JP2005169396A - アーク溶接用トーチおよびアーク溶接方法 - Google Patents

アーク溶接用トーチおよびアーク溶接方法 Download PDF

Info

Publication number
JP2005169396A
JP2005169396A JP2003408058A JP2003408058A JP2005169396A JP 2005169396 A JP2005169396 A JP 2005169396A JP 2003408058 A JP2003408058 A JP 2003408058A JP 2003408058 A JP2003408058 A JP 2003408058A JP 2005169396 A JP2005169396 A JP 2005169396A
Authority
JP
Japan
Prior art keywords
electrode tip
tip
electrode
arc welding
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003408058A
Other languages
English (en)
Inventor
Hajime Minagawa
始 皆川
Satoshi Mashima
聡 真嶋
Masao Yoshitome
正朗 吉留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003408058A priority Critical patent/JP2005169396A/ja
Publication of JP2005169396A publication Critical patent/JP2005169396A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 電極チップの冷却効果を充分なものとする。
【解決手段】 ガスノズル1内に、電極ワイヤ5を保持する電極チップ3を収容し、電極チップ3の外周側に、シールドガスGを被溶接物Wに向けて放出するガス流路9を備える。電極チップ3は先細となる円錐形状とし、外周面に、ガス流路9を通過するシールドガスGを案内する螺旋状の溝3dを設ける。
【選択図】 図1

