JP2015073377A - Solar cell power supply device - Google Patents
Solar cell power supply device Download PDFInfo
- Publication number
- JP2015073377A JP2015073377A JP2013208007A JP2013208007A JP2015073377A JP 2015073377 A JP2015073377 A JP 2015073377A JP 2013208007 A JP2013208007 A JP 2013208007A JP 2013208007 A JP2013208007 A JP 2013208007A JP 2015073377 A JP2015073377 A JP 2015073377A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- solar cell
- detection
- charging
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本発明は、太陽電池電源装置に関する。 The present invention relates to a solar cell power supply device.
以下の特許文献においては、太陽電池の出力が低下する状態においても、太陽電池の出力で二次電池を効率よく充電するために、太陽電池システムは、太陽電池と、太陽電池で充電される二次電池と、太陽電池の出力を二次電池に供給する安定化回路と、太陽電池の出力を安定化回路にバイパスして二次電池に出力するスイッチング素子と、スイッチング素子をオンオフに制御する制御回路とを備え、制御回路は、太陽電池の出力が所定の時間連続して又は一時的に設定値よりも低下する状態で、スイッチング素子をオン状態に切り換えて、太陽電池の出力をスイッチング素子を介して二次電池に供給して充電している。 In the following patent documents, in order to efficiently charge the secondary battery with the output of the solar cell even when the output of the solar cell is lowered, the solar cell system is charged with the solar cell and the solar cell. Secondary battery, stabilization circuit for supplying the output of the solar battery to the secondary battery, switching element for bypassing the output of the solar battery to the stabilization circuit and outputting to the secondary battery, and control for controlling the switching element on and off A control circuit, wherein the control circuit switches the switching element to an ON state in a state where the output of the solar battery continuously or temporarily falls below a set value for a predetermined time, and the output of the solar battery The secondary battery is supplied via the battery and charged.
上記従来のような太陽電池電源装置においては、太陽電池からの出力が小さいときは、電池パックからの出力にて、制御回路を駆動状態として、各種の電圧を検出する等が必要となる。 In the conventional solar battery power supply device, when the output from the solar battery is small, it is necessary to detect various voltages by driving the control circuit with the output from the battery pack.
本発明は、太陽電池からの出力が小さいときでも、電池からの出力電力を低減する太陽電池装置を提供することを目的とする。 An object of this invention is to provide the solar cell apparatus which reduces the output electric power from a battery, even when the output from a solar cell is small.
本発明の太陽電池電源装置は、太陽電池から二次電池を充電する充電経路に直列に配置されたスイッチング素子をオンオフに制御し、充電表示部の表示を制御する制御部と、前記充電経路から電力を供給され、前記制御部に駆動電力を供給する電源部と、前記電源部に電力を供給する、前記太陽電池から出力される前記充電経路からの電力供給経路と、前記二次電池からの電力供給経路とを備え、前記太陽電池からの電流が所定検出電流値を超えることを検出する検出回路を、前記充電経路に並列に配置し、前記検出回路からの検出出力信号により、前記制御部が充電表示部を表示状態とし、前記スイッチング素子をオン状態として、前記二次電池を充電し、前記太陽電池からの供給電流が前記検出回路の前記所定検出電流値未満のとき、前記電源部への電力供給を前記二次電池からの電力供給経路から行い、前記太陽電池からの供給電流が前記所定検出電流値以上のとき、前記電源部への電力供給を前記太陽電池からの電力供給経路から行い、前記検出回路の前記所定検出電流値を、前記電源部の駆動電流値以上とし、前記スイッチング素子がオン状態になることより、前記太陽電池の出力電圧が、前記二次電池の電圧になることで、この電圧が印加される前記検出回路が検出停止状態となることを特徴とする。 The solar battery power supply device of the present invention controls a switching element arranged in series in a charging path for charging a secondary battery from a solar battery, and controls the display of a charging display unit from the charging path. A power supply unit that is supplied with power and supplies driving power to the control unit, a power supply path from the charging path that is output from the solar cell, and that supplies power to the power supply unit, and from the secondary battery A power supply path, and a detection circuit that detects that the current from the solar cell exceeds a predetermined detection current value is arranged in parallel with the charging path, and the control unit is configured to detect the detection output signal from the detection circuit. When the charging display unit is in the display state, the switching element is in the on state, the secondary battery is charged, and when the supply current from the solar cell is less than the predetermined detection current value of the detection circuit, Power is supplied to the power supply unit from the power supply path from the secondary battery, and when the supply current from the solar cell is equal to or greater than the predetermined detection current value, the power supply to the power supply unit is supplied from the solar battery. Since the predetermined detection current value of the detection circuit is equal to or higher than the drive current value of the power supply unit and the switching element is turned on, the output voltage of the solar cell is changed from that of the secondary battery. When the voltage is reached, the detection circuit to which the voltage is applied is in a detection stop state.
