JP2005168231A - Charging circuit for electric double-layer capacitor with parallel monitors - Google Patents

Charging circuit for electric double-layer capacitor with parallel monitors Download PDF

Info

Publication number
JP2005168231A
JP2005168231A JP2003406006A JP2003406006A JP2005168231A JP 2005168231 A JP2005168231 A JP 2005168231A JP 2003406006 A JP2003406006 A JP 2003406006A JP 2003406006 A JP2003406006 A JP 2003406006A JP 2005168231 A JP2005168231 A JP 2005168231A
Authority
JP
Japan
Prior art keywords
electric double
double layer
parallel monitor
charging
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003406006A
Other languages
Japanese (ja)
Other versions
JP4066261B2 (en
Inventor
Takeo Mizoguchi
武郎 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kinki University
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University, Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kinki University
Priority to JP2003406006A priority Critical patent/JP4066261B2/en
Publication of JP2005168231A publication Critical patent/JP2005168231A/en
Application granted granted Critical
Publication of JP4066261B2 publication Critical patent/JP4066261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging circuit for an electric double-layer capacitor which is capable of realizing a circuit configuration of monitors in parallel with a minimum number of components, and easily separating each of the parallel monitors electronically in the course of transition to relaxation charging by constant voltage power supply, and which is connected with single cells connected in series. <P>SOLUTION: The parallel monitors consisting of one field effect transistor (FET) and two voltage dividing resistors are disposed in parallel to each of the single cells. MOSFET gates at all the parallel monitors are grounded by a comparator detecting that all the capacitor single cells are fully charged and MOSFET operated by the output of the comparator to electronically separate each of the parallel monitors from a charging circuit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、単セルを直列に接続した電気二重層キャパシタ(コンデンサ)の充電回路に関する。   The present invention relates to an electric double layer capacitor (capacitor) charging circuit in which single cells are connected in series.

近年、電気自動車の駆動用電源としてまた、メモリバックアップ電源としてさらに、太陽光発電装置などに電気二重層キャパシタ(EDLC:electric double layer capacitor)の応用が進んでいる。電気二重層キャパシタは大容量(ファラドオーダ)で高いエネルギ密度を有し、高速充放電が可能であることやサイクル寿命が優れている長所を有している。   In recent years, an electric double layer capacitor (EDLC) has been applied to a solar power generation device as a power source for driving an electric vehicle and a memory backup power source. An electric double layer capacitor has advantages such as a large capacity (farad order), high energy density, high speed charge / discharge, and excellent cycle life.

しかし、電気二重層キャパシタ素子(単セル)の定格電圧は、電気二重層がキャパシタの絶縁物として機能する、電気分解を生じない耐電圧である2.3V〜2.5Vといった低いものとならざるを得ない。而して、パワーエレクトロニクス分野で使用するには、単セルを複数箇直列接続して用いる。しかしながら、各キャパシタセルには容量や漏洩抵抗の違いがありまた、各キャパシタの残存電圧もあり直列に接続されている複数の単セルを均等に耐電圧(満充電)まで充電することが困難である。   However, the rated voltage of the electric double layer capacitor element (single cell) does not have to be as low as 2.3 V to 2.5 V, which is a withstand voltage in which the electric double layer functions as a capacitor insulator and does not cause electrolysis. I do not get. Thus, for use in the field of power electronics, a plurality of single cells are connected in series. However, each capacitor cell has a difference in capacity and leakage resistance, and there is a residual voltage of each capacitor. It is difficult to uniformly charge a plurality of single cells connected in series to a withstand voltage (full charge). is there.

単に、単セルを直列接続して充電すると、電気二重層キャパシタ特有の漏洩電流、多くのCR配列、静電容量の相異に起因して充電電圧に不揃いが発生する。而して、各単セルの耐電圧の関係から充電電圧は、最初に満充電が完了したセルに制約される。このため、全ての単セルを満充電にする場合の蓄積エネルギに比し、大幅な電力損失となる。このような問題を解決すべく、充電電圧が単セルの耐電圧以上とならないように、電気二重層キャパシタ(単セル)毎に充電電圧を検出、監視し、充電電圧値が耐電圧(耐圧保証電圧)に達したときに、充電電流をバイパスさせることによって当該電気二重層キャパシタ(単セル)の充電動作を停止する並列モニタ回路が知られている(たとえば、特許文献1参照)。
特開2003−244859号公報
Simply charging a single cell connected in series results in uneven charging voltage due to leakage current peculiar to an electric double layer capacitor, many CR arrangements, and differences in capacitance. Thus, the charging voltage is restricted to the cell that has been fully charged first because of the withstand voltage of each single cell. For this reason, compared with the stored energy when all the single cells are fully charged, the power loss is significant. To solve this problem, the charging voltage is detected and monitored for each electric double layer capacitor (single cell) so that the charging voltage does not exceed the withstand voltage of the single cell, and the withstand voltage (withstand voltage guarantee) A parallel monitor circuit that stops the charging operation of the electric double layer capacitor (single cell) by bypassing the charging current when the voltage reaches (voltage) is known (for example, see Patent Document 1).
Japanese Patent Laid-Open No. 2003-244859

しかしながら、上記先行技術における並列モニタは、シャントレギュレータ(比較器)、npnトランジスタなどを用いて全電流を検知しながら複雑な制御を行っている。キャパシタの設定充電電圧よりも低い電圧値に充電変化点を設け、キャパシタモジュール電圧が充電変化点を超えた時点で、定電流充電から定電圧充電に移行する充電制御方式を採っており、並列モニタは、シャントレギュレータとトランジスタからなり100A並列モニタで消費する電力は250Wにもなる。   However, the parallel monitor in the above prior art performs complex control while detecting the total current using a shunt regulator (comparator), an npn transistor, and the like. A charge change point is set at a voltage value lower than the set charge voltage of the capacitor, and when the capacitor module voltage exceeds the charge change point, a charge control system is adopted that shifts from constant current charge to constant voltage charge. Consists of a shunt regulator and a transistor, and the power consumed by a 100 A parallel monitor is 250 W.