Description

この発明は、電極ワイヤを保持する電極チップの外周側に、シールドガスを被溶接物に向けて放出するガス流路を備えたアーク溶接用トーチおよびアーク溶接方法に関する。
従来のアーク溶接用トーチとしては、例えば下記特許文献1に記載のものがある。
特開平11−10344号公報
このようなアーク溶接用トーチに用いる電極チップは、先端の形状が一定の平面またはR面を有しているため、以下の理由で電極チップ全体が蓄熱され、高温化を余儀なくされている。
(1)先端の平面部またはR面部が、被溶接物におけるアーク点からの反射熱を受け止めやすく、この反射熱の電極チップ先端表面への蓄熱作用が大きくなる。
(2)平面またはR面の面積に比例してスパッタの付着量や接触量が増大し、このスパッタが有する熱量が電極チップ先端表面へ移動して、電極チップ先端への蓄熱を加速する。
(3)電極ワイヤを消耗式とした場合の電極チップ先端内の電極ワイヤとの接触点は、電極チップから電極ワイヤへの給電子の役割を担っているが、この接触点での摺動運動を介しての連続給電は抵抗発熱を伴って、電極チップ先端内面への蓄熱の熱源となっている。
上記したような電極チップ先端の蓄熱状態は、電極ワイヤへの給電抵抗を変化させるために、アークが不連続なものとなり、アーク切れと呼ぶ溶接異常が発生する。生産中にアーク切れが発生した場合には、溶接装置を途中停止させ新しい電極チップに交換した後、溶接作業を再開することになり、生産性阻害の大きな問題となっている。
このため、例えば下記特許文献2に開示されているように、電極チップに冷却体を設けて冷却を行っているものがある。
特開平7−108378号公報
しかしながら、上記した特許文献2に記載された冷却方法は、電極チップに単に冷却体を設けるだけであって、シールドガスの流れにつていは特に考慮していないばかりか、被溶接物からの反射熱についても具体的な対策を講じておらず、このため冷却効果が不充分であり、改善が望まれている。
そこで、この発明は、電極チップの冷却効果を充分なものとすることを目的としている。
前記目的を達成するために、この発明は、電極ワイヤを保持する電極チップの外周側に、シールドガスを被溶接物に向けて放出するガス流路を備えたアーク溶接用トーチにおいて、前記電極チップの外周面に、前記ガス流路を流れるシールドガスを案内する螺旋状の溝を設けた構成としてある。
この発明によれば、電極チップの外周側のガス流路を流れるシールドガスは、電極チップの外周面に形成した螺旋状の溝に案内されて流れるので、このシールドガスによって電極チップの熱を効果的に吸収し、電極チップの冷却効果が充分なものとなる。
また、螺旋状の溝は、一般のねじ加工と同様の簡易な方法によって加工可能であり、これにより放熱表面積を増大すると同時に、溶接作業中のシールドガスによる放熱速度の向上を図ることができるだけでなく、溶接作業を中断して行う冷却水などの溶剤や圧縮空気などによるガス冷却に対しても、放熱表面積が増えることで冷却効果を高めることができる。
以下、この発明の実施の形態を図面に基づき説明する。
図1は、この発明の一実施形態に係わるアーク溶接用トーチを示す断面図である。このアーク溶接用トーチは、中空のガスノズル1内に電極チップ3を収容し、電極チップ3内に図1中で上下方向に貫通して設けてあるワイヤ送給孔3a内に電極ワイヤ5を移動可能に挿入している。電極チップ3は、その上端をチップボディ7が固定保持しており、図示しない電源装置からチップボディ7および電極チップ3を介して電極ワイヤ5に電力を供給する。
電極ワイヤ5は、図示しないワイヤリールに巻かれたものを、ワイヤ送給機構によって被溶接物Wに向けて順次送給する。また、電極チップ3およびチップボディ7の外周側に形成してあるガスノズル1内のガス流路9を、アルゴンガスなどのシールドガスGが被溶接物Wに向けて流れる。
上記した電極チップ3は、被溶接物Wに近い先端部3bに比べて基端部3cほど外径を大きくし、これにより全体として先細となる円錐形状を呈している。そして、この電極チップ3の外周面には、螺旋状の溝3dを形成している。
螺旋状の溝3dは、電極チップ3の先端部3bと基端部3cを除く中央部分に形成してあり、溝3dを形成していない先端部3bの一部をガスノズル1の先端に対して前方へ突出させている。また、この溝3dは、図2に拡大してその一部を示すように、電極チップ3の先端部3bに比べて基端部3cほど大きくしている。すなわち溝3dは、基端部3c側を先端部3b側に比べ、深さDを深くし、これに伴い外周面側の幅Wを大きくしている。
そして、アーク溶接時には、ガス流路9をシールドガスGが被溶接物Wに向けて流れる状態で、図示しない電源装置により被溶接物Wと電極ワイヤ5との間に所定の電圧を印加してアークAを発生させる。
このような溶接作業時には、電極チップ3が、被溶接物Wの被加工部Kからの反射熱H、スパッタSによる熱、被加工部Kにおける溶融池からの輻射熱Jなどにより加熱されるが、シールドガスGがガス流路9を流れる際に、その一部が螺旋状の溝3dに案内されて流れ、このとき互いに隣接する溝3d相互間の螺旋状の突条3eが放熱フィンとなって電極チップ3を冷却する。シールドガスGが螺旋状の溝3dに沿って流れることで、単に放熱フィンを設けた場合に比べて放熱速度が高まり、電極チップ3を効果的に冷却することができる。
また、溝3dは、電極チップ3の先端部3bに比べて基端部3cほど大きくしているので、シールドガスGが、基端部3c側にて溝3d内にスムーズに流入し、溝3d内を流れやすくなって流速を高めることができ、冷却効果がさらに高まる。
