JP2005164560A - Dark-field particle measurement device and method therefor - Google Patents

Dark-field particle measurement device and method therefor Download PDF

Info

Publication number
JP2005164560A
JP2005164560A JP2003436143A JP2003436143A JP2005164560A JP 2005164560 A JP2005164560 A JP 2005164560A JP 2003436143 A JP2003436143 A JP 2003436143A JP 2003436143 A JP2003436143 A JP 2003436143A JP 2005164560 A JP2005164560 A JP 2005164560A
Authority
JP
Japan
Prior art keywords
image
particles
dark field
lens
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003436143A
Other languages
Japanese (ja)
Inventor
Hironari Kikura
宏成 木倉
Masanori Aritomi
正憲 有冨
Koichi Nishino
耕一 西野
Isao Nakatani
功 中谷
Kiyoshi Akiyama
皖史 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003436143A priority Critical patent/JP2005164560A/en
Publication of JP2005164560A publication Critical patent/JP2005164560A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dark-field particle measurement method and a device for it, capable of visualizing the Brownian movement of submicron particles which are smaller than the wavelength of visible light for measuring the position and movement amount of each particle for measurement of the particle size and the coefficient of viscosity. <P>SOLUTION: Light flux from a light source 3 is converged by a collector lens 4 and formed into a cylindrical zone light by means of a zone optical system 5 to be collected to a sample liquid, including particles by means of a condenser lens 6. The scattered light from a sample body 7 is received by an object lens 8, having a focal distance larger than that of the condenser lens 6. The image from the object lens 8 is magnified by a projection optical system 9 to be received by a CCD sensor 10. An acquired dark field image is measured by an image processing flow meter 11 for finding the number, the position, and the moving amount of the particles. In a computing circuit 12, diffusion time using a means movement distance of the particles and the field time interval of the CCD sensor is substituted in the Einstein-Stokes relation related to the Brownian movement, and then the particle size is found and displayed by a display device 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、暗視野照明方法を用いて、液体中の微粒子からの散乱光による可視化画像を画像解析して、微粒子のブラウン運動による平均移動距離を計測することにより、微粒子の平均粒径、粒径分布、粒子数、粒子空間分布、粒子速度および液体の粘性係数を測定する暗視野式微粒子測定装置および暗視野式微粒子測定方法に関する。  The present invention uses a dark field illumination method to image-analyze a visualized image of scattered light from fine particles in a liquid and measure the average moving distance due to Brownian motion of the fine particles, thereby obtaining an average particle diameter, The present invention relates to a dark field fine particle measuring apparatus and a dark field fine particle measuring method for measuring diameter distribution, number of particles, particle space distribution, particle velocity and viscosity coefficient of liquid.

従来、溶液中に分散している微粒子のブラウン運動を解析して粒子挙動や粒径分布を測定する微粒子測定法は、透過型光学顕微鏡や二次元イメージセンサーで微粒子像を撮影し粒子部分のエリアを数値化することにより粒子挙動や粒径分布を測定する画像処理法があり、また、試料にレーザー光を照射し生じた散乱光や干渉光を計測し解析することによって微粒子の粒径分布を測定するレーザー回折散乱法や動的光散乱法がある。  Conventionally, the fine particle measurement method, which analyzes the Brownian motion of fine particles dispersed in a solution to measure the particle behavior and particle size distribution, takes a fine particle image with a transmission optical microscope or a two-dimensional image sensor, and the area of the particle portion. There is an image processing method that measures particle behavior and particle size distribution by quantifying the particle size, and the particle size distribution of fine particles can be determined by measuring and analyzing scattered light and interference light generated by irradiating a sample with laser light. There are laser diffraction scattering method and dynamic light scattering method to measure.

中でも動的光散乱法は、コヒーレントなレーザー光を用いて粒子のブラウン運動による揺らぎを測定することにより、サブミクロン以下の微粒子のブラウン運動の拡散係数を測定し粒径を求める方法が報告されている(例えば、特許文献1、特許文献2参照、特許文献3参照。)。  Among them, the dynamic light scattering method has been reported to measure the diffusion coefficient of Brownian motion of fine particles of sub-micron and obtain the particle size by measuring the fluctuation due to Brownian motion of particles using coherent laser light. (For example, see Patent Document 1, Patent Document 2, and Patent Document 3.)

また、動的光散乱理論に基づく動画処理による微粒子の粒径計測方法が開示されている(例えば、非特許文献1参照。)。  In addition, a particle size measurement method by moving image processing based on dynamic light scattering theory is disclosed (for example, see Non-Patent Document 1).

なお、発明者は、本発明に関連する技術内容を開示している(例えば、非特許文献2参照、非特許文献3参照。)。
特開2002−22642号公報 (第3−4頁、第1図) 特開2001−76637号公報 (第2−4頁、第1図) 特開平7−72066号公報 (第7−18頁、第1図) 木村毅、他3名、”動的光散乱理論に基づく動画像処理によるサブミクロン粒子の粒径評価”、1993年、電気情報通信学会論文誌Vol.J76−D−II,No.9、p.1987−1993 松下潤一郎、他4名、”磁性流体中の非磁性微粒子のブラウン運動とクラスター形成”、平成15年11月15日、日本機械学会 熱工学コンファレンス講演論文集、p.431−432 松下潤一郎、他4名、”強磁性ナノ微粒子のブラウン運動と粒径計測”、平成15年5月28日、日本伝熱学会 第40回日本伝熱シンポジウム講演論文集、p.815−816
The inventor has disclosed the technical contents related to the present invention (see, for example, Non-Patent Document 2 and Non-Patent Document 3).
JP 2002-22642 (page 3-4, FIG. 1) JP 2001-76637 A (page 2-4, FIG. 1) JP-A-7-72066 (Pages 7-18, Fig. 1) Satoshi Kimura and 3 others, “Evaluation of submicron particle size by moving image processing based on dynamic light scattering theory”, 1993, IEICE Transactions Vol. J76-D-II, No. 9, p. 1987-1993 Junichiro Matsushita and 4 others, “Brownian motion and cluster formation of non-magnetic fine particles in magnetic fluid”, November 15, 2003, Japan Society of Mechanical Engineers Thermal Engineering Conference Proceedings, p. 431-432 Junichiro Matsushita and 4 others, “Brownian motion and particle size measurement of ferromagnetic nanoparticles”, May 28, 2003, Proceedings of the 40th Japan Heat Transfer Symposium, p. 815-816

しかしながら、従来の画像処理法では、透過光を用いて測定できる粒径が300nm程度であり、300nm未満の粒子径の粒子を画像化する事が困難であるという問題がある。  However, the conventional image processing method has a problem that the particle size that can be measured using transmitted light is about 300 nm, and it is difficult to image particles having a particle size of less than 300 nm.