一方、並列モニタは、直列に接続される電気二重層キャパシタ(単セル)の箇数だけ必要であり、並列モニタの回路構成は簡潔であることが望まれるが、通常、設定電圧を得るために、シャントレギュレータやコンパレータ、ツェナーダイオードを用い、バイパス電流はトランジスタや抵抗に流す構成が採られることが多く、電子部品点数が多い問題がある。また、直列に接続された電気二重層キャパシタ(単セル)の全てを真の満充電にするに際しても、電気二重層キャパシタの性質上、さらに定電圧で緩和充電を行わざるを得ない。この充電電圧の設定が難しくさらに、電気二重層キャパシタの蓄電量も少なくなる。   On the other hand, the parallel monitor requires only the number of electric double layer capacitors (single cells) connected in series, and it is desirable that the circuit configuration of the parallel monitor is simple. In many cases, a configuration in which a shunt regulator, a comparator, and a Zener diode are used and the bypass current flows through a transistor or a resistor is employed, and the number of electronic components is large. In addition, when all the electric double layer capacitors (single cells) connected in series are fully charged, it is unavoidable to perform relaxation charging at a constant voltage due to the nature of the electric double layer capacitor. It is difficult to set the charging voltage, and the amount of electricity stored in the electric double layer capacitor is reduced.

本発明は、並列モニタの回路構成を最小部品点数で実現させるとともに、当該単セル見掛け上の満充電に達すると充電電流を並列回路にバイパスさせて当該単セルの充電動作を停止させ、直列に接続された単セルの全てが満充電となったら、定電圧充電の場合多大な電力を消費する並列モニタを用いることなしに定電圧電源による緩和充電に移行すべく、各単セルの並列モニタを充電回路から切り離すことができる、並列モニタを有する電気二重層キャパシタ用充電回路を提供することを目的とする。   The present invention realizes the circuit configuration of the parallel monitor with the minimum number of parts, and when the apparent charge of the single cell is reached, the charging current is bypassed to the parallel circuit to stop the charging operation of the single cell in series. When all the connected single cells are fully charged, the parallel monitor of each single cell can be switched to relaxed charging with a constant voltage power supply without using a parallel monitor that consumes a large amount of power in the case of constant voltage charging. An object of the present invention is to provide a charging circuit for an electric double layer capacitor having a parallel monitor that can be disconnected from the charging circuit.

上記課題を解決するための、請求項1に記載の発明は、単セルを直列に接続した電気二重層キャパシタの充電回路であって、各単セルに対して並列に電界効果型トランジスタ(FET)又は絶縁ゲート型バイポーラトランジスタ(IGBT)1箇と分圧抵抗2箇からなる並列モニタを配設するとともに、前記直列に接続された全ての電気二重層キャパシタ単セルの満充電を検知するヒステリシスコンパレータおよび該ヒステリシスコンパレータからの出力信号を入力されて各並列モニタのFETのゲート電圧をダイオードD1,------,Dnを介してターンオン、ターンオフに制御できる電界効果型トランジスタ(FET)ならびに定電流源および定電圧源何れかにスイッチする充電用電源コントローラとからなり、前記直列に接続された全ての電気二重層キャパシタ単セルが満充電となった時点でそれを検知して各並列モニタを電子的に充電回路から切り離すとともに、充電用電源コントローラを定電流源から定電圧源にスイッチし緩和充電に移行するよう構成してなる並列モニタを有する電気二重層キャパシタ用充電回路である。   In order to solve the above-mentioned problems, an invention according to claim 1 is a charging circuit for an electric double layer capacitor in which single cells are connected in series, and a field effect transistor (FET) in parallel with each single cell. Or a hysteresis comparator for arranging a parallel monitor comprising one insulated gate bipolar transistor (IGBT) and two voltage dividing resistors and detecting full charge of all the electric double layer capacitor single cells connected in series; A field effect transistor (FET) capable of controlling the gate voltage of each parallel monitor FET to be turned on and turned off via diodes D1, -----, Dn, and a constant current, when an output signal from the hysteresis comparator is input Power supply controller for switching to either the power source or the constant voltage source, all connected in series When the electric double layer capacitor single cell is fully charged, it is detected and the parallel monitors are electronically disconnected from the charging circuit, and the charging power supply controller is switched from the constant current source to the constant voltage source for relaxation charging. It is a charging circuit for an electric double layer capacitor having a parallel monitor configured to shift.

請求項2に記載の発明は、各単セルの満充電を視認可能にすべく、発光ダイオード(LED)をソース側分圧抵抗に直列に接続してなる請求項1に記載の並列モニタを有する電気二重層キャパシタ用充電回路である。   The invention according to claim 2 has the parallel monitor according to claim 1, wherein a light emitting diode (LED) is connected in series to the source side voltage dividing resistor so that the full charge of each single cell can be visually recognized. It is a charging circuit for an electric double layer capacitor.

請求項3に記載の発明は、並列モニタを構成する電界効果型トランジスタ(FET)に、温度変化に起因するバイアスの変動を小ならしめるべく、ソースに直列に抵抗を接続してなる請求項1又は請求項2に記載の並列モニタを有する電気二重層キャパシタ用充電回路である。   According to a third aspect of the present invention, a field effect transistor (FET) constituting a parallel monitor is connected to a resistor in series with a source in order to reduce a variation in bias due to a temperature change. Alternatively, an electric double layer capacitor charging circuit having the parallel monitor according to claim 2.