また、前記充電経路から前記電源部に電力を供給する太陽電池からの電力供給経路には、ダイオードを備える。前記二次電池からの電力供給経路には、ダイオードを備える。 The power supply path from the solar cell that supplies power from the charging path to the power supply unit includes a diode. A power supply path from the secondary battery includes a diode.
そして、前記検出回路は、前記充電経路において並列に逆バイアスになるようにツェナーダイオードを有し、前記ツェナーダイオードの降伏電圧は、前記太陽電池の開放電圧より小さく、前記二次電池の電圧より大きい。 The detection circuit includes a Zener diode so as to be reverse-biased in parallel in the charging path, and a breakdown voltage of the Zener diode is smaller than an open voltage of the solar cell and larger than a voltage of the secondary battery. .
更に、充電電流を検出する充電電流検出部を備え、該充電電流検出部からの検出信号に基づき、前記制御部が、前記スイッチング素子をオン状態とし、前記充電表示部を表示状態する。 Further, a charging current detection unit for detecting a charging current is provided, and based on a detection signal from the charging current detection unit, the control unit turns on the switching element and displays the charging display unit.
本発明においては、検出回路の所定検出電流値を、電源部の駆動電流値と概略同じ程度(或いはそれ以上)に設定していることより、太陽電池から供給される電流が、電源部Vの駆動電流より大きくなるため、電源部への電力供給を二次電池からの電力供給経路より行うことがなく、二次電池の電力消費を、おさえることができる。 In the present invention, since the predetermined detection current value of the detection circuit is set to approximately the same level (or higher) as the drive current value of the power supply unit, the current supplied from the solar cell is Since it becomes larger than the drive current, the power supply to the power supply unit is not performed through the power supply path from the secondary battery, and the power consumption of the secondary battery can be suppressed.
本発明の実施例を、図を用いて詳細に説明する。図1に示すように、本実施例においては、太陽電池Sから二次電池1を充電する充電経路L1に直列に配置されたスイッチング素子SW1をオンオフに制御し、充電表示部Dの表示を制御する制御部Mを備えている。制御部Mは、マイコンを搭載している。また、二次電池1は、複数の素電池を直列又は並列接続したものでも良い。 Embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, in this embodiment, the switching element SW1 arranged in series in the charging path L1 for charging the secondary battery 1 from the solar battery S is controlled to be turned on / off, and the display of the charging display unit D is controlled. A control unit M is provided. The control unit M is equipped with a microcomputer. Further, the secondary battery 1 may be a plurality of unit cells connected in series or in parallel.
ここで、太陽電池Sからの出力、或いは、二次電池1からの出力により、負荷(例えば、LED照明機器)が動作される。 Here, a load (for example, LED lighting device) is operated by the output from the solar battery S or the output from the secondary battery 1.
充電経路L1から電力を供給され、制御部Mに駆動電力を供給する電源部Vを備えている。電源部Vは、太陽電池Sから出力される充電経路L1からの電力供給経路L2から電力供給され、また、二次電池1からの電力供給経路L3から電力供給される。電力供給経路L2においては、ダイオードD1を備えており、電力供給経路L3においては、ダイオードD2を備えている。 A power supply unit V that is supplied with power from the charging path L1 and supplies driving power to the control unit M is provided. The power supply unit V is supplied with power from the power supply path L2 from the charging path L1 output from the solar battery S and is supplied with power from the power supply path L3 from the secondary battery 1. The power supply path L2 includes a diode D1, and the power supply path L3 includes a diode D2.