さらに、電極チップ3の全体の形状を先細の円錐形状としたので、図1に示すように、反射熱Hを直接受けにくくなるとともに、飛散するスパッタSも直接接触にくくなるのでスパッタSによる熱も受けにくくなり、電極チップ3の蓄熱をさらに抑制することができる。
この結果、電極チップ3の蓄熱範囲としては、先端部3bにおける先端面から寸法tで示す範囲程度に留まり、蓄熱抑制効果が極めて高いものとなる。これにより、電極チップ3と電極ワイヤ5との間の給電抵抗が安定し、アークAも連続したものとなり、アーク切れと呼ばれる溶接異常発生を防止することができ、溶接作業を途中で停止して電極チップを交換するなどの生産性阻害を回避することができる。
また、螺旋状の溝3dは、一般のねじ加工と同様の簡易な方法によって加工可能であり、これにより電極チップ3の放熱表面積を増大すると同時に、溶接作業中のシールドガスGによる放熱速度の向上を図ることができるだけでなく、溶接作業を中断して行う冷却水などの溶剤や圧縮空気などによるガス冷却に対しても、放熱表面積が増えることで冷却効果を高めることができる。
図3は、電極チップの他の例を示している。このうち図3(a)の電極チップ3Aは、全体として円柱形状とし、かつ螺旋状の溝3Adの大きさについては、先端部3Ab側と基端部3Ac側とで変化させず、全体として一定の形状としている。3Aeは、互いに隣接する溝3Ad相互間の螺旋状の突条である。
なお、この円柱形状の電極チップ3Aにおいても、溝3Adの大きさ(溝深さや溝幅)を、図2の電極チップ3と同様に、先端部3Abに比べて基端部3Acほど大きくしてもよい。
一方図3(b)の電極チップ3Bは、全体として円柱形状を呈しているが、螺旋状の溝3Bdの深さを、図2の電極チップ3とは逆に、基端部3Bcに比べて先端部3Bbほど深くしている。3Beは、互いに隣接する溝3Bd相互間の螺旋状の突条である。
上記図3に示した電極チップ3A,3Bにおいても、シールドガスGの一部が外周面に形成した螺旋状の溝3Ad,3Bdに案内されて流れ、このとき突条3Ae,3Beが放熱フィンの役目を果たして電極チップ3の冷却を行う。
次に、電極チップ3の先端形状について詳細に説明する。
電極チップにおける溶接作業時の溶接点とその周辺の複数の熱源に曝されることによる蓄熱被害を考慮すると、図4に簡略化した電極チップ3に示すように、先端平面外径ψxが小さいほど連続して安定した溶接品質が得られる。
一方でその外径ψxが小さすぎると、図5に示すように、ワイヤ送給孔3aの先端開口部付近と電極ワイヤ5との摺動摩耗が加速度的に進行するので、図6に示すように、外径ψxが小さい電極チップのほうが、外径ψxが大きい電極チップに比べ、摺動摩耗量が大きくなり、摩耗許容限界に早く達してしまう。
この摩耗許容限界を超えると、図5に示すように、ワイヤ送給孔3aの中心位置と、被加工部Kとの間の溶接狙い位置ずれZによる被溶接物Wの融合不良が発生する。したがって外径ψxが小さい場合には、狙い位置ずれ量が短時間で許容範囲を超えて融合不良を生ずることとなる。
また、摺動摩耗量が大きくなると、電極チップ3と被溶接物Wとの距離L1も変化することから、電圧降下も変化しアーク不安定などによる溶接欠陥が発生する。
したがって図7(a),(b)に示すように、電極チップ3の先端は、被溶接物W毎に選択される電極ワイヤ5を円滑に送給できるワイヤ送給孔3aの初期孔径ψbを有し、電極ワイヤ5との摺動摩耗によっても、その進行速度を遅らせると同時に電極チップ3と被溶接物Wとの距離L1が変化しないことを狙いとした最小の外径ψxを有する形状とする。
このとき、電極ワイヤ5の線癖によっては楕円状に摩耗するワイヤ送給孔3aの最大摩耗点P1が、電極チップ先端面の外周縁に接したことを、電極チップ3の使用限界とすることで、摩耗の外観限界管理を可能とする。
ただし、この場合初期の孔径ψbの加工公差は、線径ψaの電極ワイヤ5を円滑に送給するため、電極ワイヤ5の外径の最大加工公差をαとし、微細塵埃による摺動抵抗を軽減するための電極ワイヤ5とワイヤ送給孔3aとのクリアランスβ、ワイヤ送給孔3aの孔径最大加工公差をγとし、
ψbmin= ψa+α+β
ψbmax=ψbmin+γ
で求める。
また、図8に示すように、電極チップ3の使用限界となる先端外径ψxは、被溶接物Wおよび溶接継ぎ手形状などによって決定される電極ワイヤ5の狙い位置ずれ許容寸法Zとなる電極ワイヤ5の送給経路を求めることで決定する。
この際、図9(a)に示す電極ワイヤ5の最大半径を成して送給される2点(P1,P2)接触経路と、図9(b)に示す最小半径を成す3点(P1,P2,P3)接触経路が考えられるが、ここでは、電極ワイヤ5の狙い位置ずれ許容寸法となる最大ずれを求めればよいので後者の経路のみに着目する。
図9(b)に示すように、全長をLcとする電極チップ3のワイヤ送給孔3aを通る電極ワイヤ5の接触点としてP3およびP2・P1を通る円弧を描くとき、電極チップ3の初期状態におけるP2の位置はLc/2であり、L2=L3であって、ワイヤ送給孔3aとの間にC3およびC2・C1の初期クリアランスをそれぞれ有する。
しかし、この状態で溶接作業を開始して電極ワイヤ5の送給を続けると、理論的にはP2およびP3においても摺動摩耗を生じることになるが、これらは先端のP1における摩耗に比較して極めて微細な摩耗に留まることが確認できているので、計算上はP2およびP3の溶接作業開始後におけるクリアランスC3およびC2の拡大はないものとして扱う。
図10は、それぞれの接触点P3およびP2・P1の移動状態を示し、電極チップ3先端の最大摩耗許容量yが、以下によって簡易的に求めることができることを説明する。
接触点P3およびP2・Pzを通過する円の半径をR、線分Pz・P3の長さをA、線分P3・P2をa、線分O・P7の長さをBとしたとき、すでに与えられている初期のクリアランスC1とBをRから差し引くことで(次式)、P1の摺動摩耗後の移動点P5と、その移動距離である摩耗許容限界yを求めることができる。
y=R−B−C1
このとき図10中のθ1およびθ2・θ3は、以下によって求めることができる。
θ1=Tan((Z−C1)/L)
θ2=Tan(C1/L4) [ただし、L4=L3±α]
θ3=(90°−θ1−2×θ2)
これらを関係式に引用して、
R1=(a/2)/Sinθ2=(a/2)/Sin(Tan(C1/L4))
R2=(A/2)/Cosθ3=(A/2)/Cos(90°−θ1−2×(Tan(C1/L4)))
となり、R1=R2となるL4を求め、このときのR1=R2をRとすることができる。
また、
Figure 2005169396
によってyを求めることができる。
したがって、電極チップ3の摺動摩耗限界管理に用いることのできる初期の先端平面最大外径ψx max は、
ψx max = ψb max+2y=ψb min+γ+2y=ψa+α+β+γ+2y
となり、摩耗したワイヤ送給孔3aの内面が電極チップ3の外周部に達した時点を生産上の管理限界とすることができる。
前述したように、電極チップ3の先端平面外径ψx を最小にすることで、アークの反射熱とスパッタ熱の受け止め面積が減少し蓄熱も減少するが、電極チップ3の外周面の形状によっては、充分な効果が得られないことが考えられる。
図12(a),(b)は、被溶接物Wにおける溶融池からの反射熱の状態を示し、図13(a),(b)はスパッタの飛散による熱伝達の状態を示す。
従来のMIGまたはCo2溶接に用いられる普及型電極チップは、図14(a)に示すように、電極ワイヤの直進性能を確保するため、電極チップ3の装着固定先であるチップボディ7に対して電極ワイヤの通路である送給孔3aの中心との平行度を保証し、さらに図14(b)に示すように、電極チップ装着用工具のために互いに対向する部位に平面部3kを設けることが、電極チップ3の全体形状を設計する際の不可欠の要素となっており、電極チップ3の外側面形状設計についても、前項のチップ先端形状と併せて考慮しなければならない。
以上の要件を満足しながら蓄熱を最小にする電極チップの側面形状は、図15のようなものが考えられる。
電極チップ5を図15のような形状とすることで、反射熱とスパッタによる蓄熱を減少させることができるが、このままでは溶融金属からの輻射熱や電極ワイヤへの給電によって発生する通電抵抗熱などに対して充分な対策にはなっていない。
そこで、図16に示すように、これらの形状に加えて冷却速度を加速することを目的とした放熱フィン3fを、電極チップの外周面に設けることとする。放熱フィン3fは、電極チップ3の外周面の表面積を増大する加工であるほど冷却効果は大きい。
しかし、MIGやCo2溶接などのシールドガスを用いる溶接法において、放熱フィンはシールドガスに曝される状態に配置し、かつシールドガスの乱流化防止に配慮する必要がある。
以上のことから、前述した図1に示した電極チップのように、外周面に螺旋状の溝を設けた円錐形状とすることが最も有効と考えられ、かつこの形状は低コスト加工が容易でもある。
次に、電極チップにおける各部の具体的寸法を、呼び径ψ1.2 の電極ワイヤを用いるMIGおよびCo2溶接の共用電極チップとして説明する。
前記図7(b)において、初期のワイヤ送給孔3aの孔径ψbmaxは、電極ワイヤ5の線径バラツキを考慮しつつ最小となるクリアランスを持たせた。また、被溶接物Wの溶接継手中心に対して電極ワイヤ5の狙い位置ずれZが1.6mmまで許容できることが判っているので、Zmaxを1.6mmと設定し前述の計算によってyを0.44mmと求め、したがって電極チップ先端外径ψxをψ2.19mmと決定した。
ただし、電極チップ3と被溶接物Wとの距離L1は、サンプルとしている被溶接物Wの常用値である20mmとして一定とし固定した。また、電極チップ3の形状については、前記した図1の通り、円錐形状とし、放熱溝はテーパネジ状の螺旋加工を施し、溝の谷形状は加工を容易にするためU字型を採用した。
ψb min= ψa max+α+β=1.25
ψb max= ψb min+γ=1.30
ψx max= ψa+α+β+γ+2y=2.19
この発明の第1の実施形態を示すアーク溶接用トーチの断面図である。 図1のアーク溶接用トーチにおける電極チップの溝形状を示す説明図である。 電極チップの溝形状の他の例を示す説明図である。 電極チップの先端外径寸法を示した簡略化した断面図である。 電極チップのワイヤ送給孔と電極ワイヤとの摺動摩耗が発生している状態を示す説明図である。 電極チップの摺動作業量に対する摺動摩耗量の変化を、電極チップ先端外径が大のものと小のものとで比較して示した説明図である。 電許チップの先端外径が被溶接物の融合不良が発生しない状態で最小となる形状を示す説明図である。 電極チップの使用限界となる先端外径を決定する際の電極ワイヤの送給経路を示す説明図である。 電極ワイヤが電極チップのワイヤ送給孔内面に接触する形態を示す説明図である。 電極チップ先端の最大摩耗許容量を求めるための説明図である。 図10の最大摩耗許容量を求める際の電極チップ先端の詳細図である。 溶融池からの反射熱の状態を示す説明図である。 スパッタの飛散による熱伝達の状態を示す説明図である。 (a)はMIGまたはCo2に用いられる普及型電極チップの断面図、(b)は同平面図である。 蓄熱を減少させる電極チップの形状図である。 図15の電極チップに放熱フィンを設けた形状図である。
符号の説明
3 電極チップ
3b 電極チップの先端部
3c 電極チップの基端部
3d 螺旋状の溝
5 電極ワイヤ
9 ガス流路
W 被溶接物
G シールドガス