請求項4に記載の発明は、各並列モニタにおける電界効果型トランジスタ(FET)のゲート電圧をダイオードを介して接地する回路におけるゲートとダイオード間に抵抗を介挿し、分圧抵抗を流れる電流を小さくするよう構成してなる請求項1乃至請求項3何れかに記載の並列モニタを有する電気二重層キャパシタ用充電回路である。   According to a fourth aspect of the present invention, a resistor is inserted between a gate and a diode in a circuit that grounds the gate voltage of a field effect transistor (FET) in each parallel monitor via a diode, thereby reducing the current flowing through the voltage dividing resistor. A charging circuit for an electric double layer capacitor having a parallel monitor according to any one of claims 1 to 3, wherein the charging circuit is configured as described above.

請求項5に記載の発明は、各並列モニタが充電回路から切り離されたことを視認可能にすべく、発光ダイオード(LED)を、ヒステリシスコンパレータ出力の接地抵抗に直列に接続してなる請求項1乃至請求項4何れかに記載の並列モニタを有する電気二重層キャパシタ用充電回路である。   According to a fifth aspect of the present invention, a light emitting diode (LED) is connected in series with the ground resistance of the hysteresis comparator output so that it can be visually recognized that each parallel monitor is disconnected from the charging circuit. A charging circuit for an electric double layer capacitor having the parallel monitor according to claim 4.

本発明によれば、並列モニタが最小の部品点数からなる回路構成であるため、直列に接続された単セルからなる電気二重層キャパシタ用充電回路もきわめて簡潔な回路構成である。単セルの直列接続箇数が多くなるほどその利点は大となる。また、直列に接続された単セルからなる電気二重層キャパシタの単セルの全てが満充電となったことをヒステリシスコンパレータで検知しそのまま緩和充電に移行するに際し、並列モニタを簡単に電子的に充電回路から離脱させ得るから電力損失を伴うことなく電気二重層キャパシタに最大限の蓄電能力を与え得る。   According to the present invention, since the parallel monitor has a circuit configuration having the minimum number of parts, the electric double layer capacitor charging circuit including single cells connected in series also has a very simple circuit configuration. The advantage increases as the number of single cells connected in series increases. In addition, when all the single cells of the electric double layer capacitor consisting of single cells connected in series are fully charged, a hysteresis comparator detects that the parallel monitor is easily electronically charged when shifting to relaxed charging. Since the circuit can be separated from the circuit, the electric double layer capacitor can be provided with the maximum power storage capacity without power loss.

また、本発明の電気二重層キャパシタ用充電回路においては、充電電流が並列モニタ側およびキャパシタ(単セル)側双方に流れる期間があり、充電電流がある時点から全て並列モニタ側に流れる従来の並列モニタに比し、並列モニタの動作期間が同一の場合、消費電力を軽減できる。   Moreover, in the electric double layer capacitor charging circuit of the present invention, there is a period in which the charging current flows to both the parallel monitor side and the capacitor (single cell) side, and all of the charging current flows to the parallel monitor side from a certain point in time. Compared with the monitor, when the operation period of the parallel monitor is the same, the power consumption can be reduced.

本発明は、大容量キャパシタであるレドックスフロー電池などの充電にも適用できるとともに、種々のパワーエレクトロニクス用電源に応用できる。また、並列モニタの構成が簡単で消費電力も小さいから、モジュール化、集積化も可能である。   The present invention can be applied to charging a redox flow battery, which is a large-capacity capacitor, and can be applied to various power electronics power supplies. Further, since the parallel monitor has a simple configuration and low power consumption, it can be modularized and integrated.

電気二重層キャパシタセルは構造上複雑なRC配列になっているため、直列に接続された電気二重層キャパシタの単セルの全てが満充電になったとして直ちに充電を停止すると、自己放電によりセル端子電圧が降下するため満充電とはならずに最大の蓄電能力を得ることができない。そこで、定電圧電源で所定の時間緩和充電を行えば真の満充電が得られ、全てのキャパシタ(単セル)が最大の蓄電能力を発揮し得ることになる。ここで、緩和充電期間に並列モニタが動作すると充電電流の殆どが並列モニタ側に流れるため、多大な電力損失をもたらす。而して、緩和充電期間においては並列モニタは不要であり、従って本発明においては緩和充電期間は並列モニタを電子的に充電回路から切り離して緩和充電できるように構成している。   Since the electric double layer capacitor cell has a complicated RC arrangement, if all of the single cells of the electric double layer capacitor connected in series are fully charged and then immediately stop charging, the cell terminal is self-discharged. Since the voltage drops, the battery is not fully charged and the maximum power storage capacity cannot be obtained. Therefore, if full charge is performed for a predetermined time with a constant voltage power supply, a true full charge can be obtained, and all capacitors (single cells) can exhibit the maximum power storage capacity. Here, when the parallel monitor operates during the relaxation charging period, most of the charging current flows to the parallel monitor side, resulting in a great power loss. Thus, the parallel monitor is not required during the relaxation charging period. Therefore, in the present invention, the relaxation monitor is configured so that the parallel monitor can be electronically disconnected from the charging circuit and relaxed charging can be performed.

本発明においては、並列モニタは低電圧駆動の電界効果型トランジスタであるMOSFET(metal-oxide semiconductor field effect transistor)または、絶縁ゲート型バイポーラトランジスタ(IGBT:insulated gate bipolar transistor)1箇と抵抗2箇からなるきわめて簡潔な構成である。また、直列に接続された全ての単セルが見掛け上の満充電になったらそれを検知してきわめて簡単に各並列モニタを充電回路から離脱させて電力損失最小の状態下に、定電圧電源による緩和充電に移行する。   In the present invention, the parallel monitor is a low-voltage field-effect transistor MOSFET (metal-oxide semiconductor field effect transistor) or an insulated gate bipolar transistor (IGBT) and two resistors. This is a very simple configuration. In addition, when all the single cells connected in series are apparently fully charged, it is detected and it is very easy to disconnect each parallel monitor from the charging circuit and use a constant voltage power supply under the condition of minimum power loss. Transition to relaxed charging.

