5重量%、リン含有率が10.8重量%であった。
次に、実施例1と同様の条件で無電解ニッケル−コバルト−リンめっき膜に熱処理を施し、その後、実施例1と同様の条件で無電解銅めっきを行った。
上述のように形成した2層構造の金属膜の比抵抗を実施例1と同様に測定した結果、2.5μΩcmであり、抵抗が極めて低いことが確認された。また、上記の無電解銅めっき工程において、ガラス基板からの無電解ニッケル−コバルト−リンめっき膜の剥離はみられなかった。
[Example 2]
The electroless nickel plating solution used in Example 1 was the same as in Example 1 except that the electroless nickel plating solution having a composition of 0.2 mol / L of cobalt sulfate was used. The formation of the phosphor plating film was performed. As a result of analyzing the composition of the electroless nickel-cobalt-phosphorous plating film in the same manner as in Example 1, the cobalt content was 2.5% by weight and the phosphorus content was 10.8% by weight.
Next, the electroless nickel-cobalt-phosphorous plating film was subjected to heat treatment under the same conditions as in Example 1, and then electroless copper plating was performed under the same conditions as in Example 1.
The specific resistance of the metal film having a two-layer structure formed as described above was measured in the same manner as in Example 1. As a result, it was 2.5 μΩcm, and it was confirmed that the resistance was extremely low. Further, in the above electroless copper plating step, no peeling of the electroless nickel-cobalt-phosphorous plating film from the glass substrate was observed.

[実施例3]
実施例1において使用した無電解ニッケルめっき液の硫酸コバルトを0.3モル/L、浴pHを6.5とした組成の無電解ニッケルめっき液を使用した他は、実施例1と同様にして、無電解ニッケル−コバルト−リンめっき膜の形成までを行った。この無電解ニッケル−コバルト−リンめっき膜の組成を実施例1と同様にして分析した結果、コバルト含有率が20重量%、リン含有率が8.5重量%であった。
次に、実施例1と同様の条件で無電解ニッケル−コバルト−リンめっき膜に熱処理を施し、その後、実施例1と同様の条件で無電解銅めっきを行った。
上述のように形成した2層構造の金属膜の比抵抗を実施例1と同様に測定した結果、2.5μΩcmであり、抵抗が極めて低いことが確認された。また、上記の無電解銅めっき工程において、ガラス基板からの無電解ニッケル−コバルト−リンめっき膜の剥離はみられなかった。
[Example 3]
The electroless nickel plating solution used in Example 1 was the same as Example 1 except that the electroless nickel plating solution having a composition of 0.3 mol / L cobalt sulfate and a bath pH of 6.5 was used. Then, the electroless nickel-cobalt-phosphorus plating film was formed. As a result of analyzing the composition of this electroless nickel-cobalt-phosphorous plating film in the same manner as in Example 1, the cobalt content was 20% by weight and the phosphorus content was 8.5% by weight.
Next, the electroless nickel-cobalt-phosphorous plating film was subjected to heat treatment under the same conditions as in Example 1, and then electroless copper plating was performed under the same conditions as in Example 1.
The specific resistance of the metal film having a two-layer structure formed as described above was measured in the same manner as in Example 1. As a result, it was 2.5 μΩcm, and it was confirmed that the resistance was extremely low. Further, in the above electroless copper plating step, no peeling of the electroless nickel-cobalt-phosphorous plating film from the glass substrate was observed.

[比較例1]
実施例1において使用した無電解ニッケルめっき液の組成から硫酸コバルトを除いた組成の無電解ニッケルめっき液を使用した他は、実施例1と同様にして、無電解ニッケル−リンめっき膜の形成までを行った。この無電解ニッケル−リンめっき膜の組成を実施例1と同様に分析した結果、リン含有率が8.0重量%であった。
次に、実施例1と同様の条件で無電解ニッケル−リンめっき膜に熱処理を施し、その後、実施例1と同様の条件で無電解銅めっきを行った。しかし、無電解ニッケル−リンめっき膜上では無電解銅めっき反応が始まらず、無電解銅めっき膜を成膜することができなかった。
[Comparative Example 1]
In the same manner as in Example 1 except that an electroless nickel plating solution having a composition obtained by removing cobalt sulfate from the composition of the electroless nickel plating solution used in Example 1 was used, until the formation of the electroless nickel-phosphorous plating film. Went. As a result of analyzing the composition of this electroless nickel-phosphorous plating film in the same manner as in Example 1, the phosphorus content was 8.0% by weight.
Next, the electroless nickel-phosphorous plating film was subjected to heat treatment under the same conditions as in Example 1, and then electroless copper plating was performed under the same conditions as in Example 1. However, the electroless copper plating reaction did not start on the electroless nickel-phosphorous plating film, and the electroless copper plating film could not be formed.