図2は、太陽電池Sの出力特性を示すグラフである。この太陽電池Sは、無負荷(=開放)での出力電圧を約7.5Vとし、短絡状態で出力電流を、晴れのとき、例えば、0.5Aとする。太陽電池Sの出力は、図2のように、晴れ、少し曇り、曇り(限界)時の電圧−電流カーブとなる。さらに、接続される二次電池1により、この曲線上の点で動作することになる。本実施例のおいては、ニッケル水素電池の素電池を4個直列に接続しており、約4Vにて充電されることより、曲線と約4Vとの点線との交点(動作点)の電圧、電流で、太陽電池Sから出力されることになる。 FIG. 2 is a graph showing the output characteristics of the solar cell S. In this solar cell S, the output voltage at no load (= open) is set to about 7.5 V, and the output current in a short circuit state is set to, for example, 0.5 A when it is clear. The output of the solar cell S becomes a voltage-current curve when it is clear, slightly cloudy, and cloudy (limit) as shown in FIG. Further, the secondary battery 1 to be connected operates at a point on this curve. In this embodiment, four nickel-metal hydride battery cells are connected in series, and are charged at about 4V, so that the voltage at the intersection (operating point) between the curve and the dotted line of about 4V. The current is output from the solar cell S with current.
曇り(限界)においては、図2に示すように、動作点が低い電流となるため、曇り、朝方又は夕方の太陽の照度が低いときにおいては、太陽電池Sからの出力電流は、小さくなる。また、夜間においては、太陽電池Sからの出力電流はゼロとなる。 In cloudy (limit), as shown in FIG. 2, since the operating point has a low current, the output current from the solar cell S is small when cloudy or when the illuminance of the sun in the morning or evening is low. At night, the output current from the solar battery S is zero.
太陽電池Sからの電流が所定検出電流値を超えること(供給電流は、電源部と検出回路両方に流れる)を検出する検出回路2を、充電経路L1に並列に配置している。 A detection circuit 2 that detects that the current from the solar cell S exceeds a predetermined detection current value (the supply current flows through both the power supply unit and the detection circuit) is arranged in parallel with the charging path L1.
検出回路2からの検出出力信号により、制御部Mが充電表示部Dを表示状態とし、スイッチング素子SW1をオン状態として、二次電池1を充電する。 Based on the detection output signal from the detection circuit 2, the control unit M sets the charging display unit D to the display state, and turns on the switching element SW <b> 1 to charge the secondary battery 1.
太陽電池Sから検出回路2に供給される電流が検出回路2の所定検出電流値(太陽電池Sから供給される全電流は、正確には、これに、電源の駆動電流値を加えた値)未満のとき、電源部Vへの電力供給を二次電池1からの電力供給経路L3から行い、太陽電池Sからの供給電流が所定検出電流値以上のとき、電源部Vへの電力供給を太陽電池からの電力供給経路L2から行う。 The current supplied from the solar cell S to the detection circuit 2 is a predetermined detection current value of the detection circuit 2 (the total current supplied from the solar cell S is precisely a value obtained by adding the drive current value of the power source to this) When the power supply voltage is less than the value, power is supplied to the power supply unit V from the power supply path L3 from the secondary battery 1, and when the supply current from the solar cell S is equal to or greater than a predetermined detection current value, This is performed from the power supply path L2 from the battery.
検出回路2は、図1に示すように、充電経路L1において並列に逆バイアスになるようにツェナーダイオードVZD1を有し、ツェナーダイオードVZD1の降伏電圧は、太陽電池Sの開放電圧より小さく、二次電池1の電圧より大きくしてある。 As shown in FIG. 1, the detection circuit 2 has a Zener diode VZD1 so as to be reverse-biased in parallel in the charging path L1, and the breakdown voltage of the Zener diode VZD1 is smaller than the open-circuit voltage of the solar cell S. The voltage is higher than that of the battery 1.