図1(a)に、本発明の並列モニタを有する電気二重層キャパシタの充電回路における並列モニタの一実施形態を示す。図1(a)において、Iは充電電流、Cは電気二重層キャパシタの単セルであって、このキャパシタ単セルCと並列に、1箇のMOSFETと2箇の抵抗aRおよびRとからなる並列モニタが接続される。Dはドレイン、Gはゲート、Sはソースであり、ボディダイオードを有するMOSFETを構成している。   FIG. 1A shows an embodiment of a parallel monitor in an electric double layer capacitor charging circuit having the parallel monitor of the present invention. In FIG. 1 (a), I is a charging current, C is a single cell of an electric double layer capacitor, and in parallel with this capacitor single cell C, it is composed of one MOSFET and two resistors aR and R in parallel. A monitor is connected. D is a drain, G is a gate, and S is a source, which constitutes a MOSFET having a body diode.

この回路の動作を説明すると、定電流電源からの電流によってキャパシタ単セルの充電を始めるが、MOSFETのゲート・ソース端子はキャパシタの単セルと並列であり、MOSFETのゲート・ソース間電圧はキャパシタ単セルの分圧である。而して、充電初期にはキャパシタ単セルの端子電圧も低いから、ゲート・ソース間電圧は閾値以下となりMOSFETに電流は流れず、充電電流は専らキャパシタ単セル側に流れ、電気二重層キャパシタの単セルの端子電圧は線形的に上昇していく。   To explain the operation of this circuit, the capacitor single cell starts to be charged by the current from the constant current power source, but the gate and source terminals of the MOSFET are in parallel with the single cell of the capacitor, and the voltage between the gate and source of the MOSFET is the single capacitor. This is the partial pressure of the cell. Thus, since the terminal voltage of the capacitor single cell is also low at the beginning of charging, the gate-source voltage is below the threshold value, no current flows through the MOSFET, the charging current flows exclusively to the capacitor single cell side, and the electric double layer capacitor The terminal voltage of a single cell increases linearly.

そして、キャパシタ単セルの端子電圧が単セルの耐電圧に近づくと、MOSFETのゲート・ソース間電圧が閾値を超えてMOSFETにも電流は流れ始め、その後さらにゲート・ソース間電圧も上昇するから充電電流は全てMOSFETに流れ、キャパシタ単セル側には流れることなくバイパスされる。こうして、キャパシタ単セルの充電動作は停止し端子電圧の上昇はストップする。   When the terminal voltage of the capacitor single cell approaches the withstand voltage of the single cell, the voltage between the gate and source of the MOSFET exceeds the threshold value, and the current begins to flow through the MOSFET, and then the voltage between the gate and source further increases. All current flows through the MOSFET and is bypassed without flowing to the capacitor single cell side. Thus, the charging operation of the capacitor single cell is stopped, and the increase of the terminal voltage is stopped.

処で、キャパシタ単セルの端子電圧が丁度単セルの耐電圧となったときに充電電流をストップさせ、MOSFET側にバイパスさせるようにするためには、予め、MOSFETのゲート・ソース間電圧対ドレイン電流特性を調べておくことによって、分圧抵抗R、aRのaを決定する。抵抗R、aRを流れる電流を、充電電流に比し十分無視できるような値とすべく、抵抗をkΩ台の値とする。   By the way, in order to stop the charging current when the terminal voltage of the capacitor single cell has just reached the withstand voltage of the single cell and bypass it to the MOSFET side, the voltage between the gate and the source of the MOSFET versus the drain in advance. By examining the current characteristics, a of the voltage dividing resistors R and aR is determined. In order to set the current flowing through the resistors R and aR to a value that can be sufficiently ignored as compared with the charging current, the resistor is set to a value in the order of kΩ.

本発明の並列モニタを有する電気二重層キャパシタの充電回路における並列モニタのMOSFETには、図1(a)に示すように、ボディダイオードを有している。このボディダイオードは、キャパシタ単セルの逆方向充電を阻止する利点もある。   The MOSFET of the parallel monitor in the electric double layer capacitor charging circuit having the parallel monitor of the present invention has a body diode as shown in FIG. This body diode also has an advantage of preventing reverse charging of the capacitor single cell.

次に、本発明においては、直列に接続された全ての単セルの満充電検出には、コンパレータを利用している。全ての単セルが見掛け上の満充電になると、図4に示すコンパレータ(Comp)出力がLowレベルからHighレベルとなり、このコンパレータからの出力信号によってMOSFET(Q1)がオフからオンとなる。この動作によって各単セルの並列モニタであるMOSFETのゲート電圧がダイオードD1〜D4を介して接地されるから、全てのMOSFET(並列モニタ)はオフとなり各並列モニタは電子的に充電回路から切り離される。 その際、各並列モニタの抵抗aR、Rには充電電流の一部が流れるが、抵抗aR、Rの抵抗値はkΩ台の値でありこの抵抗による消費電力は殆ど問題とならない。   Next, in the present invention, a comparator is used for full charge detection of all single cells connected in series. When all the single cells are apparently fully charged, the output of the comparator (Comp) shown in FIG. 4 is changed from the low level to the high level, and the MOSFET (Q1) is turned on from off by the output signal from the comparator. By this operation, the gate voltage of the MOSFET which is the parallel monitor of each single cell is grounded via the diodes D1 to D4, so that all the MOSFETs (parallel monitor) are turned off and each parallel monitor is electronically disconnected from the charging circuit. . At this time, a part of the charging current flows through the resistors aR and R of each parallel monitor, but the resistance values of the resistors aR and R are in the order of kΩ, and the power consumption due to these resistors hardly poses a problem.

本発明においては、コンパレータ(Comp)をヒステリシスコンパレータとし、定電流充電から定電圧充電(緩和充電)への切り換え時にキャパシタ電圧の低下によって再びMOSFET(Q1)がオンからオフとなるのを防止している。   In the present invention, the comparator (Comp) is a hysteresis comparator to prevent the MOSFET (Q1) from being turned on again from being turned off due to a decrease in the capacitor voltage when switching from constant current charging to constant voltage charging (relaxation charging). Yes.