[比較例2]
実施例1において使用した無電解ニッケルめっき液の硫酸コバルトを0.003モル/Lとした組成の無電解ニッケルめっき液を使用した他は、実施例1と同様にして、無電解ニッケル−コバルト−リンめっき膜の形成までを行った。この無電解ニッケル−コバルト−リンめっき膜の組成を実施例1と同様にして分析した結果、コバルト含有率が0.05重量%、リン含有率が10.4重量%であった。
次に、実施例1と同様の条件で無電解ニッケル−コバルト−リンめっき膜に熱処理を施し、その後、実施例1と同様の条件で無電解銅めっきを行った。しかし、無電解ニッケル−コバルト−リンめっき膜上では無電解銅めっき反応が始まらず、無電解銅めっき膜を成膜することができなかった。
[Comparative Example 2]
The electroless nickel plating solution used in Example 1 was the same as in Example 1 except that the electroless nickel plating solution having a composition of 0.003 mol / L of cobalt sulfate was used. The formation of the phosphor plating film was performed. As a result of analyzing the composition of this electroless nickel-cobalt-phosphorus plating film in the same manner as in Example 1, the cobalt content was 0.05% by weight and the phosphorus content was 10.4% by weight.
Next, the electroless nickel-cobalt-phosphorous plating film was subjected to heat treatment under the same conditions as in Example 1, and then electroless copper plating was performed under the same conditions as in Example 1. However, the electroless copper plating reaction did not start on the electroless nickel-cobalt-phosphorous plating film, and the electroless copper plating film could not be formed.

[比較例3]
実施例1において使用した無電解ニッケルめっき液の硫酸コバルトを0.3モル/L、浴pHを7.0とした組成の無電解ニッケルめっき液を使用した他は、実施例1と同様にして、無電解ニッケル−コバルト−リンめっき膜の形成までを行った。この無電解ニッケル−コバルト−リンめっき膜の組成を実施例1と同様にして分析した結果、コバルト含有率が25重量%、リン含有率が8.2重量%であった。
次に、実施例1と同様の条件で無電解ニッケル−コバルト−リンめっき膜に熱処理を施し、その後、実施例1と同様の条件で無電解銅めっきを行った。しかし、無電解銅めっき工程において、ガラス基板からの無電解ニッケル−コバルト−リンめっき膜の剥離が発生し、無電解ニッケル−コバルト−リンめっき膜上に無電解銅めっき膜を成膜することができなかった。
[Comparative Example 3]
The electroless nickel plating solution used in Example 1 was the same as in Example 1 except that the electroless nickel plating solution having a composition of 0.3 mol / L cobalt sulfate and a bath pH of 7.0 was used. Then, the electroless nickel-cobalt-phosphorus plating film was formed. As a result of analyzing the composition of the electroless nickel-cobalt-phosphorus plating film in the same manner as in Example 1, the cobalt content was 25% by weight and the phosphorus content was 8.2% by weight.
Next, the electroless nickel-cobalt-phosphorous plating film was subjected to heat treatment under the same conditions as in Example 1, and then electroless copper plating was performed under the same conditions as in Example 1. However, in the electroless copper plating process, peeling of the electroless nickel-cobalt-phosphorous plating film from the glass substrate occurs, and an electroless copper plating film may be formed on the electroless nickel-cobalt-phosphorous plating film. could not.

[比較例4]
実施例1と同様にして、無電解ニッケル−コバルト−リンめっき膜の形成までを行った。
次に、無電解ニッケル−コバルト−リンめっき膜に熱処理を施すことなく、実施例1と同様の条件で無電解銅めっきを行った。しかし、無電解銅めっき工程において、ガラス基板からの無電解ニッケル−コバルト−リンめっき膜の剥離が発生し、無電解ニッケル−コバルト−リンめっき膜上に無電解銅めっき膜を成膜することができなかった。
[Comparative Example 4]
In the same manner as in Example 1, the electroless nickel-cobalt-phosphorus plating film was formed.
Next, electroless copper plating was performed under the same conditions as in Example 1 without subjecting the electroless nickel-cobalt-phosphorous plating film to heat treatment. However, in the electroless copper plating process, peeling of the electroless nickel-cobalt-phosphorous plating film from the glass substrate occurs, and an electroless copper plating film may be formed on the electroless nickel-cobalt-phosphorous plating film. could not.