Claims (4)

  1. 電極ワイヤを保持する電極チップの外周側に、シールドガスを被溶接物に向けて放出するガス流路を備えたアーク溶接用トーチにおいて、前記電極チップの外周面に、前記ガス流路を流れるシールドガスを案内する螺旋状の溝を設けたことを特徴とするアーク溶接用トーチ。
  2. 前記電極チップは、先端部に比べて基端部ほど外径が大きく形成されていることを特徴とする請求項1記載のアーク溶接用トーチ。
  3. 前記螺旋状の溝は、先端部に比べて基端部ほど大きく形成されていることを特徴とする請求項1または2記載のアーク溶接用トーチ。
  4. 電極ワイヤを保持する電極チップの外周側に、シールドガスを被溶接物に向けて放出するガス流路を設け、前記シールドガスを前記電極チップの外周面に設けた螺旋状の溝に沿って流すことを特徴とするアーク溶接方法。
JP2003408058A 2003-12-05 2003-12-05 アーク溶接用トーチおよびアーク溶接方法 Pending JP2005169396A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003408058A JP2005169396A (ja) 2003-12-05 2003-12-05 アーク溶接用トーチおよびアーク溶接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003408058A JP2005169396A (ja) 2003-12-05 2003-12-05 アーク溶接用トーチおよびアーク溶接方法

Publications (1)

Publication Number Publication Date
JP2005169396A true JP2005169396A (ja) 2005-06-30

Family

ID=34729911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003408058A Pending JP2005169396A (ja) 2003-12-05 2003-12-05 アーク溶接用トーチおよびアーク溶接方法

Country Status (1)

Country Link
JP (1) JP2005169396A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764179A2 (en) * 2005-09-19 2007-03-21 Lincoln Global, Inc. Contact tip with a flange; Insulated protective sleeve; Metal nozzle with gripping means; Torch for arc welding with a wire with such contact tip, insulating protective sleeve and metal nozzle
CN105618895A (zh) * 2016-01-06 2016-06-01 江苏烁石焊接科技有限公司 一种丝-粉-气-电弧同轴的3d打印装置
JP2016223938A (ja) * 2015-06-01 2016-12-28 パナソニックIpマネジメント株式会社 スタイラスの製造方法及びスタイラス
JP2017209701A (ja) * 2016-05-25 2017-11-30 マツダ株式会社 溶接トーチ
CN112139492A (zh) * 2019-06-28 2020-12-29 南京理工大学 一种超强钢原位丝粉成分可调复合增材装置
WO2021032926A1 (fr) 2019-08-22 2021-02-25 Safran Aircraft Engines Système de dépôt laser de métal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764179A2 (en) * 2005-09-19 2007-03-21 Lincoln Global, Inc. Contact tip with a flange; Insulated protective sleeve; Metal nozzle with gripping means; Torch for arc welding with a wire with such contact tip, insulating protective sleeve and metal nozzle
EP1764179A3 (en) * 2005-09-19 2007-05-23 Lincoln Global, Inc. Contact tip with a flange ; Insulated protective sleeve ; Metal nozzle with gripping means ; Torch for arc welding with a wire with such contact tip, insulating protective sleeve and metal nozzle
US8552341B2 (en) 2005-09-19 2013-10-08 Lincoln Global, Inc. Torch for arc welding gun
JP2016223938A (ja) * 2015-06-01 2016-12-28 パナソニックIpマネジメント株式会社 スタイラスの製造方法及びスタイラス
CN105618895A (zh) * 2016-01-06 2016-06-01 江苏烁石焊接科技有限公司 一种丝-粉-气-电弧同轴的3d打印装置
CN105618895B (zh) * 2016-01-06 2018-04-03 江苏烁石焊接科技有限公司 一种丝‑粉‑气‑电弧同轴的3d打印装置
JP2017209701A (ja) * 2016-05-25 2017-11-30 マツダ株式会社 溶接トーチ
CN112139492A (zh) * 2019-06-28 2020-12-29 南京理工大学 一种超强钢原位丝粉成分可调复合增材装置
WO2021032926A1 (fr) 2019-08-22 2021-02-25 Safran Aircraft Engines Système de dépôt laser de métal
FR3100003A1 (fr) * 2019-08-22 2021-02-26 Safran Aircraft Engines Système de dépôt laser de métal
CN114258331A (zh) * 2019-08-22 2022-03-29 赛峰飞机发动机公司 激光金属沉积系统

Similar Documents

Publication Publication Date Title
CA2765315C (en) Front consumables for pulse gmaw torches
JP4726038B2 (ja) 溶接のためのシステム及びその使用方法
JP4683673B1 (ja) 溶接給電用コンタクトチップ及びそれを用いた溶接トーチ
CN110114179B (zh) 用于焊接应用的场形成器
JP2011056546A (ja) プラズマトーチおよびプラズマアーク溶接方法
JP2005169396A (ja) アーク溶接用トーチおよびアーク溶接方法
JP2011050982A (ja) インサートチップ,プラズマトーチおよびプラズマ加工装置
JP4848921B2 (ja) 複合溶接方法と複合溶接装置
US10201068B2 (en) Method for the plasma cutting of workpieces
JP4516472B2 (ja) プラズマトーチ
JPS62240170A (ja) ト−チ
JP2010104996A (ja) プラズマ電極及びプラズマミグ溶接トーチ
JP2752561B2 (ja) 溶接用チップ
JP4394808B2 (ja) レーザ光とアークを用いた溶融加工装置
JP2000233287A (ja) レーザ光とアークを用いた溶融加工装置
JP2007136446A (ja) プラズマ溶射装置及びその電極
JP2010284666A (ja) アーク溶接用トーチ
JP2013052395A (ja) アーク溶接用トーチ
JP6485396B2 (ja) レーザ肉盛用ノズル
JP2010207875A (ja) 複合溶接装置
JPH04294870A (ja) ア−ク溶接用ト−チの給電チップ
JP5841342B2 (ja) プラズマ切断装置用ノズル及びプラズマトーチ
JP5647884B2 (ja) プラズマトーチ用電極及びプラズマトーチ
JP2005052859A (ja) 溶接ガスノズル
JP2007061868A (ja) スポット溶接機に供せられる溶接電極

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061025

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217