ツェナーダイオードVZD1と直列に抵抗R2、抵抗R3が接続され、抵抗R3の他端が接地されている。ツェナーダイオードVZD1と抵抗R2との間には、n型トランジスタQ1のベースが接続され、コレクタ側に抵抗R1を接続し、抵抗R1の他端をツェナーダイオードVZD1側に接続している。トランジスタQ1のエミッター側は、接地されている。 A resistor R2 and a resistor R3 are connected in series with the Zener diode VZD1, and the other end of the resistor R3 is grounded. The base of the n-type transistor Q1 is connected between the Zener diode VZD1 and the resistor R2, the resistor R1 is connected to the collector side, and the other end of the resistor R1 is connected to the Zener diode VZD1 side. The emitter side of the transistor Q1 is grounded.
また、抵抗R3の両端に、n型トランジスタQ2のベース側、エミッター側を接続している。そして、トランジスタQ2のコレクタ側を、制御部Mに接続している。 Further, the base side and the emitter side of the n-type transistor Q2 are connected to both ends of the resistor R3. The collector side of the transistor Q2 is connected to the control unit M.
以上の構成の検出回路2は、以下のように動作する。太陽電池Sが接続されたり、暗い状態から明るくなることにより、太陽電池Sからの出力電圧、出力電流が大きくなり、ツェナーダイオードVZD1の降伏電圧(約6V、降伏電圧は、太陽電池Sの開放電圧より小さい)を超えるとき、これが導通する。そして、トランジスタQ1のベース側に電圧が加わることによりベース電流が発生し、トランジスタQ1がオン状態となる。また、トランジスタQ1がオンすると抵抗R1にコレクタ電流が発生する。このコレクタ電流が設定値以上になると完全にトランジスタQ1がON状態となり、Vbe(Q1のベース、エミッタ間電圧)が上昇する。Vbe(Q1のベース、エミッタ間電圧)と、抵抗R2と抵抗R3との直列回路とが並列回路となることより、トランジスタQ2のベースには、抵抗R3の分圧が印加されることになり、トランジスタQ2は、オン状態となる。これにより、トランジスタQ2のコレクタ側、即ち、制御部Mに入力端子側は、低電位となることより、これを検出出力信号として、制御部Mは太陽電池Sからの出力が、太陽電池Sから供給され検出回路2を流れる電流値が所定検出電流値以上であることを検出する。 The detection circuit 2 having the above configuration operates as follows. When the solar cell S is connected or brightened from a dark state, the output voltage and output current from the solar cell S increase, and the breakdown voltage of the zener diode VZD1 (about 6 V, the breakdown voltage is the open circuit voltage of the solar cell S). This is conductive when exceeding (less than). Then, when a voltage is applied to the base side of the transistor Q1, a base current is generated, and the transistor Q1 is turned on. When the transistor Q1 is turned on, a collector current is generated in the resistor R1. When the collector current exceeds the set value, the transistor Q1 is completely turned on, and Vbe (the voltage between the base and emitter of Q1) rises. Since Vbe (the base of Q1, the voltage between the emitters) and the series circuit of the resistor R2 and the resistor R3 form a parallel circuit, the divided voltage of the resistor R3 is applied to the base of the transistor Q2. The transistor Q2 is turned on. As a result, the collector side of the transistor Q2, that is, the input terminal side of the control unit M becomes a low potential, and this is used as a detection output signal, and the control unit M outputs the output from the solar cell S from the solar cell S. It is detected that the current value supplied and flowing through the detection circuit 2 is greater than or equal to a predetermined detection current value.
ここで、検出回路2の所定検出電流値を、電源部Vの駆動電流値より大きくしている。 Here, the predetermined detection current value of the detection circuit 2 is made larger than the drive current value of the power supply unit V.
制御部Mを駆動させる電力を供給するために、電源部Vが必要な供給電流は、例えば、約20mAである。検出回路2が、この所定検出電流値(約20mA)以上を、検出するためには、以下の関係が必要である。 In order to supply electric power for driving the control unit M, a supply current required by the power supply unit V is, for example, about 20 mA. In order for the detection circuit 2 to detect this predetermined detection current value (about 20 mA) or more, the following relationship is necessary.
(7.5V(太陽電池Sの電圧) − VZD1(降下電圧) − Vce(Q1のON電圧) )/R1 > 20mA(Q1のIc)
また、Q2がONする場合は、以下の関係が必要である。
(7.5 V (voltage of solar cell S) −VZD1 (voltage drop) −Vce (ON voltage of Q1)) / R1> 20 mA (Ic of Q1)
Further, when Q2 is turned ON, the following relationship is necessary.