種々のフラットディスプレイ、各種の電気回路基板、電子機器等の製造に有用である。   It is useful for manufacturing various flat displays, various electric circuit boards, electronic devices and the like.

本発明の配線基板の構成例を説明するための断面図である。It is sectional drawing for demonstrating the structural example of the wiring board of this invention. 本発明の電気配線の形成方法の一例を示す工程図である。It is process drawing which shows an example of the formation method of the electrical wiring of this invention.

符号の説明Explanation of symbols

1…配線基板
2…基板
3…電気配線
4…無電解ニッケル−コバルト−リンめっき膜(第1層)
5…無電解銅めっき膜(第2層)
11…電気配線被形成物
13…電気配線
14…無電解ニッケル−コバルト−リンめっき膜(第1層)
14′…熱処理前の無電解ニッケル−コバルト−リンめっき膜
15…無電解銅めっき膜(第2層)
DESCRIPTION OF SYMBOLS 1 ... Wiring board 2 ... Board 3 ... Electric wiring 4 ... Electroless nickel-cobalt-phosphorus plating film (first layer)
5. Electroless copper plating film (second layer)
DESCRIPTION OF SYMBOLS 11 ... Electric wiring formation 13 ... Electric wiring 14 ... Electroless nickel-cobalt-phosphorus plating film (1st layer)
14 '... electroless nickel-cobalt-phosphorus plating film before heat treatment 15 ... electroless copper plating film (second layer)

Claims (8)

基板上に所望の電気配線を有する配線基板において、
電気配線は、コバルト含有量が0.1〜20重量%の範囲内である無電解ニッケル−コバルト−リンめっき膜からなる第1層と、無電解銅めっき膜からなる第2層とを、この順に基板側から積層した積層構造であることを特徴とする配線基板。
In a wiring board having desired electrical wiring on the board,
The electrical wiring includes a first layer made of an electroless nickel-cobalt-phosphorous plating film having a cobalt content in the range of 0.1 to 20% by weight, and a second layer made of an electroless copper plating film. A wiring board having a laminated structure in which the substrates are laminated in order.
第2層である前記無電解銅めっき膜は、厚みが0.1〜2.0μmの範囲内であることを特徴とする請求項1に記載の配線基板。   The wiring board according to claim 1, wherein the electroless copper plating film as the second layer has a thickness in a range of 0.1 to 2.0 μm. 第2層である前記無電解銅めっき膜上に、無電解ニッケルめっき膜を有することを特徴とする請求項1または請求項2に記載の配線基板。   The wiring board according to claim 1, further comprising an electroless nickel plating film on the electroless copper plating film as the second layer. 前記無電解ニッケルめっき膜上に、置換金めっき膜を有することを特徴とする請求項3に記載の配線基板。   The wiring board according to claim 3, further comprising a displacement gold plating film on the electroless nickel plating film. 第2層である前記無電解銅めっき膜上に、置換スズめっき膜を有することを特徴とする請求項1または請求項2に記載の配線基板。   The wiring board according to claim 1, further comprising a substitution tin plating film on the electroless copper plating film as the second layer. 第2層である前記無電解銅めっき膜上に、置換銀めっき膜を有することを特徴とする請求項1または請求項2に記載の配線基板。   The wiring board according to claim 1, further comprising a substitution silver plating film on the electroless copper plating film as the second layer. 無電解めっき法による電気配線の形成方法において、
電気配線被形成物上に、コバルト含有量が0.1〜20重量%の範囲内である無電解ニッケル−コバルト−リンめっき膜を電極配線パターン形状に第1層として形成する工程と、
該無電解ニッケル−コバルト−リンめっき膜に密着増強のための熱処理を施す工程と、
前記無電解ニッケル−コバルト−リンめっき膜上に無電解銅めっき膜を第2層として形成する工程と、を有することを特徴とする電気配線の形成方法。
In the method of forming electrical wiring by electroless plating,
Forming an electroless nickel-cobalt-phosphorous plating film having a cobalt content in the range of 0.1 to 20% by weight as an electrode wiring pattern shape as a first layer on the electrical wiring formation;
Applying a heat treatment for adhesion enhancement to the electroless nickel-cobalt-phosphorus plating film;
Forming an electroless copper plating film as a second layer on the electroless nickel-cobalt-phosphorous plating film.
前記熱処理は、150〜290℃、20〜50分間の範囲で行われることを特徴とする請求項7に記載の電気配線の形成方法。   The said heat processing is performed in 150-290 degreeC and the range for 20-50 minutes, The formation method of the electrical wiring of Claim 7 characterized by the above-mentioned.
JP2003417707A 2003-12-16 2003-12-16 Wiring substrate and method for forming electric wiring Pending JP2005179695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003417707A JP2005179695A (en) 2003-12-16 2003-12-16 Wiring substrate and method for forming electric wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003417707A JP2005179695A (en) 2003-12-16 2003-12-16 Wiring substrate and method for forming electric wiring