図1(a)に、本発明の並列モニタを有する電気二重層キャパシタの充電回路における並列モニタの基本回路を示す。並列モニタはMOSFET1箇と抵抗2箇の最小部品点数からなっている。MOSFETのドレインDは、キャパシタ単セルの正極に、ソースSは単セルの負極にそれぞれ接続されており、分圧抵抗R、aRがMOSFETのドレインD・ゲートG間およびゲートG・ソースS間にそれぞれ挿入されている。   FIG. 1A shows a basic circuit of a parallel monitor in a charging circuit for an electric double layer capacitor having the parallel monitor of the present invention. The parallel monitor consists of a minimum number of parts including one MOSFET and two resistors. The drain D of the MOSFET is connected to the positive electrode of the capacitor single cell, and the source S is connected to the negative electrode of the single cell. The voltage dividing resistors R and aR are connected between the drain D and gate G of the MOSFET and between the gate G and source S. Each is inserted.

キャパシタ単セルの充電初期においてはキャパシタ単セルの充電電圧も低く、MOSFETのゲートG・ソースS間電圧は閾値以下であるから充電電流は専らキャパシタ単セル側に流れ、キャパシタ単セルの充電が遂行される。而して、キャパシタ単セルの充電電圧が単セルの耐電圧に近づくと、MOSFETのゲートG・ソースS間電圧が閾値を超え、充電電流はMOSFETとキャパシタ単セルの双方に流れるようになる。その後、ゲートG・ソースS間電圧がさらに上昇し、充電電流の全てがMOSFET側に流れてバイパスされ、キャパシタ単セルの充電動作は停止する。   At the initial stage of charging the capacitor single cell, the charging voltage of the capacitor single cell is also low, and the voltage between the gate G and the source S of the MOSFET is below the threshold value, so that the charging current flows exclusively to the capacitor single cell side and charging of the capacitor single cell is performed. Is done. Thus, when the charging voltage of the capacitor single cell approaches the withstand voltage of the single cell, the voltage between the gate G and the source S of the MOSFET exceeds the threshold value, and the charging current flows through both the MOSFET and the capacitor single cell. Thereafter, the voltage between the gate G and the source S further increases, and all the charging current flows to the MOSFET side and is bypassed, and the charging operation of the capacitor single cell is stopped.

キャパシタ単セルの充電電圧が丁度単セルの耐電圧となったときに充電電流をストップさせ、MOSFET側にバイパスさせるようにするためには、予め、低電圧駆動のMOSFETのドレイン電流I(充電電流)をパラメータにしてソースS・ドレインD間電圧VDS対ゲートG・ソースS間電圧VGS特性を、図2に示す回路によって測定しておく。図3に、その測定結果の一例を示す。この図3に示す測定結果から、分圧抵抗比aを決定する。先ず、キャパシタ単セルの耐電圧が、たとえば2.5Vであるならば、VDS=2.5Vを通る、横軸に平行な直線を引き、充電電流が2Aなら、2Aの曲線との交点をPとすると、P点の横軸座標値VGSが満充電電圧(耐電圧)である。このVDS=2.5VとVGSが=2.0Vを、式VDS=(1+a)VGSに代入してaが決定される。Rは、kΩ台の抵抗値でよい。 In order to stop the charging current when the charging voltage of the capacitor single cell is just the withstand voltage of the single cell and to bypass to the MOSFET side, the drain current I D (charging) The current S) is a parameter, and the voltage V DS between the source S and the drain D versus the voltage V GS between the gate G and the source S is measured by the circuit shown in FIG. FIG. 3 shows an example of the measurement result. From the measurement result shown in FIG. 3, the voltage dividing resistance ratio a is determined. First, if the withstand voltage of the capacitor single cell is 2.5V, for example, draw a straight line passing through V DS = 2.5V and parallel to the horizontal axis. If the charging current is 2A, the intersection with the 2A curve Assuming P, the horizontal coordinate value V GS at point P is the full charge voltage (withstand voltage). A is determined by substituting V DS = 2.5 V and V GS = 2.0 V into the formula V DS = (1 + a) V GS . R may be a resistance value in the order of kΩ.

通常、電気二重層キャパシタは同一品種で容量が等しい単セルを直列接続するので、全ての並列モニタのMOSFETも同一メーカー、同一品種を使用すれば、上記、ゲートG・ソースS間電圧VGS特性の測定は一度でよく、満充電電圧(耐電圧)のばらつきは誤差範囲である。電気二重層キャパシタを二次電池として使用する場合、並列モニタの消費電力は最初の充電において最大であり、二回目以降の充電における並列モニタの消費電力は並列モニタの動作時間が短くなるためさほど大きくはならない。これは、最初の充電で各単セルが満充電でリセットされるためである。 Normally, electric double layer capacitors are connected in series with single cells of the same type and the same capacity. Therefore, if the same manufacturer and type are used for the MOSFETs of all parallel monitors, the above-mentioned voltage V GS characteristics between the gate G and the source S are used. This measurement may be performed once, and the variation in full charge voltage (withstand voltage) is within an error range. When an electric double layer capacitor is used as a secondary battery, the power consumption of the parallel monitor is the maximum in the first charge, and the power consumption of the parallel monitor in the second and subsequent charging is so large that the operation time of the parallel monitor is shortened. Must not. This is because each single cell is reset at full charge in the first charge.