また、上述した従来の動的光散乱法では、レーザー光を用いることにより取り扱いが難しく、装置が複雑化し高価であるという問題がある。  Further, the above-described conventional dynamic light scattering method has a problem that handling is difficult by using laser light, and the apparatus is complicated and expensive.

また、不透明流体中の微粒子の粒径計測では透過光やレーザー光の散乱強度の減衰により測定が困難であり、高濃度の微粒子計測では多重散乱によるノイズが避けられず粒径分布の空間分布を計測しにくいという問題がある。  In addition, it is difficult to measure the particle size of fine particles in an opaque fluid due to the attenuation of the scattered light and laser light scattering intensity, and noise due to multiple scattering cannot be avoided in high concentration fine particle measurement. There is a problem that it is difficult to measure.

本発明は、このような課題に鑑みてなされたものであり、
透明流体および不透明流体中の微粒子のブラウン運動を可視化して、粒子の数および移動量を測定し粒径を算出するとともに、粒子径分布の時間的空間的変化を確認できる、取り扱いが容易で廉価な暗視野式微粒子測定装置および暗視野式微粒子測定方法を提供することを目的とする。
The present invention has been made in view of such problems,
Visualize Brownian motion of fine particles in transparent and opaque fluids, measure the number and amount of particles, calculate particle size, and confirm temporal and spatial changes in particle size distribution, easy to handle and inexpensive An object of the present invention is to provide a dark field fine particle measuring apparatus and a dark field fine particle measuring method.

また、本発明は、高濃度の微粒子計測が可能で、粒径分布の空間分布と、流体の粘性係数を計測できる暗視野式微粒子測定装置および暗視野式微粒子測定方法を提供することを目的とする。  Another object of the present invention is to provide a dark field fine particle measuring apparatus and a dark field fine particle measuring method capable of measuring high concentration fine particles and measuring the spatial distribution of particle size distribution and the viscosity coefficient of fluid. To do.

本発明の暗視野式微粒子測定装置は、光源と、光源からの光束を集光するコレクタレンズと、コレクタレンズからの光束を円筒型の輪帯光に形成する輪帯光学系と、輪帯光学系からの光束を集光するコンデンサレンズと、コンデンサレンズの焦点に設置する標本と、コンデンサレンズの焦点距離より長い焦点距離を有する対物レンズと、対物レンズからの像を拡大する投影光学系と、投影レンズからの像を受光するCCDセンサーと、CCDセンサーからの像を画像解析し微粒子の数および移動量を求める画像処理流速計と、画像処理流速計からの信号を解析し粒子の速度および粒径を求める演算回路と、画像処理流速計および演算回路から粒子挙動に関する統計量を出力する出力装置を有するものである。  The dark field fine particle measuring apparatus of the present invention includes a light source, a collector lens that collects a light beam from the light source, an annular optical system that forms the light beam from the collector lens into a cylindrical annular light, and an annular optical device. A condenser lens that collects the light flux from the system, a specimen placed at the focal point of the condenser lens, an objective lens having a focal length longer than the focal length of the condenser lens, and a projection optical system that enlarges an image from the objective lens, A CCD sensor that receives the image from the projection lens, an image processing velocimeter that analyzes the image from the CCD sensor to determine the number of particles and the amount of movement, and a signal from the image processing velocimeter to analyze the velocity and particle size of the particle An arithmetic circuit for obtaining a diameter, an image processing velocimeter, and an output device for outputting statistics regarding particle behavior from the arithmetic circuit.

また、本発明の暗視野式微粒子測定装置および暗視野式微粒子測定方法は,光源からの光束をコレクタレンズにて集光する工程と、コレクタレンズからの光束を輪帯光学系にて円筒型の輪帯光に形成する工程と、輪帯光の光束をコンデンサレンズの焦点に設置した標本に光を集光する工程と、コンデンサレンズの焦点距離より長い焦点距離を有する対物レンズで標本体からの散乱光を受光する工程と、対物レンズからの像を投影光学系にて拡大し投影する工程と、投影光学系からの像をCCDセンサーにて受光する工程と、CCDセンサーからの像を画像処理流速計にて画像解析し微粒子の数および移動量を求める工程と、画像処理流速計からの微粒子の数および移動量を演算回路にて解析し粒子の速度および粒径を求める工程と、画像処理流速計および演算回路から粒子挙動に関する統計量を表示装置にて表示する工程を有するものである。  The dark field fine particle measuring apparatus and dark field fine particle measuring method of the present invention include a step of condensing a light beam from a light source by a collector lens, and a cylindrical light beam from the collector lens by an annular optical system. The step of forming the annular light, the step of condensing the light of the annular light beam on the specimen installed at the focal point of the condenser lens, and the objective lens having a focal length longer than the focal length of the condenser lens from the specimen body The process of receiving scattered light, the process of enlarging and projecting the image from the objective lens with the projection optical system, the process of receiving the image from the projection optical system with the CCD sensor, and the image processing of the image from the CCD sensor Image analysis with an anemometer to determine the number and amount of particles, Image processing to analyze the number and amount of particles with an arithmetic circuit to determine the particle velocity and particle size, and image processing From fast meter and arithmetic circuits and has a step of displaying statistics about the particle behavior in the display device.

また、本発明の暗視野式微粒子測定装置および暗視野式微粒子測定方法は、第1発明または第2発明において、ブラウン運動に関する次のアインシュタイン・ストークスの関係式  The dark field fine particle measuring apparatus and dark field fine particle measuring method of the present invention are the following Einstein-Stokes relational expressions relating to the Brownian motion in the first invention or the second invention.

Figure 2005164560
で表される微粒子の平均移動距離に、画像処理流速計により画像解析された微粒子の移動量および拡散時間を用いて微粒子の直径dを算出することを特徴とするものである。
Figure 2005164560
The diameter d of the fine particles is calculated using the movement amount and diffusion time of the fine particles image-analyzed by the image processing velocimeter for the average fine particle movement distance represented by

また、本発明の暗視野式微粒子測定装置および暗視野式微粒子測定方法は、粘性係数が未知の流体中に粒径が既知の微粒子を混入して画像解析する工程と、微粒子のブラウン運動を解析して流体の粘性係数を算出する工程を有するものである。  Further, the dark field fine particle measuring apparatus and dark field fine particle measuring method of the present invention includes a step of performing image analysis by mixing fine particles with a known particle diameter in a fluid with an unknown viscosity coefficient, and analyzing the Brownian motion of the fine particles. And calculating the viscosity coefficient of the fluid.