Publications (1)

Publication Number Publication Date
JP2005179695A true JP2005179695A (en) 2005-07-07

Family

ID=34780125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003417707A Pending JP2005179695A (en) 2003-12-16 2003-12-16 Wiring substrate and method for forming electric wiring

Country Status (1)

Country Link
JP (1) JP2005179695A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258803A (en) * 2010-06-10 2011-12-22 Shin Etsu Chem Co Ltd Silicon substrate with plating layer having through holes
JP2013102210A (en) * 2013-01-25 2013-05-23 Furukawa Electric Co Ltd:The Multilayer printed board and manufacturing method thereof
JP2017057484A (en) * 2015-09-18 2017-03-23 石原ケミカル株式会社 Method for forming conductive coating on transparent conductive film
JP2018115382A (en) * 2017-01-20 2018-07-26 大日本印刷株式会社 Light control film, method for manufacturing the same, laminate and method for manufacturing conductive plated layer
CN110024213A (en) * 2016-11-25 2019-07-16 古河电气工业株式会社 Transmission line

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258803A (en) * 2010-06-10 2011-12-22 Shin Etsu Chem Co Ltd Silicon substrate with plating layer having through holes
JP2013102210A (en) * 2013-01-25 2013-05-23 Furukawa Electric Co Ltd:The Multilayer printed board and manufacturing method thereof
JP2017057484A (en) * 2015-09-18 2017-03-23 石原ケミカル株式会社 Method for forming conductive coating on transparent conductive film
CN110024213A (en) * 2016-11-25 2019-07-16 古河电气工业株式会社 Transmission line
US11575190B2 (en) 2016-11-25 2023-02-07 Furukawa Electric Co., Ltd. Transmission path for transmitting high-frequency signals greater than 14ghz, where the transmission path includes a nickel-phosphorous layer with phosphorous concentrations between 0 mass% to 8 mass%
JP2018115382A (en) * 2017-01-20 2018-07-26 大日本印刷株式会社 Light control film, method for manufacturing the same, laminate and method for manufacturing conductive plated layer

Similar Documents

Publication Publication Date Title
JP5402939B2 (en) Copper surface treatment method and copper
CN107431001B (en) Semiconductor device and method for manufacturing the same
EP0884934A2 (en) Substrate and method for producing it
WO2005055681A1 (en) Printed wiring board, its manufacturing method and circuit device
JP5835947B2 (en) Resin base material with metal film pattern
US20120193324A1 (en) Method for the production of a metal-ceramic substrate, preferably a copper ceramic substrate
Ogutu et al. Hybrid method for metallization of glass interposers
JP3173873B2 (en) Method for selectively providing a pattern of a substance other than glass on a glass substrate by electroless metal coating
JPH10154866A (en) Production of ceramic circuit board
JP2005179695A (en) Wiring substrate and method for forming electric wiring
JP2009099831A (en) Method of manufacturing wiring board
KR100747627B1 (en) Method for producing 2 layered conductive metal plated polyimide substrate
JP4751796B2 (en) Circuit forming substrate and manufacturing method thereof
KR100798870B1 (en) Conductive metal plated polyimide substrate including coupling agent and method for producing the same
WO2017073147A1 (en) Method for producing glass plate having film
KR20110093621A (en) Method for manufacturing cof substrate
JP6264900B2 (en) RESIST PATTERN MANUFACTURING METHOD, WIRING PATTERN MANUFACTURING METHOD, AND WIRING BOARD
JP2016119396A (en) Method for manufacturing resist pattern, method for manufacturing wiring pattern, and wiring board
JP2006351646A (en) Circuit board and its manufacturing method
JP2006269706A (en) Laminate substrate and its manufacturing method
JP2009286071A (en) Copper clad laminate, surface treated copper foil used for manufacturing the same, and printed wiring board obtained using this copper clad laminate
JP3815429B2 (en) Manufacturing method of tape carrier for semiconductor device
JP2013229585A (en) Method for manufacturing printed wiring board
JP4844008B2 (en) Method for producing metal-coated polyimide substrate
JP2006324474A (en) Method of manufacturing metal-clad polyimide substrate