Vbe(Q1)×R3/(R2+R3)=Vbe(Q2)>0.6V
以上のような関係を満足する素子の回路構成とすることにより、Q1のコレクタ電流Icが20mA以上にならないと、Q2のVbe(Q2)は0.6V以上にならないためONしない。
Vbe (Q1) × R3 / (R2 + R3) = Vbe (Q2)> 0.6V
By making the circuit configuration of the elements satisfying the above relationship, if the collector current Ic of Q1 does not become 20 mA or more, Vbe (Q2) of Q2 does not become 0.6 V or more, so it does not turn ON.
そして、検出回路2からの検出出力信号により、制御部Mがスイッチング素子SW1をオン状態とすることより、太陽電池Sからの出力電圧は、動作点(二次電池1の電池電圧
約4V)となり、ツェナーダイオードVZD1の降伏電圧約6Vの方が大きいので、検出回路2への通電は、ツェナーダイオードVZD1にて阻止されることになり、検出回路2が検出停止状態となる。
Then, the control unit M turns on the switching element SW1 based on the detection output signal from the detection circuit 2, so that the output voltage from the solar battery S becomes the operating point (battery voltage of the secondary battery 1 is about 4V). Since the breakdown voltage of the Zener diode VZD1 is about 6V, the energization of the detection circuit 2 is blocked by the Zener diode VZD1, and the detection circuit 2 enters the detection stopped state.
また、充電電流を検出するための充電電流検出部3として、二次電池1の充電経路に直列に設置された抵抗RCを備えており、充電電流により該抵抗RCに発生する電圧を制御部Mに入力して、検出信号として、充電電流値を検出している。そして、この充電電流値より、充電の容量値を積算し、充電完了の判定をする。また放電時の電流も積算しているため、使用した分の充電容量で充電を完了させることができる。そして、上記の検出回路2が検出停止状態となるときでも、充電電流が検出でき、制御部Mにより、スイッチング素子SW1のオン状態を維持すると共に、充電表示部Dを表示状態とする。また、曇り状態がひどくなった場合や夕方になると太陽電池の供給能力が低下していき、充電電流検出部3で検出される電流が所定値(例えば、約10mA)以下になると、D1に流れる電流>充電電流となるので、制御部Mは、スイッチング素子SW1をオフすることにより充電を停止させる。この機能により、D2を介して電池電圧から電源部へ電流が供給されることがない。 Further, as the charging current detection unit 3 for detecting the charging current, a resistor RC installed in series in the charging path of the secondary battery 1 is provided, and the voltage generated in the resistor RC by the charging current is controlled by the control unit M. The charging current value is detected as a detection signal. Then, from this charging current value, the capacity value of charging is integrated to determine completion of charging. Moreover, since the electric current at the time of discharge is also integrated, charging can be completed with the used charge capacity. Even when the detection circuit 2 is in the detection stop state, the charging current can be detected, and the control unit M maintains the ON state of the switching element SW1 and sets the charging display unit D to the display state. In addition, when the cloudy state becomes severe or in the evening, the supply capacity of the solar cell decreases, and when the current detected by the charging current detection unit 3 becomes a predetermined value (for example, about 10 mA) or less, it flows to D1. Since current> charge current, the control unit M stops charging by turning off the switching element SW1. With this function, no current is supplied from the battery voltage to the power supply unit via D2.
また、制御部Mの制御により、電池電圧検出回路4におけるスイッチSW2をオン状態として、電池電圧を制御部Mが検出し、過放電や過電圧等を判定している。 Further, under the control of the control unit M, the switch SW2 in the battery voltage detection circuit 4 is turned on, and the control unit M detects the battery voltage and determines overdischarge, overvoltage, and the like.