本発明は、以下に記載されるような効果を奏する。
請求項1記載の発明暗視野式微粒子測定装置および暗視野式微粒子測定方法によれば、暗視野画像の画像処理を有するので、比較的暗い画像でも周囲画像からの微粒子検知が容易に行うことができる。また、廉価なハロゲンランプなどの光源を利用でき、かつ光学部品を少なくできるので、広範囲な用途に好ましく使用することができる。
The present invention has the following effects.
According to the dark field fine particle measuring apparatus and the dark field fine particle measuring method of the first aspect of the invention, since the dark field image processing is performed, the fine particle detection from the surrounding image can be easily performed even in a relatively dark image. it can. In addition, since an inexpensive light source such as a halogen lamp can be used and optical components can be reduced, it can be preferably used for a wide range of applications.

また、請求項2記載の発明暗視野式微粒子測定装置および暗視野式微粒子測定方法によれば、コントラストの高い暗視野画像より、粒径測定開始前に試料の調整状態をモニター画面により確認できる。また、粒径測定開始前に微粒子の濃度をモニターできるので、粒径測定開始前に濃度調整を行い、最適な分散状態および濃度での測定が可能である。また、測定に熟練を要しないので、本発明はマイクロ流動やナノ流動および微生物の流動解析を取り扱う次世代の研究に寄与する。  According to the dark field fine particle measuring apparatus and dark field fine particle measuring method of the second aspect of the present invention, the adjustment state of the sample can be confirmed on the monitor screen before the start of the particle size measurement from the dark field image with high contrast. In addition, since the concentration of the fine particles can be monitored before the start of the particle size measurement, the concentration can be adjusted before the start of the particle size measurement, and measurement can be performed with an optimum dispersion state and concentration. In addition, since skill is not required for measurement, the present invention contributes to next-generation research that deals with microfluidic, nanofluidic, and microbial flow analysis.

また、請求項3記載の発明暗視野式微粒子測定装置および暗視野式微粒子測定方法によれば、画像解析においてCCDカメラのフィールド時間間隔を変化させることができるので、測定できる速度領域のダイナミッグレンジを変更できる。  According to the dark field fine particle measuring apparatus and dark field fine particle measuring method of the third aspect of the present invention, the field time interval of the CCD camera can be changed in the image analysis. Can change.

また、請求項4記載の発明暗視野式微粒子測定装置および暗視野式微粒子測定方法によれば、粘性係数が未知の流体中に粒径が既知の微粒子を混入して測定することにより、流体の粘性係数を測定することができるので、コロイド流体などの比較的粘性係数が決定困難な流体の粘性係数が測定可能になる。  According to the dark field fine particle measuring apparatus and dark field fine particle measuring method of the fourth aspect of the present invention, the measurement is performed by mixing fine particles with a known particle diameter in a fluid with an unknown viscosity coefficient, Since the viscosity coefficient can be measured, it is possible to measure the viscosity coefficient of a fluid such as a colloidal fluid in which the viscosity coefficient is relatively difficult to determine.

以下、本発明を実施するための最良の形態について図面に基づいて説明する。
まず、暗視野式微粒子測定装置および暗視野式微粒子測定方法にかかる第1の発明を実施するための最良の形態について説明する。図1は、本発明の装置を説明するものである。
The best mode for carrying out the present invention will be described below with reference to the drawings.
First, the best mode for carrying out the first invention according to the dark field fine particle measuring apparatus and the dark field fine particle measuring method will be described. FIG. 1 illustrates the apparatus of the present invention.

本発明は、廉価な光源を用いて、微粒子粒径が計測できる、暗視野式微粒子測定装置および暗視野式微粒子測定方法を提供するものであるが、この暗視野式微粒子測定装置は図1に示すように、処理部1と測定部2から成り立っている。  The present invention provides a dark-field fine particle measuring apparatus and a dark-field fine particle measuring method capable of measuring the particle diameter using an inexpensive light source. This dark-field fine particle measuring apparatus is shown in FIG. As shown, the processing unit 1 and the measurement unit 2 are included.

光源3より得られた光束は、コレクタレンズ4にて集光される。  The light beam obtained from the light source 3 is collected by the collector lens 4.

コレクタレンズからの光束は、輪帯光学系5にて平行な輪帯光が形成される。  Parallel light in the annular optical system 5 is formed from the light flux from the collector lens.

輪帯光学系5で形成された輪帯光はコンデンサレンズ6において焦点距離Aにて集光する。コンデンサレンズ6の焦点に微粒子を含む標本体7を固定し、コンデンサレンズ5より集光された輪帯光はコンデンサレンズ6の焦点距離にて微粒子を含む標本体7を透過する。  The annular light formed by the annular optical system 5 is condensed at the focal length A in the condenser lens 6. A specimen body 7 containing fine particles is fixed at the focal point of the condenser lens 6, and the annular light condensed by the condenser lens 5 passes through the specimen body 7 containing fine particles at the focal length of the condenser lens 6.

コンデンサレンズ6の焦点距離より長い焦点距離を有する対物レンズ8にて、コンデンサレンズ6の焦点における標本体7中の微粒子からの散乱光の像を得る。  An image of scattered light from fine particles in the specimen 7 at the focal point of the condenser lens 6 is obtained by the objective lens 8 having a focal length longer than that of the condenser lens 6.

対物レンズ8からの像を投影光学系9で倍増してCCDセンサー10にて受光する。  The image from the objective lens 8 is doubled by the projection optical system 9 and received by the CCD sensor 10.

CCDセンサー10では標本体6中の微粒子からの散乱光をもとに、微粒子の存在確認を画像処理流速計11にて行い、画像解析して微粒子の位置と移動量を計算する。  In the CCD sensor 10, the presence of the fine particles is confirmed by the image processing velocimeter 11 based on the scattered light from the fine particles in the specimen 6, and image analysis is performed to calculate the position and movement amount of the fine particles.

画像処理流速計11からの微粒子の位置と移動量から演算回路12に微粒子の数と速度および粒径を算出する。  From the position and movement amount of the fine particles from the image processing velocimeter 11, the number, speed and particle size of the fine particles are calculated in the arithmetic circuit 12.

画像処理流速計11と演算回路12で計算された微粒子の位置、移動量、速度および粒径が表示装置11に表示される。  The position, amount of movement, speed and particle size of the fine particles calculated by the image processing velocimeter 11 and the arithmetic circuit 12 are displayed on the display device 11.

以上のことから、本発明を実施するための最良の形態によれば、
透明流体および不透明流体中の微粒子のブラウン運動を可視化して、個々の粒子の速度および速度分布を測定し、速度および速度分布から微粒子の粒径を計測するとともに、粒子径分布の時間的空間的変化を測定できるため、取り扱いが容易で廉価な暗視野式微粒子測定装置および暗視野式微粒子測定方法を提供することができる。
From the above, according to the best mode for carrying out the present invention,
Visualize the Brownian motion of fine particles in transparent and opaque fluids, measure the velocity and velocity distribution of individual particles, measure the particle size of the fine particles from the velocity and velocity distribution, and Since the change can be measured, a dark field fine particle measuring apparatus and a dark field fine particle measuring method that are easy to handle and inexpensive can be provided.

なお、本発明は上述の発明を実施するための最良の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。  The present invention is not limited to the best mode for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.

つぎに、暗視野式微粒子測定装置および暗視野式微粒子測定方法にかかる第2の発明を実施するための最良の形態について説明する。図2は、本発明の方法を説明するものである。  Next, the best mode for carrying out the second invention according to the dark field fine particle measuring apparatus and the dark field fine particle measuring method will be described. FIG. 2 illustrates the method of the present invention.

1により測定が開始されると、2に示すように、光源より光束を発振する。
3に示すようにコレクタレンズにて集光する。
4に示すように光源からの光を円筒型の輪帯光に形成する。
5に示すように輪帯光の光をコンデンサレンズにて集光する。
6に示すようにコンデンサレンズの焦点距離より長い焦点距離を有する対物レンズで標本体からの散乱光を受光する。
8に示すように対物レンズからの映像を接眼レンズにて標本を確認、調整し、ピントを合わせる。
9に示すように対物レンズからの光を投影レンズにて投影する。
10に示すように投影レンズからの像をCCDセンサーにて受光し、画像確認を行うとともに、粒子濃度が適切でない場合は7に戻る。
11に示すようにCCDセンサーからの画像を画像処理する。
12に示すように画像解析結果から粒子数、位置、速度を算出する。
13に示すように演算回路にて粒子径を算出する。
14に示すように、粒子濃度、位置、速度、粒径等の統計データを画像表示する。
15で終了する。
When measurement is started by 1, as shown in 2, a light beam is oscillated from the light source.
As shown in FIG.
As shown in FIG. 4, light from the light source is formed into cylindrical annular light.
As shown in FIG. 5, the annular light is condensed by a condenser lens.
As shown in FIG. 6, scattered light from the specimen is received by an objective lens having a focal length longer than the focal length of the condenser lens.
As shown in FIG. 8, the image from the objective lens is confirmed and adjusted with the eyepiece, and the focus is adjusted.
As shown in FIG. 9, the light from the objective lens is projected by the projection lens.
As shown in FIG. 10, the image from the projection lens is received by the CCD sensor, the image is confirmed, and if the particle concentration is not appropriate, the process returns to 7.
As shown in FIG. 11, the image from the CCD sensor is processed.
As shown in FIG. 12, the number of particles, position, and velocity are calculated from the image analysis result.
As shown in FIG. 13, the particle diameter is calculated by an arithmetic circuit.
As shown in FIG. 14, statistical data such as particle concentration, position, velocity, particle size, etc. are displayed as images.
End at 15.

以上のことから、本発明を実施するための最良の形態によれば、
透明流体および不透明流体中の微粒子のブラウン運動を可視化して、個々の粒子の速度および速度分布を測定し、速度および速度分布から微粒子の粒径を計測するとともに、粒子径分布の時間的空間的変化を測定できるため、取り扱いが容易で廉価な暗視野式微粒子測定装置および暗視野式微粒子測定方法を提供することができる。また、測定開始前に微粒子の濃度をモニターできるので、測定開始前に濃度調整を行い、最適な分散状態および濃度での測定が可能な暗視野式微粒子測定装置および暗視野式微粒子測定方法を提供することができる。
From the above, according to the best mode for carrying out the present invention,
Visualize the Brownian motion of fine particles in transparent and opaque fluids, measure the velocity and velocity distribution of individual particles, measure the particle size of the fine particles from the velocity and velocity distribution, and Since the change can be measured, a dark field fine particle measuring apparatus and a dark field fine particle measuring method that are easy to handle and inexpensive can be provided. Also, since the concentration of fine particles can be monitored before the start of measurement, a dark field fine particle measuring device and a dark field fine particle measuring method capable of adjusting the concentration before the measurement is started and measuring at the optimum dispersion state and concentration are provided. can do.

なお、本発明は上述の発明を実施するための最良の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。  The present invention is not limited to the best mode for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.

つぎに、暗視野式微粒子測定装置および暗視野式微粒子測定方法にかかる第3の発明を実施するための最良の形態について説明する。図3は、本発明の方法を説明するものである。  Next, the best mode for carrying out the third invention according to the dark field fine particle measuring apparatus and the dark field fine particle measuring method will be described. FIG. 3 illustrates the method of the present invention.

1により測定が開始されると、2に示すように、光源より光を発振する。
3に示すようにコレクタレンズにて集光する。
4に示すように光源からの光を円筒型の輪帯光に形成する。
5に示すように輪帯光の光をコンデンサレンズにて集光する。
6に示すようにコンデンサレンズの焦点距離より長い焦点距離を有する対物レンズで標本体からの散乱光を受光する。
8に示すように対物レンズからの映像を接眼レンズにて標本を確認、調整し、ピントを合わせる。
9に示すように対物レンズからの光を投影レンズにて投影する。
10に示すように投影レンズからの像をCCDセンサーにて受光し、画像確認を行うとともに、粒子濃度が適切でない場合は7に戻る。
11に示すようにCCDセンサーからの画像を画像処理する。
12に示すように画像解析結果から粒子数、位置、速度を算出する。
13に示すように演算回路にてブラウン運動に関するアインシュタイン・ストークスの関係式に粒子の平均移動距離とCCDカメラのフィールド時間間隔を用いた拡散時間を代入して粒子径を算出する。
14に示すように、粒子濃度、位置、速度、粒径等の統計データを画像表示する。
15で終了する。
When measurement is started by 1, light is oscillated from the light source as shown in 2.
As shown in FIG.
As shown in FIG. 4, light from the light source is formed into cylindrical annular light.
As shown in FIG. 5, the annular light is condensed by a condenser lens.
As shown in FIG. 6, scattered light from the specimen is received by an objective lens having a focal length longer than the focal length of the condenser lens.
As shown in FIG. 8, the image from the objective lens is confirmed and adjusted with the eyepiece, and the focus is adjusted.
As shown in FIG. 9, the light from the objective lens is projected by the projection lens.
As shown in FIG. 10, the image from the projection lens is received by the CCD sensor, the image is confirmed, and if the particle concentration is not appropriate, the process returns to 7.
As shown in FIG. 11, the image from the CCD sensor is processed.
As shown in FIG. 12, the number of particles, position, and velocity are calculated from the image analysis result.
As shown in FIG. 13, the particle diameter is calculated by substituting the average movement distance of the particles and the diffusion time using the field time interval of the CCD camera into the Einstein-Stokes relational expression relating to the Brownian motion by the arithmetic circuit.
As shown in FIG. 14, statistical data such as particle concentration, position, velocity, particle size, etc. are displayed as images.
End at 15.

以上のことから、発明を実施するための最良の形態によれば、
可視光の波長より小さなサブミクロン微粒子のブラウン運動を可視化して、個々の粒子の位置と移動量を測定しブラウン運動に関するアインシュタイン・ストークスの関係式に粒子の平均移動距離とCCDカメラのフィールド時間間隔を用いた拡散時間を代入して粒子径を算出するので、効率の良い粒径計測ができる。
From the above, according to the best mode for carrying out the invention,
Visualize the Brownian motion of submicron particles smaller than the wavelength of visible light, measure the position and amount of each individual particle, and the Einstein-Stokes relational equation for Brownian motion is the average particle movement distance and CCD camera field time interval. Since the particle diameter is calculated by substituting the diffusion time using, the particle diameter can be measured efficiently.

また、画像解析においてCCDカメラのフィールド時間間隔を変化させることができるので、測定できる速度領域のダイナミックレンジを変更できる。  Further, since the field time interval of the CCD camera can be changed in the image analysis, the dynamic range of the speed region that can be measured can be changed.

なお、本発明は上述の発明を実施するための最良の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。  The present invention is not limited to the best mode for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.

つぎに、暗視野式微粒子測定装置および暗視野式微粒子測定方法にかかる第4の発明を実施するための最良の形態について説明する。  Next, the best mode for carrying out the fourth invention according to the dark field fine particle measuring apparatus and the dark field fine particle measuring method will be described.

1により測定が開始されると、2に示すように、光源より光を発振する。
3に示すようにコレクタレンズにて集光する。
4に示すように光源からの光を円筒型の輪帯光に形成する。
5に示すように輪帯光の光をコンデンサレンズにて集光する。
6に示すようにコンデンサレンズの焦点距離より長い焦点距離を有する対物レンズで標本体からの散乱光を受光する。このとき、標本体には粒径が既知の微粒子を混入しておく。
8に示すように対物レンズからの映像を接眼レンズにて標本を確認、調整し、ピントを合わせる。
9に示すように対物レンズからの光を投影レンズにて投影する。
10に示すように投影レンズからの像をCCDセンサーにて受光し、画像確認を行うとともに、粒子濃度が適切でない場合は7に戻る。
11に示すようにCCDセンサーからの画像を画像処理する。
12に示すように画像解析結果から粒子数、位置、速度を算出する。
13に示すように演算回路にてブラウン運動に関するアインシュタイン・ストークスの関係式に粒子の平均移動距離とCCDカメラのフィールド時間間隔を用いた拡散時間および粒径を代入して粘性係数を算出する。
14に示すように、粘性係数を画像表示する。
15で終了する。
When measurement is started by 1, light is oscillated from the light source as shown in 2.
As shown in FIG.
As shown in FIG. 4, light from the light source is formed into cylindrical annular light.
As shown in FIG. 5, the annular light is condensed by a condenser lens.
As shown in FIG. 6, scattered light from the specimen is received by an objective lens having a focal length longer than the focal length of the condenser lens. At this time, fine particles having a known particle diameter are mixed in the specimen.
As shown in FIG. 8, the image from the objective lens is confirmed and adjusted with the eyepiece, and the focus is adjusted.
As shown in FIG. 9, the light from the objective lens is projected by the projection lens.
As shown in FIG. 10, the image from the projection lens is received by the CCD sensor, the image is confirmed, and if the particle concentration is not appropriate, the process returns to 7.
As shown in FIG. 11, the image from the CCD sensor is processed.
As shown in FIG. 12, the number of particles, position, and velocity are calculated from the image analysis result.
As shown in FIG. 13, the viscosity coefficient is calculated by substituting the average moving distance of the particles and the diffusion time and the particle size using the CCD camera field time into the Einstein-Stokes relational expression relating to the Brownian motion by the arithmetic circuit.
As shown in FIG. 14, the viscosity coefficient is displayed as an image.
End at 15.

以上のことから、発明を実施するための最良の形態によれば、
粘性係数が未知の流体中に粒径が既知の微粒子を混入して測定することにより、流体の粘性係数を測定することができるので、コロイド流体などの比較的粘性係数が決定困難な流体の粘性係数を測定することができる。
From the above, according to the best mode for carrying out the invention,
Viscosity of a fluid such as a colloidal fluid, whose viscosity coefficient is relatively difficult to determine, can be measured by mixing fine particles with a known particle diameter in a fluid with an unknown viscosity coefficient. The coefficient can be measured.

なお、本発明は上述の発明を実施するための最良の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。  The present invention is not limited to the best mode for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.

つぎに、本発明にかかる実施例について具体的に説明する。ただし、本発明はこれら実施例に限定されるものではないことはもちろんである。  Next, specific examples of the present invention will be described. However, it goes without saying that the present invention is not limited to these examples.

ここでは、水中の標準粒子の粒子挙動と粒子分布についての例を示す。  Here, an example of particle behavior and particle distribution of standard particles in water is shown.

図5の測定部装置および図6の装置を用いた。標本体には,スライドグラス上に試料を微少量添加した。光源にはハロゲンランプを用い、輪帯光学系とコンデンサレンズとして、市販の油浸暗視野コンデンサレンズ(OLYMPUS U−DCW)を用いた。また、使用した光学顕微鏡は生物顕微鏡(OLYMPUS BX50)で対物レンズにはユニバーサルプラン・アポクロマート・レンズ(OLYMPUS UPlanApo100×/1.35 Oil Iris)を用いた。粒子からの散乱光のみを対物レンズを通して結像させ、コンデンサレンズとスライドグラスの間にはガラスと同屈折率のマッチングオイルを充填し、光学精度を高めている。顕微鏡画像は,鏡塔に設置したハイスピードモノクロCCDカメラ(FHOTRON FASTCAM−Net)から取り込まれ、一次メモリに記録されたビットマップ画像をパーソナルコンピュータを介して取り込み、画像処理流速計を用いて粒子画像解析を行い、微粒子の運動解析を行った。得られた微粒子の位置と速度より演算装置のパーソナルコンピュータにて粒径分布を計算した。得られた画像解析結果を図7に示した。また、画像解析結果から得られた粒径分布を図8に示した。結果は極めてコントラストの高い画像が得られおり、微粒子の粒径について極めて高い分解能のもとに計測が行われたことがわかる。  The measurement unit apparatus of FIG. 5 and the apparatus of FIG. 6 were used. A small amount of sample was added to the specimen on a slide glass. A halogen lamp was used as the light source, and a commercially available oil-immersed dark field condenser lens (OLYMPUS U-DCW) was used as the annular optical system and condenser lens. The optical microscope used was a biological microscope (OLYMPUS BX50) and the objective lens was a universal plan apochromat lens (OLYMPUS UPlanApo100 × / 1.35 Oil Iris). Only scattered light from the particles is imaged through the objective lens, and matching oil having the same refractive index as that of the glass is filled between the condenser lens and the slide glass to improve the optical accuracy. Microscopic images are taken from a high-speed monochrome CCD camera (FHOTRON FASTCAM-Net) installed in the tower, a bitmap image recorded in the primary memory is taken in via a personal computer, and a particle image is obtained using an image processing velocimeter. Analysis was performed, and the motion analysis of fine particles was performed. The particle size distribution was calculated from the position and speed of the obtained fine particles by a personal computer of an arithmetic unit. The obtained image analysis results are shown in FIG. Moreover, the particle size distribution obtained from the image analysis result is shown in FIG. As a result, an extremely high-contrast image was obtained, and it can be seen that the measurement of the particle size of the fine particles was performed with extremely high resolution.

以上のことから、本実施の形態によれば、従来の装置に比べ高いコントラストの画像が得られるため、比較的暗い画像でも周囲画像からの微粒子検知が容易に行うことができ、効率的に粒径を測定できる。
また、コントラストの高い暗視野画像より、測定開始前に試料の調整状態をモニター画面により確認できる。
また、画像解析においてCCDカメラのフィールド時間間隔を変化させることにより、測定できる速度領域のダイナミックレンジを変更できる。
また、粘性係数が未知の流体中に粒径が既知の微粒子を混入して測定することにより、流体の粘性係数を測定することができる。
また、廉価なハロゲンランプなどの光源を利用でき、かつ光学部品を少なくできるので、装置の簡素化ができ、経済的である。
From the above, according to the present embodiment, an image having a higher contrast than that of the conventional apparatus can be obtained. Therefore, even in a relatively dark image, particle detection from the surrounding image can be easily performed, and the particles can be efficiently collected. The diameter can be measured.
Also, from the dark field image with high contrast, the adjustment state of the sample can be confirmed on the monitor screen before the start of measurement.
Further, the dynamic range of the speed region that can be measured can be changed by changing the field time interval of the CCD camera in image analysis.
Moreover, the viscosity coefficient of a fluid can be measured by mixing and measuring fine particles with a known particle diameter in a fluid with an unknown viscosity coefficient.
Further, since an inexpensive light source such as a halogen lamp can be used and the number of optical components can be reduced, the apparatus can be simplified and economical.

上述では、粒子挙動を測定するのに一つのCCDセンサーを用いて、暗視野式微粒子測定装置および暗視野式微粒子測定方法について説明したが、これに限定されない。たとえば、CCDセンサーを2本使用することにより、画像処理により三次元ベクトルとして効率的に計測を行うことができる。
また、測定部と処理部が分かれているので、測定部の遠隔操作が可能である。
In the above description, the dark field fine particle measuring apparatus and the dark field fine particle measuring method are described using one CCD sensor for measuring the particle behavior, but the present invention is not limited to this. For example, by using two CCD sensors, it is possible to efficiently measure as a three-dimensional vector by image processing.
Further, since the measurement unit and the processing unit are separated, the measurement unit can be remotely operated.

測定する対象は、微粒子の熱挙動と粒径計測および粘度計測について述べてきたが、これらの微粒子計測に限定されず、原子炉の循環水や給水の水質調査、汚水施設や下水施設などの不純物濃度の測定、高分子材料・工業材料プロセスの微粒子流動場や食品加工プロセスに関するコロイド流れ場計測などにも適用できるばかりか、気液二相流やマイクロ流れやナノ流動の微粒子計測にも適応できる。  The subject to be measured is the thermal behavior, particle size measurement, and viscosity measurement of fine particles, but it is not limited to these fine particle measurements, it is not limited to the measurement of water quality in circulating water and water supply of reactors, impurities such as sewage facilities and sewage facilities. It is applicable not only to measurement of concentration, fine particle flow field of polymer material / industrial material process and colloid flow field measurement of food processing process, but also applicable to gas-liquid two-phase flow, micro flow and nano flow fine particle measurement. .

また、対象とする標本体は微粒子ばかりでなく、生きているバクテリヤや藻類などの微生物の挙動解析にも応用できる。  In addition, the target specimen can be applied not only to fine particles but also to analysis of the behavior of microorganisms such as living bacteria and algae.

本発明の暗視野式微粒子測定装置の一実施例を示す概略構成の説明図である。  It is explanatory drawing of schematic structure which shows one Example of the dark field type fine particle measuring apparatus of this invention. 本発明の暗視野式微粒子測定方法の一実施例を示す説明図である。  It is explanatory drawing which shows one Example of the dark field type fine particle measuring method of this invention. 本発明の暗視野式微粒子測定装置および暗視野式微粒子測定方法の一実施例の説明図である。  It is explanatory drawing of one Example of the dark field type fine particle measuring apparatus and dark field type fine particle measuring method of this invention. 本発明の暗視野式微粒子測定装置および暗視野式微粒子測定方法の一実施例の説明図である。  It is explanatory drawing of one Example of the dark field type fine particle measuring apparatus and dark field type fine particle measuring method of this invention. 本発明の暗視野式微粒子測定装置および暗視野式微粒子測定方法の一実施例の結果図である。  It is a result figure of one Example of the dark field type fine particle measuring apparatus and dark field type fine particle measuring method of this invention. 本発明の暗視野式微粒子測定装置および暗視野式微粒子測定方法の一実施例の結果図である。  It is a result figure of one Example of the dark field type fine particle measuring apparatus and dark field type fine particle measuring method of this invention.

符号の説明Explanation of symbols

1 処理部
2 測定部
3 光源
4 コレクタレンズ
5 輪帯光学系
6 コンデンサレンズ
7 標本体
8 対物レンズ
9 投影光学系
10 CCDセンサー
11 画像処理流速計
12 演算回路
13 表示装置
DESCRIPTION OF SYMBOLS 1 Processing part 2 Measuring part 3 Light source 4 Collector lens 5 Ring zone optical system 6 Condenser lens 7 Sample body 8 Objective lens 9 Projection optical system 10 CCD sensor 11 Image processing velocimeter 12 Arithmetic circuit 13 Display device

Claims (4)

光源と、
上記光源からの光束を集光するコレクタレンズと、
上記コレクタレンズからの光束を円筒型の輪帯光に形成する輪帯光学系と、
上記輪帯光学系からの光束を集光するコンデンサレンズと、
上記コンデンサレンズの焦点に設置する標本と、
上記コンデンサレンズの焦点距離より長い焦点距離を有する対物レンズと、
上記対物レンズからの像を拡大する投影光学系と、
上記投影レンズからの像を受光するCCDセンサーと、
上記CCDセンサーからの像を画像解析し微粒子の数および移動量を求める画像処理流速計と、
上記画像処理流速計からの信号を解析し粒子の速度および粒径を求める演算回路と、
上記画像処理流速計および演算回路から粒子挙動に関する統計量を出力する出力装置を有する暗視野式微粒子計測装置。
A light source;
A collector lens that collects the luminous flux from the light source;
An annular optical system that forms a luminous flux from the collector lens into a cylindrical annular light;
A condenser lens that collects the luminous flux from the annular optical system;
A specimen placed at the focal point of the condenser lens;
An objective lens having a focal length longer than the focal length of the condenser lens;
A projection optical system for enlarging an image from the objective lens;
A CCD sensor for receiving an image from the projection lens;
An image processing velocimeter for analyzing the image from the CCD sensor to determine the number of particles and the amount of movement;
An arithmetic circuit for analyzing the signal from the image processing anemometer to obtain the velocity and particle size of the particles;
A dark field fine particle measuring apparatus having an output device for outputting a statistic relating to particle behavior from the image processing velocimeter and the arithmetic circuit.
光源からの光束をコレクタレンズにて集光する工程と、
コレクタレンズからの光束を輪帯光学系にて円筒型の輪帯光に形成する工程と、
輪帯光の光束をコンデンサレンズの焦点に設置した標本に光を集光する工程と、
コンデンサレンズの焦点距離より長い焦点距離を有する対物レンズで標本体からの散乱光を受光する工程と、
対物レンズからの像を投影光学系にて拡大し投影する工程と、
投影光学系からの像をCCDセンサーにて受光する工程と、
CCDセンサーからの像を画像処理流速計にて画像解析し微粒子の数および移動量を求める工程と、
画像処理流速計からの微粒子の数および移動量を演算回路にて解析し粒子の速度および粒径を求める工程と、
画像処理流速計および演算回路から粒子挙動に関する統計量を表示装置にて表示する工程を有する暗視野式微粒子計測方法。
Condensing the luminous flux from the light source with a collector lens;
Forming a luminous flux from the collector lens into a cylindrical annular light by an annular optical system;
A step of condensing the light beam of the annular light on the specimen placed at the focal point of the condenser lens;
Receiving scattered light from the specimen with an objective lens having a focal length longer than the focal length of the condenser lens;
A process of enlarging and projecting an image from the objective lens with a projection optical system;
Receiving an image from the projection optical system with a CCD sensor;
Analyzing the image from the CCD sensor with an image processing velocimeter to determine the number of particles and the amount of movement;
Analyzing the number of particles and the amount of movement from the image processing velocimeter with an arithmetic circuit to determine the velocity and particle size of the particles;
A dark field fine particle measurement method comprising a step of displaying a statistic related to particle behavior on a display device from an image processing velocimeter and an arithmetic circuit.
請求項1または請求項2において
ブラウン運動に関する次のアインシュタイン・ストークスの関係式、**
Figure 2005164560
を利用して、画像処理流速計により計測した微粒子の移動量と拡散時間を代入して微粒子の直径dを算出することを特徴とする暗視野式微粒子測定装置および暗視野式微粒子測定方法。
The following Einstein-Stokes relational expression concerning Brownian motion in claim 1 or claim 2, **
Figure 2005164560
A dark field fine particle measuring apparatus and a dark field fine particle measuring method, wherein the diameter d of the fine particles is calculated by substituting the amount of movement of the fine particles measured by the image processing velocimeter and the diffusion time.
請求項3において、
粘性係数が未知の流体中に粒径が既知の微粒子を混入して画像解析する工程と、
上記微粒子のブラウン運動を解析して流体の粘性係数を算出する工程を有する暗視野式微粒子測定装置および暗視野式微粒子測定方法。
In claim 3,
A process of image analysis by mixing fine particles with a known particle diameter in a fluid with an unknown viscosity coefficient;
A dark field fine particle measuring apparatus and a dark field fine particle measuring method, each of which includes a step of analyzing the Brownian motion of the fine particles and calculating a fluid viscosity coefficient.
JP2003436143A 2003-11-28 2003-11-28 Dark-field particle measurement device and method therefor Pending JP2005164560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003436143A JP2005164560A (en) 2003-11-28 2003-11-28 Dark-field particle measurement device and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003436143A JP2005164560A (en) 2003-11-28 2003-11-28 Dark-field particle measurement device and method therefor

Publications (1)

Publication Number Publication Date
JP2005164560A true JP2005164560A (en) 2005-06-23

Family

ID=34736783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003436143A Pending JP2005164560A (en) 2003-11-28 2003-11-28 Dark-field particle measurement device and method therefor

Country Status (1)

Country Link
JP (1) JP2005164560A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198804A (en) * 2006-01-24 2007-08-09 Shimadzu Corp Viscosity measuring instrument using particle
JP2007322329A (en) * 2006-06-02 2007-12-13 Univ Of Tsukuba Particle characteristic measuring device and particle characteristic measuring method
JP2008175723A (en) * 2007-01-19 2008-07-31 Kitasato Institute Method and instrument for measuring viscosity of serum or blood plasma on basis of change in diffusion coefficient of brownian movement of albumin molecule
JP2009008584A (en) * 2007-06-29 2009-01-15 Jfe Steel Kk Analysis method of particulate in steel
GB2493391A (en) * 2011-08-05 2013-02-06 Nanosight Ltd Optical detection and analysis of particles
JP2013029423A (en) * 2011-07-28 2013-02-07 Toshiba Corp Flow velocity and grain size measurement method, and system therefor
CN103154708A (en) * 2010-10-13 2013-06-12 奥林巴斯株式会社 Method for measuring diffusion characteristic value of particle by detecting single light-emitting particle
JP2014006220A (en) * 2012-06-27 2014-01-16 National Agriculture & Food Research Organization Observation device and observation method for dispersed system
US8803106B2 (en) 2010-10-19 2014-08-12 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis for observing polarization characteristics of a single light-emitting particle
WO2015108023A1 (en) * 2014-01-17 2015-07-23 株式会社ニコン Particle analysis device, observation device, particle analysis program, and particle analysis method
US9329117B2 (en) 2011-11-10 2016-05-03 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
WO2017104662A1 (en) * 2015-12-18 2017-06-22 株式会社堀場製作所 Particle analysis device and particle analysis method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198804A (en) * 2006-01-24 2007-08-09 Shimadzu Corp Viscosity measuring instrument using particle
JP4513982B2 (en) * 2006-01-24 2010-07-28 株式会社島津製作所 Viscosity measuring device using particles
JP2007322329A (en) * 2006-06-02 2007-12-13 Univ Of Tsukuba Particle characteristic measuring device and particle characteristic measuring method
JP2008175723A (en) * 2007-01-19 2008-07-31 Kitasato Institute Method and instrument for measuring viscosity of serum or blood plasma on basis of change in diffusion coefficient of brownian movement of albumin molecule
JP2009008584A (en) * 2007-06-29 2009-01-15 Jfe Steel Kk Analysis method of particulate in steel
EP2615445A1 (en) * 2010-10-13 2013-07-17 Olympus Corporation Method for measuring diffusion characteristic value of particle by detecting single light-emitting particle
CN103154708A (en) * 2010-10-13 2013-06-12 奥林巴斯株式会社 Method for measuring diffusion characteristic value of particle by detecting single light-emitting particle
EP2615445A4 (en) * 2010-10-13 2013-07-24 Olympus Corp Method for measuring diffusion characteristic value of particle by detecting single light-emitting particle
US8681332B2 (en) 2010-10-13 2014-03-25 Olympus Corporation Method of measuring a diffusion characteristic value of a particle
CN103154708B (en) * 2010-10-13 2015-01-14 奥林巴斯株式会社 Method for measuring diffusion characteristic value of particle by detecting single light-emitting particle
US8803106B2 (en) 2010-10-19 2014-08-12 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis for observing polarization characteristics of a single light-emitting particle
JP2013029423A (en) * 2011-07-28 2013-02-07 Toshiba Corp Flow velocity and grain size measurement method, and system therefor
GB2493391B (en) * 2011-08-05 2015-09-16 Malvern Instr Ltd Optical detection and analysis of particles
GB2493391A (en) * 2011-08-05 2013-02-06 Nanosight Ltd Optical detection and analysis of particles
JP2014521967A (en) * 2011-08-05 2014-08-28 ナノサイト・リミテッド Optical detection and analysis of particles
US9329117B2 (en) 2011-11-10 2016-05-03 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
JP2014006220A (en) * 2012-06-27 2014-01-16 National Agriculture & Food Research Organization Observation device and observation method for dispersed system
WO2015108023A1 (en) * 2014-01-17 2015-07-23 株式会社ニコン Particle analysis device, observation device, particle analysis program, and particle analysis method
JPWO2015108023A1 (en) * 2014-01-17 2017-03-23 株式会社ニコン Fine particle analyzer, observation device, fine particle analysis program, and fine particle analysis method
US10018552B2 (en) 2014-01-17 2018-07-10 Nikon Corporation Particle analysis apparatus, observation apparatus, particle analysis program and particle analysis method
WO2017104662A1 (en) * 2015-12-18 2017-06-22 株式会社堀場製作所 Particle analysis device and particle analysis method

Similar Documents

Publication Publication Date Title
EP3279636B1 (en) Particle size measuring method and device
JP6030131B2 (en) Optical detection and analysis of particles
Maaß et al. Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions
KR101884108B1 (en) Particle tracking analysis method using scattered light(pta) and device for detecting and identifying particles of a nanometric order of magnitude in liquids of all types
Pereira et al. Microscale 3D flow mapping with μDDPIV
JP2005164560A (en) Dark-field particle measurement device and method therefor
Belden et al. Three-dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet
JP4538497B2 (en) Flow state observation apparatus and flow state observation method
Rüttinger et al. Laser‐induced fluorescence in multiphase systems
US11280652B2 (en) Flow velocity distribution measuring method and particle size measuring method
JP4517145B2 (en) Light scattering device, light scattering measurement method, light scattering analysis device, and light scattering measurement analysis method
JP2019534463A (en) Holographic characterization using Hu moments
WO2017104662A1 (en) Particle analysis device and particle analysis method
Bolognesi et al. Digital holographic tracking of microprobes for multipoint viscosity measurements
JP2007010524A (en) Apparatus and method for measuring velocity distribution in micropassage
WO2020054466A1 (en) Particulate observation device and particulate observation method
JP2010060544A (en) Method and device for measuring viscosity and particle size distribution using brown particle
Safari et al. Differential dynamic microscopy of bidisperse colloidal suspensions
GINESTE et al. Three‐dimensional automated nanoparticle tracking using Mie scattering in an optical microscope
Hohl et al. Description of disperse multiphase processes: quo vadis?
Kim et al. Schlieren imaging for the visualization of particles entrapped in bubble films
Brockmann et al. Utilizing the ball lens effect for astigmatism particle tracking velocimetry
Ma et al. Measurement and characterization of bulk nanobubbles by nanoparticle tracking analysis method
WO2019130856A1 (en) Particle image display device, particle image display program, particle image display method, and particle measurement system
JP3867122B2 (en) Local spatial average particle tracking method