図4に、電気二重層キャパシタの単セルを4箇直列に接続した、電気二重層キャパシタの充電回路を示す。各単セルには、並列モニタが単セルに並列に接続されており、並列モニタ切り離し回路の動作によって各単セルの緩和充電時に充電回路から切り離される。全ての単セルが見掛け上の満充電電圧Vfullになると、ヒステリシスコンパレータ(Comp)がそれを検知してその出力をオフからオンに切り換える。これによって、MOSFET(Q1)がオフからオンとなり、各並列モニタのゲート電圧はダイオードD1〜D4を通して接地される。 FIG. 4 shows a charging circuit for an electric double layer capacitor in which four single cells of the electric double layer capacitor are connected in series. A parallel monitor is connected to each single cell in parallel with the single cell, and is disconnected from the charging circuit during relaxation charging of each single cell by the operation of the parallel monitor disconnection circuit. When all the single cells have an apparent full charge voltage V full , a hysteresis comparator (Comp) detects it and switches its output from off to on. As a result, the MOSFET (Q1) is turned on from off, and the gate voltage of each parallel monitor is grounded through the diodes D1 to D4.

ここで、各単セルの負極(ソース電圧)は全て正の電圧であるから、並列モニタにおけるMOSFETのゲートG・ソースS間電圧VGSは閾値以下となり、各並列モニタは充電回路から切り離された状態となる。この状態の検知(視認)は、発光ダイオードLED1で行うことができる。 Here, since the negative electrode (source voltage) of each single cell is all a positive voltage, the voltage V GS between the gate G and the source S of the MOSFET in the parallel monitor is less than the threshold value, and each parallel monitor is disconnected from the charging circuit. It becomes a state. Detection (visual recognition) of this state can be performed by the light emitting diode LED1.

そして、充電用電源コントローラでスイッチSW1が定電流源から定電圧源に切り換わると、所定の時間緩和充電に入る。この緩和充電期間にあっては、並列モニタは充電回路から切り離された状態で充電が行なわれるため、各単セルには真の満充電が得られキャパシタの蓄電量が最大となる。   When the switch SW1 is switched from the constant current source to the constant voltage source by the charging power supply controller, relaxation charging is started for a predetermined time. In this relaxed charging period, the parallel monitor is charged while being disconnected from the charging circuit, so that each single cell is fully charged and the amount of charge stored in the capacitor is maximized.

コンパレータ(Comp)は、充電用電源の切り換え時に、自己放電によって単セルの端子電圧が降下してMOSFET(Q1)がオフとなって再び並列モニタが動作して各単セルの充電電荷が並列モニタ側に流れることがないよう、ヒステリシスコンパレータとしている。   The comparator (Comp), when the charging power source is switched, the terminal voltage of the single cell drops due to self-discharge, the MOSFET (Q1) is turned off and the parallel monitor operates again, and the charge charge of each single cell is monitored in parallel. Hysteresis comparator is used so that it does not flow to the side.

図5に、図4に示す充電回路において、さらに電力損失を小ならしめるようにした回路を示す。電気二重層キャパシタの単セルをn箇直列に接続し、kを抵抗分圧係数とすると、   FIG. 5 shows a circuit in which the power loss is further reduced in the charging circuit shown in FIG. When n single cells of an electric double layer capacitor are connected in series and k is a resistance voltage dividing coefficient,

Figure 2005168231
Figure 2005168231

ヒステリシス幅は、Vfull −Vfull である。図4に示す回路では、緩和充電期間にも小さな電流ではあるが、各並列モニタの抵抗aRに電流が流れる。これらの電流は、並列モニタ4のaR電流>並列モニタ3のaR電流>並列モニタ2のaR電流>並列モニタ1のaR電流の順の大きさとなる。これらの電流がさらに小さくなるように改善した充電回路が、図5に示す回路である。ダイオードD1〜D4にそれぞれ直列に抵抗r4〜r1を接続して分圧抵抗を流れる電流を小さくしている。このときの抵抗値の設定は、r4>r3>r2>r1の順となる。 The hysteresis width is V full + −V full . In the circuit shown in FIG. 4, a current flows through the resistance aR of each parallel monitor although the current is small even during the relaxation charging period. These currents are in the order of aR current of the parallel monitor 4> aR current of the parallel monitor 3> aR current of the parallel monitor 2> aR current of the parallel monitor 1. The charging circuit improved so that these currents are further reduced is the circuit shown in FIG. Resistors r4 to r1 are connected in series to the diodes D1 to D4, respectively, to reduce the current flowing through the voltage dividing resistor. The resistance values are set in the order of r4>r3>r2> r1.

図1(b)に、図1(a)に示す並列モニタにおいて、発光ダイオードLEDを分圧抵抗Rに直列に接続して、各単セルの満充電電圧を視認できるようにした回路を示す。この実施例においては、実施例1における式VDS=(1+a)VGSに代えて式VDS=(1+a)VGS−aVを適用する。ここで、Vは発光ダイオードLEDの順電圧であり、抵抗Rは発光ダイオードLEDが点灯するように抵抗値を選ぶため、図1(a)に示す実施形態に比し消費電力は少し増大する。電気二重層キャパシタの充電回路としてのその余の構成は、実施例1または、実施例2におけると同様である。 FIG. 1B shows a circuit in which the light emitting diode LED is connected in series with the voltage dividing resistor R in the parallel monitor shown in FIG. 1A so that the full charge voltage of each single cell can be visually recognized. In this embodiment, instead of the formula V DS = (1 + a) V GS in Example 1 to apply the expression V DS = (1 + a) V GS -aV F. Here, V F is the forward voltage of the light emitting diode LED, the resistor R is to select a resistance value as light emitting diodes LED lights, the power consumption compared to the embodiment shown in FIG. 1 (a) slightly increases . The rest of the configuration of the electric double layer capacitor as the charging circuit is the same as in the first or second embodiment.

図1(c)に、並列モニタにおけるMOSFETの温度変化に起因する満充電電圧の変動を抑えるべく、MOSFETのソースSに直列に小さな抵抗Rを挿入して、より安定度を増すように改善した回路を示す。この実施例においては、予め、図2に示す回路でMOSFETのドレイン電流I(充電電流となる)をパラメータとしてVDE対VGE特性を測定しておく。この実施例における分圧抵抗比aの決定には式VDE=(1+a)VGEを用いる。電気二重層キャパシタの充電回路としてのその余の構成は、実施例1または、実施例2におけると同様である。 In FIG. 1 (c), in order to suppress the fluctuation of the full charge voltage caused by the temperature change of the MOSFET in the parallel monitor, a small resistance R S is inserted in series with the source S of the MOSFET to improve the stability. The circuit is shown. In this embodiment, the V DE vs. V GE characteristic is measured in advance with the circuit shown in FIG. 2 using the MOSFET drain current I D (which becomes the charging current) as a parameter. The equation V DE = (1 + a) V GE is used to determine the voltage dividing resistance ratio a in this embodiment. The rest of the configuration of the electric double layer capacitor as the charging circuit is the same as in the first or second embodiment.

本発明は、大容量キャパシタであるレドックスフロー電池などの充電にも適用できるほか、種々のパワーエレクトロニクス用電源に応用できる。   The present invention can be applied not only to charging a redox flow battery that is a large-capacity capacitor but also to various power electronics power sources.

本発明の一実施例に係る並列モニタを示す回路図であって、(a)並列モニタの基本回路を示す回路図(b)単セルの満充電を視認可能にすべく、発光ダイオードLEDをバイアス抵抗Rに直列に挿入した回路を示す回路図(c)並列回路を構成するMOSFETの温度変化に起因するバイアスの変動を抑えるべく、MOSFETのソースSに小さな抵抗を直列に挿入した回路を示す回路図FIG. 2 is a circuit diagram showing a parallel monitor according to an embodiment of the present invention, wherein (a) a circuit diagram showing a basic circuit of the parallel monitor, (b) a light emitting diode LED is biased to make a full charge of a single cell visible. A circuit diagram showing a circuit inserted in series with the resistor R. (c) A circuit showing a circuit in which a small resistor is inserted in series with the source S of the MOSFET in order to suppress fluctuations in bias due to temperature changes of the MOSFETs constituting the parallel circuit. Figure 本発明における並列モニタのドレイン電流I−ゲート・ソース間電圧VGS特性測定用回路を示す回路図4 is a circuit diagram showing a circuit for measuring drain current I D -gate-source voltage V GS characteristics of a parallel monitor according to the present invention. 図2に示す回路で、IをパラメータとしてVDS−VGS 特性を測定した結果の一例を示すグラフFIG. 2 is a graph showing an example of the result of measuring the V DS -V GS characteristic using the ID as a parameter in the circuit shown in FIG. 本発明の一実施例に係る、4箇の単セルを直列に接続した電気二重層キャパシタの充電用回路を示す回路図The circuit diagram which shows the circuit for charge of the electric double layer capacitor which connected the four single cells in series based on one Example of this invention 本発明の他の実施例に係る、4箇の単セルを直列に接続した電気二重層キャパシタの充電用回路を示す回路図The circuit diagram which shows the circuit for charge of the electric double layer capacitor which connected the four unit cells based on the other Example of this invention in series

符号の説明Explanation of symbols

I 充電電流
C キャパシタ単セル
D ドレイン
G ゲート
S ソース
aR 分圧抵抗
R 分圧抵抗
LED 発光ダイオード
抵抗
E ソース
Comp コンパレータ
D1〜D4 ダイオード
SW1 スイッチ
Q1 並列モニタのゲート電圧制御用MOSFET
r1〜r4 抵抗
I charging current C capacitor single cell D drain G gate S source aR voltage dividing resistor R voltage dividing resistor LED light emitting diode RS resistance E source Comp comparator D1 to D4 diode SW1 switch Q1 MOSFET for gate voltage control of parallel monitor
r1-r4 resistance

Claims (5)

単セルを直列に接続した電気二重層キャパシタの充電回路であって、各単セルに対して電界効果型トランジスタ(FET)又は絶縁ゲート型バイポーラトランジスタ(IGBT)1箇と分圧抵抗2箇からなる並列モニタを配設するとともに、前記直列に接続された全ての電気二重層キャパシタの満充電を検知するヒステリシスコンパレータおよび該ヒステリシスコンパレータからの出力信号を入力されて各並列モニタのFETのゲート電圧を、ダイオードD1,----,Dnを介してターンオン、ターンオフに制御できる電界効果型トランジスタ(FET)ならびに定電流源および定電圧源何れかにスイッチする充電用電源コントローラとからなり、前記直列に接続された全ての電気二重層キャパシタが満充電となった時点でそれを検知して各並列モニタを電子的に充電回路から切り離すとともに、充電用電源コントローラを定電流源から定電圧源にスイッチし緩和充電に移行するよう構成してなる並列モニタを有する電気二重層キャパシタ充電回路。   A charging circuit for an electric double layer capacitor in which single cells are connected in series, each of which includes one field effect transistor (FET) or insulated gate bipolar transistor (IGBT) and two voltage dividing resistors. A parallel monitor is provided, and a hysteresis comparator that detects the full charge of all the electric double layer capacitors connected in series and an output signal from the hysteresis comparator are input, and the gate voltage of each parallel monitor FET is It consists of a field effect transistor (FET) that can be turned on and off via diodes D1, ----, Dn, and a charging power supply controller that switches to either a constant current source or a constant voltage source. When all the electric double layer capacitors that have been fully charged are detected, An electric double layer capacitor charging circuit having a parallel monitor configured to electronically disconnect the column monitor from the charging circuit and switch the charging power supply controller from a constant current source to a constant voltage source to shift to relaxed charging. 各単セルの満充電を視認可能にすべく、発光ダイオード(LED)を、ソース側分圧抵抗に直列に接続してなる請求項1に記載の並列モニタを有する電気二重層キャパシタ充電回路。   The electric double layer capacitor charging circuit having a parallel monitor according to claim 1, wherein a light emitting diode (LED) is connected in series with a source side voltage dividing resistor so that a full charge of each single cell can be visually recognized. 並列モニタを構成する電界効果型トランジスタ(FET)に、温度変化に起因するバイアスの変動を小ならしめるべく、ソースに直列に抵抗を接続してなる請求項1又は請求項2に記載の並列モニタを有する電気二重層キャパシタ充電回路。   The parallel monitor according to claim 1 or 2, wherein a field effect transistor (FET) constituting the parallel monitor is connected to a resistor in series with a source so as to reduce a variation in bias due to a temperature change. An electric double layer capacitor charging circuit. 各並列モニタにおける電界効果型トランジスタ(FET)のゲート電圧をダイオードを介して接地する回路におけるゲートとダイオード間に抵抗を介挿し、分圧抵抗を流れる電流を小さくするよう構成してなる請求項1乃至請求項3何れかに記載の並列モニタを有する電気二重層キャパシタ充電回路。   2. A structure in which a resistor is inserted between a gate and a diode in a circuit in which a gate voltage of a field effect transistor (FET) in each parallel monitor is grounded via a diode, so that a current flowing through the voltage dividing resistor is reduced. An electric double layer capacitor charging circuit comprising the parallel monitor according to claim 3. 各並列モニタが充電回路から切り離されたことを視認可能にすべく、発光ダイオード(LED)を、ヒステリシスコンパレータ出力の接地抵抗に直列に接続してなる請求項1乃至請求項3何れかに記載の並列モニタを有する電気二重層キャパシタ充電回路。
The light emitting diode (LED) is connected in series to a ground resistance of a hysteresis comparator output so that it can be visually recognized that each parallel monitor is disconnected from the charging circuit. An electric double layer capacitor charging circuit having a parallel monitor.
JP2003406006A 2003-12-04 2003-12-04 Charging circuit for electric double layer capacitor with parallel monitor Expired - Fee Related JP4066261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406006A JP4066261B2 (en) 2003-12-04 2003-12-04 Charging circuit for electric double layer capacitor with parallel monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406006A JP4066261B2 (en) 2003-12-04 2003-12-04 Charging circuit for electric double layer capacitor with parallel monitor

Publications (2)

Publication Number Publication Date
JP2005168231A true JP2005168231A (en) 2005-06-23
JP4066261B2 JP4066261B2 (en) 2008-03-26

Family

ID=34728512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406006A Expired - Fee Related JP4066261B2 (en) 2003-12-04 2003-12-04 Charging circuit for electric double layer capacitor with parallel monitor

Country Status (1)

Country Link
JP (1) JP4066261B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130534A (en) * 2009-12-15 2011-06-30 Ud Trucks Corp Power supply device for vehicle
CN102651563A (en) * 2011-02-25 2012-08-29 香港理工大学 Battery energy balancing circuit
JP2012522599A (en) * 2009-04-02 2012-09-27 ケール コーポレーション Dental light device
CN103545873A (en) * 2012-07-17 2014-01-29 株式会社半导体能源研究所 Charging device
US9072572B2 (en) 2009-04-02 2015-07-07 Kerr Corporation Dental light device
US9572643B2 (en) 1998-01-20 2017-02-21 Kerr Corporation Apparatus and method for curing materials with radiation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9572643B2 (en) 1998-01-20 2017-02-21 Kerr Corporation Apparatus and method for curing materials with radiation
US9622839B2 (en) 1998-01-20 2017-04-18 Kerr Corporation Apparatus and method for curing materials with radiation
JP2012522599A (en) * 2009-04-02 2012-09-27 ケール コーポレーション Dental light device
US9066777B2 (en) 2009-04-02 2015-06-30 Kerr Corporation Curing light device
US9072572B2 (en) 2009-04-02 2015-07-07 Kerr Corporation Dental light device
US9693846B2 (en) 2009-04-02 2017-07-04 Kerr Corporation Dental light device
US9730778B2 (en) 2009-04-02 2017-08-15 Kerr Corporation Curing light device
US9987110B2 (en) 2009-04-02 2018-06-05 Kerr Corporation Dental light device
JP2011130534A (en) * 2009-12-15 2011-06-30 Ud Trucks Corp Power supply device for vehicle
CN102651563A (en) * 2011-02-25 2012-08-29 香港理工大学 Battery energy balancing circuit
CN103545873A (en) * 2012-07-17 2014-01-29 株式会社半导体能源研究所 Charging device
JP2014039459A (en) * 2012-07-17 2014-02-27 Semiconductor Energy Lab Co Ltd Charger

Also Published As

Publication number Publication date
JP4066261B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
CN110140057B (en) Voltage detection integrated circuit and battery management system including the same
US20200119568A1 (en) System and method for charging a battery pack
US10309841B2 (en) Temperature detecting apparatus
US9263902B2 (en) Battery management system and battery pack having the same
WO2013145853A1 (en) Electronic control apparatus
US11342770B2 (en) Charge and power supply circuit for a portable electronic device, and portable electronic device
US20130271092A1 (en) Ultra-Capacitor Based Energy Storage for Appliances
CN111969577A (en) Low-power-consumption reverse connection protection circuit for vehicle and control method thereof
JP2008191137A (en) Voltage detector for charge storage element
JP4066261B2 (en) Charging circuit for electric double layer capacitor with parallel monitor
CN106712200B (en) Automobile starting power supply based on super capacitor
JP5823098B2 (en) Cell balance system
US8476877B2 (en) Fuel cell system and power management method thereof
US20230018700A1 (en) Electronic circuit unit and battery pack
CN102484472A (en) Load driving device
CN113708427B (en) Charging power supply circuit for portable electronic device and portable electronic device
JP2015073377A (en) Solar cell power supply device
KR102360014B1 (en) Battery management system and batterm management method
CN214124889U (en) Charging and discharging circuit of series super capacitor
JP2008306878A (en) Dc power switch
CN113945754B (en) Power-down protection circuit and protection method
JP2020202640A (en) Cut-off circuit
CN211240200U (en) Power supply control circuit
CN219085102U (en) Detection gating module, battery management system and battery management chip
CN111521864B (en) Singlechip voltage and current acquisition switch control circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees