JP2005166029A - データ転送システム、画像形成システム及びデータ転送方法 - Google Patents

データ転送システム、画像形成システム及びデータ転送方法 Download PDF

Info

Publication number
JP2005166029A
JP2005166029A JP2004324556A JP2004324556A JP2005166029A JP 2005166029 A JP2005166029 A JP 2005166029A JP 2004324556 A JP2004324556 A JP 2004324556A JP 2004324556 A JP2004324556 A JP 2004324556A JP 2005166029 A JP2005166029 A JP 2005166029A
Authority
JP
Japan
Prior art keywords
data transfer
data
endpoint
pci express
tree structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004324556A
Other languages
English (en)
Other versions
JP4603336B2 (ja
Inventor
Junichi Ikeda
純一 池田
Yasuyuki Shindo
泰之 進藤
Koji Oshikiri
幸治 押切
Noriyuki Terao
典之 寺尾
Mitsuhiro Oizumi
充弘 大泉
Yutaka Yoneda
豊 米田
Satoru Numakura
覚 沼倉
Mitsuya Takeo
光冶 竹尾
Toru Sasaki
徹 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004324556A priority Critical patent/JP4603336B2/ja
Priority to US11/125,207 priority patent/US20060114918A1/en
Publication of JP2005166029A publication Critical patent/JP2005166029A/ja
Application granted granted Critical
Publication of JP4603336B2 publication Critical patent/JP4603336B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bus Control (AREA)
  • Information Transfer Systems (AREA)
  • Communication Control (AREA)

Abstract

【課題】 複数の独立したデータ転送を並行して処理する場合に、データ転送経路の競合を避けることによりデータ転送効率の向上を図る。
【解決手段】 デバイスA,B,C,Dに各々上流側のスイッチ1A〜1Dに接続される複数のエンドポイントA1〜A4,B1〜B4,C1〜C4,D1〜D4を持たせ、動作モードに応じてアービタ2A〜2Dによって使用するエンドポイントを調停することで、例えば経路7,8が有効となるように木構造を動的に変更でき、よって、複数の独立したデータ転送を並行して処理する場合でも、独立したデータ転送経路7,8の確保によりデータ転送経路の競合を避けることができ、データ転送効率の向上を図ることができるようにした。
【選択図】 図15

Description

本発明は、データ転送システム、特に、各種画像データを扱い各種の処理を行う複合機(MFP)等の画像形成システム及びデータ転送方法に関する。
一般に、画像データその他のデータを扱う機器・システムでは、デバイス間のインタフェースにPCIバスが使用されている。しかし、パラレル方式のPCIバスでは、レーシングやスキューなどの問題があり、高速・高画質の画像機器に使用するには、転送レートが低い段階にきており、最近では、PCIバスのようなパラレル方式のインタフェースに代えて、高速シリアルインタフェースの使用が検討されている。従来、一般的に広く用いられているシリアルインタフェースとしてIEEE1394やUSB等の規格があるが、PCIと比較した場合は転送レートが不足しており、さらにスケーラブルなバス幅確保が困難等の不具合がある。このため、他の高速シリアルインタフェースとして、PCIバス方式の後継規格に当るPCI Express(登録商標)なるインタフェースの使用が検討されている。
このPCI Expressシステムは、詳細は後述するが、概略的には、例えば、非特許文献1中の図1等に示されるようなツリー構造(木構造)によるデータ通信網として構成されている。
その一例を単純化して図23に示す。即ち、PCI Expressシステム200は、管理するルートノード(ルートコンプレックス)201を頂点として、スイッチSW1,SW2,SW3,…を介して複数のエンドノード(エンドポイント)A,B,C,D,…をツリー構造に接続してなる。ここに、各スイッチSW1,SW2,SW3,…は、上流ポート(ルートノード側)を1つ持ち、下流ポート(エンドノード側)を複数持つ構成とされ、スイッチSW1,SW2,SW3,…以外のデバイスA,B,C,D,…は、何れも1つのみのポートを有しており、各デバイス間の通信経路は、ツリー構造によって一意に決まる構成とされている。
また、ノード間、スイッチ間の接続線は、予めデータ転送に必要な速度に応じた接続線で接続しておくが、この際、各接続線は、各々性能の異なるもの(例えば、バス幅を示すレーン数がx8,x4.x2等)を使用可能とされている。また、スイッチSW1,SW2,SW3,…は、各ポートにプライオリティを設定することにより、複数のデータ転送を並行して処理する場合(競合が起きている際)に、転送速度を調整することができる。
"PCI Express 規格の概要"Interface誌、July’2003 里見尚志
ところが、このようなPCI Expressシステムを単純に利用した場合、通信経路が固定されているため、複数の独立したデータ転送を並行して処理する場合、データ転送経路の競合が生じ、転送効率が低下してしまう不都合がある。
例えば、図23に示した例で説明すると、ルートノード201からエンドノードAへの経路202とエンドノードCからエンドノードBへの経路203とで、2種類のデータ転送を同時に処理しようとする場合、図23中に拡大して示すように、スイッチSW1中のスイッチSW2に対する下流ポートの競合が生じてしまう。よって、経路202のパケットと経路203のパケットとを交互に出力すると、転送レートが半分に落ち、転送効率が低下する。また、スイッチSW1のアービトレーションにより、一方の経路202又は203を優先させることは可能であるが、他方の経路203又は202の転送効率はさらに低下してしまう。
図23に示すような競合が生じないようにするためには、例えば、図24に示すように、予めスイッチSW2,SW2に対するエンドノードA,B,C,Dの接続を変えておけばよいが、別の並行処理動作において、経路202の処理と、エンドノードCからエンドノードDへの経路204の処理とを同時に処理しなければならない場合は、図23の場合と同様の競合が生じ、転送レートが低下してしまい、本質的な改善とはならない。
このようなデータ転送レートの低下は、データ転送経路の競合時だけでなく、必要以上に多段のスイッチを経るデータ転送経路の場合も同様である。
本発明の目的は、複数の独立したデータ転送を並行して処理する場合のデータ転送経路の競合や、必要以上に多段のスイッチを経るデータ転送経路を避けることによりデータ転送効率の向上を図ることである。
請求項1記載の発明は、木構造によるデータ通信網としてポイントツーポイントで送受信独立の通信チャネルが確立される高速シリアルインタフェースシステムを用いるデータ転送システムであって、前記木構造における下流側に位置する各々のデバイスが、前記木構造における上流側の複数のスイッチに接続される複数のエンドポイントと、当該システムの動作モードに応じて使用するエンドポイントを調停するアービタと、を有する。
請求項2記載の発明は、請求項1記載のデータ転送システムにおいて、前記高速シリアルインタフェースシステムがPCI Expressシステムである。
請求項3記載の発明は、請求項1又は2記載のデータ転送システムにおいて、前記各アービタは、当該システム内で複数の独立したデータ転送を並行して処理する動作モードの場合に、前記スイッチを通るデータ転送経路に競合が生じないように、使用するエンドポイントを調停する。
請求項4記載の発明の画像形成システムは、請求項1ないし3の何れか一記載のデータ転送システムは、前記デバイスを画像形成に関与するデバイスとする。
請求項5記載の発明は、請求項4記載の画像形成装置において、前記デバイスとして、少なくとも、画像入力用デバイスと画像出力用デバイスと画像処理用デバイスとストレージ用デバイスとを含む。
請求項6記載の発明は、木構造によるデータ通信網としてポイントツーポイントで送受信独立の通信チャネルが確立される高速シリアルインタフェースシステムを用い、前記高速シリアルインタフェースの前記木構造における下流側に位置する各々のデバイスが前記木構造における上流側の複数のスイッチに接続される複数のエンドポイントを有するデータ転送システムを利用するデータ転送方法であって、当該システムの動作モードに応じて使用するエンドポイントを調停するようにした。
請求項7記載の発明は、請求項6記載のデータ転送方法において、前記高速シリアルインタフェースシステムがPCI Expressシステムである。
請求項8記載の発明は、請求項7記載のデータ転送方法において、当該システム内で複数の独立したデータ転送を並行して処理する動作モードの場合に、各エンドポイントにおいて前記スイッチを通るデータ転送経路に競合が生じないように、使用するエンドポイントを調停するようにした。
本発明によれば、各々のデバイスに各々スイッチに接続される複数のエンドポイントを持たせ、動作モードに応じて使用するエンドポイントを調停することにより、木構造を動的に変更することができ、よって、複数の独立したデータ転送を並行して処理する場合でも独立したデータ転送経路の確保によりデータ転送経路の競合を避け、或いは、必要以上に多段のスイッチを経るデータ転送経路を避けることができ、データ転送効率の向上を図ることができる。
本発明を実施するための最良の形態について図面を参照して説明する。
[PCI Express規格の概要]
まず、本実施の形態は高速シリアルバスの一つであるPCI Express(登録商標)を利用するものであり、本実施の形態の前提として当該PCI Express規格の概要について、非特許文献1の一部抜粋により説明する。ここに、高速シリアルバスとは、1本の伝送路を用いてシリアル(直列)伝送により高速(100Mbps程度以上)にデータをやり取りすることができるインタフェースを意味する。
PCI Expressは、PCIの後継規格としてコンピュータ全般に通用する標準拡張バスとして規格化されたバスであり、概略的には、低電圧差動信号伝送、ポイントツーポイントで送受信独立の通信チャネル、パケット化されたスプリットトランザクション、リンク構成の違いによる高いスケーラビリティなどの特徴を持つ。
図1に既存のPCIシステム、図2にPCI Expressシステムの各々の構成例を示す。既存のPCIシステムにあっては、CPU100やAGPグラフィックス101やメモリ102が接続されたホストブリッジ103に対して、PCI-X(PCIの上位互換規格)デバイス104a,104bがPCI-Xブリッジ105aを介して接続されたり、PCIデバイス104c,104dが接続されたPCIブリッジ105bやPCIバススロット106が接続されたPCIブリッジ107がPCIブリッジ105cを介して接続されたりしたツリー構造(木構造)とされている。
これに対して、PCI Expressシステムにあっては、CPU110やメモリ111が接続されたルートコンプレックス112に対して、PCI Expressグラフィックス113がPCI Express114aにより接続され、また、エンドポイント115aやレガシーエンドポイント116aがPCI Express114bにより接続されたスイッチ117aがPCI Express114cにより接続され、さらには、エンドポイント115bやレガシーエンドポイント116bがPCI Express114dにより接続されたスイッチ117bやPCIバススロット118が接続されたPCIブリッジ119がPCI Express114eにより接続されたスイッチ117cがPCI Express114fにより接続されたツリー構造(木構造)とされている。
実際に想定されるPCI Expressプラットホーム例を図3に示す。図示例は、デスクトップ/モバイルへの適用例を示し、CPU121がCPUホストバス122により接続され、メモリ123が接続されたメモリハブ124(ルートコンプレックスに相当する)に対して、例えば、グラフィックス125がx16のPCI Express126aにより接続され、また、変換機能を有するI/Oハブ127がPCI Express126bにより接続されている。このI/Oハブ127には、例えば、Serial ATA128によりストレージ129が接続され、LPC130によりローカルI/O131が接続され、USB 2.0132やPCIバススロット133が接続されている。さらには、I/Oハブ127には、PCI Express126cによりスイッチ134が接続され、このスイッチ134には、各々、PCI Express126d,126e,126fによりモバイルドック135、ギガビットイーサネット(イーサネットは登録商標)136、アドインカード137が接続されている。
即ち、PCI Expressシステムでは、従来のPCI,PCI-X,AGPといったバスがPCI Expressで置き換わり、既存のPCI/PCI-Xデバイスを接続するためにブリッジが使用される。チップセット間の接続もPCI Express接続となり、IEEE1394,Serial ATA,USB 2.0などの既存のバスはI/OハブによりPCI Expressに接続される。
[PCI Expressの構成要素]
A.ポート(Port)/レーン(Lane)/リンク(Link)
図4に物理層の構造を示す。ポートは、物理的には同一半導体内にあり、リンクを形成するトランスミッタ/レシーバの集合で、論理的にはコンポーネント間を1対1で接続(ポイント・ツー・ポイント)するインタフェースを意味する。転送レートは、例えば片方向2.5Gbpsとされている。レーンは、例えば0.8Vの差動信号ペアのセットで、送信側の信号ペア(2本)、受信側の信号ペア(2本)からなる。リンクは、2つのポートとその間を結ぶレーンの集まりであり、コンポーネント間のデュアルシンプレックス通信バスである。「xNリンク」はN本のレーンから構成され、現在の規格では、N=1,2,4,8,16,32が定義されている。図示例は、x4リンク例である。例えば、図5に示すように、デバイスA,B間を結ぶこのレーン幅Nを可変することにより、スケーラブルなバンド幅を構成することが可能となる。
B.ルートコンプレックス(Root Complex)
ルートコンプレックス112は、I/O構造の最上位に位置し、CPUやメモリサブシステムをI/Oに接続する。ブロック図などでは、図3に示すように、「メモリハブ」と記述されることが多い。ルートコンプレックス112(又は、124)は、1つ以上のPCI Expressポート(ルートポート)(図2中では、ルートコンプレックス112中の四角で示す)を持ち、各々のポートは独立したI/O階層ドメインを形成する。I/O階層ドメインは、単純なエンドポイントである場合(例えば、図2中のエンドポイント115a側の例)や、多数のスイッチやエンドポイントから形成される場合(例えば、図2中のエンドポイント115bやスイッチ117b,115c側の例)がある。
C.エンドポイント(End Point)
エンドポイント115は、タイプ00hのコンフィグレーション空間ヘッダを持つデバイス(具体的には、ブリッジ以外のデバイス)で、レガシーエンドポイントとPCI Expressエンドポイントとに分けられる。両者の大きな違いは、PCI ExpressエンドポイントはBAR(ベースアドレスレジスタ)で基本的にI/Oポートリソースを要求せず、このためI/Oリクエストを要求しない。また、PCI Expressエンドポイントは、ロックリクエストもサポートしていない。
D.スイッチ(Switch)
スイッチ117(又は、134)は、2つ以上のポートを結合し、ポート間でのパケットルーティングを行う。コンフィグレーションソフトウェアからは、当該スイッチは、図6に示すように、仮想PCI-PCIブリッジ141の集合体として認識される。図中、両矢印はPCI Expressリンク114(又は、126)を示し、142a〜142dはポートを示す。このうち、ポート142aはルートコンプレックスに近い方のアップストリームポートであり、ポート142b〜142dはルートコンプレックスから遠い方のダウンストリームポートである。
E.PCI Express114e−PCIブリッジ117
PCI ExpressからPCI/PCI-Xへの接続を提供する。これにより、既存のPCI/PCI-XデバイスをPCI Expressシステム上で使用することができる。
[階層アーキテクチャ]
従来のPCIのアーキテクチャは、図7(a)に示すように、プロトコルとシグナリングが密接に関連する構造であり階層という考え方はなかったが、PCI Expressでは、図7(b)に示すように、一般的な通信プロトコルやInfiniBandのように、独立した階層構造とされ、各層に分けて仕様が定義されている。即ち、最上位のソフトウェア151、最下位の機構(メカニカル)部152間に、トランザクション層153、データリンク層154、物理層155を持つ構造とされている。これにより、各層のモジュール性が確保され、スケーラビリティを持たせることやモジュールの再利用が可能となる。例えば、新たな信号コーディング方式や伝送媒体を採用する場合、物理層を変更するだけでデータリンク層やトランザクション層は変更せずに対応できる。
PCI Expressのアーキテクチャの中心となるのは、トランザクション層153、データリンク層154、物理層155であり、各々図8を参照して説明する以下のような役割を持つ。
A.トランザクション層153
トランザクション層153は、最上位に位置し、トランザクションレイヤパケット(TLP)の組み立て、分解機能を持つ。トランザクションレイヤパケット(TLP)は、リード/ライト、各種イベントといったトランザクションの伝達に用いられる。また、トランザクション層153は、トランザクションレイヤパケット(TLP)のためのクレジットを用いたフロー制御を行う。各層153〜155におけるトランザクションレイヤパケット(TLP)の概要を図9に示す(詳細は、後述する)。
B.データリンク層154
データリンク層154の主な役割は、エラー検出/訂正(再送)によりトランザクションレイヤパケット(TLP)のデータ完全性を保証することと、リンク管理である。データリンク層154間では、リンク管理やフロー制御のためのパケットのやり取りを行う。このパケットは、トランザクションレイヤパケット(TLP)と区別するために、データリンクレイヤパケット(DLLP)と呼ばれる。
C.物理層155
物理層155は、ドライバ、入力バッファ、パラレル−シリアル/シリアル−パラレル変換器、PLL、インピーダンス整合回路といったインタフェース動作に必要な回路を含んでいる。また、論理的な機能としてインタフェースの初期化・保守の機能を持つ。物理層155は、データリンク層154/トランザクション層153を実際のリンクで使用される信号技術から独立させる役目も持っている。
なお、PCI Expressのハードウェア構成上、エンベデッド・クロックという技術を採用しており、クロック信号はなく、クロックのタイミングはデータ信号中に埋め込まれており、受信側でデータ信号のクロスポイントを基にクロックを抽出する方式とされている。
[コンフィグレーション空間]
PCI Expressは、従来のPCIと同様にコンフィグレーション空間を持つが、その大きさは従来のPCIが256バイトであるのに対して、図10に示すように、4096バイトへと拡張されている。これにより、多数のデバイス固有レジスタセットを必要とするデバイス(ホストブリッジなど)に対しても、将来的に十分な空間が確保されている。PCI Expressでは、コンフィグレーション空間へのアクセスは、フラットなメモリ空間へのアクセス(コンフィグレーションリード/ライト)で行われ、バス/デバイス/機能/レジスタ番号はメモリアドレスにマップされている。
当該空間の先頭256バイトは、PCIコンフィグレーション空間として、BIOSや従来のOSからI/Oポートを使用した方法でもアクセスできる。従来のアクセスをPCI Expressでのアクセスに変換する機能は、ホストブリッジ上に実装される。00hから3FhまではPCI2.3互換のコンフィグレーションヘッダとなっている。これにより、PCI Expressで拡張された機能以外であれば、従来のOSやソフトウェアをそのまま使用することができる。即ち、PCI Expressにおけるソフトウェア層は、既存のPCIと互換性を保ったロード・ストア・アーキテクチャ(プロセッサが直接I/Oレジスタをアクセスする方式)を継承している。しかし、PCI Expressで拡張された機能(例えば、同期転送やRAS(Reliability,Availability and Serviceability)などの機能)を使用するには、4KバイトのPCI Express拡張空間にアクセスできるようにする必要がある。
なお、PCI Expressとしては様々なフォームファクタ(形状)が考えられるが、具体化している例としては、アドインカード、プラグインカード(Express Card)、Mini PCI Expressなどがある。
[PCI Express のアーキテクチャの詳細]
PCI Express のアーキテクチャの中心となっているトランザクション層153、データリンク層154、物理層155について、各々詳細に説明する。
A.トランザクション層153
トランザクション層153の主な役割は、前述したように、上位のソフトウェア層151と下位のデータリンク層154との間でトランザクションレイヤパケット(TLP)の組み立てと分解を行うことである。
a.アドレス空間とトランザクションタイプ
PCI Expressでは、従来のPCIでサポートされていたメモリ空間(メモリ空間とのデータ転送用)、I/O空間(I/O空間とのデータ転送用)、コンフィグレーション空間(デバイスのコンフィグレーションとセットアップ用)に加えて、メッセージ空間(PCI Expressデバイス間のインバンドでのイベント通知や一般的なメッセージ送信(交換)用…割り込み要求や確認は、メッセージを「仮想ワイヤ」として使用することにより伝達される)が追加され、4つのアドレス空間が定義されている。各々の空間に対してトランザクションタイプが定義されている(メモリ空間、I/O空間、コンフィグレーション空間は、リード/ライト、メッセージ空間は基本(ベンダ定義含む))。
b.トランザクションレイヤパケット(TLP)
PCI Expressは、パケット単位で通信を行う。図9に示したトランザクションレイヤパケット(TLP)のフォーマットにおいて、ヘッダのヘッダ長は3DW(DWはダブルワードの略;合計12バイト)又は4DW(16バイト)で、トランザクションレイヤパケット(TLP)のフォーマット(ヘッダ長とペイロードの有無)、トランザクションタイプ、トラフィッククラス(TC)、アトリビュートやペイロード長などの情報が含まれる。パケット内の最大ペイロード長は1024DW(4096バイト)である。
ECRCは、エンドツーエンドのデータ完全性を保証するためのもので、トランザクションレイヤパケット(TLP)部分の32ビットCRCである。これは、スイッチ内部などでトランザクションレイヤパケット(TLP)にエラーが発生した場合、LCRC(リンクCRC)ではエラーを検出できないためである(エラーとなったTLPでLCRCが再計算されるため)。
リクエストは、完了パケットが不要なものと必要なものとがある。
c.トラフィッククラス(TC)と仮想チャネル(VC)
上位のソフトウェアは、トラフィッククラス(TC)を使用することによりトラフィックの差別化(優先度をつける)を行うことができる。例えば、映像データをネットワークのデータよりも優先して転送する、といったことが可能となる。トラフィッククラス(TC)はTC0からTC7まで8つある。
仮想チャネル(VC:Vertual Channel)は、各々独立した仮想通信バス(同一のリンクを共用する複数の独立したデータ・フロー・バッファを使用するメカニズム)で、各々がリソース(バッファやキュー)を持ち、図11に示すように、独立したフロー制御を行う。これにより、1つの仮想チャネルのバッファが満杯の状態(full)になっても、他の仮想チャネルの転送を行うことができる。つまり、物理的には1つのリンクを仮想的な複数のチャネルに分けることで、有効に使用することができる。例えば、図11中に示すように、スイッチを経由してルートのリンクが複数のデバイスに分かれる場合、各デバイスのトラフィックの優先度を制御することができる。VC0は必須で、コストパフォーマンスのトレードオフに応じてその他の仮想チャネル(VC1〜VC7)が実装される。図11中の実線矢印は、デフォルト仮想チャネル(VC0)を示し、破線矢印はその他の仮想チャネル(VC1〜VC7)を示している。
トランザクション層内では、トラフィッククラス(TC)が仮想チャネル(VC)にマッピングされる。1つの仮想チャネル(VC)に対して1つ又は複数のトラフィッククラス(TC)をマッピングできる(仮想チャネル(VC)の数が少ない場合)。単純な例では、各トラフィッククラス(TC)から各仮想チャネル(VC)に1対1、全てのトラフィッククラス(TC)を仮想チャネルVC0にマッピングする、といったことが考えられる。TC0−VC0のマッピングは、必須/固定で、それ以外のマッピングは上位のソフトウェアから制御される。ソフトウェアはトラフィッククラス(TC)を利用することで、トランザクションの優先度を制御することが可能となる。
d.フロー制御
受信バッファのオーバフローを避け、伝送順序を確立するためにフロー制御(FC:Flow Control)が行われる。フロー制御は、リンク間のポイントツーポイントで行われ、エンドツーエンドではない。従って、フロー制御により最終的な相手(コンプリータ)にパケットが届いたことを確認することはできない。
PCI Expressのフロー制御は、クレジット・ベースで行われる(データ転送を始める前に、受け取り側のバッファの空き状況を確認し、オーバフロー、アンダフローが発生しないメカニズム)。即ち、受信側はリンク初期化時にバッファ容量(クレジット値)を送信側に通知し、送信側はクレジット値と送信するパケットの長さとを比較し、一定の残りがある場合のみパケットを送信する。このクレジットには6種類ある。
フロー制御の情報交換はデータリンク層のデータリンクレイヤパケット(DLLP)を使用して行われる。フロー制御はトランザクションレイヤパケット(TLP)のみに適用され、データリンクレイヤパケット(DLLP)には適用されない(DLLPは常時送受信可能)。
B.データリンク層154
データリンク層154の主な役割は、前述したように、リンク上の2つのコンポーネント間での信頼性の高いトランザクションレイヤパケット(TLP)交換機能を提供することである。
a.トランザクションレイヤパケット(TLP)の扱い
トランザクション層153から受け取ったトランザクションレイヤパケット(TLP)に対しては、先頭に2バイトのシーケンス番号、末尾に4バイトのリンクCRC(LCRC)を付加して、物理層155に渡す(図9参照)。トランザクションレイヤパケット(TLP)は、リトライバッファに保管され、相手から受信確認(ACK)が届くまで再送される。トランザクションレイヤパケット(TLP)の送信に失敗が続いた場合は、リンク異常であると判断して物理層155に対してリンクの再トレーニングを要求する。リンクのトレーニングが失敗した場合、データリンク層154の状態はインアクティブに遷移する。
物理層155から受け取ったトランザクションレイヤパケット(TLP)は、シーケンス番号とリンクCRC(LCRC)が検査され、正常であればトランザクション層153に渡され、エラーがあった場合は再送を要求する。
b.データリンクレイヤパケット(DLLP)
データリンク層154が生成するパケットは、データリンクレイヤパケット(DLLP)と呼ばれ、データリンク層154間でやり取りされる。データリンクレイヤパケット(DLLP)には、
・Ack/Nak:TLPの受信確認、リトライ(再送)
・InitFC1/InitFC2/UpdateFC:フロー制御の初期化とアップデート
・電源管理のためのDLLP
なる種類がある。
図12に示すように、データリンクレイヤパケット(DLLP)の長さは6バイトで、種類を示すDLLPタイプ(1バイト)、DLLPの種類で固有の情報(3バイト)、CRC(2バイト)から構成される。
C.物理層−論理サブブロック156
図8中に示す物理層155の論理サブブロック156での主な役割は、データリンク層154から受け取ったパケットを電気サブブロック157で送信できる形式に変換することである。また、物理層155を制御/管理する機能も有する。
a.データ符号化とパラレル−シリアル変換
PCI Expressは、連続した“0”や“1”が続かないように(長い期間、クロス・ポイントが存在しない状態が続かないようにするため)、データ符号化に8B/10B変換を用いる。変換されたデータは、図13中に示すように、シリアル変換され、LSBからレーン上に送信される。ここに、レーンが複数ある場合は(図13はx4リンクの場合を例示している)、符号化の前にデータがバイト単位で各レーンに割り振られる。この場合、一見パラレル・バスのようにみえるが、レーン毎に独立した転送を行うので、パラレル・バスで問題となるスキューが大幅に緩和される。
b.電源管理とリンクステート
リンクの消費電力を低く抑えるために、表1に示すように、L0/L0s/L1/L2というリンクステートが定義されている。
Figure 2005166029
L0が通常モードで、L0sからL2へと低消費電力となるが、L0への復帰にも時間がかかるようになる。図14に示すように、ソフトウェアによる電源管理に加えて、アクティブステート電源管理を積極的に行うことにより、消費電力を極力小さくすることが可能となる。
D.物理層−電気サブブロック157
物理層155の電気サブブロック157での主な役割は、論理サブブロック156でシリアル化されたデータをレーン上に送信することと、レーン上のデータを受信して論理サブブロック156に渡すことである。
a.ACカップリング
リンクの送信側では、ACカップリング用のコンデンサが実装される。これにより、送信側と受信側のDCコモンモード電圧が同一である必要がなくなる。このため、送信側と受信側で異なる設計、半導体プロセス、電源電圧を使用することが可能となる。
b.デエンファシス
PCI Expressでは、前述したように、8B/10Bエンコーディングによってできるだけ連続した“0”や“1”が続かないように処理されるが、連続した“0”や“1”が続くこともある(最大5回)。この場合、送信側はデエンファシス転送を行わなければならないことが規定されている。同一極性のビットが連続する場合は、2つ目のビットからは差動電圧レベル(振幅)を3.5±0.5dB落とすことで、受信側で受け取る信号のノイズ・マージンを稼ぐ必要がある。これを、デエンファシスという。伝送路の周波数依存性減衰のため、変化するビットの場合は高周波成分が多く、減衰により受信側の波形が小さくなるが、変化しないビットの場合は高周波成分が少なく、相対的に受信側の波形が大きくなる。このため、受信側での波形を一定とするためにデエンファシスを行う。
[データ転送システム;画像形成システム]
本実施の形態のデータ転送システムは、前述したようなPCI Expressシステムを利用する上で、特に、その木構造について改良を加えて利用するようにしたものである。
図15は、本実施の形態のデータ転送システムにおける木構造例を示す原理的な模式図である。前述のPCI Expressシステムの仕様によれば、その木構造の下流側(末端側)に位置する各種デバイスは各々1つのエンドポイントを持つ構成とされているが、本実施の形態では、各々のデバイスA,B,C,D,…について複数のエンドポイントA1,A2,…,A4,B1,…,B4,C1,…,C4,D1,…,D4,…を持たせて各々上流側のスイッチ1A,1B,1C,1Dの下流側ポートに接続するとともに、各デバイスA,B,C,D,…に、当該画像形成システムの動作モードに応じて使用するエンドポイントを調停するアービタ2A,2B,2C,2D,…を持たせるようにしたものである。
従って、本実施の形態の画像形成システムの木構造においては、全体を管理するルートコンプレックス3を頂点として、このルートコンプレックス3中に含まれる最上流のスイッチ4、中流に位置する複数のスイッチ1A,1B,1C,1D,…を介して下流に複数のデバイスA,B,C,D,…が接続された木構造であるが、各々のデバイスA,B,C,D,…が各々複数のエンドポイントを有するため、例えば、デバイスAにあっては各々のエンドポイントA1,A2,A3,A4によりスイッチ1A,1B,1C,1Dの下流側ポートに接続された4つのデータ転送経路を有する。同様に、デバイスBにあっては各々のエンドポイントB1,B2,B3,B4によりスイッチ1A,1B,1C,1Dの下流側ポートに接続された4つのデータ転送経路を有し、デバイスCにあっては各々のエンドポイントC1,C2,C3,C4によりスイッチ1A,1B,1C,1Dの下流側ポートに接続された4つのデータ転送経路を有し、デバイスDにあっては各々のエンドポイントD1,D2,D3,D4によりスイッチ1A,1B,1C,1Dの下流側ポートに接続された4つのデータ転送経路を有する。
また、本実施の形態では、スイッチ4とスイッチ1A〜1Dとの間のデータ転送幅はx4リンク幅とされ、各スイッチ1A〜1Dと各デバイスA〜Dの各エンドポイントとの間のデータ転送幅はx1リンク幅とされている。
このような構成において、当該データ転送システム内で複数の独立したデータ転送を並行して処理する動作モードの場合に、スイッチ1を通るデータ転送経路に競合が生じないように、各デバイスA〜Dのアービタ2A〜2Dは使用するエンドポイントを調停する。
例えば、デバイスAからの画像データをデバイスBで処理してデバイスCにデータ転送する処理と並行して、デバイスAからの画像データをデバイスDで出力するデータ転送処理を同時に行う場合には、アービタ2AはデバイスAにおいてスイッチ1Aに対するエンドポイントA1、スイッチ1Cに対するエンドポイントA3を使用し、アービタ2BはデバイスBにおいてスイッチ1A,1Bに対するエンドポイントB1,B2を使用し、アービタ2Cはスイッチ1Bに対するエンドポイントC2を使用し、アービタ2Dはスイッチ1Cに対するエンドポイントD3を使用するように各々のエンドポイントを調停する。
これにより、デバイスA(エンドポイントA1)−スイッチ1A−デバイスB(エンドポイントB1,B2)−スイッチ1B−デバイスC(エンドポイントC2)のx1リンクの経路7と、デバイスA(エンドポイントA3)−スイッチ1C−デバイスD(エンドポイントD3)のx1リンクの経路8とが確保される。
このように動作モードに応じて各デバイスA〜Dについて使用するエンドポイントを調停することにより、木構造を動的に変更することができ、よって、複数の独立したデータ転送を並行して処理する場合でも、独立したデータ転送経路の確保によりデータ転送経路の競合を避けることができ、データ転送効率の向上を図ることができる。
本実施の形態のようなデータ転送システムの好適例としては、図16に示すような画像形成システムを挙げることができる。当該画像形成システムは、例えば、デバイスAは原稿画像を光電変換して読み取るスキャナエンジン等による画像入力用デバイス、デバイスBは画像データに対して変倍、回転等の各種画像処理を施す画像処理用デバイス、デバイスCは画像データを保存するメモリ、HDD等のストレージ用デバイス、デバイスDは画像データ等に基づき用紙に印刷出力するプリンタエンジン等による画像出力用デバイスとされ、少なくともこれらのデバイスを含む構成とされている。また、ルートコンプレックス3は画像形成システムにあっては、コントローラとして構成され、ホストCPU5やメモリ6に接続されている。
このような構成において、例えば、デバイスAで読み込んだ画像データをデバイスBで画像処理してデバイスCに保存するデータ転送処理と並行して、デバイスAで読み込んだ画像データをデバイスDで印刷出力するデータ転送処理を同時に行う場合には、アービタ2AはデバイスAにおいてスイッチ1Aに対するエンドポイントA1、スイッチ1Cに対するエンドポイントA3を使用し、アービタ2BはデバイスBにおいてスイッチ1A,1Bに対するエンドポイントB1,B2を使用し、アービタ2Cはスイッチ1Bに対するエンドポイントC2を使用し、アービタ2Dはスイッチ1Cに対するエンドポイントD3を使用するように各々のエンドポイントを調停する。
これにより、デバイスA(エンドポイントA1)−スイッチ1A−デバイスB(エンドポイントB1,B2)−スイッチ1B−デバイスC(エンドポイントC2)のx1リンクの経路7と、デバイスA(エンドポイントA3)−スイッチ1C−デバイスD(エンドポイントD3)のx1リンクの経路8とが確保される。よって、デバイスA,B,C間でx1リンクにより読み込み画像データの画像処理〜メモリ保存用のデータ転送を行えると同時に、デバイスA,D間ではデバイスA,B,C間のデータ転送に邪魔されることなく、x1リンクをフルに活用したコピー用のデータ転送が可能となる。
このように動作モードに応じて各デバイスA〜Dについて使用するエンドポイントを調停することにより、木構造を動的に変更することができ、よって、複数の独立したデータ転送を並行して処理する場合でも、独立したデータ転送経路の確保によりデータ転送経路の競合を避けることができ、データ転送効率の向上を図ることができる。
[経路情報の管理]
ところで、上述したような各デバイスA〜Dのアービタ2A〜2DによるエンドポイントA1〜A4,…,D1〜D4の調停(他のデバイスへアクセスする際に使用するエンドポイントの決定)は、ホストCPU5により各々のデバイスA〜D中に書き込み設定された経路情報を参照することにより実行されるものであり、このような経路情報の設定は、主に、ホストCPU5にインストールされたデータ転送用プログラムに従い実行される。
そこで、このような経路情報の管理方法の一例について説明する。この例では、その前提として、各々のデバイスA〜Dが、自己の持つデバイス機能に関する情報はもちろん、エンドポイントに関する情報(例えば、エンドポイントの数…図示例では4つ、エンドポイント毎のレーン数…図示例ではx1、接続先…例えば、エンドポイントA1であればスイッチ1Aの下流ポートなど)が、ホストCPU5からアクセス可能にメモリ領域に保持されているものとする(情報保持手段)。
このような前提の下では、ホストCPU5はデータ転送用プログラム、即ち、図17に概略的に示すようなフローチャートに従い、処理制御を実行する。即ち、当該ホストCPU5は、当該システム内のデバイス接続状態、各々のデバイスから取得される各デバイス機能に関する情報、エンドポイントに関する情報に基づきツリー構造中で最適となるデバイス間の経路を決定する決定手段と、各デバイスに決定された当該経路情報を書き込み設定する設定手段とを有し、各デバイスのアービタ2は、設定手段により設定された経路情報を参照して他のデバイスに対するアクセスに際して使用するエンドポイントを調停するように構成されている。
まず、当該データ転送システム(画像形成システム)内のデバイスA〜Dの接続状態を確認するとともに(ステップS1)、接続されている各々のデバイスA〜Dにアクセスして各々のデバイスA〜Dの機能に関する情報やエンドポイントに関する情報を取得する(S2)。また、行おうとしている動作モードに関する情報も取得し、デバイス接続状態、デバイス機能情報、エンドポイントに関する情報に基づき当該木構造中で最適となるデバイスA〜D間の経路を決定する(S3)。ここに、「最適となるデバイス間の経路」とは、複数の経路間で競合を生じないようにスイッチを選択(複数の経路間で重なりを生じない)することを意味し、例えば、図15中で示したような経路7,8のような経路である。このステップS3の処理が決定手段、決定機能として実行される。
このステップS3で決定された各デバイスA〜D毎の経路情報は、各々対応するデバイスA〜D中に書き込み設定される(S4)。このステップS4の処理が設定手段、設定機能として実行される。
この後は、各デバイスA〜Dのアービタ2A〜2DによるエンドポイントA1〜A4,…,D1〜D4の調停は、ホストCPU5により各々のデバイスA〜D中に書き込み設定された当該経路情報を参照することにより実行される。例えば、アービタ2AによりエンドポイントA1,A3を使用するように調停される。
一方、このような経路情報の管理方法の他例について説明する。この例では、その前提として、各々のデバイスA〜Dに関して、各々が持つデバイス機能に関する情報はもちろん、エンドポイントに関する情報(例えば、エンドポイントの数…図示例では4つ、エンドポイント毎のレーン数…図示例ではx1、接続先…例えば、エンドポイントA1であればスイッチ1Aの下流ポートなど)を、ホストCPU5で直接的に管理するようにしたものである(情報管理手段)。即ち、当該システムを管理するホストCPU5は、各デバイスの持つデバイス機能に関する情報、エンドポイントに関する情報を管理する情報管理手段と、当該システム内のデバイス接続状態、情報管理手段により管理される各デバイス機能に関する情報、エンドポイントに関する情報に基づきツリー構造中で最適となるデバイス間の経路を決定する決定手段と、各デバイスに決定された当該経路情報を書き込み設定する設定手段とを有し、各デバイスのアービタ2は、設定手段により設定された経路情報を参照して他のデバイスに対するアクセスに際して使用するエンドポイントを調停するように構成されている。
このような前提の下では、ホストCPU5はデータ転送用プログラムに従い、図18に概略的に示すようなフローチャートに従い、処理制御を実行する。まず、当該データ転送システム(画像形成システム)内のデバイスA〜Dの接続状態を確認するとともに(ステップS11)、管理している各々のデバイスA〜Dの機能に関する情報やエンドポイントに関する情報を取得し(S12)、かつ、行おうとしている動作モードに関する情報も取得し、デバイス接続状態、デバイス機能情報、エンドポイントに関する情報に基づき当該木構造中で最適となるデバイスA〜D間の経路を決定する(S13)。このステップS13の処理が決定手段、決定機能として実行される。このステップS13で決定された各デバイスA〜D毎の経路情報は、各々対応するデバイスA〜D中に書き込み設定される(S14)。このステップS14の処理が設定手段、設定機能として実行される。
この後は、各デバイスA〜Dのアービタ2A〜2DによるエンドポイントA1〜A4,…,D1〜D4の調停は、ホストCPU5により各々のデバイスA〜D中に書き込み設定された当該経路情報を参照することにより実行される。例えば、アービタ2AによりエンドポイントA1,A3を使用するように調停される。
次に、このような経路情報の管理方法におけるタイミング制御の一例について図19に示す概略フローチャートを参照して説明する。まず、当該システムが起動する際(S21のY)、各々のデバイスA〜Dに対して経路情報が書き込み設定される(S22)。ここに、「システムが起動する際」とは、起動時から多少時間が経った時点までを含む意味であり、起動する時点のみに限定されるものではない。また、この起動に際しての経路情報の書き込み設定としては、予め設定されている標準仕様なるデフォルト値が用いられる。このステップS21のY,S22の処理が設定手段、設定機能として実行される。
この後は、各デバイスA〜Dのアービタ2A〜2DによるエンドポイントA1〜A4,…,D1〜D4の調停は、ホストCPU5により各々のデバイスA〜D中に書き込み設定された当該経路情報(デフォルト値)を参照することにより実行される。
その後は、当該システムの起動中における動作モードの変更の有無が監視される(S23)。そして、動作モードの変更があった場合(S23のY)、その動作モードの変更に関する情報を当該ホストCPU5が直接受け取った場合には(S24のY)、ホストCPU5は、変更される動作モードに関する情報、並びに、(各デバイスから取得した又はホストCPU5が管理している)デバイス接続状態、デバイス機能情報、エンドポイントに関する情報に基づき当該木構造中で最適となるデバイスA〜D間の経路を再決定する(S25)。このステップS25の処理が再決定手段、再決定機能として実行される。このステップS25で決定された各デバイスA〜D毎の経路情報は、各々対応するデバイスA〜D中に書き込み設定される(S26)。このステップS26の処理が設定手段、設定機能として実行される。
この後は、各デバイスA〜Dのアービタ2A〜2DによるエンドポイントA1〜A4,…,D1〜D4の調停は、ホストCPU5により各々のデバイスA〜D中に書き込み設定された当該経路情報を参照することにより実行される。
一方、動作モードの変更に関する情報をデバイスA〜Dが受け取った場合には(S24のN)、これらのデバイスA〜DはホストCPU5に対して経路情報の再決定を要求するメッセージトランザクション(Message Transaction)を発行する(S27)。このステップS27の処理がデバイスによるトランザクション発行手段の機能として実行される。ホストCPU5ではこのメッセージトランザクションの発行に伴い、当該メッセージトランザクションパケット中に格納されている動作モードの変更に関する情報の通知を受けることにより、動作モードの変更に関する情報を受ける(S28)。この動作モードに関する情報を受けた後は、ステップS25以降の処理を同様に行なう。
なお、ステップS28の処理に代えて、メッセージトランザクションパケットの受け取りにより当該デバイス中に記録された動作モードの変更に関する情報を参照して、動作モードの変更に関する情報を受けるようにしてもよい。
次に、このような経路情報の管理方法におけるタイミング制御の他例について図20に示す概略フローチャートを参照して説明する。まず、図19で説明した場合と同じく、当該システムが起動する際(S21のY)、各々のデバイスA〜Dに対して経路情報(デフォルト値)が書き込み設定される(S22)。
この後は、各デバイスA〜Dのアービタ2A〜2DによるエンドポイントA1〜A4,…,D1〜D4の調停は、ホストCPU5により各々のデバイスA〜D中に書き込み設定された当該経路情報(デフォルト値)を参照することにより実行される。
その後は、当該システムの起動時からタイマを稼動させ(S31)、一定時間が経過するかを監視し(S32)、一定時間が経過する毎に定期的に(S32のY)、その時点の動作モードに関する情報、並びに、(各デバイスから取得した又はホストCPU5が管理している)デバイス接続状態、デバイス機能情報、エンドポイントに関する情報に基づき当該木構造中で最適となるデバイスA〜D間の経路を再決定する(S33)。このステップS33の処理が再決定手段、再決定機能として実行される。このステップS33で決定された各デバイスA〜D毎の経路情報は、各々対応するデバイスA〜D中に書き込み設定される(S34)。このステップS34の処理が設定手段、設定機能として実行される。
この後は、各デバイスA〜Dのアービタ2A〜2DによるエンドポイントA1〜A4,…,D1〜D4の調停は、ホストCPU5により各々のデバイスA〜D中に書き込み設定された当該経路情報を参照することにより実行される。
[効果についての考察]
まず、スイッチの出力ポート競合の影響について考察する。PCI Expressスイッチにおいて出力ポートに競合が生ずると、データ転送レートが低下する。図21は、PCI Expressスイッチにおいて4つの入力ポートに対して出力ポートが1つで競合が生ずる条件下で、種類の異なる4つのトラフィックを同時に開始させ、転送速度に応じてデータ転送が順に終了していく場合の特性を示したグラフである。図において、横軸は転送時間、縦軸は各ポートのデータ転送量(積算値)であり、各グラフの傾きが転送レートを示している。なお、ペイロードサイズ(パケットデータ全体のサイズのうち、ヘッダ情報以外のデータ部分のサイズを意味する)は、4種類とも64byte固定の条件での測定例とする。また、データ転送のアルゴリズムは、PCI Express規格におけるウエイテッドラウンドロビン(WRR)であり、4種類に関して1:2:4:8の比率でデータ転送させるように設定した場合の特性例を示し、1つのトラフィッククラスのデータ転送が終了すると、残りのトラフィッククラスについて8:4:2、さらには、8:4の如く、比率を変遷させながらデータ転送させるアルゴリズムである。
図21では、左側から順に、4つの転送が競合、3つの転送が競合、2つの転送が競合、競合なしと変遷しているのが判る。ここに、競合するトラフィックの数が減るに従って、各々のグラフの傾き、即ち、転送レートが急峻となり、データ転送レートが向上するのが判る。この点、前述したような本実施の形態によれば、複数のエンドポイントA1〜A4,B1〜B4,C1〜C4,D1〜D4に関して、スイッチを通るデータ転送経路に競合が生じないように、動作モードに応じて使用するエンドポイントを調停するようにしているので、データ転送レートを向上させ得るのが判る。
次に、経由するスイッチの段数の影響について考察する。データを一定量ずつ区切って転送する場合(例えば、画像形成システム中のプロッタに対して、画像データを主走査方向の1ラインずつに区切って転送する場合など)、パケットデータが発信元から送信先へ到達する、初期遅延の影響が経由するスイッチ段数とともに大きくなる。
図22は、データ転送経路において、経由するスイッチの個数(段数)をパラメータとして、ペイロードサイズと転送レートとの関係を示したグラフであり、経由するスイッチの個数(段数)の転送レートに対する影響が判る。図では、上から順に、タイミング制約なし、スイッチが1段で遅延構造1,2,3、スイッチが2段で遅延構造1,2,3、スイッチが3段で遅延構造1,2,3、スイッチが4段で遅延構造1,2,3、スイッチが5段で遅延構造1,2,3の場合を各々示している。経由するスイッチの段数が1段増える毎に、パケット転送の遅延時間が加算され、その遅延はパケットデータのサイズが大きいほど、大きな遅延が発生してしまう。このため、データ転送経路上に複数段のスイッチが存在すると、1つのパケットで送るデータのサイズが大きくなるほど、データ転送レートが低下してしまうのが判る。この点、本実施の形態によれば、複数のエンドポイントA1〜A4,B1〜B4,C1〜C4,D1〜D4に関して、スイッチ1A〜1Dとの関係では、各々経由するスイッチ1の段数が最小=1段となるように、使用するエンドポイントを調停しているので、データ転送レートの低下を抑制し得るのが判る。
既存PCIシステムの構成例を示すブロック図である。 PCI Expressシステムの構成例を示すブロック図である。 デスクトップ/モバイルでのPCI Expressプラットホームの構成例を示すブロック図である。 x4の場合の物理層の構造例を示す模式図である。 デバイス間のレーン接続例を示す模式図である。 スイッチの論理的構造例を示すブロック図である。 (a)は既存のPCIのアーキテクチャを示すブロック図、(b)はPCI Expressのアーキテクチャを示すブロック図である。 PCI Expressの階層構造を示すブロック図である。 トランザクションレイヤパケットのフォーマット例を示す説明図である。 PCI Expressのコンフィグレーション空間を示す説明図である。 仮想チャネルの概念を説明するための模式図である。 データリンクレイヤパケットのフォーマット例を示す説明図である。 x4リンクでのバイトストライピング例を示す模式図である。 アクティブステート電源管理の制御例を示すタイムチャートである。 本実施の形態のデータ転送システムにおける木構造例を示す原理的な模式図である。 本実施の形態の画像形成システムにおける木構造例を示す原理的な模式図である。 本実施の形態の経路情報の管理方法の一例を示す概略フローチャートである。 本実施の形態の経路情報の管理方法の他例を示す概略フローチャートである。 本実施の形態の経路情報の管理方法におけるタイミング制御の一例を示す概略フローチャートである。 本実施の形態の経路情報の管理方法におけるタイミング制御の他例を示す概略フローチャートである。 PCI Expressスイッチにおいて種類の異なる4つのトラフィックを同時に開始させ、転送速度に応じてデータ転送が順に終了していく場合の特性を示したグラフである。 データ転送経路において、経由するスイッチの個数(段数)をパラメータとして、ペイロードサイズと転送レートとの関係を示したグラフである。 PCI Expressの通常の利用形態による木構造例を示す原理的な模式図である。 その変形例を示す原理的な模式図である。
符号の説明
1A〜1D スイッチ
2A〜2D アービタ
A〜D デバイス
A1〜A4,〜,D1〜D4 エンドポイント

Claims (8)

  1. 木構造によるデータ通信網としてポイントツーポイントで送受信独立の通信チャネルが確立される高速シリアルインタフェースシステムを用いるデータ転送システムであって、
    前記木構造における下流側に位置する各々のデバイスが、
    前記木構造における上流側の複数のスイッチに接続される複数のエンドポイントと、
    当該システムの動作モードに応じて使用するエンドポイントを調停するアービタと、
    を有することを特徴とするデータ転送システム。
  2. 前記高速シリアルインタフェースシステムがPCI Expressシステムである、ことを特徴とする請求項1記載のデータ転送システム。
  3. 前記各アービタは、当該システム内で複数の独立したデータ転送を並行して処理する動作モードの場合に、前記スイッチを通るデータ転送経路に競合が生じないように、使用するエンドポイントを調停する、ことを特徴とする請求項1又は2記載のデータ転送システム。
  4. 請求項1ないし3の何れか一記載のデータ転送システムは、前記デバイスを画像形成に関与するデバイスとすることを特徴とする画像形成システム。
  5. 前記デバイスとして、少なくとも、画像入力用デバイスと画像出力用デバイスと画像処理用デバイスとストレージ用デバイスとを含む、ことを特徴とする請求項4記載の画像形成装置。
  6. 木構造によるデータ通信網としてポイントツーポイントで送受信独立の通信チャネルが確立される高速シリアルインタフェースシステムを用い、前記高速シリアルインタフェースの前記木構造における下流側に位置する各々のデバイスが前記木構造における上流側の複数のスイッチに接続される複数のエンドポイントを有するデータ転送システムを利用するデータ転送方法であって、
    当該システムの動作モードに応じて使用するエンドポイントを調停するようにした、
    ことを特徴とするデータ転送方法。
  7. 前記高速シリアルインタフェースシステムがPCI Expressシステムである、ことを特徴とする請求項6記載のデータ転送方法。
  8. 当該システム内で複数の独立したデータ転送を並行して処理する動作モードの場合に、各エンドポイントにおいて前記スイッチを通るデータ転送経路に競合が生じないように、使用するエンドポイントを調停するようにした、ことを特徴とする請求項7記載のデータ転送方法。
JP2004324556A 2003-11-11 2004-11-09 データ転送システム、画像形成システム及びデータ転送方法 Expired - Fee Related JP4603336B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004324556A JP4603336B2 (ja) 2003-11-11 2004-11-09 データ転送システム、画像形成システム及びデータ転送方法
US11/125,207 US20060114918A1 (en) 2004-11-09 2005-05-10 Data transfer system, data transfer method, and image apparatus system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003381192 2003-11-11
JP2004324556A JP4603336B2 (ja) 2003-11-11 2004-11-09 データ転送システム、画像形成システム及びデータ転送方法