スイッチング素子SW1がオン状態においては、充電経路に生じる電圧等により、二次電池からの電力供給経路L3より、充電経路L1からの電力供給経路L2の方が、電圧が高い状態となり、電力供給経路L2から、電源部Vに電力が供給されることになる。これにより、二次電池1の電力消費を、おさえることができる。 When the switching element SW1 is in the ON state, the voltage is higher in the power supply path L2 from the charging path L1 than in the power supply path L3 from the secondary battery due to the voltage generated in the charging path. Power is supplied to the power supply unit V from L2. Thereby, the power consumption of the secondary battery 1 can be suppressed.
特に、本実施例においては、検出回路2の所定検出電流値を、電源部Vの駆動電流値と概略同じ程度(或いはそれ以上)に設定していることより、太陽電池Sから供給される電流が、電源部Vの駆動電流より大きくなるため、電源部Vへの電力供給を二次電池1からの電力供給経路L3より行うことがなく、二次電池1の電力消費を、おさえることができる。 In particular, in the present embodiment, the predetermined detection current value of the detection circuit 2 is set to approximately the same level (or higher) as the drive current value of the power supply unit V, so that the current supplied from the solar cell S However, since it becomes larger than the drive current of the power supply unit V, the power supply to the power supply unit V is not performed through the power supply path L3 from the secondary battery 1, and the power consumption of the secondary battery 1 can be suppressed. .
上記の本実施例の作用効果について、比較例を説明することで、より明確にする。図3に示す比較例においては、図1と同等の構成については、同じ符号を付し、説明を省略する。 The operational effects of the present embodiment will be clarified by describing a comparative example. In the comparative example shown in FIG. 3, the same components as those in FIG.
図3においては、検出回路20を、充電経路L1に並列に配置し、太陽電池Sからの出力を、トランジスタQ10のベースに印加し、これのエミッターを接地し、これのコレクタ側を制御部Mに入力している。このような回路構成により、太陽電池Sからの出力により、トランジスタQ10のベースが高電位でオン状態になり、コレクタ側が低電位となることより、制御部Mが太陽電池Sからの出力を検出する。そして、制御部Mは、スイッチング素子SW1をオン状態とし、充電表示部Dを表示状態とする。 In FIG. 3, the detection circuit 20 is arranged in parallel with the charging path L1, the output from the solar cell S is applied to the base of the transistor Q10, its emitter is grounded, and its collector side is connected to the control unit M. Is entered. With such a circuit configuration, the control unit M detects the output from the solar cell S because the base of the transistor Q10 is turned on at a high potential and the collector side is at a low potential due to the output from the solar cell S. . Then, the control unit M turns on the switching element SW1 and puts the charging display unit D into a display state.
このような比較例においては、太陽電池Sからの出力電流が、電源部Vの駆動電流値より低いとき(例えば、雨、曇り、朝方や夕方のとき)、電源部Vへの駆動電流は、二次電池1からの電力供給経路L3から提供されることになり、二次電池1の電力が消費されることになる。詳細には、太陽電池Sの電流不足分が電池1から供給され、この時、太陽電池Sからの出力は検出回路20にて検出されているので、充電表示部Dが表示状態になり、見た目は充電している状態であるが、実質は電池が放電されて、電源部Vに供給されることになる。一方、図1の本実施例においては、上述のように、二次電池1の電力消費を、おさえることができる。 In such a comparative example, when the output current from the solar cell S is lower than the drive current value of the power supply unit V (for example, when it is raining, cloudy, morning or evening), the drive current to the power supply unit V is The power is supplied from the power supply path L3 from the secondary battery 1, and the power of the secondary battery 1 is consumed. In detail, since the current shortage of the solar cell S is supplied from the battery 1, and the output from the solar cell S is detected by the detection circuit 20 at this time, the charging display unit D enters the display state and looks Is in a state of being charged, but the battery is actually discharged and supplied to the power supply unit V. On the other hand, in the present embodiment of FIG. 1, the power consumption of the secondary battery 1 can be suppressed as described above.
1 二次電池
2 検出回路
M 制御部
D 充電表示部
S 太陽電池
V 電源部
SW1 スイッチング素子
DESCRIPTION OF SYMBOLS 1 Secondary battery 2 Detection circuit M Control part D Charging display part S Solar battery V Power supply part SW1 Switching element
Claims (5)
前記充電経路から電力を供給され、前記制御部に駆動電力を供給する電源部と、
前記電源部に電力を供給する、前記太陽電池から出力される前記充電経路からの電力供給経路と、前記二次電池からの電力供給経路とを備え、
前記太陽電池からの電流が所定検出電流値を超えることを検出する検出回路を、前記充電経路に並列に配置し、
前記検出回路からの検出出力信号により、前記制御部が充電表示部を表示状態とし、前記スイッチング素子をオン状態として、前記二次電池を充電し、
前記太陽電池からの供給電流が前記検出回路の前記所定検出電流値未満のとき、前記電源部への電力供給を前記二次電池からの電力供給経路から行い、前記太陽電池からの供給電流が前記所定検出電流値以上のとき、前記電源部への電力供給を前記太陽電池からの電力供給経路から行い、
前記検出回路の前記所定検出電流値を、前記電源部の駆動電流値以上とし、
前記スイッチング素子がオン状態になることより、前記太陽電池の出力電圧が、前記二次電池の電圧になることで、この電圧が印加される前記検出回路が検出停止状態となることを特徴とする太陽電池電源装置。 A control unit that controls on / off of the switching elements arranged in series in the charging path for charging the secondary battery from the solar cell, and controls the display of the charging display unit;
A power supply unit that is supplied with power from the charging path and supplies driving power to the control unit;
A power supply path from the charging path that is output from the solar battery, and a power supply path from the secondary battery;
A detection circuit for detecting that the current from the solar cell exceeds a predetermined detection current value is disposed in parallel with the charging path,
According to the detection output signal from the detection circuit, the control unit sets the charge display unit to the display state, turns the switching element on, and charges the secondary battery.
When the supply current from the solar cell is less than the predetermined detection current value of the detection circuit, the power supply to the power supply unit is performed from the power supply path from the secondary battery, and the supply current from the solar cell is the When greater than a predetermined detection current value, power supply to the power supply unit is performed from the power supply path from the solar cell
The predetermined detection current value of the detection circuit is greater than or equal to the drive current value of the power supply unit,
When the switching element is turned on, the output voltage of the solar cell becomes the voltage of the secondary battery, so that the detection circuit to which this voltage is applied is in a detection stop state. Solar cell power supply.
前記ツェナーダイオードの降伏電圧は、前記太陽電池の開放電圧より小さく、前記二次電池の電圧より大きい請求項1の太陽電池電源装置。 The detection circuit has a Zener diode so as to be reverse-biased in parallel in the charging path,
The solar cell power supply device according to claim 1, wherein a breakdown voltage of the Zener diode is smaller than an open voltage of the solar cell and larger than a voltage of the secondary battery.
The solar of Claim 1 provided with the charging current detection part which detects charging current, and the said control part makes the said switching element into an ON state based on the detection signal from this charging current detection part, and displays the said charge display part Battery power unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013208007A JP2015073377A (en) | 2013-10-03 | 2013-10-03 | Solar cell power supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013208007A JP2015073377A (en) | 2013-10-03 | 2013-10-03 | Solar cell power supply device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015073377A true JP2015073377A (en) | 2015-04-16 |
Family
ID=53015385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013208007A Ceased JP2015073377A (en) | 2013-10-03 | 2013-10-03 | Solar cell power supply device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015073377A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108248302A (en) * | 2017-12-29 | 2018-07-06 | 肇庆中晶实业有限公司 | A kind of solar energy tire pressure monitoring display device |
WO2019136951A1 (en) * | 2018-01-09 | 2019-07-18 | 赵振翔 | Solar-powered intelligent apparatus |
WO2022156619A1 (en) * | 2021-01-20 | 2022-07-28 | 浙江英达威芯电子有限公司 | Detection device for photovoltaic assembly |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07322530A (en) * | 1994-05-26 | 1995-12-08 | Canon Inc | Power supply employing solar cell |
JP2007221872A (en) * | 2006-02-15 | 2007-08-30 | Ricoh Co Ltd | Charging circuit of secondary battery, its power supply switching method and power supply |
JP2010172088A (en) * | 2009-01-21 | 2010-08-05 | Kyocera Corp | Electronic apparatus and charging control method |
JP2011041378A (en) * | 2009-08-07 | 2011-02-24 | Sanyo Electric Co Ltd | Solar battery system |
US20120256581A1 (en) * | 2011-04-07 | 2012-10-11 | Hsiao-Yi Lee | Method for solar power energy management with intelligent selection of operating modes |
JP2013045586A (en) * | 2011-08-23 | 2013-03-04 | Hitachi Koki Co Ltd | Battery adapter and power supply device with the same |
-
2013
- 2013-10-03 JP JP2013208007A patent/JP2015073377A/en not_active Ceased
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07322530A (en) * | 1994-05-26 | 1995-12-08 | Canon Inc | Power supply employing solar cell |
JP2007221872A (en) * | 2006-02-15 | 2007-08-30 | Ricoh Co Ltd | Charging circuit of secondary battery, its power supply switching method and power supply |
US20090115374A1 (en) * | 2006-02-15 | 2009-05-07 | Ricoh Company, Ltd. | Charging Circuit For Secondary Battery, Power Supply Switching Method In Charging Circuit For Secondary Battery, And Power Supply Unit |
JP2010172088A (en) * | 2009-01-21 | 2010-08-05 | Kyocera Corp | Electronic apparatus and charging control method |
JP2011041378A (en) * | 2009-08-07 | 2011-02-24 | Sanyo Electric Co Ltd | Solar battery system |
US20120256581A1 (en) * | 2011-04-07 | 2012-10-11 | Hsiao-Yi Lee | Method for solar power energy management with intelligent selection of operating modes |
JP2013045586A (en) * | 2011-08-23 | 2013-03-04 | Hitachi Koki Co Ltd | Battery adapter and power supply device with the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108248302A (en) * | 2017-12-29 | 2018-07-06 | 肇庆中晶实业有限公司 | A kind of solar energy tire pressure monitoring display device |
WO2019136951A1 (en) * | 2018-01-09 | 2019-07-18 | 赵振翔 | Solar-powered intelligent apparatus |
WO2022156619A1 (en) * | 2021-01-20 | 2022-07-28 | 浙江英达威芯电子有限公司 | Detection device for photovoltaic assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101516193B1 (en) | Apparatus for controlling solar charging and method therefor | |
KR101299340B1 (en) | Control device for charging and discharging of super capacitor and Rechargeable battery | |
US9263902B2 (en) | Battery management system and battery pack having the same | |
US20080169784A1 (en) | Solar power system | |
CN101335449A (en) | Power protection apparatus and electronic control unit | |
US20110285354A1 (en) | Rechargeable battery controlling circuit, rechargeable battery controlling device, independent power system and battery pack | |
US11411257B2 (en) | Hot swap battery module and control method thereof | |
KR20140080276A (en) | Load/charger detection circuit, battery management system comprising the same and driving method thereof | |
JP2015073377A (en) | Solar cell power supply device | |
CN102545163A (en) | Battery discharge protection circuit and LED (Light Emitting Diode) lamp | |
CN104184128A (en) | Battery discharge protection method and circuit and lamp thereof | |
WO2012032621A1 (en) | Power storage apparatus using capacitor, charging control apparatus therefor, and charging control method therefor | |
KR101022168B1 (en) | Control method of power management device for solar battery module | |
CN202737517U (en) | Charging and discharging control device | |
WO2021200445A1 (en) | Electric power supply system for battery assembly control circuit of electricity storage device, and electricity storage device | |
EP4096365A1 (en) | Lighting circuit and vehicular direction indicator lamp | |
US20080315841A1 (en) | Discharge State Indicator | |
WO2012133186A1 (en) | Switch circuit control unit, and charging and discharging system | |
EP3386063B1 (en) | Power supply control device | |
JP5130429B2 (en) | Storage battery control circuit, storage battery control device, and independent power system | |
JP2021113038A (en) | Lighting circuit, and vehicular direction indicator | |
JP3230685U (en) | Power supply device for power failure | |
CN215956093U (en) | Solar controller | |
TWI493832B (en) | Load control device | |
CN117410933B (en) | Overvoltage protection circuit and energy storage power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170215 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170404 |
|
A045 | Written measure of dismissal of application [lapsed due to lack of payment] |
Free format text: JAPANESE INTERMEDIATE CODE: A045 Effective date: 20170829 |