Publications (2)

Publication Number Publication Date
JP2005166029A true JP2005166029A (ja) 2005-06-23
JP4603336B2 JP4603336B2 (ja) 2010-12-22

Family

ID=34741632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324556A Expired - Fee Related JP4603336B2 (ja) 2003-11-11 2004-11-09 データ転送システム、画像形成システム及びデータ転送方法

Country Status (1)

Country Link
JP (1) JP4603336B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007058578A (ja) * 2005-08-24 2007-03-08 Ricoh Co Ltd 画像処理システム、プログラムおよびジョブ実行方法
JP2007067634A (ja) * 2005-08-30 2007-03-15 Ricoh Co Ltd 情報処理システム、プログラムおよびパケット通信方法
JP2007095025A (ja) * 2005-08-30 2007-04-12 Ricoh Co Ltd 制御装置、画像処理システムおよびデータ転送方法
JP2007241830A (ja) * 2006-03-10 2007-09-20 Fujitsu Ltd リコンフィグラブル回路
JP2007249816A (ja) * 2006-03-17 2007-09-27 Ricoh Co Ltd データ通信回路および調停方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000194649A (ja) * 1998-12-28 2000-07-14 Toshiba Corp 電子機器接続方法および電子機器接続装置
JP2000209287A (ja) * 1999-01-20 2000-07-28 Fujitsu Ltd ネットワ―クシステム
JP2001016382A (ja) * 1999-04-27 2001-01-19 Ricoh Co Ltd デジタル複写機およびデジタル複写機システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000194649A (ja) * 1998-12-28 2000-07-14 Toshiba Corp 電子機器接続方法および電子機器接続装置
JP2000209287A (ja) * 1999-01-20 2000-07-28 Fujitsu Ltd ネットワ―クシステム
JP2001016382A (ja) * 1999-04-27 2001-01-19 Ricoh Co Ltd デジタル複写機およびデジタル複写機システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007058578A (ja) * 2005-08-24 2007-03-08 Ricoh Co Ltd 画像処理システム、プログラムおよびジョブ実行方法
JP4607706B2 (ja) * 2005-08-24 2011-01-05 株式会社リコー 画像処理システム、プログラムおよびジョブ実行方法
JP2007067634A (ja) * 2005-08-30 2007-03-15 Ricoh Co Ltd 情報処理システム、プログラムおよびパケット通信方法
JP2007095025A (ja) * 2005-08-30 2007-04-12 Ricoh Co Ltd 制御装置、画像処理システムおよびデータ転送方法
JP4690828B2 (ja) * 2005-08-30 2011-06-01 株式会社リコー 情報処理システム、プログラムおよびパケット通信方法
JP2007241830A (ja) * 2006-03-10 2007-09-20 Fujitsu Ltd リコンフィグラブル回路
US8099540B2 (en) 2006-03-10 2012-01-17 Fujitsu Semiconductor Limited Reconfigurable circuit
JP2007249816A (ja) * 2006-03-17 2007-09-27 Ricoh Co Ltd データ通信回路および調停方法

Also Published As

Publication number Publication date
JP4603336B2 (ja) 2010-12-22

Similar Documents

Publication Publication Date Title
JP4878185B2 (ja) データ通信回路および調停方法
JP5108261B2 (ja) 情報処理装置およびデータ通信装置
JP4928732B2 (ja) データ転送システム及び電子機器
JP4704050B2 (ja) データ転送システム及び電子機器
JP2006195871A (ja) 通信装置、電子機器、及び画像形成装置
JP4564855B2 (ja) データ転送システム及び電子機器
JP2008172727A (ja) 制御装置および画像処理システム
JP4308680B2 (ja) 画像形成装置
JP4287325B2 (ja) 画像システム
JP4928715B2 (ja) シリアルデータ転送装置、画像出力装置、画像入力装置及び画像形成装置
JP4777723B2 (ja) 情報処理システム、プログラムおよびデータ転送方法
JP4564740B2 (ja) 画像機器システム
JP4425766B2 (ja) 画像形成システム
JP4603336B2 (ja) データ転送システム、画像形成システム及びデータ転送方法
JP2006092286A (ja) データ転送装置及び画像形成システム
JP5218377B2 (ja) 画像形成システム
JP4603335B2 (ja) データ転送システム、画像形成システム及びデータ転送方法
JP4476088B2 (ja) データ転送装置及び画像形成システム
JP4271558B2 (ja) データ転送システム、画像形成システム及びデータ転送用プログラム
JP4824422B2 (ja) 制御装置、画像処理システムおよびデータ転送経路切替方法
JP2007226494A (ja) データ転送システム
JP2007241882A (ja) データ通信装置および画像形成システム
JP2005346629A (ja) 画像処理装置
JP2007282187A (ja) 情報処理装置、情報処理システムおよびデータ通信方法
JP2005332372A (ja) 画像処理装置及び画像形成装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees